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We have found experimentally that the critical current of a square superconducting transition-edge
sensor (TES) depends exponentially upon the side length L and the square root of the temperature
T . As a consequence, the effective transition temperature Tc of the TES is current-dependent and at
fixed current scales as 1/L2. We also have found that the critical current can show clear Fraunhofer-
like oscillations in an applied magnetic field, similar to those found in Josephson junctions. The
observed behavior has a natural theoretical explanation in terms of longitudinal proximity effects if
the TES is regarded as a weak link between superconducting leads. We have observed the proximity
effect in these devices over extraordinarily long lengths exceeding 100 µm.

PACS numbers: 74.25.-q,74.78.Bz,74.25.Op

A superconductor cooled through its transition tem-
perature Tc while carrying a finite dc bias current
undergoes an abrupt decrease in electrical resistance
from its normal-state value RN to zero. Super-
conducting transition-edge sensors (TESs) exploit this
sharp transition; these devices are highly sensitive re-
sistive thermometers used for precise thermal energy
measurements.1 TES microcalorimeters have been devel-
oped with measured energy resolutions in the X-ray and
gamma-ray band of ∆E = 1.8±0.2 eV FWHM at 6 keV,2

and ∆E = 22 eV FWHM at 97 keV,3 respectively— with
the latter result at present the largest reported E/∆E of
any non-dispersive photon spectrometer. TESs are suc-
cessfully used across much of the electromagnetic spec-
trum, measuring the energy of single-photon absorption
events from infrared to gamma-ray energies and photon
fluxes out to the microwave range.1 Despite these exper-
imental successes, the dominant physics governing TESs
biased in the superconducting phase transition remains
poorly understood.1

To achieve high energy resolution it is important to
control both the TES’s Tc and its transition width ∆Tc.
Because the energy resolution of calorimeters improves
with decreasing temperature, they are typically designed
to operate at temperatures around 0.1 K. For a TES,
this requires a superconductor with Tc in that range.
While there exist a few suitable elemental superconduc-
tors, the best results have been achieved using proximity-
coupled, superconductor/normal-metal (S/N) bilayers2,3,
for which Tc is tuned by selection of the thicknesses of
the S and N layers.4

There have been a variety of models4–8 used to explain
the noise, Tc, and ∆Tc in TES bilayers, all assuming
spatially uniform devices. Though some have been shown
to be consistent with certain aspects of particular devices,
they do not explain measured Tc and ∆Tc in S/N bilayer
TESs generally.

In this paper we emphasize the importance of a phe-
nomenon that so far has been neglected in previous theo-
retical studies of TESs: the longitudinal proximity effect.

Since the square bilayers at the heart of the TES are con-
nected at opposite ends to superconducting leads with
transition temperatures well above the intrinsic transi-
tion temperature of the bilayers, superconductivity is in-
duced longitudinally into the bilayers via the proximity
effect. As we shall explain later, many of the basic prop-
erties of our TES structures are well described by regard-
ing them as SS′S or SN′S weak links.9–11

In this paper we report the properties of TESs based
on square (L×L) electron-beam-deposited Mo/Au bilay-
ers consisting of 55 nm Mo layers (Tc ∼ 0.9 K) to which
210 nm of Au is added. The square side lengths L range
from 8 µm to 290 µm, and the normal-state resistance
per square is RN = 17.2±0.5 mΩ. The bilayers are con-
nected at opposite ends to Mo/Nb leads having measured
superconducting transition temperatures of 3.5 and 7.1
K.12 Further details on the device fabrication process can
be found in Ref. 13.

Our measurements are made in an adiabatic demagne-
tization refrigerator (ADR) with mu-metal and Nb enclo-
sures providing magnetic shielding for the TES devices
and SQUID electronics. The magnetic field normal to
the TES device plane is controlled by a superconducting
coil with the field value determined from the coil geome-
try and current. Measurements of the TES resistance R
are made by applying a sinusoidal current of frequency
5-10 Hz and amplitude Ibias ∼ 50-250 nA, with zero dc
component, to the TES in parallel with a 0.2 mΩ shunt
resistor (Rsh). The time-dependent TES current is mea-
sured with a SQUID feedback circuit with input coil in
series with TES. When Ibias is less than the TES crit-
ical current Ic, R is zero, and all the ac current flows
through the TES. However, when Ibias > Ic and R > 0
during part of the ac cycle, the TES current becomes
non-sinusoidal, and its maximum value I becomes less
than Ibias. The TES resistance R at the TES current I
is then determined from R = Rsh(Ibias − I)/I.

