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This application claims the benefit of U.S. provisional
Patent Application Ser. No. 60/528,362, filed Dec. 9, 2003 for
a "Non-Unitary (Probabilistic) Quantum Circuit Design" by
Colin P. Williams and Robert M. Gingrich, the disclosure of 10
which is incorporated herein by reference in its entirety.

1
NON-UNITARY PROBABILISTIC QUANTUM

COMPUTING CIRCUIT AND METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in which the
Contractor has elected to retain title.

BACKGROUND

1. Technical Field
The present disclosure relates to the field of quantum com-

puting. In particular, it relates to a non-unitary probabilistic
quantum computing circuit and method.

Throughout the description of the present disclosure, ref-
erence will be made to the enclosed Annex Al, which makes
part of the present disclosure.

2. Description of the Prior Art
Physical realization of quantum computers is based on

quantum circuits which perform operations based on quan-
tum computation.

The traditional model of quantum computation is
described in M. Nielsen and I. Chuang, "Quantum Computa-
tion and Quantum Information," Cambridge University Press
(2000), (Nielsen-Chuang), also shown as reference [1] in the
`References' Section of Annex Al. The `References' section
of Annex Al also contains a list of additional references [2]
through [11].

Quantum computation is built upon the concept of quan-
tum bit (qubit), as explained in Section 1.2 of Nielsen-
Chuang, which is incorporated herein by reference. A qubit
has a plurality of possible states, the most important of which

are the 10) state and the 11) state, where the Dirac notation is
used to indicate those states.

States of a quantum systems can be represented by state
vectors made of qubits or density operators p. Density opera-
tors are explained in Section 2.4. of Nielsen-Chuang, also
incorporated herein by reference.

Evolution of a quantum system can be expressed in terms
of a transformation

UPnU+

A, ^ tr(upmu')

where U is a unitary operator which depends only on a time tl
before the transformation and a time t2 after the transforma-
tion. Disadvantages of evolutions of quantum systems based
on unitary operators are described in section I of Annex Al.

Alternative models of quantum computing using non-uni-
tary operators are also possible, as referenced by citations [2,
3, 4, 5, 6] in Section I of Annex Al.

2
SUMMARY

According to a first aspect, a quantum circuit adapted to
perform quantum computation in a quantum computer to
probabilistically achieve a chosen transformation of an initial
n-qubit state is provided, comprising: a unitary quantum
operator operating on a qubit state and an ancilla state to
obtain an evolved qubit state and an evolved ancilla state; and
a measurement operator to measure the evolved ancilla state,
the evolved ancilla state being adapted to assume a success
condition or a failure condition, wherein when the evolved
ancilla state assumes a success condition the chosen transfor-
mation is obtained, and when the evolved ancilla state
assumes a failure condition the unitary quantum operator

15 further operates on the ancilla state and the evolved qubit
state, the unitary quantum operator further operating on the
ancilla state and previously evolved qubit states until the
evolved ancilla state assumes a success condition.

According to a second aspect, a method for probabilistic
20 performance of quantum computation in a quantum circuit

adapted to be used in a quantum computer is provided, com-
prising: providing an arbitrary non-unitary transformation N;
obtaining a unitary quantum operator from the non-unitary
transformation N; providing an ancilla qubit; providing a

25 qubit state; evolving the ancilla qubit under the unitary quan-
tum operator; evolving the qubit state under the unitary quan-
tum operator; measuring the evolved ancilla state; stopping
computation if the evolved ancilla state assumes a success
condition; further evolving the ancilla qubit and the evolved

30 qubit state under the unitary quantum operator if the evolved
ancilla state assumes a failure condition; further evolving the
ancilla qubit and a previously evolved qubit state under the
unitary quantum operator until the evolved ancilla state
assumes a success condition.

35 The present disclosure contributes to the field of quantum
computer design. Specifically, it allows discovery/design of
quantum circuits that implement computations naturally
described by non-unitary matrix transformations. This
includes the solution ofNP-Complete and NP-Hard problems

40 such as scheduling, planning, diagnosis, routing and search,
which solutions can be applied, for example, to computers or
networks. The techniques according to the present disclosure
can also be used to induce quantum circuits that synthesize
arbitrary quantum states.

