

Packaging Concerns/Techniques for Large Devices

Seminar Topic

Presentation Military and Aerospace Programmable Logic Devices (MAPLD)

NASA Goddard Space Flight Center August 31, 2009

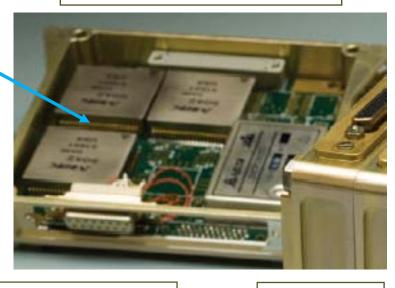
> Michael J. Sampson, Co-Manager, NASA Electronic Parts and Packaging Program (NEPP) 301-614-6233 michael.j.sampson@nasa.gov

FPGAs- A Sampling of Challenges

Can we "qualify" without breaking the bank?

NI O'II

-90nm CMOS


-new materials

New Architectures

- -new interconnects
- -new power distribution
- -new frequencies

New Connectors

- -higher-speed, lower noise
- -serial/parallel

New Board Material

- -thermal coefficients
- -material interfaces

New Workmanship

- -inspection, lead free
- -stacking, double-sided
- -signal integrity

New Design Flows/Tools

- -programming algorithms, application
- -design rules, tools, simulation, layout
- -hard/soft IP instantiation

New Package

- -Inspection
- -Lead free

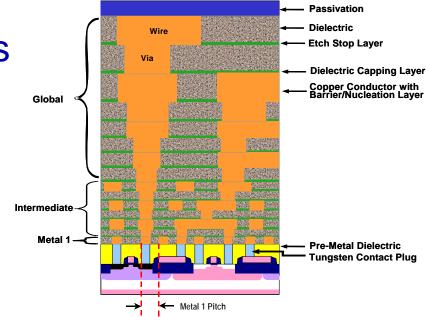
Where we were ©2006

Overview

- Packaging Challenges
- Packaging Options
- Components of All Packages
- Commercial, Non-hermetic Packages
- Space Challenges to Packages
- A Non-hermetic, Complex Package for Space
- Hermeticity, Why Space Users Like It
- Non-hermetic, Complex Package Variations
- Class X
- Summary

Packaging Challenges

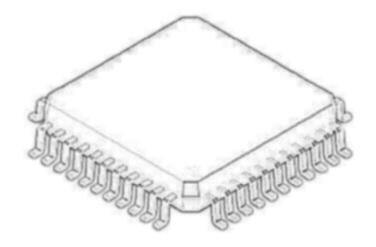
- I/O s, increasing number, decreasing pitch
- Heat Dissipation, especially in space
- Manufacturability
- Materials
- Mechanical
- Installation
- Testability
- Inspectability
- Space Environment
- RoHS (Pb-free)



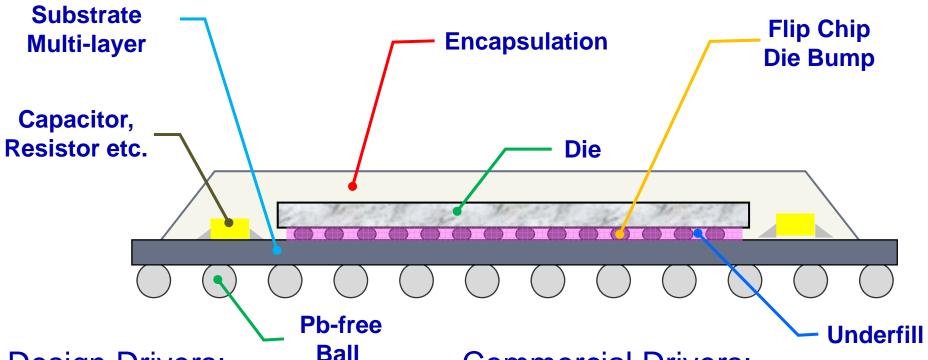
Lunar Reconnaissance Orbiter (LRO), Built at GSFC, Launched with LCROSS, June 18,2009

Package Options – Hermetic?