The critical current Ic is measured, with the ADR held
at constant temperature, by ramping the dc bias current
from zero and defining Ic as the TES current at the first
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measured finite resistance (R ∼ 10 µΩ) across the TES.
Record averaging is used at higher temperatures where
Ic becomes small.

The solid curves in Fig. 1(a) and (b) show measure-
ments of the critical current Ic over seven decades vs
temperature T . Note that although we find the in-
trinsic transition temperature of the Mo/Au bilayer is
Tcw = 170.9±0.1 mK, at very low currents a zero-
resistance state is measured up to much higher temper-
atures as the TES size is reduced, three times Tcw for L
= 8 µm. On the other hand, for the larger TES sizes
(L=130 and 290 µm) the critical current Ic(T ) decreases
rapidly with T near Tcw. The observed Ic behavior as
functions of both T and the length L provides strong ev-
idence that our TESs behave as weak-link devices. The
dotted curves in (a) and (b) show calculated values of
Ic using the Ginzburg-Landau theory described below.
In addition, at appropriately chosen temperatures, the
critical currents of these devices exhibit Fraunhofer-like
oscillations as a function of an applied magnetic field, be-
havior characteristic of Josephson weak links.10,14–16 See
Fig. 1(c) for an example.

Because Ic depends upon T and L, the effective tran-
sition temperature Tc of the TES (the temperature at
which an electrical resistance first appears, i.e., R ∼
10 µΩ) is both current-dependent and length-dependent.
Figure 2(a) exhibits these effects. The points labeled
Tc(I, L) are the effective transition temperatures at five
different current levels (10 nA to 100 µA) for the data in
Fig. 1(a) and (b), showing that Tc −Tcw for each current
level scales approximately as 1/L2 (solid curve fits) for L
ranging from 8 to 290 µm. For each L, Tc −Tcw depends
upon the current.

Also shown in Fig. 2(a) are temperatures TR=0.1 RN

and TR=0.5 RN
for which the resistances are R = 0.1RN

and 0.5RN , respectively, from which we define ∆TR =
T0.5RN

− T0.1RN
. We also define transition widths from

the Ic measurements ∆Tc 1 = Tc 100nA − Tc 10nA and
∆Tc 2 = Tc 1µA − Tc 10nA. In Fig. 2(b) we show that
these three measures of the transition width all vary ap-
proximately as 1/L2, shown by the dotted line. It also
follows that Tc − Tcw scales linearly with the transition
width.

Weak links in various SS′S or SN′S weak-link struc-
tures have been studied experimentally and theoretically
by numerous authors. However, here we use a simple ver-
sion of Ginzburg-Landau (GL) theory17,18 to explain the
results shown in Figs. 1 and 2. This theory describes the
complex order parameter ψ(r), whose absolute square
|ψ(r)|2 is the superfluid density in the weak link. We
employ the substitution ψ = ψrfe

iγ , where ψr is the
magnitude of the order parameter at the reference points
x = ±L/2 adjacent to the leads, f = |ψ|/ψr is the nor-
malized order parameter, and γ is the phase. At the
reference points, the local value of ψ2

r is inversely pro-
portional to the square of the local penetration depth λr

via ψ2
r = m/4µ0e

2λ2
r , and a characteristic reference cur-

rent density jr can be defined via jr = φ0/2πµ0λ
3
r, where

FIG. 1: (Color online) (a) and inset (b) Measured (solid lines
and markers) and theoretical (dotted curves) critical current
Ic versus temperature T for square TESs with side lengths
L ranging from 8 to 290 µm. The bold continuous segments
at the lowest currents are obtained by record averaging. The
intrinsic transition temperature of the Mo/Au bilayer weak
links is Tcw = 170.9±0.1 mK (thin vertical lines). For T
somewhat larger than Tcw, Ic decays approximately exponen-
tially with the square root of T−Tcw. Ic also depends strongly
upon L, which is particularly noticeable for the smaller de-
vices. T and L values of the constant current contours (hori-
zontal dashed lines) are plotted in Fig. 2(a). Inset (c) shows Ic

vs applied field for the L = 29 µm device showing Fraunhofer-
like oscillations, similar to those seen in Josephson junctions,
providing further evidence that the TES exhibits weak-link
behavior.