45

BRIEF DESCRIPTION OF THE FIGURE

FIG. 1 shows a schematic representation of a circuit oper-
ating in accordance with the method of the present disclosure.

50
DETAILED DESCRIPTION

The present disclosure is directed to a method for design-
ing circuits and a circuit performing non-unitary computa-

55 tions probabilistically. In particular, a method is shown to
build a circuit performing the non-unitary transformation
shown in Equation (1) of Section I ofAnnex AL together with
a circuit operating according to such method.

In accordance with a first step of the method according to
60 the present disclosure, an arbitrary non-unitary transfonna-

tion N is introduced, as shown in section I of Annex Al.
A second, optional, step is that of "padding" matrix N to

make it a square 2"x2" dimensional matrix, as shown in equa-
tion (2) of Section II of Annex Al.

65 In a third step, a unitary quantum operator Q is defined,
starting from N, as shown in equation (3) of Section II. The
operator Q will operate on the n-qubit state.
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In a fourth step, an ancilla or work qubit, prepared in the

state I I M I is provided, so that an ancilla augmented state

11 K 10 P=,

is formed.
In a fifth step, the ancilla-augmented state is evolved under

62, as shown in equation (4) of Section II. As a consequence,
the operator Q operates both on the ancilla and the n-qubit
state. Therefore, both the ancilla state and the n-qubit state
evolve under operation of the operator 62, to reach an evolved io
ancilla state and an evolved qubit state.

In a sixth step, the evolved ancilla state is measured in the

{10), I1)} basis, by definition of measurement operators Mo
and Mi , as shown in equation (5) of Section II. Quantum 15

measurement as such is disclosed, for example, in Section
2.2.3 of Nielsen-Chuang, also incorporated herein by refer-
ence.

Upon measurement, the evolved ancilla state can be either

the 10) state (success) or the I1) state (failure). The success 20

probability p o and the failure probability p, are shown in
equations (6) of Section II. The corresponding density matri-
ces po and p, are shown in equations (7) of Section II.

If the measurement results in failure (ancilla in the I0
state), the ancilla is reintroduced and the evolution performed 25

by equation (4) of Annex Al is performed again, using the
reduced density matrix p, of equation (7) of Annex Al. In
otherwords, the operator Q will operate, inthis second opera-
tion, on an augmented state formed by the original ancilla and
the evolved qubit state obtained through the first operation of so
the operator Q. If, by virtue of the second operation, the

ancilla is measured to be still in the 11) state, a third operation
will take place, where the operator Q will operate on an
augmented state formed by the original ancilla and the 35

evolved qubit state obtained through the second operation of
the operator Q. This process is repeated until the ancilla is

found in the success condition, i.e. the 10) state.

4
Once measurement of the ancilla yields to the success

condition, the remaining unmeasured qubits will be in a state
that approximates the desidered non-unitary transformation.

Section III of Annex Al and equations (10), (11), (12) and
(13) of Section III show that, upon failure, the effective opera-
tion applied to the n-qubit state is close to the identity. As a
consequence, failed attempts at projecting the desired non-
unitary computation are not devastating. Indeed, they can be
made arbitrarily small at the cost of reducing the success
probability.

Section IV ofAnnex Al shows examples of the fidelity and
success probability achievable for four random non-unitary
transformations of a random 2-qubit mixed state. As shown in
equation (3) of Section II, the unitary operator Q also depends
on a constant E. The constant e affects both the fidelity with
which the desired non-unitary transformation is achieved, as
well as its probability of occurrence. Inparticular, as e-0, the
fidelity—1, and the success probability-0.

Section V ofAnnexAI shows a circuit operating according
to the method described above.

FIG. 1 of the present application is similar to FIG. 2 of
Section V of Annex Al. FIG. 1 shows a quantum circuit 10
synthesizing an arbitrary n-qubit pure state 11 from evolution
of a state 12. Element 13 shows measurement of the ancilla
state after transformation. In case of failure (evolved ancilla is

in the I1) state), the evolved qubit state is input back to the

operator until success (evolved ancilla is in the 10) state) is
obtained. As soon as this occurs, the evolved qubit state forms
the output state.

