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1.0 EXECUTIVE SUMMARY 
In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team 
completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the 
NASA In-Space Propulsion Office. The objective of the study was to support technology development and 
assess the relative benefits of different electric propulsion systems on asteroid sample return design. The 
design uses a single, heritage Orion solar array (SA) (~6.5 kW at 1 AU) to power a single NASA 
Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth 
asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle 
spirals back to Earth where it drops off the first sample’s return capsule and performs an Earth flyby to 
assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is 
returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth 
Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New 
Frontier’s (NF's) class mission. 

Table 1.1 collects the details of the subsystems at a top level in the baseline design (case 1). 

 
Figure 1.1—NEARER Case 1a Concept Vehicle Design 
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Table 1.1—Mission and Spacecraft (S/C) Summary—Baseline Case 1 

Subsystem area Details Total mass 
with growth 

Top level system SEP enables sample returns from both Nereus and 1996 FG3 Asteroids 1352 kg  
(wet with 
growth) 

Mission, 
operations 

7 yr mission: December 6, 2014 launch; First science (Nereus landing) June 16, 2016; First 
sample return February 6, 2018, Second landing (FG3) May 30, 2020; Second sample return 
October 28, 2021 

 

Attitude Control 
System (ACS) 

Off-the-shelf (OTS) inertial measurement unit (IMU), Star-trackers, Wheels, hydrazine thrusters 
LIDAR assisted precision landing system (landing gear for contingency, up to 1m/s landing 
velocity) 
Solar pressure torque from off-set solar easily countered by canting electric thrusters <1° 

54 kg 

Launch Atlas 401 Launch, C3 = 38.07 km2/sec2 New Frontiers (NF) Expendable Launch Vehicle (ELV), 
performance to C3 of 1528 kg (1375 kg after 10% launch margin). 

 

Science Science/collection arm with camera, Two, six-bay sample capsules 
Extensive in-situ science powered by SA 
Wide/narrow field imager, infrared (IR) spectrometer, laser altimeter, IR, gamma-ray, neutron 
spectrometer, Alpha Particle X-ray Spectrometer (APXS), LAMS, thermal conductivity, electrical 
dissipation, ground penetrating radar return samples in two capsules. 

29.3 kg 
payload, 
(61.4 kg 
empty 
capsules) 

Power Single Orion derived Ultra-Flex SA (built for high-g Orion loads), Li-ion batteries for eclipse stays 134 kg 
Propulsion +1 NEXT Ion thrusters (7 m SA), OTS Xe feed and storage system, hydrazine Reaction Control 

System (RCS), 500 kg Xe for NEXT 
Cold gas Xe ‘landing’ system to minimize surface contamination 

209 kg 

Structures and 
mechanisms  

Thrust tube and tubular space frame propellant tanks mount directly to thrust tube 98 kg 

Communications 0.7 m antenna, two axis gimbal hemispheric coverage, 3 to 10 kbps, three omni antennas,  31 kg 
Command & data 
handling (C&DH)  

Two RAD750 processors for fault tolerance, 48 Gbit data storage 37 kg 

Thermal Heat-pipe radiators for cooling electronic components  
Heaters for propellant systems, MLI for S/C 

47 kg 

2.0 STUDY BACKGROUND AND ASSUMPTIONS 
2.1 Introduction  
The focus of this COMPASS study was to design a S/C and mission which samples at least two near Earth 
asteroids and a returns multiple samples from each to the Earth. This study focused on using SEP to enable 
sample returns from the Asteroids Nereus and 1996 FG3. Additional science mapping and in-situ science 
was also sought as a science objective. The design parameters (ELV choice, launch mass, incl. cost) were 
all designed to fit within a NF Class of mission. The trajectory will utilize an Earth flyby to both return first 
sample capsule and boost the S/C to the second asteroid target. 

A number of Trades to be looked at during the course of the design study were: 

 Trade primary SEP systems 
− NEXT 
− BPT4000 
− HiVHAC 

 Trade level of in-situ science 
 Trade number of asteroids sampled (1 or 2) 

2.2 Assumptions 
Summary of study assumptions and requirements are shown in Table 2.1. 
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Table 2.1—Study Assumptions 

Subsystem  
area 

Assumptions and  
study requirements 

Critical  
trades 

Top-level Sampler to orbit and land on two separate Near Earth Asteroids (NEA) 
Return rock samples and soils 
Figures of Merit (FOMs): Returned sample mass, # of samples, variety, science 
data, mission success probability, cost well below NF 

All- SEP, all-chemical, 
chem/SEP split 

System OTS equipment where possible, Technology Readiness Level 6(TRL 6) cutoff 2010, 
2014 launch year, Single fault tolerant 
Mass growth per ANSI/AIAA R-020A-1999 (add growth to make system level 30%) 

 

Mission summary Integrated SEP system, Earth-asteroid-Earth-asteroid-Earth, visit/orbit/land/ sample 
two asteroids, sample one, Earth flyby to return first payload, then sample the 
second and Earth flyby return, 6.5 yr SEP thrusting, 7 yr round trip 
Atlas 401 launch, C3 = 38.07 km2/sec2  
7 yr mission: December 6, 2014 launch; First science (Nereus landing) June 16, 
2016; First sample return February 6, 2018, Second landing (FG3) May 30, 2020; 
Second sample return October 28, 2021 
Return of first sample before second landing lowers risks 

 

GN&C Closed loop ‘docking’ system, wheels for stability, gimbaled EP, 250 m/s secondary, 
13500 m/s primary (SEP), option for extended missions after sample return 
OTS IMU, Star-trackers, Wheels, hydrazine thrusters 
LIDAR assisted precision landing system (landing gear for contingency, up to 1 m/s 
landing velocity) 
Solar pressure torque from off-set solar easily countered by canting electric 
thrusters <1° 

SEP or chemical trajectories, 
landing or docking or hovering, 
sample collection scheme, 
cold gas for proximity ops 

Launch Vehicle Atlas 401 C3 38.07 km2/sec2, 1528 kg 
Adapter: 4 m LPF 
Launch loads: Axial 11± 1 g, Lateral .4 ± 1.6g 

Atlas V, trade adaptors 

Propulsion Primary: 1+1 NEXT (7 m SA), 2+1 4.5 kW BPT-4000, four off the shelf Xe tanks 
Secondary: blow-down hydrazine RCS system, 1 lbf thrusters 
Terminal landing: 500 kg Xe cold gas (reduce contamination) 

Trade: 1+1 7 kW ion, 2+2 
4.5 kW BPT-4000, serial PPUs 
or cross-strapped 

Power  Single Orion derived Ultra-flex SA (built for high-g Orion loads), Li-ion batteries for 
eclipse stays. 6500 W power to propulsion system (with 400 W housekeeping) 
Batteries for Asteroid and Moons eclipse, Sampling landing (> 9 hr) 

Array type, dual gimbals, cell 
type, battery options, use of 
SA to allow long stay times on 
moons 

Avionics/ 
Communications 

Science run from central controller (and one spare 0.7 m antenna, two axis gimbal 
hemispheric coverage, 3 to 10 kbps, three omni antennas, two RAD750 processors 
for fault tolerance, 48 Gbit data storage 

Computer type, X band or Ka 
band 

Thermal & 
environment 

Body mounted radiator (main loads 350 Wth (PPUs), 100 W (transmitters)). Heat-
pipe radiators for cooling electronic components  
Heaters for propellant systems, MLI for S/C 
Tank heaters, 0.6 to 1.7 AU thermal environment 
Deep space radiation level at 1.7 AU 

 

Mechanisms Science arm/camera/sampler, two-axis 0.3 m antenna, thruster gimbals ± 12 °, 
docking legs, sample capsule (2.9 km/s entry velocity capability), parachute impact 
suppression 

Landing legs, sample capsule, 
sampler arm, foam only impact 
suppression, harpoons 

Structures Primary: Rectangular, 3- by 3-m, truss, Al-Li; Secondary: 4% of stage components; 
Thrust tube and tubular space frame propellant tanks mount directly to thrust tube 

Developing model, need 
launch loads 

Science Science/collection arm with camera. Two, six-bay Sample Capsules (for total of 12 
samples) 
Extensive in-situ science powered by SA 
Wide/narrow field imager, IR spectrometer, laser altimeter, IR, gamma-ray, neutron 
spectrometer, APXS, LAMS, thermal conductivity, electrical dissipation, ground 
penetrating radar 

 

2.3 Growth, Contingency and Margin Policy 
Mass Growth: The COMPASS team uses the ANSI/AIAA R-020A-1999, Recommended Practice for 
Mass Properties Control for Satellites, Missiles, and Launch Vehicles (ref. 1). Table 2.2 shows the Percent 
Mass Growth separated into a matrix specified by level of design maturity and specific subsystem. Mass 
Growth Allowance (MGA) is defined as the predicted change to the basic mass of an item based on an 
assessment of the design maturity and fabrication status of the item, and an estimate of the in-scope design 
changes that may still occur. 
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The percent growth factors are applied to each subsystem, after which the total system growth of the design 
is calculated. An additional growth is carried at the system level in order to add up to a total system growth 
of  30% of the dry mass of the system. Note that growth in propellant is either carried in the propellant 
calculation itself or in the ΔV used to calculate the propellant required to fly a mission. 

Power Growth: The COMPASS team uses a 30% margin on the bottoms up power requirements in 
modeling the power system. See Sections 3.1.2 and 5.4 for the power system assumptions. 

 

Table 2.2—Percent Mass Growth Allowance 

Code 
Design Maturity 

(Basis for Mass 
Determination) 

Percent Mass Growth Allowance 

Electrical/Electronic 
Components 
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0-5 kg 5-15 kg >15 kg

E 
Estimated 

(preliminary sketches) 
30 20 15 18 18 18 20 50 18 50 

L 
Layout 

(or major modification of 
existing hardware) 

25 20 15 12 12 12 15 30 12 30 

P 
Pre-Release Drawings 
(or minor modification of 

existing hardware) 
20 15 10 8 8 8 10 25 8 25 

C 
Released Drawings 
(calculated values) 

10 5 5 4 4 4 5 5 4 5 

X 
Existing Hardware 

(actual mass from another 
program) 

3 3 3 2 2 2 3 3 2 3 

A 
Actual Mass 

(measured flight hardware) 
0 0 0 0 0 0 0 0 0 0 

CFE 
Customer Furnished 

Equipment 
0 0 0 0 0 0 0 0 0 0 

2.4 Redundancy Assumptions 
 Single fault tolerant where possible in the design of the subsystems. 
 Exceptions 

− SA 
− Propellant tanks 
− Radiators (design can be modified at ~11 kg penalty) 
− Sampling arm 

2.5 Mission Description 
This mission returned samples from two asteroids to the surface of the Earth. The asteroids 4660 Nereus 
and 1996 FG3 were chosen as scientifically desirable asteroids for this mission. 

2.5.1 Mission Analysis Assumptions 

Earth asteroids named after the first of their type discovered in 1862 (Apollo). Their heliocentric orbital 
semi major axes are greater than that of Earth, and their perihelion distance is greater than 1 AU (i.e., the 
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distance the Earth is from the sun).  The orbits of the Apollo asteroids cross the orbits of both that of 
Asteroid and Earth. Because Nereus’ orbit frequently comes very close to Earth, it is very accessible from 
Earth  as well as a potential threat to the Earth. Due to its small size (approximately 1 km diameter) and 
hence smaller mass, its ∆V for rendezvous is smaller than the ∆V for rendezvous with our Moon. Nereus 
has a roughly 15 hr rotation. The asteroid Nereus trajectory details, orbital elements and assumptions are 
shown in Figure 2.1. 

 
Figure 2.1—4660 Nereus Body Orbital Details 

 
Figure 2.2—1996 FG3 Body Orbital Details 
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The second asteroid chosen, 1996 FG3, is another Apollo, near Earth asteroid. Initial readings show that 
this asteroid is the dominant part of a binary asteroid system. 1996 FG3’s period of rotation has been 
determined to be about 3.5 hr and the orbital period of its satellite has been determined at 16 hr. The 
average bulk density of the asteroid has been estimated at 1.4 g cm3  and that the surface has a rubble pile 
structure. 1996 FG3 trajectory details, orbital elements and assumptions are shown in Figure 2.2. 

2.5.2 Mission Analysis Analytic Methods 

The trajectory design for this mission was optimized using the Mission Analysis Low-thrust Trajectory 
Optimization (MALTO) tool. The baseline mission launches to a C3 of 38.07 km2/s2 and performs a 
rendezvous with Nereus in June of 2016, stays at the target for two months for sample collection operations 
and then departs for Earth to drop the first sample return capsule (SRC) with a constrained entry velocity 
and position. After the sample is released, the S/C completes the Earth flyby and arrives at the second 
target, 1996 FG3, in May of 2020. Following the two months at 1996 FG3, the S/C then departs and targets 
Earth with constrained entry conditions with an arrival V∞ of 6.8 km/s. 

Mission analysis was performed in an iterative fashion. An initial trajectory to the target was performed 
using MALTO to get the electric propulsion system propellant loading for the missions. With this 
propellant, the bottoms-up estimation of the vehicle mass was completed by the team. Once this bottoms-up 
mass was calculated, the trajectory was rerun in order to provide performance for at least that calculated 
total wet mass. The mission was iterated until the amount of mass pushed by the EP system was greater 
than or equal to the total wet mass of the vehicle. 

2.5.3 Mission Analysis Event Timeline 

 
Figure 2.3—Trajectory Main Mission Details 
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Figure 2.4—S/C Distance From the Sun and Earth Over Mission Time 

2.5.4 Mission Trajectory Details 

 
Figure 2.5—4660 Nereus Trajectory Plot 

2.6 Concept of Operations (CONOPS) 
Remote Sensing (30 days) 

 CHAllenging Minisatellite Payload (CHAMP)imaging, radio science to map gravity, LIDAR, 
neutron detector (find hydrogen) 

 High orbit spiral down to 

 Low orbit (5 km) 

 Asteroids mapped to sufficiency for landing near rock outcropping 

Landing (~100 min) 
 One burn descent from 0.5 to 1 km starting altitude 

 Autonomous landing using maps generated from remote sensing phase, LIDAR and CHAMP 
imager 

− Impact landing speeds of 25 cm/s 

 10° incline (max), nearby large boulder (10s to 100s of meters) 

 Seeking erosion of large boulder for sampling 
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Landed Science (Minimum 3.5 hr, Desired 15 hr) 
 CHAMP imaging (panoramic and microscopy), APXS, Neutron detector 

 Sample acquisition arm/CHAMP imaging of sample area for context of sample 

− Images sent to Earth for review and sample selection 

− Sample acquisition program sent from Earth 

− Samples collected and stored (with confirmation from CHAMP) 

Samples Collected 
 Rocks eroded from ejecta blocks (from asteroid core) 

 Soil samples 

 
Figure 2.6—Mission Main Events Trajectory Graphic 

2.7 Launch Vehicle Details 
2.7.1 Launch Vehicle Trade-Space Relative Performance 

For this mission, several lower performing launch vehicles were looked at as options. Figure 2.7 shows the 
relative performance as a function of C3, of the Delta II, Delta II H and Falcon 9. 
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C3 (km2/sec2) 

Figure 2.7—Performance Curves for Launch Vehicles of Interest 

2.7.2 Atlas 401 (4 m Fairing) Performance 

From the website astronautix.com, the Atlas V family of launch vehicles offers the performance in Table 
2.3. In order to clear up confusion, note that the Atlas 401 is the Atlas V launch vehicle with a 4 m diameter 
fairing. 