φ0 = h/2e.
Near the center of the weak link, where f becomes

very small, the local penetration depth λ = λr/f be-
comes very large. Moreover, in a thin film of thick-
ness d < λ, magnetic fields and currents spread out over
the two-dimensional screening length (or Pearl length19)
Λ = 2λ2/d = 2λ2

r/df
2. For all of our samples there is a

range of temperatures T far enough above Tcw that at
the center of the weak link Λ ≫ L and the current den-
sity is j = x̂jx = x̂I/Wd, where I is the TES current.
The first and second GL equations given in Refs. 17 and
18 then depend only upon x and can be written as

−f ′′ +
(t− 1)

ξ2w
f +

κ2

λ2
r

f3 +
j̃2

λ2
rf

3
= 0 (1)

and

j̃ = jx/jr = −λrf
2(γ′ + 2πAx/φ0), (2)
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FIG. 2: (a) Measurements of the effective transition temper-
ature Tc at different currents and lengths. Markers Tc(I,L)
give the effective Tc from constant current contours of the
Ic(T, L) data in Fig. 1, with solid curves being 1/L2 fits for
each current level. Markers T (R) give temperatures where
R = 0.1 RN and 0.5 RN . (b) Three different measures of the
transition width defined as differences between pairs of cor-
responding points shown in (a), as labeled ∆TR, ∆Tc 1, and
∆Tc 2, showing 1/L2 scaling (dotted line).

where t = T/Tcw is the reduced temperature, ξ(T ) =
ξw/|t − 1|1/2 is the temperature-dependent coherence
length, κ is the dimensionless Ginzburg-Landau param-
eter, Ax is the vector potential, and the primes denote
derivatives with respect to x.

In this paper we are concerned chiefly with weak-link
behavior for which f(x) is an even function of x and has
a minimum in the middle of the weak link, f(0) = f0,
where f ′(0) = 0. We can obtain an equation that deter-
mines how f0 depends upon L, t, and j̃ by multiplying
Eq. (1) by f ′, integrating the result, multiplying by f2,
and taking the square root, which yields the following
equation, valid for 0 ≤ x ≤ L/2,

df2/dx=P (f2), (3)

where

P (f2)=

√

2(f2−f2
0 )

[κ2

λ2
r

f4+
(2(t−1)

ξ2w
+
κ2f2

0

λ2
r

)

f2+
2j̃2

λ2
rf

2
0

]

,

(4)
such that f0 and f(x) can be obtained from the integrals

∫ 1

f2

0

df2

P (f2)
=
L

2
and (5)

∫ f(x)

f2

0

df2

P (f2)
= x. (6)

The gauge-invariant phase difference across the weak link
is20

φ = −
∫ L/2

−L/2

(

γ′ +
2πAx

φ0

)

dx =
2j̃

λr

∫ 1

f2

0

df2

f2P (f2)
. (7)

The integrals in Eqs. (5), (6), and (7) can be evaluated
numerically as in Ref. 20 or in terms of elliptic integrals
as in Refs. 21 and 22. For given values of λr , κ, ξw , t,
and L, the solutions of Eq. (5) reveal that j̃ is a single-
valued function of f0, starting with the value j̃ = 0 at
f0 = 0, initially increasing linearly with f0, rising to a
maximum value defined as j̃c, then returning to zero at
a larger value of f0.

When t > 1, the above equations reveal that j̃(φ) is a
single-valued function of φ and has a functional depen-
dence close to j̃ = j̃c sinφ, similar to that of a Josephson
junction. For 0 ≤ φ ≤ π, the reduced order parameter
f(j̃, x) at x = 0 has its maximum value f00 = f(0, 0)
when φ = 0, its minimum value 0 when φ = π, and
a value between these two limits at the critical current
when j̃ = j̃c and φ ≈ π/2.

