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Magnetars are young neutron stars with extreme magnetic fields (B>1014-1015 G) 1. How

these fields relate to the properties of their progenitor stars is not yet clearly established.

However, from the few objects with initial mass estimates it has been suggested that a very

massive progenitor star (Mprog >40M ) is required to produce a magnetar. Here we report

that the initial progenitor star mass of the magnetar SGR 1900+14 was a factor of two lower

than this limit, Mprog=17±1M . Our results strongly contradict the prevalent hypothesis

that only very massive stars can produce magnetars. Instead, we favour the “fossil-field”

model as a possible explanation of the origin of these extreme magnetic fields.

It is still unclear how magnetars are formed. The current theoretical framework for magnetar
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production requires that the core of a massive star has a very fast rotation speed in the first few

seconds after it goes supernova (SN). If the rotation period is shorter than the convective timescale

within the neutron star – about 1ms – a highly-efficient dynamo operates which boosts the magnetic

field to 1000 times that of a ‘regular’ neutron star, and very rapidly slows the rotation period

down to a few seconds 2. However, recent stellar evolution calculations have shown that the cores

of massive stars are substantially spun down as they enter the Red Supergiant (RSG) phase through

magnetic braking between the stellar core and convective envelope 3. Thus, the problem exists of

how the core of a massive star can retain sufficient angular momentum through to the SN stage

such that the post-SN core is able to jump-start the dynamo mechanism. It has been suggested

that those stars with Minit >40M are able to lose a substantial fraction of their hydrogen-rich

envelope while still on the main-sequence, allowing them to skip the RSG phase, and therefore

avoid the severe spin-down of the core as the outer envelope expands and becomes convective 4.

Where magnetars have been associated with star-clusters it has been possible to estimate the

initial mass of the progenitor empirically. As the magnetar phase is short, the SN that produced

it must have occured recently (< 104yrs ago 5). Consequently, by measuring the age of the star-

cluster we can determine the age of the progenitor star when it went SN. Then, as a star’s lifetime is

a strong function of its initial mass, we can estimate the initial mass of the magnetar’s progenitor. In

the cases of the magnetars SGR 1806-20 and IGR J164710.2-455216, associated with the clusters

Cl 1806 20 and Westerlund 1 (Wd 1) respectively, it appears that the magnetar progenitors had

initial masses >40M 6–8. These results are therefore consistent with the hypothesis that magnetars

decend from the most massive stars.
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There is a third magnetar, SGR 1900 + 14, which can be used to test this hypothesis. It

too is thought to belong to a cluster 9, 10, though the cluster is poorly studied as high line-of-sight

extinction makes it difficult to observe at optical wavelengths. So far, the best evidence for the

association of the magnetar and star-cluster comes from the detection of an infrared ring around

the source, analysis of which placed the magnetar at the same distance from Earth as the cluster 11.

To further investigate the nature of this cluster and accurately determine the progenitor mass

of SGR1900+14, we obtained both imaging and spectroscopic observations of the cluster (see

Fig. 1 and caption). The goal of our analysis is to determine the age of the cluster using its

two bright RSG members, whilst also studying the cluster’s fainter population to ensure that the

assumption of coevality is sound. Our analysis method is described in detail in previous work

(see SI Sect. 2). Briefly, we use the stellar spectra in order to determine effective temperatures,

and, from the star’s observed near-IR colours, the extinction. By measuring the red-shifts of the

stellar spectra and comparing to the Galactic rotation curve we obtain kinematic distances. From

the extinction, distance, and bolometric correction appropriate for the star’s temperature, we then

derive the intrinsic luminosities. In combination with stellar evolution models, these luminosities

are then used as diagnostics of the cluster’s age. The results of this analyis are presented in full in

Sect. 2 of the SI.

In terms of the cluster’s age, we find that the RSG luminosities are uniquely fit by the rotating

stellar evolutionary models at Solar metallicity 12 for an age of 14±1Myr (see Fig. 2). Analysis

of the fainter stars indicate that the cluster is consistent with being a coeval starburst to within the
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errors. No Wolf-Rayet stars are found, which would imply star formation within the last 8Myr,

while we find relative numbers of hot/cool stars that are entirely consistent with the model predic-

tions for a coeval 14Myr cluster (SI Sect. 3). As the age of the cluster is much greater than the

lifetime of the magnetar (< 104yrs), we can now estimate the mass of the magnetar’s progenitor by

determining the mass of the most massive star that could still exist in a cluster of this age. Using

the same stellar evolution models as above we find that the initial mass of the magnetar’s progeni-

tor was Mprog = 17±1M (Fig. 2). We show in SI Sect. 4 that this estimate is insensitive to which

set of evolutionary models is used. Furthermore, we discount the possibility that the magnetar

progenitor was a merger of two 17M stars as highly improbable (See SI Sect. 4.1).