Table 2.3—Atlas V family Performance 

Configuration LEO 28° LEO  
polar 

Geosynch 
transfer 

Geosynch 

Atlas V 401 12,500 10,750 5,000 N/A 
Atlas V 501 10,300 9,050 4,100 1,500 
Atlas V 511 12,050 10,200 4,900 1,750 
Atlas V 521 13,950 11,800 6,000 2,200 
Atlas V 531 17,250 14,600 6,900 3,000 
Atlas V 541 18,750 15,850 7,600 3,400 
Atlas V 551 20,050 17,000 8,200 3,750 

The Atlas V launch vehicle system is based on the 3.8-m (12.5-ft) diameter Common Core Booster (CCB) 
powered by a single RD-180 engine. A three-digit naming convention was developed for the Atlas V launch 
vehicle system to identify it’s multiple configuration possibilities, and is indicated as follows: the first digit 
identifies the diameter class (in meters) of the payload fairing (4 or 5 m); the second digit indicates the 
number of solid rocket motors used (zero for Atlas V 400 and zero to five for Atlas V 501); the third digit 
represents the number of Centaur engines. Figure 2.8 shows the performance of the Atlas V (521) versus C3 
from the NASA Kennedy Space Center (KSC) launch performance website. Use of the Atlas 401 for NF 
missions allows for a raise of the cost cap by $40M. 
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NASA ELV Performance Curve(s) 
High Energy Orbits 

Please note the ground rules and assumptions below 

 
C3 (km2/sec2) 

Assumptions: 
Atlas V (521) 

This performance does not include the effects of orbital debris compliance, 
which must be evaluated on a mission-specific basis. This could result in a 
significant performance impact for mission in which launch vehicle hardware 
remains in Earth orbit. 
3-sigma mission required margin, plus additional reserves as determined by 
the LSP. 
Launch from SLC–41 at Cape Canaveral Air Force Station (CCAFS). 
Performance values assume harness, logo, reradiating antenna, three 
payload fairing doors. 

Payload mass greater than 9000 kg (19,841 lb) may require mission 
unique accommodations. Type B2 payload adapter plus type C2 
spacer. 
5-m Short Payload Fairing 
185 km (100 n mi) minimum park orbit perigee altitude. 
185 km (100 n mi) minimum escape orbit perigee altitude. 
Performance shown is applicable to declinations between 28.5° and 
–28.5°. 

 
Figure 2.8—Atlas V 421 Performance Curve. 

2.7.3 Atlas 401 Payload Fairing Details 

 
Figure 2.9—Atlas 401 4 m LPF Payload Fairing ELV 
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2.8 Launch Vehicle Packaging 
Using a side-launch configuration allows for the following packaging and concept design benefits. 

 Use of smaller, 4-m shroud 

 Fixed landing legs 

 Lower center-of-mass for more stable asteroid landings 

 Eases stowage of large SA 

 Long thrust tube attachment of propellant tanks 

 
Figure 2.10—NEA Sample Return S/C—Atlas 401 Fairing Packaging Close View 

 
Figure 2.11—NEA Sample Return S/C—Atlas 401 Fairing Envelop and Packaging View 

2.9 Sample Return Capsule (SRC) System Level Summary 
2.9.1 Sample Collection Requirements 

Science return of at least nine total viable samples and one spare. Each sample collection container has 
enough room to hold six samples, for a total of 12 samples returned (six from each asteroid). Given a total 
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of 12 chances to get a sample worth studying, the following requirements were levied on the sample 
collection containers.  

 Desired sample traits—nine total (100 g each) + one spare 

− Density ~1.7 g/cm3 

− Portion of ‘large blocks’  

− ~4.5 cm diameter, ‘golf ball size’ 

 Mechanisms to collect the sample 

− Four degrees-of-freedom (DOF) collection arm (example in Figure 2.12) 

− 1 m reach  

− Scoop type bifurcated shovel 

− Motorized joints 

− Cable end effecter actuation 

− Sample capsule loading/sealing/separation  

− Swing type carousel 

 
Figure 2.12—Example Science Sampler Collection Arm 

2.10 Basic Science Payload Description 
Table 2.4 is the MEL of the baseline science payload used in all cases but case 1a in the trade space 
examined in this study. An additional few elements are carried in a super science package included in case 1 
and detailed in the trade studies Section 8.0.  

Table 2.4—Science Package Portion of the MEL 

 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.1.1 Arm Mounted Science Instruments 1.40 21.4% 0.30 1.70

06.1.1.a Panoramic / microscopic color imager (JPLÕs CHAMP) 1 1.00 1.00 20.0% 0.20 1.20

06.1.1.b Alpha Particle X-ray Spectrometer (U. GuelphÕs APXS) 1 0.4 0.40 25.0% 0.10 0.50

06.1.1.c Misc #3 0 0.0 0.00 0.0% 0.00 0.00

06.1.1.d Misc #4 0 0.0 0.00 0.0% 0.00 0.00

06.1.1.e Misc #5 0 0.0 0.00 0.0% 0.00 0.00

06.1.1.f Misc #6 0 0.0 0.00 0.0% 0.00 0.00

06.1.2 Body Mounted Science Instruments 23.80 15.8% 3.76 27.56

06.1.2.a Approach/Hazard Avoidance/Landing Lidar (OptechÕs CA 1 20.00 20.00 15.0% 3.00 23.00

06.1.2.b Neutron Detector/Gamma Ray Spect. (IKIÕs HEND) 1 3.80 3.80 20.0% 0.76 4.56

06.1.2.c Misc #3 0 0.00 0.00 0.0% 0.00 0.00

06.1.2.d Misc #4 0 0.00 0.00 0.0% 0.00 0.00
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Below in the following two sections are short, bulleted description of the science instruments used in the 
baseline payload. 

2.10.1 Arm Mounted (~1 m) Instruments 

The following instruments were mounted on the sample collection arm. 

 Panoramic/microscopic color imager (NASA Jet Propulsion Laboratory’s (JPLs) CHAMP, used on 
orbit/surface) 

− 1 kg, 30.1- by 13.1- by 9.5-cm, Powerpeak = 7 W, 3 μm/pixel, 0.4 mrad from orbit, 
120 Mb/day, 10 GB internal storage 

 APXS (U. Guelph, used on surface) 

− 0.2 kg sensor head (on arm) 7- by 5-cm diameter, 0.2 kg electronics (on S/C) (20- by 10- by 
1-cm), Powerpeak 2.5 W (30 V), 32 kB/s  

2.10.2 Body Mounted Instruments 

The following instruments are mounted on the body of the S/C. 

 Approach/hazard avoidance/landing LIDAR (Optech’s Canadian Asteroid Exploration LIDAR for 
Orbital Topometry–2 (CAMELOT–2) Canadian Space Agency (CSA) contribution) 
− 20 kg, 0.0225 m3, Powerpeak = 140 W, Data Ratepeak = 500 kbps 

Lastly, a potential contribution to the list of science instruments is the neutron detector/gamma ray 
spectrometer below. Note that it does not appear in the science payload Some of the science instruments 
were book-kept in other subsystems due to their dual use. Specifically, the laser altimeter sensor listed in 
the Remote Sensing section of Table 2.5 lists the science instruments as chosen by the science team at the 
APL. Table 2.5 lists how those instruments were grouped by the science payload planners in a bottoms-up 
science instrument MEL. Color-coding of blue, yellow and aqua group the science elements into like 
sensing instruments categories. These instruments were then regrouped in the baseline science MEL in 
Table 2.4. 

Table 2.4 is book-kept in the Guidance, Navigation and Control subsystem MEL. The items in light blue are 
grouped together on the arm. Items in light green are grouped together in the spectrometers line item in the 
MEL. The shared DPU is book-kept in the C&DH system MEL Table 2.5 or the MEL in Table 2.4 

 Neutron Detector (ND)/Gamma Ray Spectrometer (IKI’s HEND) (possible contribution—used in 
orbit) 

− Mass = 3.8 kg, dimensions: 25 by 15 by 15 cm, Powerpeak =8 W, Data rate: 1 kB/frame 

2.11 Super Science Package Description 
Table 2.5 lists the science instruments as chosen by the science team at the APL. Table 2.5 lists how those 
instruments were grouped by the science payload planners in a bottoms-up science instrument MEL. Color-
coding of blue, yellow and aqua group the science elements into like sensing instruments categories. These 
instruments were then regrouped in the baseline science MEL in Table 2.4. 

Table 2.5—APL Science Payload  

  Instrument Heritage/Analog Mass  
(kg) 

Power  
(W) 

Remote Sensing 

Wide/Narrow Field Imager MESSENGER (MDIS) 3.5 4.2 
IR Spectrometer MESSENGER (MASCS?) 3.1 6.7 
Laser altimeter NEAR 5 15 
Neutron Spectrometer MESSENGER (GRNS) 4 5 
Gamma-Ray Spectrometer MESSENGER (GRNS) 8 16 

Surface Sensing 
APXS MER 2 2 
LAMS   4 6 
Microscopic Imager   1 0.6 
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  Instrument Heritage/Analog Mass  
(kg) 

Power  
(W) 

Thermal Conductivity Rosetta et al. 0.5 0.5 
Electrical Dissipation   1.5 3 
Ground Penetrating Radar 8 30 

    Total: 40.6 kg 89.0 W 
Support 
System 

Robotic Arm   6 8 
Shared DPU MESSENGER 3.6 6 

  Total: 50.2 kg 103.0 W

Some of the science instruments were book-kept in other subsystems due to their dual use. Specifically, the 
laser altimeter sensor listed in the Remote Sensing section of Table 2.5 lists the science instruments as 
chosen by the science team at the APL. Table 2.5 lists how those instruments were grouped by the science 
payload planners in a bottoms-up science instrument MEL. Color-coding of blue, yellow and aqua group 
the science elements into like sensing instruments categories. These instruments were then regrouped in the 
baseline science MEL in Table 2.4. 

Table 2.4 is book-kept in the Guidance, Navigation and Control subsystem MEL. The items in light blue are 
grouped together on the arm. Items in light green are grouped together in the spectrometers line item in the 
MEL. The shared DPU is book-kept in the C&DH system MEL Table 2.5 or the MEL in Table 2.4 

Table 2.5—NEARER Baseline Science Payload Details 
(Adapted From Applied Physics Laboratory (APL) Science Payload) 

 
 
Table 2.7 is the MEL used in the super science case 1a described in more detail in the trade space 
section of this report. 

Table 2.6—Super Science Package Portion of the MEL 

 

 

NEARER Science Payload Heritge/Analog Mass (kg) Power (W)
Arm Mounted Science Instruments 5.4

Panoramic / microscopic color imager (JPL’s CHAMP) CHAMP 1
Alpha Particle X-ray Spectrometer (U. Guelph’s APXS) APXS 0.4
LAMS 4
Misc #4
Misc #5
Misc #6

Body Mounted Science Instruments 48.6
Approach/Hazard Avoidance/Landing Lidar (Optech’s CAMELOT-2) CAMELOT-2 20
Spectrometers: IR, Neutron, Gamma-Ray (fm Trojan Lander) MESSENGER 15.1

IR Spectrometer MESSENGER 3.1 6.7
Neutron Spectrometer MESSENGER 4 5
Gamma-Ray Spectrometer MESSENGER 8 16

Wide/Narrow Field Imager MESSENGER 3.5 4.2
Thermal Conductivity (Rosetta), Electrical Dissipation, Ground Penetrating Radar 10

Thermal Conductivity Rosetta et al. 0.5 0.5
Electrical Dissipation 1.5 3
Ground Penetrating Radar 8 30

Total 54

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (Sept. 2008) - Case 1a (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1281.47 9.5% 122.06 1403.53

06.1 Science Payload 54.00 11.7% 6.32 60.32

06.1.1 Arm Mounted Science Instruments 5.40 5.6% 0.30 5.70

06.1.1.a Panoramic / microscopic color imager (JPLĶs CHAMP)1 1.00 1.00 20.0% 0.20 1.20

06.1.1.b Alpha Particle X-ray Spectrometer (U. GuelphĶs APXS)1 0.4 0.40 25.0% 0.10 0.50

06.1.1.c LAMS 1 4.0 4.00 0.0% 0.00 4.00

06.1.1.d Misc #4 0 0.0 0.00 0.0% 0.00 0.00

06.1.1.e Misc #5 0 0.0 0.00 0.0% 0.00 0.00

06.1.1.f Misc #6 0 0.0 0.00 0.0% 0.00 0.00

06.1.2 Body Mounted Science Instruments 48.60 12.4% 6.02 54.62

06.1.2.a Approach/Hazard Avoidance/Landing Lidar (OptechĶs CAMELOT-2) 1 20.00 20.00 15.0% 3.00 23.00

06.1.2.b Spectrometers: IR, Neutron, Gamma-Ray (fm Trojan Lander)1 15.10 15.10 20.0% 3.02 18.12

06.1.2.c Wide/Narrow Field Imager 1 3.50 3.50 0.0% 0.00 3.50

06.1.2.d Thermal Conductivity (Rosetta), Electrical Dissipation, Ground Penetrating Radar1 10.00 10.00 0.0% 0.00 10.00
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3.0 BASELINE DESIGN—CASE 1 
3.1 Top Level Design (MEL and PEL) 
3.1.1 Master Equipment List (MEL) 

Table 3.1 lists the MEL of the design for only the top level masses.  The total growth on the dry mass of the 
S/C is then rolled up to find a total growth mass and growth percentage. The Growth column is where each 
subsystem lists the recommended growth factor on each line items following the AIAA WGA schedule 
outlined in Table 2.4 in Section 2.4. The MEL takes all of the items and racks them up into totals and 
calculates a total CBE mass, a Total mass and a total Growth Mass. 
 