- Driven by consumer products
 - Low cost
 - High volume
 - Rapid turnover
 - "Green"
 - Minimized size



- Once, hermetic options existed for most package types
 - Now, few hermetic options for latest package technologies
 - Development of new hermetic options unattractive
 - » Very high NRE
 - » Very high technical difficulty
 - » Very low volume
 - » Demanding customers


The "General" Package

- Typically, packages consist of the same basic features but achieve them in many ways:
 - Functional elements active die, passives etc.
 - Interconnects between elements (2 or more elements)
 - A substrate
 - Interconnects to the external I/O of the package
 - A protective package
 - Interconnects to the next higher level of assembly

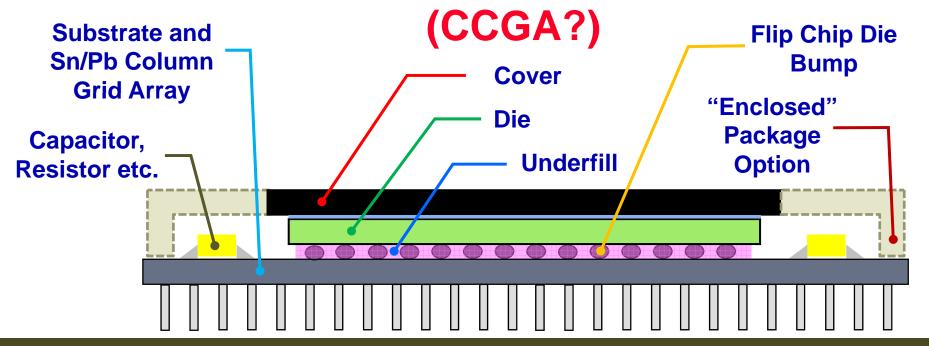
Commercial, Non-hermetic Package (PBGA)

Design Drivers:

- High I/O count
- Large die
- Environmental protection
- Performance/Speed
- Ancillary parts

Commercial Drivers:

- Low cost
- High volume
- Limited life
- Automated installation
- Compact

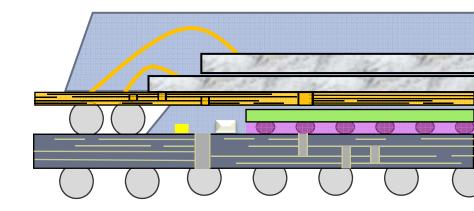


Space Challenges for Complex Non-hermetic Packages

- Vacuum:
 - Outgassing, offgassing, property deterioration
- Foreign Object Debris (FOD)
 - From the package threat to the system, or a threat to the package
- Shock and vibration
 - During launch, deployments and operation
- Thermal cycling
 - Usually small range; high number of cycles in Low Earth Orbit (LEO)
- Thermal management
 - Only conduction and radiation transfer heat
- Thousands of interconnects
 - Opportunities for opens, intermittent possibly latent
- Low volume assembly
 - Limited automation, lots of rework
- Long life
 - Costs for space are high, make the most of the investment
- Novel hardware
 - Lots of "one offs"
- Rigorous test and inspection
 - To try to find the latent threats to reliability

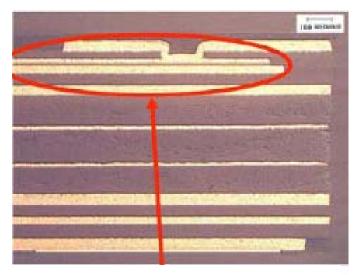
Non-hermetic Package, With "Space" Features

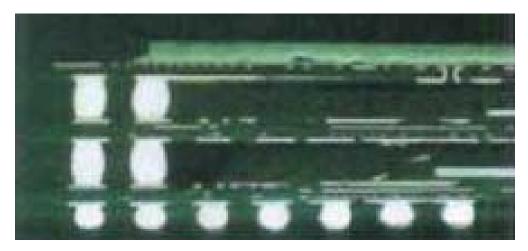
Space Challenge	Some Defenses
Vacuum	Low out/off-gassing materials. Ceramics vs polymers.
Shock and vibration	Compliant / robust interconnects - wire bonds, solder balls, columns, conductive polymer
Thermal cycling	Compliant/robust interconnects, matched thermal expansion coefficients
Thermal management	Heat spreader in the lid and/or substrate, thermally conductive materials
Thousands of interconnects	Process control, planarity, solderability, substrate design
Low volume assembly	Remains a challenge
Long life	Good design, materials, parts and process control
Novel hardware	Test, test, test
Rigorous test and inspection	Testability and inspectability will always be challenges MJS 08/31/09 9