How does this mass compare to other post-SN objects with progenitor mass estimates? In

Table 1 we list all known young clusters associated with neutron stars. As well as the three clusters

containing magnetars, we also list the two recent discoveries of clusters associated with Pulsar

Wind Nebulae (PWNe) – Cl 1813 13 13, 14, and RSGC1 15, 16. Prior to our current result, it could be

argued from these data that there is a connection between magnetic field strength B and progenitor

mass. However, the inclusion of SGR 1900+14 – the object with the lowest progenitor mass of the

sample, but whose magnetic field is as large as any other on the list – appears to end any notion of

a relation between B and Mprog. As such, our result provides a strong challenge to the hypothesis

that magnetars decend from very massive stars – specifically, those stars massive enough to avoid

the RSG phase during their evolution. From our current understanding of stellar physics, it is not

possible for a 17M star to shed enough of its hydrogen-rich envelope on the main-sequence to

avoid the RSG phase 12. Though close-binary interaction may shorten the duration of the RSG
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phase 17, the companion would be visible as an optical/near-infrared counterpart to the magnetar.

No evidence for a counterpart for any magnetar currently exists.

If magnetars can be produced from stars which will inevitably suffer core spin-down during

their evolution, then perhaps stellar rotation, and in turn initial stellar mass, are not the primary

factors in the production of extreme magnetic fields in neutron stars. An alternative theory to the

dynamo mechanism is the ‘fossil-field’ scenario, whereby a seed B-field is inherited by a newly-

born star from its natal molecular cloud (e.g. ref 18). This explanation is preferred from studies

of the energetics of SN remnants associated with magnetars, in which no evidence has been found

for the extra energy boost provided by the neutron star’s rapid spin-down (such as predicted by the

dynamo scenario) 19. However, we note that while a handful of massive stars have recently been

observed to have magnetic field strengths of 103G 20, 21, no current theory exists for how such

fields evolve with the star or how they may be amplified by 12 orders of magnitude at the point of

supernova.
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Figure 1 High resolution image of the centre of the 1900+14 cluster. The image, taken

in the H-band, shows the fainter stars close to the two bright RSGs at the centre of the

cluster. We use the stellar identifications of 10; where we resolve one of Vrba et al.’s ob-

jects into multiple components we sub-label them alphabetically. Images were taken on 23

August 2008 using laser guide star adaptive-optics assisted imaging with the Keck Near-

Infrared Camera 2 (NIRC2). This was supplemented with wide-field imaging from the

UKIDSS Galactic Plane survey 24. We also obtained high-resolution spectroscopy of the

two RSGs in the region of the CO bandhead feature at 2.293µm, as well as low-resolution

K-band spectroscopy between 2-2.4µm of several of the fainter stars in the field, using the

Keck Near-Infrared Spectrograph (NIRSPEC) on 23 June 2008. We employed standard

reduction techniques for both sets of data (see Supplementary Information (SI) Section

1).

Figure 2 The mass of the most massive pre-supernova star in a cluster of a given age.

The figure shows the minimum and maximum luminosities of Red Supergiants (RSGs) in

a coeval cluster, as a function of cluster age, calculated using the Geneva rotating models

at Solar metallicity12. The initial masses of the stars in the RSG phase are indicated

by the data labels. The red arrows indicate the range of RSG luminosities we observe

in Cl 1900+14, ±1 . We can say that the cluster cannot be younger than 10.5Myr, as

the least luminous RSG in such a cluster would be brighter than the brightest RSG in

Cl 1900+14. Similarly, we can place an upper limit to Cl 1900+14’s age of 18.5Myr from

the luminosity of the faintest RSG in the cluster. From the RSG luminosity range we
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observe in the cluster, we can constrain the age to 14±1 Myr. Using the same stellar

models, we can determine the maximum mass of a star that would still exist in a cluster

this age. Assuming that the age of the magnetar is negligable compared to the age of the

cluster, we find a magnetar progenitor mass of 17±1M . Using the more generous upper

and lower limits on the cluster age, we find Mprog = 17+5
4M .
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Table 1: Post-supernova objects with known progenitor masses.

Object [+ cluster] Mprog/M Remnant B ( 1014G) Ref.

SGR 1806-20 48+20
8 Magnetar 2-8 7,22

CXO J164710.2-455216 [Wd 1] 40±5 Magnetar <1.5 8

IGR J18135-1751 [Cl 1813-18] 20-30 Pulsar Wind Nebula 14 13,14

AX J1838-0655 [RSGC1] 18±2 Pulsar Wind Nebula 0.02 15,16

SGR 1900+14 17±1 Magnetar 2-8 This work, 23

4This value is highly uncertain due to the lack of a measured period and spin-down rate, and may be an

order of magnitude lower.
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