Table 3.1—Master Equipment List—Case 1 

 
The MEL (Table 3.1) captures the bottoms up estimation of CBE and growth percentage line item by item 
for each subsystem. Table 3.3 wraps up those total masses, CBE and total mass after applied growth 
percentage. In order to meet the total of 30% at the system level, an allocation is necessary for system level 
growth. This additional system level mass is assumed as part of the inert mass that is flown along the 
required trajectory. Therefore, the additional system level growth mass impacts the total propellant loading 
for the mission design. 

Using the low thrust trajectory tool MALTO, and a starting guess of delivered target mass set to the bottoms 
up mass of the Case 1, the performance to the C3 of 38.07 km/s is calculated from a look up table to be 1580 
kg (see 2.5.2 for mission analysis assumptions, and 2.7.1 for Launch Vehicle assumptions). A 10% margin 
is taken off of this performance, leaving 1375 kg available launch performance. This mass of 1375 is what 
the SEP system flies as the wet mass of the S/C, and the xenon propellant loading is sized to push the total 
mass of 1375 kg. Launch vehicle margin is the mass that is not flown with the spacecraft. 

Performance and margin on the launch vehicle are calculated as follows and shown on Table 3.2.  

kg1375%)10*(eperformancELVAvailable

kg152%10*Margin

kg1528toPerfomanceELV 3

=−=
==

==

AA
A

AC

 

The total bottoms-up wet mass as shown in Table 3.1 of the system before the additional system mass is 
carried is 1251 kg (alsosee the row marked Estimated S/C Wet Mass and look in the column for Total Mass 
in Table 3.2). The total bottoms-up growth in this mass is 113 kg, or 16% of the total dry mass. In order to 
meet the 30% dry mass growth requirement at the system level, an additional 101 kg system mass is carried 
as shown in Table 3.2. This brings the total wet mass with growth to 1352 kg. An additional 23 kg is 
available in this bottom’s up modeling over the 10% launch vehicle mass and can be added to the 1352 wet 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.3 Communications and Tracking 24.20 27.1% 6.55 30.75

06.2.4 Electrical Power Subsystem 115.50 15.7% 18.19 133.69

06.2.5 Thermal Control (Non-Propellant) 40.11 18.0% 7.22 47.33

06.2.6 Propulsion 192.10 8.3% 16.00 208.09

06.2.7 Propellant 425.41 0.0% 0.00 425.41

06.2.8 Structures and Mechanisms 148.88 18.0% 26.80 175.68

06.3 Sample Return Craft 93.30 18.1% 16.91 110.21

06.3.1 Electrical Power Subsystem 6.00 20.0% 1.20 7.20

06.3.2 Thermal Control (Non-Propellant) 4.60 18.0% 0.83 5.43

06.3.3 Structures and Mechanisms 82.70 18.0% 14.89 97.59
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mass to bring the system level growth up from 30%. Each SRC’s mass with 30% growth applied is 61 kg. 
Each SRC can return up to 1kg worth of sample material. 

 

Table 3.2—System Integration Summary—Case 1 

 
 
 
 

3.1.2 Power Equipment List (PEL) 

Power mission operations modes assumed: Peak, nominal, and standby. The power system data was 
provided by science, GN&C, avionics, communications, and thermal subsystems.  The power required by 
the power subsystem (conversion boxes, line losses) was kept internally to the power design and is not 
shown in the PEL. Peak power was assumed for propulsion subsystem during SEP Thrusting and the 
asteroid science mapping mission events. The panoramic microscopic color imager (JPL’s CHAMP) and 
LIDAR were used during approach and landing phase. The APXS (U. Guelph’s) and Neutron 
Detector/Gamma Ray Spectrometer (IKI’s HEND) were used during Landed Science Phase. Reuse of the 
SEP solar power for science and operations was assumed. Battery size was based on asteroid eclipse times: 
~8 hr maximum. Growth of 30% was assumed for power needs (except for Electric Propulsion). 

The power required for nominal loads, based on mission modes of operation, is shown in Table 3.3. The 
waste heat used to size the thermal system is shown in the bottom of Table 3.3. 

 

  

Spacecraft Master Equipment List Rack-up (Mass)
COMPASS S/C 

Design 

WBS Main Subsystems CBE Mass (kg)
Growth 

(kg) Total Mass (kg)
Aggregate 
Growth (%)

01 Asteroids Sampler Spacecraft 1138.3 113.0 1251.3
06.1 Science Payload 25.2 4.1 29.3 16%
06.2 Asteroids Sampler Lander 1019.8 92.1 1111.8

06.2.1 Attitude Determination and Control 44.3 18.7 53.6 42%
06.2.2 Command and Data Handling 29.3 8.0 37.3 27%
06.2.3 Communications and Tracking 24.2 6.5 30.7 27%

06.2.4 Electric Power 115.5 18.2 133.7 16%

06.2.5 Thermal Control 40.1 7.2 47.3 18%

06.2.6 Propulsion 192.1 16.0 208.1 8%

06.2.7 Propellant 425.1

06.2.8 Structures and Mechanisms 148.9 26.8 175.7 18%

06.3 Sample Return Craft (total, empty) 93.3 16.9 110.2 18%
06.3.1 Electrical Power Subsystem 6.0 1.2 7.2 20%
06.3.2 Thermal Control (Non-Propellant) 4.6 0.8 5.4 18%

06.3.3 Structures and Mechanisms 82.7 14.9 97.6 18%
Estimated  Spacecraft Dry Mass 713 113 826.2 16%
Estimated Spacecraft Wet Mass 1138 113 1251.3

System LeveL Growth Calculations Total Growth
Dry  Mass Desired System Level Growth 713 214 927.1 30%
Additional Growth (carried at system level) 101 14%
Total Wet Mass with Growth 1138 214 1352.2

Available Launch Performance to C3 (kg) 1375.4

Launch margin available (kg) 23.2

Estimated Spacecraft Inert Mass (for traj.) 808 214 1021.5

Sample Return Craft Total Mass CBE Mass (kg) Growth (kg) Total Mass (kg)
Aggregate 
Growth (%)

Estimated Sample Return Craft Mass 93.3 16.9 110.2 18%

Total with System Level Growth 93 28 121.3 30%

Number of Sample Return Craft 2

Total Mass per Sample Return Craft (empty) 60.6 kg
Total Mass, Sample Returned 1 kg
Total Mass, Sample Return Capsule (Full) 61.6 kg
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Table 3.3—Power Estimations and Waste Heat Over Mission Modes 
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Launch 0 24 0 33 31 0 0 88 26.37 114 
S/C separation 16 24 383 33 31 0 0 487 141.27 628 
S/C checkout 16 24 403 33 126 0 221 823 242.13 1065 
SEP Thrusting  6350 24 0 33 88 0 2 6497 44.16 6541 
SEP Coast 16 24 403 33 98 0 2 576 168.06 744 
Communications  16 24 383 33 98 0 2 556 162.06 718 
Nereus Targeting 6350 24 0 33 88 0 2 6497 44.16 6541 
Nereus Science Mapping  16 24 0 33 98 0 221 392 112.83 505 
Nereus Mapping Communications 16 24 383 33 98 0 221 775 227.73 1003 
Nereus Approach and Landing 0 24 383 33 98 0 331 869 260.73 1130 
Nereus Landed Science 16 24 383 33 98 0 221 775 227.73 1003 
Nereus Landed Communications 16 24 403 33 98 0 2 576 168.06 744 
Nereus Take-off 16 24 383 33 98 0 2 556 162.06 718 
Earth Sample Dropoff/Flyby 16 24 383 33 98 0 2 556 162.06 718 
1996FG3 Body Targeting, etc. 16 24 383 33 98 0 2 556 162.06 718 

Waste Heat 
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Launch 0.0 1.2 0.0 1.7 1.6 0.0 0.0 4.4 1.3 5.7 
S/C separation 0.8 1.2 19.2 1.7 1.6 0.0 0.0 24.3 7.3 31.6 
S/C checkout 0.8 1.2 20.2 1.7 6.3 0.0 11.0 41.2 12.3 53.5 
SEP Thrusting  443.4 1.2 0.0 1.7 4.4 0.0 0.1 450.7 135.2 586.0
SEP Coast 0.8 1.2 20.2 1.7 4.9 0.0 0.1 28.8 8.6 37.5 
Communications  8.0 12.0 191.5 16.5 49.2 0.0 1.0 278.1 83.4 361.5
Nereus Targeting 443.4 1.2 0.0 1.7 4.4 0.0 0.1 450.7 135.2 586.0
Nereus Science Mapping  0.8 1.2 0.0 1.7 4.9 0.0 11.0 19.6 5.9 25.5 
Nereus Mapping Communications 0.8 1.2 19.2 1.7 4.9 0.0 11.0 38.8 11.6 50.4 
Nereus Approach and Landing 0.0 1.2 19.2 1.7 4.9 0.0 16.5 43.5 13.0 56.5 
Nereus Landed Science 0.8 1.2 19.2 1.7 4.9 0.0 11.0 38.8 11.6 50.4 
Nereus Landed Communications 0.8 1.2 20.2 1.7 4.9 0.0 0.1 28.8 8.6 37.5 
Nereus Take-off 0.8 1.2 19.2 1.7 4.9 0.0 0.1 27.8 8.3 36.2 
Earth Sample Dropoff/Flyby 0.8 1.2 19.2 1.7 4.9 0.0 0.1 27.8 8.3 36.2 
1996FG3 Body Targeting, etc. 0.8 1.2 19.2 1.7 4.9 0.0 0.1 27.8 8.3 36.2 

3.2 Baseline System Level Summary 
 Low center of mass configuration for landing stability 

− 500 kg of Xe in COPV tanks: Four cylindrical OTS COPVs 

− SA (> 5 kW Orion heritage) deployed after launch—used for landed power 

− 5 kW Hall or 7 kW Ion propulsion systems on side of S/C 

− Radiators on top deck 

 Minimize deployables/mechanisms (only science, power, and communications) 

− Science/collection arm (1m with 0.5 m telescoping extension) 

− Sample capsule loading/sealing/separation  

− Single axis gimbal SA 

− Two-axis communications antenna  
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 Power 

− Single Orion derived Ultra-Flex SA (built for high-g Orion loads) 

− Li-ion batteries for eclipse stays 

 Propulsion 

− 1+1 NEXT Ion thrusters (7 m SA) , OTS Xe feed and storage system, OTS hydrazine landing 
system 

− 950 kg Xe BPT-4000 Hall or 500 kg for NEXT 

− Cold Gas Xe ‘landing’ system to minimize surface contamination and hold S/C fixed to surface 
during sample arm operations (as needed) 

 GN&C 

− OTS IMU, Star-trackers, wheels, hydrazine thrusters 

− LIDAR assisted precision landing system 

− Solar pressure torque from off-set solar easily countered by canting electric thrusters <1° 

 Avionics/Communications 

− One 0.7 m antenna, two axis gimbal hemispheric coverage, 3 to 10 kbps (Kilobits per second) , 
three omni antennas 

− Two RAD 750 processors for fault tolerance 

 Thermal 

− Heat-pipe radiators for cooling electronic components  

− Heaters for propellant systems 

− MLI for S/C 

3.3 Baseline Design Concept Drawing and Description 
In order to maintain stability while landed, it is desirable to keep the center of gravity (CG) of the landed 
configuration as close to the surface as possible while maximizing the diameter of the landed “footprint”. 
These goals were accomplished by putting the two cylindrical Xe tanks in horizontally with respect to the 
main bus shelf. Cylindrical tanks generally are not designed to handle large loads in the radial direction 
very well, thus it was decided to launch the lander on its side (relative to the landed configuration) as shown 
previously in Figure 2.10, to ensure the launch loads are incurred while the tanks are in their axial direction. 
This orientation allowed the use of a thrust tube type structural design to handle the high launch loads, 
encapsulate the spherical hydrazine tanks for the RCS system, and provided a structurally sound mounting 
point for the Xe tanks. 

Two small decks were placed next to the Xe tanks to allow mounting of all the internal science, power, 
guidance, avionics, and propulsion components. Those guidance and science instruments needed during 
landing or while on the surface were place on the bottom of the lower deck to allow a clear view of the 
surface, while all other internal components were mounted on the top of the decks. The space frame 
structure was used to mount all components external to the S/C including the thrusters, antennas, ultraflex 
array, radiators, and sample collection and return components, as well as provide good mounting points for 
the stowed array during launch. All components included in the design, except for the SA, are shown in 
Figure 3.1 and Figure 3.2. Note that the top of the lander is used to mount the SA and radiators, allowing 
the array to track the sun while keeping the radiators perpendicular to the sun. The dish and omni antennas 
are also mounted on the top surface. The bottom is dedicated to surface science and landing guidance. One 
side is dedicated to the star trackers, another side is dedicated to the thrusters, the third side is dedicated to 
sample collection and return, while the final side is dedicated to interfacing to the launch vehicle. The 
NEXT thrusters are mounted to a structure that allows for minimal gimbaling by orienting the thrust vector 



NASA/TM—2009-215825 19 

of each thruster through the CG of the vehicle. Figure 3.3 and Figure 3.4 show the deployed and stowed 
configurations of the lander while the overall dimensions of the lander are shown in Section 3.4. 