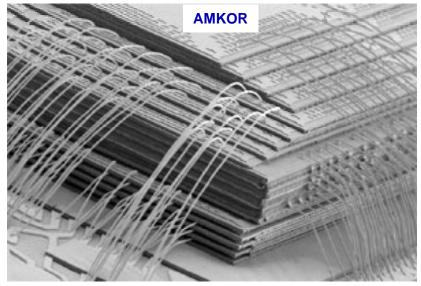

Hermeticity

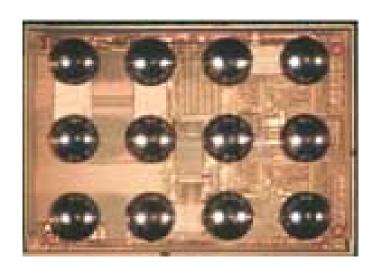
- NASA prefers hermetic packages for critical applications
- Hermeticity is measureable, assuring package integrity
- Only 3 tests provide assurance for hermetic package integrity:
 - Hermeticity nothing bad can get in
 - Residual or Internal gas analysis nothing bad is inside
 - Particle Impact Noise Detection no FOD inside
- NON-HERMETIC PACKAGE INTEGRITY IS HARD TO ASSESS - NO 3 BASIC TESTS

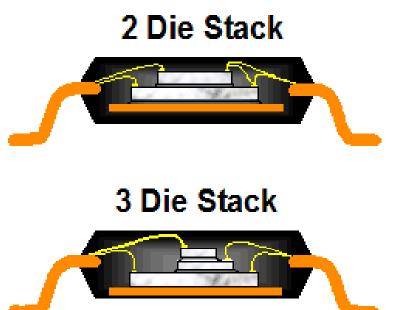
Non-hermetic Package Variations

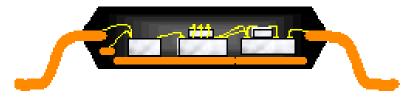

- Current and future package options mix and match elements in almost infinite combinations
- Elements include:
 - Wire bonds
 - Ball interconnects
 - Solder joints
 - Conductive epoxies
 - Vias
 - Multi-layer substrates
 - Multiple chips, active and passive (hybrid?)
 - Stacking of components
 - Embedded actives and passives
 - Polymers
 - Ceramics
 - Enclosures/encapsulants
 - Thermal control features




Some Large Device Package Options


Embedded Capacitor




Some Large Device Package Options

6 Die Multi-Chip Module Stacked Die ePad LQFP

From Amkor's Website http://www.amkor.com/go/packaging

Why MIL Spec. for Space?

- Space users like MIL spec. parts because:
 - There are technical "rules" that apply equally to all suppliers
 - Qualification to recognized requirements
 - Visibility of change control
 - Required tests and inspections reduce or eliminate the need for the space user to do post-procurement tests
 - Transparent government process for reacting to performance issues
 - Space level participation provides an opportunity to do continuous improvement of the MIL supply chain for Class S (space grade) microelectronics
 - Our experience says <u>They Work</u>

MJS 08/31/09

Class X

- Proposed new class for MIL-PRF-38535
- Class X will be for Space level non-hermetic
- Class V will be defined as hermetic only
- Addition to Appendix B, "Space Application"
- Package-specific "package integrity" test requirements proposed by manufacturer, approved by DSCC and government space
- The Package Integrity Test Plan must address:
 - Potential materials degradation
 - Interconnect reliability
 - Thermal management
 - Resistance to processing stresses
 - Thermo-mechanical stresses

Summary

- NASA is going to have to accept the use of non-hermetic packages for complex devices
- There are a large number of packaging options available
- Space application subjects the packages to stresses that they were probably not designed for (vacuum for instance)
- NASA has to find a way of having assurance in the integrity of the packages
- There are manufacturers interested in qualifying non-hermetic packages to MIL-PRF-38535 Class V
- Government space users are agreed that Class V should be for hermetic packages only
- NASA is working on a new Class for non-hermetic packages for M38535 Appendix B, "Class X"
- Testing for package integrity will be required but can be package specific as described by a Package Integrity Test Plan
- The plan is developed by the manufacturer and approved by DSCC and government space

http://nepp.nasa.gov