When T > Tcw and L ≫ ξ(T ) = ξw/
√
t− 1, f ≪ 1

for a large fraction of the length L, and one may omit
the term proportional to f3 on the right-hand side of Eq.
(1) to obtain the reduced order parameter f(j̃, x). In the
absence of a current, f(0, x) = fr cosh(x/ξ)/ cosh(L/2ξ)
near the center of the weak link, f00 = f(0, 0) =
fr/ cosh(L/2ξ) ≈ 2fre

−L/2ξ at the center, and the gauge-
invariant phase difference across the weak link is φ = 0.
The parameter fr, which is of the order of unity, would
be equal to unity if the linearized GL equation were valid
over the entire length L of the weak link; the suppression
of fr below unity occurs because the exact solution for
f(0, x) near x ≈ ±L/2 is strongly influenced by the term
(κ/λr)

2f3 on the right-hand side of Eq. (1).
For nonzero current, f0 = f(j̃, 0), the reduced order

parameter at the center of the weak link, is suppressed
below f00, and the gauge-invariant phase difference φ
across the weak link obeys sin(φ/2) = f0/f00. The re-
duced current is given by

j̃ =
λr

2ξ
f2
00 sinφ ≈ 4f2

r λr

ξ

( f0
f00

)

√

1 −
( f0
f00

)2

e−L/ξ, (8)

such that the reduced critical current is given for T > Tcw

and any L by the approximation

j̃c = jc/jr = (λr/2ξ)f
2
00 ≈ (2f2

r λr/ξ)e
−L/ξ (9)

at the maximum of j̃, where f0 = f00/
√

2 and φ = π/2.
From Eq. (9), we may obtain the critical current as
Ic = jcLd = jr j̃cLd. Inferring Tcw = 170.9 mK from
the experimental data in Fig. 1(b) for L = 290 µm and
assuming κ = λr/ξw, we obtained ξw and λr by fitting
the experimental Ic data for L = 8 µm at 250 mK and
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375 mK. The dotted curves in Fig. 1(a) and (b) show Ic
calculated using ξw = 738 nm and λr = 79 nm in Eq. (9)
and Eq. (5), from which f00 was obtained.23

Under conditions for which Eq. (9) is valid, if we define
the effective transition temperature Tc(j̃) as the temper-
ature at which the first voltage appears along the length
of the TES when it carries a reduced current density
j̃, we can determine Tc(j̃) or tc(j̃) = Tc(j̃)/Tcw by set-
ting j̃ = j̃c in Eq. (9) and solving for tc(j̃), noting that
ξ = ξw/

√
t− 1. The result is

(Tc −Tcw)/Tcw = (ξ2w/L
2) ln2(2f2

rλr

√
tc − 1/j̃ξw). (10)

Since the dependence upon tc on the right-hand side is
very weak, because it appears within the argument of the
logarithm, Eq. (10) predicts that the current-dependent
transition temperature of the TES should scale very
nearly as Tc − Tcw ∝ 1/L2 and that Tc should increase
as the square of the logarithm of the inverse TES cur-
rent. Similar reasoning leads to the conclusion that both
∆T1 and ∆T2 scale as 1/L2. Scaling of ∆TR can be un-
derstood using a simple model of the resistive transition
based on the assumption that R = (2xj/L)RN , where,

for a given reduced current density j̃, xj is the solution

of j̃ = (λr/2ξ)f(0, xj)
2.

We conclude that TESs behave as weak links. This
conclusion is based on our experimental findings that (a)
the critical current at the first onset of a voltage along the
length depends exponentially upon the length L and the

square root of the temperature T , (b) both the current-
dependent effective transition temperature Tc and the
transition width scale as 1/L2, and (c) the TESs show
clear Fraunhofer oscillations as a function of applied mag-
netic field, characteristic of Josephson weak links. It fol-
lows that the strength of superconducting order is not
uniform over the TES. Our findings have implications on
TES magnetic field sensitivity, which impacts required
limits on ambient magnetic field magnitude and fluctu-
ations in TES applications. Proposed uses of the lon-
gitudinal proximity effect for TES applications include
(1) tuning the effective Tc of TES arrays by changing
L in mask design, which could compensate for bilayer
Tcw variability1 and increase yield, and (2) making small
TESs consisting of superconducting leads separated by
normal metal, such as Au with Tcw = 0, avoiding the use
of S/N bilayers.
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