While several illustrative embodiments of the invention
have been shown and described in the above description and
in the enclosed Annex Al, numerous variations and alterna-
tive embodiments will occur to those skilled in the art. Such
variations and alternative embodiments are contemplated,
and can be made without departing from the scope of the
invention as defined in the appended claims.
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MPEX al

Non-Unitary Probabilistic Quantum Computing

We present a method for designing quantum circuits that perform non-unitary quantum
computations on n-qubit states probabilistically, and give analytic expressions for the suc-
cess probability and fidelity. Our scheme works by embedding the desired non-unitary op-
erator within an anti-block-diagonal (n+1)-qubit Hamiltonian, H, which induces a unitary
operator Q =_exp(ielY), with e a constant. By using Q acting on the original state aug-
mented with an ancilla prepared in the ll) state, we.can obtain the desired non-unitary
transformation whenever the ancilla is found to be 10). Our scheme has the advantage that
a "failure" result, i.e., finding the ancilla to be 11) rather than 10) , perturbs the remaining
n-qubit state very little. As a result we can repeatedly re-evolve and measure the sequence
of "failed" states until we find the ancilla in the 10) state, i.e., detect the "success" condi-
tion. We describe an application of our scheme to probabilistic state synthesis,

I. INTRODUCTION

In the traditional model of quantum computation one prepares an n-qubit state, evolves it under
the action of a unitary operator representing the desired computation, and makes a projective
measurement on the output state to obtain an answer [1]. In this view, measurement operations
are a necessary evil required to extract an answer from the computer, typically at the cost of de-
stroying valuable information encoded in the final superposition state. However, alternative mod-
els of quantum computing are possible, which embrace non-unitary operations and elevate them
to the status of legitimate gates in the toolbox of the quantum circuit designer [2, 3, 4, 5, 61. The
importance of such non-standard models is that they may inspire new approaches to achieving
universal quantum computing hardware that might be easier to implement than the traditional
scheme, e.g., by trading quantum circuit complexity for success probability.

Although there has been considerable . prior work on designing circuits for performing uni-
tary quantum computations deterministically [7, 8, 9, 10]; far less attention has been paid to de-
veloping methods for designing circuits that perform non-unitary computations probabilistically.
This is the focus of our paper. Specifically, we present a scheme that allows us to construct a
quantum circuit for performing the non-unitary transformation

N'N	 (l )
A. —a	

p;" N

tr(N pin N')

where N is an arbitrary non-unitary transformation, and pi" is an arbitrary n-qubit density opera-
tor. Note that such a non-unitary transformation is well-defined if and only if det(N) # 0. If this
condition is not met, we must explicitly exclude input states, p;n , such that N pio N' is the zero
matrix. Without loss of generality, we may assume the non-unitary matrix N is of dimension
2" x 2. If, initially, N has fewer than 2" rows or columns, we must pad N with zeroes to the right
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of the columns, and/or beneath the rows, sufficient to. make a'2' x2" dimensional matrix. The
trace in the denominator guarantees that the output will be properly normalized.

The paper is organized as follows. Section -II describes our procedure for embedding an
arbitrary non-unitary operator within a larger unitary one and how to use the result to achieve the
desired non-unitary state transformation probabilistically. Section III provides an analysis of the
success probability and fidelity of the achieved transformation. Section IV gives some examples
of random non-unitary transforms of random input states to illustrate the tradeoff between fidelity
and success probability. Section V illustrates how our non-unitary quantum computing procedure
can be applied to probabilistic state synthesis.

II. NON-UNITARY EMBEDDING PROCEDURE

Given an arbitrary non-unitary matrix, N, our goal is to devise a quantum circuit sufficient to
achieve the transformation p i„ —4 Npir,N t I tr(N pi,,Nt ). To do so we use N to build a "de-
signer" Hamiltonian that acts on the n original qubits plus one extra ancilla qubit. By reading the
output state of the ancilla, we can test whether or not the desired non-unitary transformation has
been applied to the n-qubit state.