The vehicle design was based around a Single Ultraflex array. This design concept has the following benefits:  

 Saves mass 

 Keeps array away from asteroid/dust 

 Can be kept deployed to allow long term landings (hours-days) 

 Orion Ultraflex design capable of resisting large forces while deployed 
 

 
Figure 3.1—NEA Sample Return S/C—Top Components View 

 

 
Figure 3.2—NEA Sample Return S/C—Bottom Components View 
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Figure 3.3—NEA Sample Return S/C—Deployed View 

 
 
 
 

 
Figure 3.4—NEA Sample Return S/C—Stowed View 
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3.4 Baseline Design Concept Dimensions 

 
Figure 3.5—NEA Sample Return S/C—Footprint Dimensions 

 
 

 
Figure 3.6—NEA Sample Return S/C—Deployed Dimensions 
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4.0 CHALLENGES, LESSONS LEARNED, AREAS FOR FUTURE STUDY 

4.1 Future Work 
 Better definition of major challenges 

− Precision landing 

− Securing and unsecuring S/C to surface to allow sampling 

− Hopping for more samples 

− Sample acquisition and storage 

− Asteroid environment (low gravity, dust) 

 Trades to reduce costs 

− Simplify science and collection strategy 

− Utlize more OTS systems 

4.2 Lessons Learned 
Electric Propulsion  

 Allows sample returns from two disparate near Earth asteroids 

 The large CEV derived SA provides sufficient power to allow for long-term landings for science 
collection  

 Reuse of Xe propellant for terminal landing and contingency ‘hopping’ avoids hydrazine 
contamination of surface samples 

 Bringing back samples should save costs of in-situ science instruments and operations 

5.0 SUBSYSTEM BREAKDOWN  

5.1 Communications 
This section describes the telecommunications subsystem of NEARER, dealing specifically with 
communications equipment on board the lander. Major telecommunications subsystem components have 
been chosen for NEARER (Near Earth Asteroids Rendezvous and sample Earth Returns) in response to the 
science mission requirements and design considerations such as anticipated maximum distances, desired 
data rates, on-board power and mass limitations. 

5.1.1 Communications Requirements 

The high level general requirements on the telecommunications subsystem are to provide the best signal 
possible in terms of available on-board electrical power, accuracy, reliability, and quality assurance, with 
constraints on mass, size and costs. Table 5.1 provides some of the important communications subsystem 
requirements.  
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Table 5.1—Communications System Requirements 

Requirements Description 
Data rates 10 bps to 3 kbps for command (1 kbps typical) 

40 bps to 10 kbps for health and status telemetry 
10 kbps or higher for mission/science 

Daily data volume Daily data volume shall be at least 120 Mbits/day 
Data storage A minimum of 10 GB (8x1010 bits) internal storage shall be required 
Frequency Shall support Asteroid Moons Sampler at X-Band and use 8.44/7.75 GHz for uplink and downlink 
Housekeeping and 
overhead 

Housekeeping and any overhead shall include in stated data rates in this Table 

Available on-board power Shall consider different options such as using larger antennas/higher efficiency amplifiers and 
data requirements.  

Equivalent Isotropically 
Radiated Power (EIRP) 

EIRPs shall be as required in order to achieve 10 BER (Bit Error Rate) for given data rates 

The assumed requirement: 7 kbits/sec during 8 hr daily communications. The electronics were assumed to 
be single fault tolerant. 

5.1.2 Communications Assumptions 

Data transmitted back to Earth will go through the DSN 70-m dishes. The DSN consists of facilities in 
California’s Mojave Desert; near Madrid, Spain; and near Canberra, Australia. These stations are spaced 
about 120° apart on the globe—making sure any S/C can be observed constantly as Earth rotates. The data 
sent to the 70 m DSN dishes are transferred to some science ground station.  

The highest data rates will come during the mission phases when the Sampler return craft is on the surface 
of the moons. The sampler S/C will be on the surface of each of the asteroids for a maximum of 8 hr.  

The onboard processing and data buffering capabilities of the avionics system will handle data taken by the 
LIDAR during landing and departure to and from the asteroids. 

Orbital Downlink 
 Diameter 40 km (5×108 m2) 

 m/pixel =  1 

 Image overlap 1.5 

 Views/site 2 

 Effective bits/pix 8 

 Colors 5 

 Total orbital downlink 1011 bits 

− Assumes 60% is imaging data 

 Approximately 60 days of downlink 

Landed Downlink 
 Dominated by microscopic imager 

 Estimated total data ~ 8×109 bits 

 Some realtime data needed for validating surface science operations 

5.1.3 Communications Design and MEL 

The key components of the telecommunications subsystem include a 0.7 m high gain antenna (HGA) 
providing two-axis gimbaled hemispheric coverage, two omni-antennas, and two 85-W radio frequency 
(RF) Traveling Wave Tube Amplifiers (TWTA). The 0.7 m HGA is designed to support data rates from 3 to 
10 kbps and the Omni-antennas for emergency at data rates from 10 to 100 bps. The communications MEL 
is provided in Table 5.2. 
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Table 5.2—Communications MEL for Baseline (Case 1) 

 
 

The communications system consisted of a 200 W X-Band Transponder, a single, dual axis 0.7 m HGA, 
and two Omni-antennas as shown in Figure 5.1. 

 

Figure 5.1—NEA Sample Return S/C—Communications Instruments 

5.1.4 Communications Trades 

None 

5.1.5 Communications Analytical Methods 

The following section contains the calculations for five different ways to quantify link budget analysis for 
this mission. The link budgets for NEARER provide values of RF transmit power of 85 and 200 W and 
antenna gains for X-Band. The first link budget calculation is the worst case with a distance between the 
Earth and Nereus of 2.4 AU. The next four are between Earth at apogee and Nereus at apogee assuming the 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.3 Communications and Tracking 24.20 27.1% 6.55 30.75

06.2.3.a X High Gain Antenna 23.40 27.5% 6.43 29.83

06.2.3.a.a Transmitter/Receiver 2 2.90 5.80 30.0% 1.74 7.54

06.2.3.a.b Power Amp 2 2.60 5.20 30.0% 1.56 6.76

06.2.3.a.c Switch Unit 1 4.40 4.40 15.0% 0.66 5.06

06.2.3.a.d Antenna 1 1.50 1.50 30.0% 0.45 1.95

06.2.3.a.e Band Pass Filter 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.a.f Band Reject Filter 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.a.g Sensor 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.a.h Cabling 1 2.00 2.00 50.0% 1.00 3.00

06.2.3.a.i Diplexer 2 0.40 0.80 15.0% 0.12 0.92

06.2.3.a.j Coupler 1 0.40 0.40 15.0% 0.06 0.46

06.2.3.a.k Gimbal 1 2.30 2.30 30.0% 0.69 2.99

06.2.3.a.l Misc#2 1 1.00 1.00 15.0% 0.15 1.15

06.2.3.b Omni Antenna 0.60 3.0% 0.02 0.62

06.2.3.b.a Transponder 0 4.00 0.00 10.0% 0.00 0.00

06.2.3.b.b RF Assembly 0 0.20 0.00 3.0% 0.00 0.00

06.2.3.b.c Processing Module 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.b.d Antenna 2 0.30 0.60 3.0% 0.02 0.62

06.2.3.b.e Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.b.f Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.b.g Misc#3 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.b.h Misc#4 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.b.i Misc#5 0 0.00 0.00 0.0% 0.00 0.00

06.2.3.c Communications Instrumentation 0.20 50.0% 0.10 0.30

06.2.3.c.a Coaxial Cable 2 0.10 0.20 50.0% 0.10 0.30
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apogees are collinear with the center of the Sun. Table 5.3 summarizes the findings. Note: All analysis is 
done assuming 8 Gbits of data to be transmitted. 

 

Table 5.3—Link Budget Calculations for Communications Scenarios 

Case Power,  
W 

Earth antenna size, 
m 

Data rates, 
kbps 

Transmission, 
hr 

Worst 200 70 5.9 376.7 
Case 1 200 70 212.0 10.5 
Case 2 200 34 48.0 46.3 
Case 3 85 70 90.0 24.7 
Case 4 85 34 21.0 105.9 

 

The number hours on Earth between the beginning of the transmission to the end of transmission will 
depend on the percentage of time the S/C are attached to the asteroid, can see Earth and the probability the 
Earth stations used to receive the transmission is available. The product of these numbers when divided into 
the hours of transmission will give one the total time necessary to transmit the data to Earth. 

The link budgets for NEARER provide values of RF transmit power at most 200 W and antenna gains for 
X-band. Worst case is for 2.4 AU Earth - Nereus distance (an overestimate - should be 2.0 AU), provides 
nearly the 7 kbps rate needed. Further trades of DSN time, antenna sizes (ground and S/C), and transmitter 
power need to be made. 

 

 

 
Figure 5.2—Worst Case Nereus Link Budget Analysis 
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Figure 5.3—Case1 Nereus Link Budget Analysis 

 
 
 
 

 
Figure 5.4—Case 2 Nereus Link Budget Analysis 
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Figure 5.5—Case 3 Nereus Link Budget Analysis 

 

 
Figure 5.6—Case 4 Nereus Link Budget Analysis 

5.1.6 Communications Risk Inputs 

None submitted 

5.1.7 Communications Recommendation 

See design 
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5.2 Guidance, Navigation and Control (GN&C) 
5.2.1 GN&C Requirements 

The GN&C subsystem shall provide full 6-DOF control of the vehicle from launch through end of mission. 
This includes stabilization of the vehicle after launch vehicle separation, attitude control throughout the 
cruise, commanding and controlling all slews, and performing all automated landings, hops, and ascent 
maneuvers. 

5.2.2 GN&C Assumptions 

Much of the work in modeling the GN&C system for the Near Earth Asteroid Sample Return mission was 
built upon the system designed to perform this function in the Asteroid Sample Return mission completed 
by COMPASS. 

The ΔV values and Xe propellant allocations used are summarized in the table in Figure 5.7. 

 
Figure 5.7—Mapping Orbit Delta V Assumptions 

 

5.2.3 GN&C Design and MEL 

The GN&C subsystem hardware is made up of: 

 Four reaction wheels (Valley Forge VF MR 14.0, 14 Nms reaction wheel, 
http://www.vfct.com/aerospace/wheels/small-wheels) 

 Two Star Trackers (Adcole) 

 One internally redundant IMU (Northrop Grumman HRG) 

 Sun sensors to aide in Earth acquisition (Adcole Sun Sensors, New Horizons (NH) Heritage, two 
electronics boxes and three sensor heads, each) 

 GN&C software run on main C&DH computers 

 Utilizes LIDAR in science instrument subsystem for precision landing 

The detailed mass accounting for the GN&C subsystem can be seen in Table 5.4. The block diagram can be 
seen in Figure 5.8. 
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Table 5.4—GN&C MEL (Case 1) 

 
 

 

Figure 5.8—GN&C Subsystem Block Diagram 

5.2.4 GN&C Trades 

No specific trades were completed. A feasible design was constructed and minor changes were made to help 
close the mission. 

5.2.5 GN&C Analytical Methods 

The GN&C subsystem mainly utilized the Rocket Equation to calculate propellant masses for the mapping, 
landing, hop, and ascent burns. Again, because of the short duration of the study, no in-depth dynamic 
analyses were completed. 

5.2.5.1 Solar Pressure Torques 

 Solar pressure torques are significant because of single array configuration 

 3.7 m offset between centers of mass and pressure (Figure 5.9) 

 8.5×10–4 Nm of torque at 1 AU 

 Assuming 15 Nm of momentum storage per axis, wheels would saturate approximately every 5 hr, 
with decreasing frequency as distance to sun increases 

− Despinning the wheels with the EP system with a 1° gimbal angle would take between 1.4 and 
10.4 hr depending on current thrust level 

 Preferably, off-pointing of the thruster by between 0.28° and 2.2° can counter the solar pressure 
torque with minimal thrust loss 

− Thrust loss of less than 0.1% 

 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.1.a Guidance, Navigation, & Control 44.28 21.1% 9.36 53.64

06.2.1.a.a Sun Sensors 6 1.00 6.00 20.0% 1.20 7.20

06.2.1.a.b Reaction Wheels 4 5.00 20.00 20.0% 4.00 24.00

06.2.1.a.c Star Trackers 2 3.19 6.38 20.0% 1.28 7.66

06.2.1.a.d IMU 1 6.90 6.90 20.0% 1.38 8.28

06.2.1.a.e Laser Altimeter (from Science Payload) 1 5.00 5.00 30.0% 1.50 6.50

06.2.1.a.f LIDAR 0 0.00 0.00 0.0% 0.00 0.00

06.2.1.a.g Misc#3 0 0.00 0.00 0.0% 0.00 0.00

Star
Trackers

C&DH Subsystem
Includes GN&C Software

IMU
IMUIMUReaction

Wheels

Propulsion
Subsystem

Sun
Sensors

GN&C Subsystem

LIDAR

Laser
Altitmeter
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Figure 5.9—Solar Pressure Torque Geometry 

 

 
Figure 5.10—Thrust as a Function of Gimbal Angle 

5.2.6 GN&C Risk Inputs 

None submitted 

5.3 Command and Data Handling (C&DH) 
5.3.1 C&DH Requirements 

 Storage: Be able to store all 60 days of an asteroid encounter: >12 Gbit 

 Transmission: 8 hr per day 

 ~7 kbits/sec needed 

5.3.2 C&DH Assumptions 

Assumed ~200 Mbits/day of data for all science instruments/housekeeping from combined science 
packages. 
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5.3.3 C&DH Design and MEL 
Table 5.5—C&DH MEL for Baseline (Case 1) 

 

5.3.4 C&DH Trades 

None. 

5.3.5 C&DH Analytical Methods 

Design approach will be based on the New Horizons avionics systems, but using RAD750 processor instead 
of RAD6000. GN&C and C&DH processors are to be combined into one. Avionics will be similar to this, 
but greatly modified for RF communications and flight and command & telemetry computers.  

5.3.6 C&DH Risk Inputs 

None submitted 

5.3.7 C&DH Recommendation 

See Design 

5.4 Electrical Power System 
5.4.1 Power Requirements 

The power system shall provide sufficient power for the S/C system throughout the mission including Earth 
orbit, transfer to Nereus orbits, Nereus orbit and surface operations, transfer to 1996 FG3, 1996 FG3 orbit 
and surface operations, and sample return to Earth. In addition, the power system must be sized to supply 
sufficient power to the EP system throughout the mission. 