The first step in our non-unitary embedding .procedure is to pad N, if necessary, to make it
a square 2" x 2" dimensional matrix.; 	

(	 l
N^ I ? 0

J	
(2)

	

l	 )
2"

Next, we define the unitary operator, 52, via a Hamiltonian built from N. Specifically, let:

S2 — exp^ie^ O
t. — iN})	

(3)

	

 -	 0. /I

where c is a constant. This constant, ''e, affects both the fidelity with which we are able to achieve
the desired non-unitary transformation as well as its probability of occurrence.

Next, we introduce an ancilla qubit prepared in the state I1)(11, and evolve the ancilla-
augmented state under 12:	

/
Pout - Q (11)(1 I ® Pin )s2t (4)

Finally, we measure the ancilla in the 110), 11)) basis. Specifically, we define a pair of measure-
ment operators MO and Mi as:

Mo = (10)(0 1) ®1

Mt = (11)(11) ®1

where I is the 2" x 2" dimensional identity matrix. We find the ancilla in the 10) ("success") or 10)
("failure") state with respective probabilitiespo and p t given by:

po = tr(MoMopo,)
(6)

P, = tr(Mt Mlpout)

(5)
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The corresponding density matrices, conditioned on these measurement outcomes, are:

Po =
MOPo , M,

PO	 (7)

MtPouiMI
Pi

If the measurement results in "failure" i .e., finding the ancilla to be in the 11) state, we re-
introduce the ancilla, and perform the evolution described by equation. 4, but this time using the
reduced density matrix p, rather than p,,. This process can be repeated indefinitely, using the se-
quence of reduced density operators generated by successive failures, until the ancilla is found in
the "success" condition, i.e., 10). This is possible because, as we will show in §III, upon "failure"
the effective operation applied to the n-qubit state is close to the identity. Hence; "failed" attempts
at projecting the desired non-unitary computation are not devastating. Indeed, they can be made
arbitrarily delicate at the cost of reducing the'success probability.,

Once measurement of the ancilla yields the "success" condition, the remaining n unmeas-
ured qubits will be in a state that approximates the desired non -unitary transformation. For exam-
ple, if we happen to succeed on the first measurement, we will have succeeded in transforming
our initial state into:

Po ia^ = tri (Po) .
	

(8)
This is to be compared against the state transformation we were hoping to obtain, namely:

Pout
des ired 

= 
N P'n N t	

(9)
tr(N pinNt )

M. SUCCESS PROBABILITY AND FIDELITY

It is natural to ask with what efficiency and fidelity can the desired non-unitary transformation be
obtained? To answer these questions, it is helpful to construct the singular value decomposition
(SVD) of the desired non-unitary operation.

N =U'EV
	 (10)

Using the SVD, we can write the unitary operator S2, exp (ieH) as

SZ = exp i (
t 	0 ^^

(11)
 cos(eE) U	 0 	 0	 Ut sin(eE) V(U'
 0	 V cos(eE)V) —V t sin(eE)U	 0

In this form we can see immediately what operations are performed when the ancilla measure-
m

(.0 °)Opinl
ent "succeeds" or "fails", i.e., yields 10), or 11) respectively. As Q acts upon a state of the form

 upon "failure" the effective transformation is . N., =Vt cos(eE)V and upon "suc-
cess the effective transformation is N,., = U t sin(eE)V , Hence, if the projective measurement
fails k times before it first succeeds, the net transformation applied to the input state will be
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N„,, = N.N' ..Note that this transformation is independent of the state acted upon, p. n , but
does depend upon the scaling parameter in the Hamiltonian, a The smaller E the closer to per-
forming the identity operation (a "no-op") on each failed attempt. Hence, to ensure high fidelity
we need eto be small. Mathematically, after k failures and one success, the actual state created is,

aCLual= NnetPinNnet	 (12)
out.tr

(NnetPinNnct )
Thus to estimate the fidelity (conditioned on success at the (k + 1)-th trial) we need to compute:

F(Pu
tuat 

, Pout
fired ) _ tr 	'p actual 

Pout
 desired P actual	

(13)

IV. SOME EXAMPLES

In this section, we give some examples.of the fidelity and success probability achievable for four
random non-unitary transformations of a random 2-qubit mixed state. The particular details of the
non-unitary transformations and state we used are not important. We merely wish to illustrate that
for random non-unitary transformations of random states as e - 4 0 the fidelity --> 1, the success
probability -4 0, and the expected fidelity (the product of the -two) can have quite complicated
behavior. The point is that there is a tradeoff between the. probability of achieving the desired
non-unitary transformation and its fidelity: the smaller F, the better we can approximate the de-
sired non-unitary transformation, but the more attempts we will need to make to achieve it.

'	 f 1f
e.e

a 0.4	 w

0.,

0	 3	 •	 f	 a	 t0

o.a A A

J O.l
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^ a.z
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Fig. 1. Four examples (read in columns) of random non-unitary transformations of random input states. The
plots are, from top to bottom, the fidelity of the transformation, the success probability, and the product of fi-
delity times success probability. The results illustrate that there is a tradeoff between the fidelity with which
we can approximate the desired non-unitary transformation,. and the efficiency with which we can do it.
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V. APPLICATION: NON-UNITARY STATE SYNTHESIS

Although schemes for deterministic state synthesis are known, e.g., [11], we will now describe a
scheme for probabilistic state synthesis using non-unitary quantum computing. Our goal is to find
auantum circuit sufficient to sy nthesize an arbitrary n- ubit pure state	 Z_lc•4	 Yn	 y	 Ii). To do9 	P	 I IV) _ ^t_o ,
so, we find a unitary transformation sufficient for synthesizing the desired state probabilistically,
and then decompose this unitary transformation into an equivalent quantum circuit. The latter de-
composition can be done using, e.g., the generalized singular value decomposition [9], imple-
mented in the QCD quantum circuit design software ,package [9].

Our non-unitary (probabilistic) state synthesis scheme is depicted in Fig. 2.

11>	 10)

10)

Fig. 2. An equally weighted superposition, 140) = (W®W... MPO...0) is evolved together with an ancilla un-
der the action of S2, which is induced from a Hamiltonian containing the non-unitary operator, N. Subse-
quently, if the ancilla is found to be P) the remaining qubits will be. prepared in the desired superposition state.

We begin by considering the non-unitary transformation defined by:
cp 0 0	 0

N — 2n 0	 l 0. ' 0	
(14)

0	 0 ,0 c21_1

Conceptually, if the operation N were available to use, then we could use the equally weighted
superposition state, 1 0) = W "n 100...0) (where W is the Walsh-Hadamard gate), to create the de-
sired superposition state Itf) .from the non-unitary operation N -Wo'1I00...0)=IV/). However, as
N is a non-unitary operation it is not immediately available. Instead, we have to embed Nwithin a
larger unitary operation whose outcome i conditined on. the value of an ancilla qubit. Specifi-
cally, we define the Hamiltonian H = e O//t and hence, implicitly, the unitary operator
Q =exp(iEH). Next we introduce an an illa pre aced in the 11) state, perform the evolution
011}1 0), and then measure the ancilla. If we find the ancilla to be p) we are done, as the remain-
ing n-qubits will be in state I V). Otherwise, if we find the ancilla to be 11) , we evolve the output
again under Q and measure the ancilla. We continue until we find the ancilla to be 10), whereupon
the desired state will have been synthesized.

Empirically, we find that the minimum depth of the circuit for probabilistically synthesiz-
ing I V) is typically less than the minimum depth of the circuit.for deterministically synthesizing
IV) [9,11], but at the expense of possibly having to repeat the synthesis attempt several times.
Nevertheless, this could point to an interesting tradeoff in the design space of quantum computing
hardware. If it proves to be experimentally challenging to maintain quantum coherence for sev-
eral gate operations, but relatively easy to introduce extra qubits, then non-unitary quantum com-
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putation might allow certain quantum computations to be achieved non-deterministically that
would otherwise be beyond the reach of experimental capability.