5.4.2 Power Assumptions 

Two SA sizes are included in different design iterations of the mission: one completely based on the Orion 
SA being developed under Constellation, and a second array with a similar design but larger diameter. An 
example of such an array is shown in Figure 5.11. The former is assumed to be OTS hardware without 
significant development costs. The larger diameter SA would incur some additional design and 
development costs but would provide more capability to the S/C. 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.2.a Command & Data Handling 21.00 18.9% 3.96 24.96

06.2.2.a.a Flight Computer 2 2.00 4.00 20.0% 0.80 4.80

06.2.2.a.b Command and Telemetry Computer 0 0.00 0.00 0.0% 0.00 0.00

06.2.2.a.c Data Interface Unit 2 1.00 2.00 30.0% 0.60 2.60

06.2.2.a.d Data Bus Operations Amplifier 0 0.00 0.00 0.0% 0.00 0.00

06.2.2.a.e Operations Recorder 2 1.10 2.20 30.0% 0.66 2.86

06.2.2.a.f Command and Control Harness (data) 1 4.00 4.00 30.0% 1.20 5.20

06.2.2.a.g Shared DPU (From APL Science Instruments) 0 0.00 0.00 0.0% 0.00 0.00

06.2.2.a.h Avionics enclosure 1 8.80 8.80 8.0% 0.70 9.50

06.2.2.a.i Misc #3 0 0.00 0.00 0.0% 0.00 0.00

06.2.2.b Instrumentation & Wiring 8.30 48.2% 4.00 12.30

06.2.2.b.a Operational Instrumentation,  sensors 1 0.30 0.30 0.0% 0.00 0.30

06.2.2.b.b Data Cabling 1 8.00 8.00 50.0% 4.00 12.00

06.2.2.b.c Misc #1 0 0.00 0.00 0.0% 0.00 0.00

06.2.2.b.d Misc #2 0 0.00 0.00 0.0% 0.00 0.00
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Figure 5.11—Orion-Derived UltraFlex SA Design 

The Orion SA is assumed to be about 5.5 m diameter and capable of producing 5 kWe of net power at 
30 Vdc to the S/C at beginning of life (BOL) at 1 AU distance from the sun. The net power includes losses 
from the array wiring and electronics, the gimbal assembly, and the main electronics unit. The mass of the 
SA wing is assumed to be 50 kg. 

The larger diameter SA net power and mass values are scaled based on a constant power and mass per area 
from the Orion array above. 

The dust environment on the Apollo asteroids is assumed to not have significant affect on the SA due the 
lack of an atmosphere.  However, the array is expected to have some degraded performance after each 
landing. Consequently, the array is oversized. 

The batteries and electronics are also based on Orion technology. The battery chemistry is Li-ion type 
technology with a battery system-level specific energy of 120 W-hr/kg. An older example is shown in 
Figure 5.12.  

 
Figure 5.12—Example Li-Ion Battery, Built for the Mars Phoenix Lander 

(Similar Batteries are Planned for Orion)  

The power system electronics are based on the Main Bus Switching Unit (MBSU) approach of Orion where 
a single box contains electronics cards for SA regulation and control, battery charge control, and overall bus 
current handling. An overall charge efficiency of 80% was assumed to account for the losses in recharging 
the battery from the SA. 
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Power Assumptions 
 5 kW BOL, 1 AU 

 2 kW BOL, 2.5 AU 

 320 Wnet during eclipse on Moons’ surface 

 500 Wnet in daylight on Moons’ surface 

Figure 5.13 shows the change of available power from the SAs available over mission time as the S/C 
travels farther from the sun, and then orbits with the NEA. 

 
Figure 5.13—Power Available From SA Over Mission Time 

5.4.3 Power Design and MEL 

The circular UltraFlex SA was chosen for two primary reasons. First, it provides OTS array technology that 
is lightweight and close to the required net power level for the mission. Second, it is more structurally 
sound when deployed, which may be necessary for the multiple landings on the moons’ surfaces. Leaving 
the array deployed during the landings seems to be less risky than retracting the array for each landing. 
Better understanding of the dust environment may affect this decision in the future. 

The solar distances of the overall mission made a larger SA attractive, so a second UltraFlex design at 7 m 
diameter was also included in another iteration. This size array should have similar characteristics to the 
5.5 m array with possibly some lower amount of allowable acceleration or higher structural requirement or 
both. 

The Orion-based array has not been finalized and there is a chance of the diameter changing. An increase in 
diameter would most likely be beneficial and welcome, whereas a decrease would most likely require a 
redesigned array for this mission due to the 5.5 m array seeming to provide what is the lowest possible 
power level acceptable for this mission. 

Since the projected timeline of this mission is similar to that of Orion, the solar cells were assumed to be in 
the same range of efficiency as Orion, 29% at the cell-level. If the launch date is later, beyond 2020, more 
advanced cells may be more realistic, with efficiencies around 30 to 32% and proportional power increases. 

Traditional rectangular folding SAs were also evaluated but did not make sense due to their lower power 
per mass and lower structural integrity when deployed. Their cost may be lower than the UltraFlex SA, but 
the other factors appear to be more important here. 
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The SA power requirements are sized primarily from the EP needs. EP requires an array that is oversized 
for the remainder of the mission, with potential exception for the surface operations. Due to the dust 
environment and Sun-pointing challenges on the moons’ surfaces, excess array power for both ‘daytime’ 
power and recharging the batteries for ‘nighttime’ operations is probably worthwhile. 

The challenging sun-pointing requirements mentioned above are also why a two-axis gimbal is specified. 
This additional DOF may allow more potential landing sites that might have significant slopes or 
challenging lines-of-sight to the sun. 

The sample return S/C includes a small mass of batteries and power electronics as well. The same specific 
energy assumption was made here, though a primary battery may be a good choice since it might reduce the 
mass slightly, but no recharge capability is available. 

 
Figure 5.14—Power System Schematic 

 
 

Table 5.6—Electrical Power System MEL for Baseline (Case 1) 

 
 
 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.3 Communications and Tracking 24.20 27.1% 6.55 30.75

06.2.4 Electrical Power Subsystem 115.50 15.7% 18.19 133.69

06.2.4.a Solar Arrays 78.00 10.8% 8.44 86.44

06.2.4.a.a Solar Array Mass (cells and structure only) 1 70.00 70.00 10.0% 7.00 77.00

06.2.4.a.b Solar Array Gimbal Assembly 1 8.00 8.00 18.0% 1.44 9.44

06.2.4.a.c Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.a.d Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.b Power Management & Distribution 15.00 15.0% 2.25 17.25

06.2.4.b.a Main Bus Switching Unit 1 15.00 15.00 15.0% 2.25 17.25

06.2.4.b.b Battery Charge Control Unit 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.b.c DC Switchgear/Shunt Regulator 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.b.d Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.c Power Cable and Harness Subsystem (C and HS) 10.00 50.0% 5.00 15.00

06.2.4.c.a Spacecraft Bus Harness 1 10.00 10.00 50.0% 5.00 15.00

06.2.4.c.b PMAD Harness 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.c.c Electric Propulsion Harnes 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.c.d RPS to Spacecraft Harness 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.c.e Power Cabling 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.c.f Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.c.g Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.4.d Battery System 12.50 20.0% 2.50 15.00

06.2.4.d.a Battery Assembly-Primary 1 12.50 12.50 20.0% 2.50 15.00

06.2.4.d.b Secondary Battery Subsystem 0 0.00 0.00 0.0% 0.00 0.00
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5.4.4 Power Trades 

None performed. 

5.4.5 Power Analytical Methods 

The power system analysis is based on current approaches and assumptions from the Orion S/C system. 

5.4.6 Power Risk Inputs 

None submitted 

5.4.7 Power Recommendation 

The recommended power system based on current understanding is a single UltraFlex SA, sized to meet the 
overall mission requirements; and Li-ion batteries for both the main S/C and the sample return S/C. 

5.5 Structures and Mechanisms 
5.5.1 Structures and Mechanisms Requirements 

The intent is to provide the necessary hardware for the science research instrumentation, avionics, 
communications, propulsion and power. Structure must be able to withstand applied loads from launch 
vehicle and provide minimum deflections, sufficient stiffness, and vibration damping to perform the 
mission and survive the round trip trajectory. The design of the structure will strive to minimize weight 
(mass) in order to optimize performance of the S/C and fit on the launch vehicle. Physically, the structure of 
the S/C must allow is to fit within confines of launch vehicle and its payload fairing. The structure must be 
stiff and strong enough to accommodate landing and takeoff from low g terrestrial bodies. 

5.5.2 Structures and Mechanisms Assumptions 

The structural design used the following baseline assumptions in the design of the main bus and SRC. 

 Material: Aluminum 

 Space frame with tubular members 

 Composite sandwich structure shelf 

 Welded and threaded fastener assembly 

5.5.3 Structures and Mechanisms Design and MEL 

Design Description 

 Thrust tube and tubular space frame in square configuration 

 Shelf of composite sandwich architecture with honeycomb core to mount hardware 

 Thin sheets to enclose structure and provide shear stiffness 

 Spring struts to support landing hardware 

5.5.4 Main S/C Bus Design 

The main S/C bus is modeled as a tubular space frame in polygonal configuration shown in Figure 5.15. 
The material is a shelf of composite sandwich architecture with honeycomb core to mount hardware. Thin 
sheets were used to enclose structure. Struts were added to support landing hardware. 

Table 5.7 shows both the lander S/C and the sample return craft as they were reported in the master S/C 
MEL. Note that there are two SRCs in this MEL, with quantity = 2. The installation calculation is done 
using 4% of the dry CVE mass of each subsystem. 
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Figure 5.15—Main S/C Bus Analytical Design 

 
 

Table 5.7—Structures and Mechanical Systems MEL for Baseline (Case 1) 

 
 
 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.3 Communications and Tracking 24.20 27.1% 6.55 30.75

06.2.4 Electrical Power Subsystem 115.50 15.7% 18.19 133.69

06.2.5 Thermal Control (Non-Propellant) 40.11 18.0% 7.22 47.33

06.2.6 Propulsion 192.10 8.3% 16.00 208.09

06.2.7 Propellant 425.41 0.0% 0.00 425.41

06.2.8 Structures and Mechanisms 148.88 18.0% 26.80 175.68

06.2.8.a Structures 121.52 18.0% 21.87 143.40

06.2.8.a.a Primary Structures 102.07 18.0% 18.37 120.45

06.2.8.a.a.a Main Bus Structure 1 102.07 102.07 18.0% 18.37 120.45

06.2.8.a.a.b Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.8.a.a.c Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.8.a.b Secondary Structures 19.45 18.0% 3.50 22.95

06.2.8.a.b.a Balance Mass 1 0.00 0.00 18.0% 0.00 0.00

06.2.8.a.b.b Tank Supports and Bracketry 1 9.09 9.09 18.0% 1.64 10.73

06.2.8.a.b.c Landing Gear Structure 1 8.15 8.15 18.0% 1.47 9.62

06.2.8.a.b.d Solar Array Boom 1 0.61 0.61 18.0% 0.11 0.72

06.2.8.a.b.e Misc#3 1 0.70 0.70 18.0% 0.13 0.83

06.2.8.a.b.f Misc#4 1 0.89 0.89 18.0% 0.16 1.05

06.2.8.b Mechanisms 27.35 18.0% 4.92 32.28

06.2.8.b.a Solar Array Mechanisms 0.00 0.0% 0.00 0.00

06.2.8.b.b Thruster Mechanisms 0.00 0.0% 0.00 0.00

06.2.8.b.c Communications Mechanisms 0.00 0.0% 0.00 0.00

06.2.8.b.d Thermal Mechanisms 0.00 0.0% 0.00 0.00

06.2.8.b.e Adaptors and Separation 0.00 0.0% 0.00 0.00

06.2.8.b.f Additional Mechanisms 9.84 18.0% 1.77 11.61

06.2.8.b.f.a Sample Arm & Mechanism 1 7.50 7.50 18.0% 1.35 8.85

06.2.8.b.f.b Landing Gear Displacement Mech. 1 2.34 2.34 18.0% 0.42 2.76

06.2.8.b.g Installations 17.51 18.0% 3.15 20.67

06.2.8.b.g.a Science Payload Installation 1 1.17 1.17 18.0% 0.21 1.38

06.2.8.b.g.b C&DH Installation 1 1.17 1.17 18.0% 0.21 1.38

06.2.8.b.g.c Communications and Tracking Installation 1 0.97 0.97 18.0% 0.17 1.14

06.2.8.b.g.d GN&C Installation 1 0.37 0.37 18.0% 0.07 0.44

06.2.8.b.g.e Electrical Power Installation 1 4.62 4.62 18.0% 0.83 5.45

06.2.8.b.g.f Therrmal Control Installation 1 1.60 1.60 18.0% 0.29 1.89

06.2.8.b.g.g Electric Propulsion Installation 1 7.61 7.61 18.0% 1.37 8.97

06.2.8.b.g.h Misc #1 0 0.00 0.00 0.0% 0.00 0.00
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SRC Design 

The SRC design (see Figure 5.16) will be constant across the three design cases. The design is loosely 
based upon the sample return capsule.  Each case will use the same SRC to contain the samples from the 
asteroids for return to Earth.  It is designed to withstand the launch and Earth return inertial loading as well 
as the extreme aerothermal re-entry and deceleration loads. The SRC has an overall diameter of 0.7 m and 
is 0.4 m tall with a 45° cone heat shield. The heat shield translates to expose a sample containment carousel 
structure. The heat shield joint is closed by engaging three latching mechanisms equally spaced around the 
joint circumference. The heat shield is constructed of Phenolic Impregnated Carbon Ablator (PICA) to 
withstand temperatures of up to 3600 °C. PICA is a modern Thermal protection systems (TPS) material and 
has the advantages of low density (much lighter than carbon phenolic) coupled with efficient ablative 
capability at high heat flux.  

The SRC is spin stabilized at 14 rpm for control of orientation during the aerodynamic deceleration with an 
estimated re-entry velocity approaching 2.9 km/s. The deceleration chutes are activated by a 3g 
accelerometer switch for the drogue and main chute deployment with timer delays. A battery powered UHF 
beacon transponder is also carried to assist in the recovery operation. 

 
Figure 5.16—SRC concept design 

The SRC is designed for the return of a total of 1 kg of samples in two separate six-sample carousel (for a 
total of 12 between the two carousels), with each container 5 cm deep with a 5 cm diameter. The entire 
sample carousel is 10 cm tall and 0.25 m in diameter. The temperature design limits are –4 to 40 °C for 
samples with a landing recovery shock mitigated to limit it to 4 g’s of impact by incorporating crushable 
honeycomb foam beneath the heat shield. 

The sample retrieval mechanism is a four DOF collection arm with a 1 m reach and a 0.5 m telescoping 
extension. It incorporates a scoop type bi-furcated shovel and uses motorized joints. Other mechanisms 
include three latching and sealing devices and the SRC spin and separate mechanism with an electrical cable-
severing guillotine.  A Xenon cold gas system is pulsed to stabilized the lander during retrieval arm operations. 

5.5.5 SRC Design 

 Overall diameter 1 m, 45° cone angle 

 Main SRC 0.4 m tall 

 Carousel rotates horizontally for access to the surface and to the science instruments. 

 Sealed side door  

 Re-entry velocity capability—2.9 km/s entry (below the required 11.5 km/s for this mission) 

5 cm

0.25 m

10 cm

0.25 m

0.7 m

3 shell          
latching    .    

clamps

ball screw drive
translates heat shield

guide pins

Parachute canister



NASA/TM—2009-215825 38 

− PICA heat shield (3600 °C) 

− Deceleration chutes 

− Beacon for tracking and pickup 

− Battery power 

 12 sample carousels (5 cm diameter by 5 cm deep) 

 Sample carousel 0.4 m diameter., 8 cm tall 

 Temperature limits of –4 to 40 °C for samples 

 Sample return shock mitigation—limit to 4 g’s 

− Crushable honeycomb 

− Foam 

 
Figure 5.17—Sample Collection Arm 

5.5.6 SRC MEL 

Table 5.8 racks up the masses and subsystems in the SRC located on the NEARER S/C. Note that in this 
baseline case (Case 1) in this study, there are two SRCs. In order to enter two carousels, the MEL line 
elements have quantity (QTY) of 2 in those places where appropriate. For example, there are 2 battery 
subsystems in power, and 2 sample canisters in structures and mechanisms, etc. 

Table 5.8—SRC MEL (Case 1) 

 

  

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.3 Communications and Tracking 24.20 27.1% 6.55 30.75

06.2.4 Electrical Power Subsystem 115.50 15.7% 18.19 133.69

06.2.5 Thermal Control (Non-Propellant) 40.11 18.0% 7.22 47.33

06.2.6 Propulsion 192.10 8.3% 16.00 208.09

06.2.7 Propellant 425.41 0.0% 0.00 425.41

06.2.8 Structures and Mechanisms 148.88 18.0% 26.80 175.68

06.3 Sample Return Craft 93.30 18.1% 16.91 110.21

06.3.1 Electrical Power Subsystem 6.00 20.0% 1.20 7.20

06.3.1.a Battery Subsystem 2 3 6.00 20.0% 1.20 7.20

06.3.1.b Misc #2 0 0 0.00 0.0% 0.00 0.00

06.3.1.c Misc #3 0 0 0.00 0.0% 0.00 0.00

06.3.1.d Misc #4 0 0 0.00 0.0% 0.00 0.00

06.3.2 Thermal Control (Non-Propellant) 4.60 18.0% 0.83 5.43

06.3.3 Structures and Mechanisms 82.70 18.0% 14.89 97.59

06.3.3.a Sample Canisters w/Carousel 2 3.35 6.70 18.00% 1.21 7.91

06.3.3.b Sample Arm & Mechanism 0 7.50 0.00 18.00% 0.00 0.00

06.3.3.c Primary SRC Structure 2 12.80 25.60 18.00% 4.61 30.21

06.3.3.d S/C SRC Separation Mechanism 2 3.90 7.80 18.00% 1.40 9.20

06.3.3.e Re-Entry Aero Heat Shield 2 13.30 26.60 18.00% 4.79 31.39

06.3.3.f Recovery Parachutes 2 3.50 7.00 18.00% 1.26 8.26

06.3.3.g Shock Absorbing Material 2 4.50 9.00 18.00% 1.62 10.62
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5.5.7 Structures and Mechanisms Trades 

Analysis and Trades 

 Sizing of space frame to accommodate requirements for 

 Antenna 

 Instrumentation 

 Landing gear 

 Fit within confines of launch vehicle 

5.5.8 Structures and Mechanisms Analytical Methods 

Sizing of the space frame to accommodate requirements for the antenna and instrumentation while fitting 
within confines of launch vehicle. 

 
Figure 5.18—Example Graphic of Main Structure 

 
Preliminary Structural Analysis 

 Provided conditions 

− Maximum axial acceleration from launch vehicle: 6g 

− Maximum lateral acceleration from launch vehicle: 2g 

− Approach velocity: 10 in./s (0.25 m/s) 

− Maximum allowable pressure on moon surface: 0.5 psi (3.4 kPa) 

 Thrust tube wall thickness of 0.125 in. (3.2 mm) with a 20 in. (508 mm) OD 

− Max. bending stress of 52 ksi (357 MPa) 

− Assumed lateral load through CG of lander 

 Landing gear displacement 

− Four 8 in. (203 mm) diameter pads 

− ~2200 lb (1000 kg) 

− Constant stiffness springs 

− Needed displacement: 5.5 in. (140 mm) 

5.5.9 Structures and Mechanisms Risk Inputs 

Potential impact with foreign object or due to nearby operations. 
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5.5.10 Structures and Mechanisms Recommendation 

Finite Element Analysis (FEA) to determine stresses and displacements along with a modal analysis for 
vibrations. 

5.6 Propulsion and Propellant Management 
5.6.1 Propulsion and Propellant Management Requirements 

The S/C propulsion subsystem was required for three propulsion operations: 

1. Electric propulsion: Orbit transfer and insertion 

2. Chemical propulsion: Reaction/attitude control 

3. Chemical propulsion: Surface landing 

Three cases were examined to quantify benefits of alternate electric propulsion technologies.  

5.6.2 Propulsion and Propellant Management Assumptions 

Because an objective in this study was to determine mission benefits of electric propulsion, the electric 
propulsion subsystems used were either commercially available or systems currently under advanced 
development at NASA GRC. The development status of the technology has been accounted for in the Cost 
Analysis. Electric thruster performance used for mission analysis is based on demonstrated operation. 

All chemical thrusters used in the design as well as the propellant management components and propellant 
tanks for the electric and chemical propulsion propellants were commercially available devices from 
operating manufactures. The current technology parameters for the various EP thrusters are shown the 
Table 5.9. 

Table 5.9—NEXT Thruster Options Technology Assumptions 
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5.6.3 Propulsion and Propellant Management Design and MEL 

Main Electric Propulsion Subsystem 
 Two NASA/GRC NEXT ion thrusters—1 operating, 1 spare 

 Gimbals on each thruster for thrust vector control 

 Two Power Processing Units individually mated to the thrusters (no cross-strapping) 

 Two COPV Ti-lined high-pressure cylindrical storage tanks for the Xe propellant (nominal) 

 Xe distribution system incorporates VACCO (Vacuum and Air Components Company of 
America—www.vacco.com)—developed pressure and flow control devices 

 
Figure 5.19—Main Propulsion System 

Vehicle Landing Propulsion System 
 Further revision is required to validate current mass estimates and propellant requirements 

 System based on an existing Moog cold-gas thrusters was assembled 

− Used Xe gas from main EP storage tanks 

 
Figure 5.20—Notional Vehicle Landing Propulsion System 

 
Reaction Control Propulsion System 

The propulsion subsystem is comprised of 

 16 - 1 lbf mono-prop thrusters placed around S/C body for reaction control 

− Aerojet MR-111 thrusters operating on hydrazine 

• Isp = 229 sec 
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• Thrust = 4.4 N 

− Thrusters require power for operation of catalytic bed 

 Fuel stored in Ti metallic tank 

− Two spherical tank 

− Blow down pressurization with gHe 

− Propellant distribution system used design similar to systems developed for the Constellation 
program 

• Including fault tolerance configuration 

− Multiple tank and line heaters are included in mass model to prevent propellant and pressurant 
from freezing 

• Additionally, insulation included for same elements 

− Instrumentation - nominal suite of temperature and pressure sensors 

 
Figure 5.21—RCS Propulsion system schematic 
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Table 5.10—Propulsion and Propellant System MEL for Baseline (Case 1) 

 
 

  

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.3 Communications and Tracking 24.20 27.1% 6.55 30.75

06.2.4 Electrical Power Subsystem 115.50 15.7% 18.19 133.69

06.2.5 Thermal Control (Non-Propellant) 40.11 18.0% 7.22 47.33

06.2.6 Propulsion 192.10 8.3% 16.00 208.09

06.2.6.a Propulsion Hardware (EP) 38.20 8.0% 3.06 41.26

06.2.6.a.a Primary EP Thrusters 2 13.10 26.20 8.0% 2.10 28.30

06.2.6.a.b EPS Power Processing and Control 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.a.c EPS Structure 12.00 8.0% 0.96 12.96

06.2.6.a.c.a EP Thruster Pod 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.a.c.b EP Thruster Boom 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.a.c.c Gimbal 2 6.00 12.00 8.0% 0.96 12.96

06.2.6.a.d EPS Thermal Control Subsystem 0.00 0.0% 0.00 0.00

06.2.6.a.d.a EPS Multi-Layer Insulation 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.a.d.b EPS Heaters and Sensors 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.a.d.c Misc #1 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b Propellant Management (EP) 45.03 11.7% 5.28 50.31

06.2.6.b.a Xe propellant tank(s) 2 12.72 25.44 2.0% 0.51 25.95

06.2.6.b.b High Pressure Feed System 1 15.68 15.68 18.0% 2.82 18.50

06.2.6.b.c Low Pressure Feed System 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b.d Residual Xe Propellant (non deterministic) 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b.e Temperature sensors 1 3.90 3.90 50.0% 1.95 5.85

06.2.6.b.f Propulsion Tank heaters 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b.g Propulsion Line heaters 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b.h Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b.i Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b.j Misc#3 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.b.k Misc#4 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.c Power Processing Unit (PPU) 69.00 8.0% 5.52 74.52

06.2.6.c.a PPU Mass 2 34.50 69.00 8.0% 5.52 74.52

06.2.6.c.b Cabling 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.c.c Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.c.d Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.c.e Misc#3 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.d Propulsion Hardware (Chemical) 0.52 8.0% 0.04 0.56

06.2.6.d.a Main Engine 0.52 8.0% 0.04 0.56

06.2.6.d.a.a Main Engine 4 0.13 0.52 8.0% 0.04 0.56

06.2.6.d.a.b Main Engine Gimbal 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.d.a.c Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.e Propellant Management (Chemical) 0.00 0.0% 0.00 0.00

06.2.6.f Reaction Control System Hardware 7.37 2.0% 0.15 7.51

06.2.6.f.a RCS Thruster Subassembly 4 1.84 7.37 2.0% 0.15 7.51

06.2.6.f.b Misc#1 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.f.c Misc#2 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.f.d Misc#3 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.g RCS Propellant Management 31.99 6.1% 1.95 33.93

06.2.6.g.a Fuel Tanks 2 7.81 15.62 2.0% 0.31 15.93

06.2.6.g.b Fuel Lines 0 0.00 0.00 0.0% 0.00 0.00

06.2.6.g.c Pressurization System - tanks, panels, lines 1 2.04 2.04 10.0% 0.20 2.24

06.2.6.g.d Feed System - regulators, valves, etc 1 14.33 14.33 10.0% 1.43 15.76

06.2.7 Propellant 425.41 0.0% 0.00 425.41

06.2.7.a Propellant  (EP) 359.53 0.0% 0.00 359.53

06.2.7.a.a Primary EP Propellant Used 1 331.06 331.06 0.0% 0.00 331.06

06.2.7.a.b Primary EP Propellant Residulals (Unused) 1 28.47 28.47 0.0% 0.00 28.47

06.2.7.a.c Primary EP Propellant Performance Margin (Unused) 0 0.00 0.00 0.0% 0.00 0.00

06.2.7.b Propellant  (Chemical) 0.00 0.0% 0.00 0.00

06.2.7.c RCS Propellant 65.58 0.0% 0.00 65.58

06.2.7.c.a RCS Used 1 63.98 63.98 0.0% 0.00 63.98

06.2.7.c.b RCS Residuals 1 1.60 1.60 0.0% 0.00 1.60

06.2.7.d RCS Pressurant 1 0.31 0.31 0.0% 0.00 0.31

06.2.8 Structures and Mechanisms 148.88 18.0% 26.80 175.68

06.3 Sample Return Craft 93.30 18.1% 16.91 110.21



NASA/TM—2009-215825 44 

5.6.4 Propulsion and Propellant Management Trades 

The primary trades of this study were done on thruster system choice. For each of these thruster types, the 
impact on thruster choice will be on the total amount of Xe propellant needed to complete the mission. The 
three types of electric propulsion systems traded out in this study were the following:  

 NEXT (1+1)—Case 1, 1a, 3a  

− 425 kg Xe for mission 

− 7 kW 

− Larger footprint, more susceptible to contamination 

 BPT-4000 (2+1)—Case 2 
− 720 kg Xe for mission 

− 6 kW 

− Smaller footprint, less susceptible contamination 

 HiVHAC (2+1)—Case 3 

− 620 kg Xe for mission 

− 7 kW 

− Smaller footprint, less susceptible contamination 

5.6.5 Propulsion and Propellant Management Analytical Methods 

Because the propulsion subsystems were assembled from existing components where possible, the analysis 
performed consisted primarily of maintaining a mass roll up for the various subassemblies. The first 
propulsion operation was performed with a variety of electric propulsion thruster options. A commercial 
high power Hall Thruster was used to establish a baseline vehicle for mission analysis and mass assessment. 
Subsequent trades were performed with two different EP thruster technologies under development at NASA 
GRC. The performance and physical characteristics of these thrusters were obtained directly from their 
development groups. Additionally, propellant management systems (PMS) were used based on breadboard 
systems also currently being developed at GRC through the In Space Program office. Real data for the PMS 
were used where available. Otherwise, it was obtained from development reports. 

The vehicle’s attitude and RCS was comprised of technically mature components with flight history. This 
propulsion system was a mass roll up of physical characteristics obtained from hardware providers. 

For the ‘delicate’ landing operation, a notional cold-gas thruster-based propulsion system was developed. 
These cold-gas thrusters use the Xe propellant from the electric propulsion subsystem to provide the very 
small and controllable thrust levels required for landing on an asteroid (see Main Engine line in table 5.11). 
Commercially available nitrogen-based cold gas thrusters were used for mass estimates while the propellant 
management subsystem for the landing thruster pod was sized similarly to the other PMS elements. 

The primary analysis that was actively performed was to determine the propellant tanks sizes based on 
propellant conditions over the mission duration. The tank requirements were determined using propellant 
density and storage pressure through Hoop Stress Analysis. These requirements were then used to select the 
best match from the PSI and Arde, Inc storage tank catalogs. Thermal control elements (heaters, insulation) 
were then added based on surface area of tanks and propellant lines 

Once the storage tank(s) were selected, the helium pressurization requirements were determined. A 
conventional He pressurization system configuration was used, based on our experience with previous 
lander and Orion Service Module studies. 
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5.6.5.2 The NEXT Thruster Characteristics 
 0.54 to 6.9 kW thruster input power 

 Ring-cusp electron bombardment discharge chamber 

 36 cm beam diameter, 2-grid ion optics 

 Beam current at 6.9 kW: 3.52 A 

 Maximum specific impulse > 4170 sec 

 Maximum thrust > 236 mN 

 Peak efficiency > 70% 

 Xe throughput > 300 kg, (450 kg is the qualification level) 

− Analysis-based capability >450 kg 

 Thruster Mass is 12.7 kg (13.5 kg with cable harnesses) 

Shown in Figure 5.22 is the NEXT thruster in the Prototype Model Thruster (PM1) in Performance 
Acceptance Test. 