VI. CONCLUSIONS

We have presented a systematic technique for achieving non-unitary quantum computations prob-
abilistically by embedding the desired non-unitary operation within a larger unitary one. The lat-
ter unitary operator can be decomposed into an equivalent quantum circuit using algebraic, nu-
merical or genetic techniques [7, 8, 9, 10]. Hence, our scheme provides a method for designing a
quantum circuit sufficient to implement an arbitrary non-unitary operation probabilistically. Em-
pirically, we find that the resulting circuits can have smaller depth than those used to synthesize
the same state deterministically. More work needs to be done on characterizing these bounds.
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Laboratory (JPL), California Institute of Technology, under contract with the National Aeronau-
tics and Space Administration (NASA). We would like to thank the National Security Agency
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What is claimed is:
1.A quantum circuit adapted to perform quantum compu-

tation in a quantum computer to probabilistically achieve a
chosen transformation of an initial n-qubit state, comprising:

• unitary quantum operator operating on a qubit state and
an ancilla state to obtain an evolved qubit state and an
evolved ancilla state; and

• measurement operator to measure the evolved ancilla
state, the evolved ancilla state being adapted to assume a
success condition or a failure condition,

wherein when the evolved ancilla state assumes a success
condition the chosen transformation is obtained, and
when the evolved ancilla state assumes a failure condi-
tion the unitary quantum operator further operates on the
ancilla state and the evolved qubit state, the unitary
quantum operator further operating on the ancilla state
and previously evolved qubit states until the evolved
ancilla state assumes a success condition.

2. The quantum circuit of claim 1, wherein the unitary
quantum operator is formed from a non-unitary quantum
operator.

3. The quantum circuit of claim 2, wherein the unitary
quantum operator is induced from a Hamiltonian containing
the non-unitary quantum operator.

4. The quantum circuit of claim 1, wherein the ancilla state

is a II M I state.
5. The quantum circuit of claim 4, wherein the success

condition corresponds to the 10) evolved ancilla state.
6. The quantum circuit of claim 4, wherein the failure

condition corresponds to the I1) evolved ancilla state.
7. The quantum circuit of claim 1, wherein the unitary

quantum operator depends on a non-unitary matrix N and a
constant E.

8. The quantum circuit of claim 7, wherein the unitary
quantum operator is defined through a Hamiltonian built from
N.

9. The quantum circuit of claim 7, wherein the unitary
quantum operator has an expression

(	 0 —cN
S2 = expl 4 

W 0 ))-
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10. The quantum circuit of claim 2, wherein the quantum

computation is a transformation

psn >Npo, Ar(NpjX),

5 wherein N is the non-unitary quantum operator and wherein
p," is the qubit state.

11. The quantum circuit of claim 10, wherein the qubit state
is an n-dimensional qubit state and N is a 2"x2" dimensional

10 matrix.
12. A quantum computer comprising the quantum circuit

according to claim 1.
13. A method for probabilistic performance of quantum

computation in a quantum circuit adapted to be used in a
15 quantum computer, comprising:

providing an arbitrary non-unitary transformation N;
obtaining a unitary quantum operator from the non-unitary

transformation N;
20	 providing an ancilla qubit;

providing a qubit state;
evolving the ancilla qubit under the unitary quantum opera-

tor;
25	 evolving the qubit state under the unitary quantum opera-

tor;
measuring the evolved ancilla state;
stopping computation if the evolved ancilla state assumes a

30	
success condition;

further evolving the ancilla qubit and the evolved qubit
state under the unitary quantum operator if the evolved
ancilla state assumes a failure condition;

further evolving the ancilla qubit and a previously evolved
35	 qubit state under the unitary quantum operator until the

evolved ancilla state assumes a success condition.
14. The method of claim 13 wherein N is amended to form

a 2"x2" matrix.

40	 15. A quantum circuit operating according to the method of
claim 14.

16. A quantum computer operating according to the
method of claim 14.
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