 
Figure 5.22—PM 1 Performance Acceptance Test 

Gimbal Overview 

 Breadboard gimbal  

− Designed and fabricated by Swales Aerospace  

− Flight-like design using JPL-approved materials with certifications  

 Stepper motors have space-rated option  

− Mass < 6 kg  

− Two-axis range of motion: ±19°, ±17°  

 Successful functional testing with PM1 engine  

 Gimbal passed two qual-level vibration tests and low-level shock tests with minor issues (fastener 
backout)  

 Good baseline—few if any modifications needed to move into qual program  

− Need to perform torque margin tests with harness and propellant line routing 
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Figure 5.23—Gimbal Performance Test and CAD Illustration 

 

NEXT Power Processing Unit (PPU) 

 EM PPU build by L3 Communications Corporation (L3) ETI  

 Modular beam supply and improved packaging provides performance and predictability benefits 
over NSTAR approach  

 Digital Control Interface Unit (DCIU) to be integrated in next development phase  

 

 
Figure 5.24—NEXT Thruster PPU schematic 
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5.6.5.3 NEXT Propellant Management System (PMS) 

 
Figure 5.25—NEXT Propellant Management System 

 

 All PMS assemblies are complete  

− Two HPA’s, one Flight-like  

− Three LPA’s, one Flight-like  

− Nonflight assemblies are identical except for use of lower cost equivalent parts  

 All assemblies have completed functional tests  

 Flight-like LPA and HPA successfully completed qual-level vibration testing and post-vibe 
functionals  

 Qual-level thermal/vacuum testing is pending  

 Xe Storage tanks based on COTS unit from ATK-PSI Inc. 

− Carbon Overwrapped tank with Ti liner 

− Derived from model no. 80465-1 

• Size: 0.42 m by 0.75 m L (16.5 in. by 29.6 in. L) 

• Manufacturers expected operating pressure (MEOP)/burst pressure = 198.2/310.3 bar 
(2875/4500 psig) 

− Minor size changes to match propellant load 

 Hydrazine storage tank based on COTS unit design from ATK-PSC Inc. 

− Ti metallic tanks w/polymer diaphragm for blow-down pressurization 

• Size: 0.47 m dia. (18.6 in. diameter) 

− Derived from ATK/PSI Model No. 80439-1 
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Figure 5.26—Hydrazine Tank (Left), Xe Tank (Right) 

 

5.6.6 Propulsion and Propellant Management Risk Inputs 

No Risks gathered in this study. 

5.6.7 Propulsion and Propellant Management Recommendation 

Design is recommended. 

5.7 Thermal Control 
Objective: To provide spreadsheet based models capable of estimating the mass and power requirements of 
the various thermal systems. The thermal modeling provides power and mass estimates for the various 
aspects of the vehicle thermal control system based on a number of inputs related to the vehicle geometry, 
flight environment and component size. The system consists of the following elements  

 Electric heaters  

 MLI 

 Thermal paint 

 Radiator with louvers 

 Thermal Control System (sensors, switches, data acquisition) 

5.7.1 Thermal Requirements 

The thermal requirements for the mission were to provide a means of cooling and heating of the S/C 
equipment during transit to and operation on the Asteroid’s surface in order to remain within their 
maximum and minimum temperature requirements.  

The maximum heat load to be rejected by the thermal system was 586 W, and the desired operating 
temperature for the electronics was 300 and 250 K for S/C structure. The S/C was required to survive and 
operate through any nighttime or shadow periods; therefore a heating system was also required. 

5.7.2 Thermal Assumptions 

The assumptions utilized in the analysis and sizing of the thermal system were based on the operational 
environment, both in transit to the asteroids and operation on the asteroid’s surface. The following 
assumptions were utilized to size the thermal system.  

 Moon surface operation: Day and night 

 Radiator designed to see deep space with minimal view factors to the asteroid surface.  
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 The maximum angle of the radiator to the Sun was 25°. 

 The radiator temperature was 320 K. 

 A redundant radiator was used to account for vehicle orientation on the surface and to increase 
overall reliability.  

 MLI was used to insulate the S/C to minimize heat transfer to and from the surroundings.  

 Electric heaters and the radiator louvers were used to maintain the desired internal temperature of 
the S/C  

5.7.3 Thermal Design and MEL 

The thermal system is used to remove excess heat from the electronics and other components of the system 
as well as provide heating to thermally sensitive components throughout shadow or nighttime periods.  

Excess heat is collected from a series of aluminum cold plates located throughout the interior of the S/C. 
These cold plates have heat pipes integrated into them. The heat pipes transfer heat from the cold plates to 
the radiator, which radiates the excess heat to space. The portions of the heat pipes that extend from the 
communications box and are integrated to the radiator are protected with a micro meteor shield. The system 
utilize a louver system on the radiators to regulate the internal temperature and to insulate the radiators 
during the asteroid nighttime.  

Two radiators were used to provide redundancy and margin as well as account for the unknown landing 
orientation of the S/C. This added margin insures against unforeseen heat loads, degradation of the radiator 
due to asteroid dust buildup and increased view factor toward any other thermally hot body not accounted 
for in the analysis.  

 

Table 5.11—Thermal MEL for Baseline Case 1  

 
 

WBS Description QTY
Unit 

Mass CBE Mass Growth Growth Total Mass

Number NEA Sampler (August 2008) - Case 1 (kg) (kg) (%) (kg) (kg)

06 NEA Sampler Spacecraft 1138.27 9.9% 113.05 1251.32

06.1 Science Payload 25.20 16.1% 4.06 29.26

06.2 Lander Spacecraft 1019.77 9.0% 92.07 1111.85

06.2.1 Attitude Determination and Control 44.28 21.1% 9.36 53.64

06.2.2 Command and Data Handling 29.30 27.2% 7.96 37.26

06.2.3 Communications and Tracking 24.20 27.1% 6.55 30.75

06.2.4 Electrical Power Subsystem 115.50 15.7% 18.19 133.69

06.2.5 Thermal Control (Non-Propellant) 40.11 18.0% 7.22 47.33

06.2.5.a Active Thermal Control 6.65 18.0% 1.20 7.85

06.2.5.a.a Heaters 20 0.25 5.00 18.0% 0.90 5.90

06.2.5.a.b Thermal Control/Heaters Circuit 2 0.20 0.40 18.0% 0.07 0.47

06.2.5.a.c Data Acquisition 1 1.00 1.00 18.0% 0.18 1.18

06.2.5.a.d Thermocouples 25 0.01 0.25 18.0% 0.05 0.30

06.2.5.a.e Misc#1 1 0.00 0.00 18.0% 0.00 0.00

06.2.5.a.f Misc#2 1 0.00 0.00 18.0% 0.00 0.00

06.2.5.b Passive Thermal Control 26.87 18.0% 4.84 31.71

06.2.5.b.a Heat Sinks 2 3.46 6.93 18.0% 1.25 8.17

06.2.5.b.b Heat Pipes 1 2.93 2.93 18.0% 0.53 3.46

06.2.5.b.c Radiators 1 10.06 10.06 18.0% 1.81 11.87

06.2.5.b.d MLI (Multi Layer Insulation) 1 3.84 3.84 18.0% 0.69 4.53

06.2.5.b.e Temperature sensors 50 0.01 0.50 18.0% 0.09 0.59

06.2.5.b.f Phase Change Devices 1 0.00 0.00 18.0% 0.00 0.00

06.2.5.b.g Thermal Coatings/Paint 1 0.95 0.95 18.0% 0.17 1.12

06.2.5.b.h Micro Meteor shielding 1 0.00 0.00 18.0% 0.00 0.00

06.2.5.b.i Spacecraft RTG MLI 1 0.00 0.00 18.0% 0.00 0.00

06.2.5.b.j Spacecraft Engine MLI 1 1.66 1.66 18.0% 0.30 1.96

06.2.5.c Semi-Passive Thermal Control 6.59 18.0% 1.19 7.78

06.2.5.c.a Louvers 1 5.79 5.79 18.0% 1.04 6.84

06.2.5.c.b Thermal Switches 4 0.20 0.80 18.0% 0.14 0.94

06.2.5.c.c Misc#1 0 0.00 0.00 18.0% 0.00 0.00

06.2.5.c.d Misc#2 0 0.00 0.00 18.0% 0.00 0.00

06.2.5.c.e Misc#3 0 0.00 0.00 18.0% 0.00 0.00

06.2.6 Propulsion 192.10 8.3% 16.00 208.09

06.2.7 Propellant 425.41 0.0% 0.00 425.41

06.2.8 Structures and Mechanisms 148.88 18.0% 26.80 175.68

06.3 Sample Return Craft 93.30 18.1% 16.91 110.21
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5.7.4 Thermal Trades 

No significant design trades were made between components of the thermal control system.  

5.7.5 Thermal Analytical Methods 

The analysis performed to size the thermal system is based on first principle heat transfer from the S/C to 
the surroundings. This analysis takes into account the design and layout of the thermal system and the 
thermal environment to which heat is being rejected to or insulated from.  

Environmental Models 

Solar Intensity Based on S/C Location components were sized for worst case operating conditions, Heat 
Rejection: Near Earth, Minimum Temperature: near Earth Asteroid Orbital Location 

Systems Modeled 

 Micro meteor shielding on radiator 

 Radiator panels 

 Thermal control of propellant lines and tanks 

 S/C insulation 

 Avionics, and Power Management and Distribution (PMAD) cooling 

 

Table 5.12—Thermal System Data Exchange 

Input Output 
S/C dimensions (length, diameter) Heat pipe length and mass 
Power management and electronics dimensions Cold plate size and mass 
Waste heat load to be rejected 
Distance from the sun and S/C orientation 
View factor to the SAs and their temperature 

Radiator size and mass 
S/C insulation mass and thickness 
Thermal system components mass 

Propellant tank dimensions and operating temperature Propellant tanks insulation mass and heater power level 
Propellant line lengths and operating temperature Propellant line insulation mass and heater power level 

Radiator Sizing 

The radiator panel area has been modeled along with an estimate of its mass. The model was based on first 
principles analysis of the area needed to reject the identified heat load to space. From the area, a series of 
scaling equations were used to determine the mass of the radiator within the asteroid environment. Asteroid 
orbit 1 AU thermal environment was used to size the radiator. 

Table 5.13—Thermal System Radiator Sizing Assumptions 

Variable Value
Radiator solar absorptivity ................................................... 0.14
Radiator emissivity  ............................................................. 0.84
Radiator Sun angle  ............................................................... 70°
Radiator operating temperature ......................................... 320 k
Total radiator dissipation power .................................... 656.5 W
View Factor to SA ................................................................ 0.10
View Factor to Earth ............................................................ 0.10

Louvers are active or passive devices that regulate the amount of heat rejected by the radiator. Active 
controlled louvers use temperature sensors and actuators to control the louver position. Passive controlled 
louvers commonly use a bimetallic spring that opens and closes the louver based on temperature. The 
louver specific mass is 4.5 kg/m2 
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Figure 5.27—Schematic of the Louver Prototype 

 

Thermal Analysis Propellant Lines and Tanks 

Power requirements and mass have been modeled. This modeling included propellant tank MLI and heaters 
and propellant line insulation and heaters.  

 
Figure 5.28—MLI 

The model was based on a first principles analysis of the radiative heat transfer from the tanks and 
propellant lines through the S/C structure to space. The heat loss through the insulation set the power 
requirement for the tank and line heaters. The 1 AU thermal environment was used to calculate the heat 
loss. Assumptions used: 
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Table 5.14—Thermal System Tank Insulation Sizing Assumptions 

Variable Value 
Tank surface emissivity (εt) ................................................................................................... 0.1 
MLI emissivity (εi) ................................................................................................................ 0.07 
MLI material ............................................................................................................................. Al 
MLI material density (ρi) .......................................................................................... 2,770 kg/m3 
Internal tank temperature (Ti) ........................................................................................... 300 K 
MLI layer thickness (ti) ................................................................................................ 0.025 mm 
Number of insulation layers (ni) .............................................................................................. 10 
MLI layer spacing (di) ..................................................................................................... 1.0 mm 
Tank immersion heater mass & power level ...................................... 1.02 kg @ up to 1,000 W 
S/C inner wall surface emissivity ......................................................................................... 0.98 
S/C outer wall surface emissivity ......................................................................................... 0.93 
Line foam insulation conductivity ......................................................................... 0.0027 W/m K 
Line foam insulation emissivity ............................................................................................ 0.07 
Propellant line heater specific mass & power ................................ 0.143 kg/m @ up to 39 W/m 
Line foam insulation density ......................................................................................... 56 kg/m3 

Thermal Analysis—S/C Insulation 

The mass of the S/C MLI insulation was modeled to determine the mass of the insulation and heat loss. The 
model was based on a first principles analysis of the heat transfer from the S/C through the insulation to 
space. Nighttime asteroid surface thermal environment was used to size the insulation. Two types of heaters 
were considered, Radioisotope Heater Unit (RHU), and electrical heaters. Assumptions used: 

Table 5.15—Thermal System Tank Insulation Sizing Assumptions 

Variable Value 
S/C MLI material ..................................................................................... Al 
S/C MLI material density (ρisc) ................................................ 2,770 kg/m3 
MLI layer thickness (ti) ............................................................... 0.025 mm 
Number of insulation layers (ni) ........................................................... 100 
MLI layer spacing (di)  ................................................................... 1.0 mm 
S/C Radius (rsc)  .......................................................................... 0.825 m 

 

Thermal Analysis—PMAD Cooling 

Thermal control of the electronics and Active Thermal Control System (ATCS) is accomplished through a 
series of cold plates and heat pipes to transfer the excess heat to the radiators. The model for sizing these 
components was based on a first principles analysis of the area needed to reject the identified heat load to 
space. From the sizing, a series of scaling equations were used to determine the mass of the various system 
components. Assumptions used: 

Table 5.16—Thermal System PMAD Cooling Sizing Assumptions 

Variable Value 
Cooling plate & lines material  .................................................................. Al 
Cooling plate & lines material density  ..................................... 2,770 kg/m3 
Number of cooling plates ........................................................................... 4 
Cooling plate lengths .......................................................................... 0.5 m 
Cooling plate widths ........................................................................... 0.5 m 
Cooling plate thickness ...................................................................... 5 mm 
Heat pipe specific mass .............................................................. 0.15 kg/m 

 

5.7.6 Thermal Risk Inputs 

None 

5.7.7 Thermal Recommendation 

See Design 
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6.0 SOFTWARE COST ESTIMATION 

6.1 Objectives 

6.2 Assumptions 

6.2.1 SW Sizing Assumptions 
 Programming Language is Ada 

 Two RAD750 processors 

 Complex autonomy 

 RTOS on RAD750 compact PCI processor board 

 Ground software not included 

 
Figure 6.1—Typical RAD750 Processor and Software Environment 

6.2.2 S/C Bus Functions 
 Attitude Determination & Control (ACS): 5500 Single Line of Codes (SLOC) 

− This estimate includes: Sun sensor, Star Tracker, Rate Gyros, Complex Ephemeris, Kinematic 
Integration, Error Determination, Thruster Control, Reaction Wheel Control, Orbit Propagation 

− C&DH: 750 SLOCs 

• Command and telemetry processing 

− On-board autonomy (complex assumed): 4100 SLOCs 

− Fault detection (on-board systems monitoring and correction): 1650 SLOCs 

− Power Management and Thermal Control: 500 SLOCs 

6.2.3 Payload Functions 
 Sensor Processing: 670 SLOCs 

 Data Reduction and Transmission: 200 SLOCs 

6.3 Software Cost 
Software Development 

 Estimated 13370 SLOCs for on-board software 

 Estimate at least 32,000 SLOCs for ground support software development, including 
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 Avionics simulation software 

 Data collection and reduction software 

 Ground station interface and simulation software 

Support Equipment 

 Estimate 4 engineering units (RAD750) 

 RAD750 Compiler and run-time kernel 

 Estimate 10 PCs/Workstations 

 GUI builder, software development tools 

 I/O cards, card cage, and drivers 

 

Table 6.1—Software Costing estimate 

S/C bus functions Code size,  
K words 

Code size by 4,  
K words 

SLOC 

C&DH (C&T processing) 2.8 11.0 750 
AD&C  
(Sun sensor, Star Tracker, rate gyros, complex 
ephemeris, kinematic integration, error determination, 
thruster control, reaction wheel control, orbit propagation) 

20.2 80.8 5500 

Onboard autonomy 
 Complex autonomy 

15.0 60.0 4100 

fault detection 
 Onboard system monitoring 
 Fault correction  

 
4.0 
2.0 

 
16.0 
8.0 

 
1100 

550 
Power management and thermal control 
 Residing in onboard computers assumed 

 
1.8 

 
7.2 

 
500 

Subtotal 45.8 183.2 12500 

Total (including payload functions): 13370 SLOCs. 

7.0 COST, RISK AND RELIABILITY 
7.1 Costing 
The following section contains a draft Cost Estimate (all cost in FY09$M). The S/C cost estimates 
represents prime contractor cost. Assumes a proto-flight development. Flight spares are included where 
appropriate. Mission operations costs include 2 yr data analysis post sample return per NF 2009 AO 
(5.1.5.2—Curation of Returned Samples). Launch Services were not included per NF 2009 AO. 

Table 7.1—NEXT 1+1, Added Science, Case 1a, LCC Cost (FY09 $M) 

Near Earth Asteroid Sample Return 
NF Mission 

All costs in FY09 $M 
NASA Project Office/Technical Oversight 25 5% of all other costs 
Phase A 21 5% of S/C cost and fee 
S/C (without science instruments) 183 50 percentile estimate (DD and FH only)  
Science instruments and SRC 98 Expanded science package (DD and FH only)   
S/C systems integration and wraps 119 Includes integrating S/C and science instruments  
S/C Prime Contractor Fee (10%) 30 Not applied to science instruments costs.  
Mission operations 54 Based on DAWN (includes data analysis)  
Life Cycle Cost Estimate 530 *Does not include Launch Services per 2009 NF AO  
   
NF 2009 Cost Cap 650 NF 2009 AO ('09 NFAO)  
Launch services: 4 m fairing/med performance 40 Per 2009 NFAO (5.9.2—Launch Services)  
Propulsion system: NEXT 
 

15 Per 2009 NFAO (5.9.3—Propulsion Technology Infusion)  

Adjusted cost cap 705 
 

 

Reserves based on LCC estimate 175 33% Reserve  
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7.1.1 Detailed Cost Breakdown by WBS 

WBS element Element name 
DDT&E  
total by  

$M 

Flight 
hardware 

by $M 

Mfg/DDT&E 
total 

by $M 
06.1.1  Science Payload  $48.5 $23.9 $72.4 

06.1.1  Arm Mounted Science Instruments     
06.1.1.a  Panoramic / microscopic color imager $12.4 $5.3 $17.7 
06.1.1.b  APXS  $3.2 $1.4 $4.6 
06.1.1.c  LAMS  $11.1 $4.7 $15.8 

06.1.2  Body Mounted Science Instruments     
06.1.2.a  Approach/Hazard Avoidance/Landing Lidar  $7.2 $6.2 $13.4 
06.1.2.b  Neutron Detector/Gamma Ray Spect. $1.4 $0.6 $2.1 
06.1.2.c  wide narrow field imager  $6.0 $2.6 $8.5 
06.1.2.d  Ground penetrating radar  $7.2 $3.1 $10.3 

06.2.1  Attitude Determination and Control  $17.1 $13.1 $30.2 
06.2.1.a.a  Sun Sensors  $1.2 $2.9 $4.2 
06.2.1.a.b  Reaction Wheels  $2.2 $2.4 $4.5 
06.2.1.a.c  Star Trackers  $1.4 $1.7 $3.1 
06.2.1.a.d  IMU  $5.6 $2.8 $8.4 
06.2.1.a.e  Laser Altimeter (from Science Payload)  $6.7 $3.2 $9.9 

06.2.2  Command & Data Handling  $16.6 $4.6 $21.2 
06.2.2.a.a  Flight Computer  $2.3 $2.4 $4.7 
06.2.2.a.c  Data Interface Unit  $0.5 $0.3 $0.8 
06.2.2.a.e  Operations Recorder  $0.1 $0.1 $0.2 
06.2.2.a.f  Command and Control Harness (data)  $6.2 $0.6 $6.8 
06.2.2.a.g  Shared DPU (From APL Science Instruments)  $2.3 $1.2 $3.5 
06.2.2.b  Instrumentation & Wiring  $0.0 $0.0 $0.0 

 Flight Software/Firmware  $5.1 $0.0 $5.1 
06.2.3  Communications and Tracking  $17.2 $7.6 $24.8 

06.2.3.a  X/Ka High Gain Antenna     
06.2.3.a.a  Transmitter/Receiver  $2.1 $1.2 $3.3 
06.2.3.a.b  Power Amp  $2.6 $1.7 $4.3 
06.2.3.a.c  Switch Unit  $2.5 $1.0 $3.5 
06.2.3.a.d  Antenna  $0.9 $0.4 $1.2 
06.2.3.a.h  Cabling  $1.3 $0.2 $1.5 
06.2.3.a.i  Diplexer  $0.5 $0.4 $1.0 
06.2.3.a.j  Coupler  $1.0 $0.5 $1.5 
06.2.3.a.k  Misc#1  $1.9 $0.7 $2.7 
06.2.3.a.l  Misc#2  $0.3 $0.0 $0.3 

06.2.3.b  Ka-band Antenna     
06.2.3.b.a  Transponder  $2.4 $0.0 $2.4 
06.2.3.b.b  RF Assembly  $0.1 $0.0 $0.1 
06.2.3.b.d  Antenna  $0.9 $1.1 $2.0 
06.2.3.c.a  Coaxial Cable  $0.7 $0.3 $1.0 

06.2.4  Electrical Power Subsystem  $18.3 $9.9 $28.2 
06.2.4.a  Solar Arrays  $0.0 $0.0 $0.0 

06.2.4.a.a  Solar Array Mass (cells and structure only)  $10.1 $6.4 $16.6 
06.2.4.a.b  Solar Array Gimbals  $1.5 $0.8 $2.2 

06.2.4.b.a  Power management/control electronics  $3.5 $1.5 $5.0 
06.2.4.c  Power Cable and Harness Subsystem   $1.4 $1.0 $2.3 
06.2.4.d  Battery System  $1.8 $0.3 $2.1 

06.2.5  Thermal Control (Non-Propellant)  $6.4 $1.2 $7.6 
06.2.5.a  Active Thermal Control  $0.5 $0.4 $0.9 
06.2.5.b  Passive Thermal Control  $5.9 $0.7 $6.6 

06.2.6  Propulsion  $36.8 $15.3 $52.1 
06.2.6.a.a  Primary EP Thrusters  $8.5 $4.3 $12.8 
06.2.6.a.c.c  Gimbal  $2.6 $1.7 $4.2 
06.2.6.b.a  Xe propellant tank(s)  $0.3 $0.3 $0.7 
06.2.6.b.b  High Pressure Feed System  $5.4 $1.4 $6.8 
06.2.6.b.e  Temperature sensors  $0.1 $0.0 $0.1 
06.2.6.c  Power Processing Unit (PPU)     

06.2.6.c.a  PPU Mass  $13.0 $5.5 $18.5 
06.2.6.d.a.a  Main Engine  $0.0 $0.0 $0.1 

06.2.6.f  Reaction Control System Hardware     
06.2.6.f.a  RCS Thruster Subassembly  $0.2 $0.1 $0.3 

06.2.6.g  RCS Propellant Management     
06.2.6.g.a  Fuel Tanks  $0.3 $0.3 $0.5 
06.2.6.g.c  Feed and Pressurizations Systems  $6.4 $1.7 $8.1 

06.2.7  Propellant  $0.0 $0.0 $0.0 
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WBS element Element name 
DDT&E  
total by  

$M 

Flight 
hardware 

by $M 

Mfg/DDT&E 
total 

by $M 
06.2.8  Structures and Mechanisms  $32.3 $11.6 $43.9 

06.2.8.a  Structures  $10.6 $5.1 $15.7 
06.2.8.b.f.a  Arm  $7.9 $3.4 $11.3 
06.2.8.b.f.b  Mechanisms  $0.9 $0.5 $1.4 

06.3  Sample Return Craft  $12.8 $2.7 $15.5 
Subtotal  $193.3 $87.1 $280.4 
SYSTEMS INTEGRATION  $98.0 $20.9 $118.9 
1.6.2.2  IACO  $8.2 $3.4 $11.6 
1.6.2.2  STO  $9.6 $0.0 $9.6 
1.6.2.2  GSE Hardware  $17.1 $0.0 $17.1 
1.6.2.1  SE&I  $29.8 $12.2 $42.0 
1.6.2.1  PM  $18.0 $5.3 $23.2 
1.6.2.2  LOOS  $15.3 $0.0 $15.3 
TOTAL PRIME COST  $291.3 $108.0 $399.3 

7.1.2 System Integration Wraps Defined 

The Integration, Assembly and Checkout (IACO) element contains all labor and material required to 
physically integrate (assemble) the various subsystems into a total system. Final assembly, including 
attachment, and the design and manufacture of installation hardware, final factory acceptance operations, 
packaging/crating, and shipment are included. IACO charged to DDT&E represents those costs incurred for 
the integration, assembly, and checkout of major test articles. IACO charged to the flight unit includes those 
same functions applied to the actual flight unit. 

This item excludes the engineering effort required to establish the integration, assembly, and checkout 
procedures necessary for this effort. These engineering efforts are covered under systems engineering and 
integration. 

The System Test Operations (STO) element includes development testing and the test effort and test 
materials required for qualification and physical integration of all test and qualification units. Also included 
is the design and fabrication of test fixtures. 

Specifically included are tests on all STO to determine operational characteristics and compatibility with 
the overall system and its intended operational parameters. Such tests include operational tests, design 
verification tests, and reliability tests. Also included are the tests on systems and integrated systems to 
verify acceptability for required mission performance. These tests are conducted on hardware that has been 
produced, inspected, and assembled by established methods meeting all final design requirements. Further, 
system compatibility tests are included, as well as, functions associated with test planning and scheduling, 
data reduction, and report preparation. 

Functional elements associated with Ground Support Equipment (GSE) include the labor and materials 
required to design, develop, manufacture, procure, assemble, test, checkout, and deliver the equipment 
necessary for system level final assembly and checkout. Specifically, the equipment utilized for integrated 
and/or electrical checkout, handling and protection, transportation, and calibration, and items such as 
component conversion kits, work stands, equipment racks, trailers, staging cryogenic equipment, and many 
other miscellaneous types of equipment are included. 

Specifically excluded is the equipment designed to support only the mission operational phase. 

The functions included in the Systems Engineering and Integration (SE&I) element encompass: (1) the 
system engineering effort to transform an operational need into a description of system requirements and/or 
a preferred system configuration; (2) the logistics engineering effort to define, optimize, and integrate 
logistics support considerations to ensure the development and production of a supportable and cost 
effective system; and (3) the planning, monitoring, measuring, evaluating, and directing of the overall 
technical program. Specific functions include those for control and direction of engineering activities, 
cost/performance trade-offs, engineering change support and planning studies, technology utilization, and 
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the engineering required for safety, reliability, and quality control and assurance. Also included is the effort 
for system optimization, configuration requirements analyses, and the submittal and maintenance of 
Interface Control Documents (ICDs). 

Excluded from the SE&I element are those functions which are identifiable to subsystem SE&I. 

Elements included in the Program Management (PM) function consist of the effort and material required 
for the fundamental management direction and decision-making to ensure that a product is developed, 
produced, and delivered per requirements 

Specifically included are direct charges for program administration, planning and control, scheduling and 
budgeting, contracts administration, and the management functions associated with engineering, 
manufacturing, support, quality assurance, configuration and project control, and documentation. 

The PM element sums all of the effort required for planning, organizing, directing, coordinating, and 
controlling the project to help ensure that overall objectives are accomplished. This element also includes 
the effort required to coordinate, gather, and disseminate information. 

Excluded from the PM element are those functions commonly charged to subsystem level activities. 

7.2 Risk Analysis and Reduction 
7.2.1 Assumptions 

7.2.2 Risk List 

7.2.3 Risk Summary 

Risks 

 Dust and debris impact on 

 Flight system 

 Instruments 

 Gridded Ion thrusters 

 SA 

Mitigation 

 Single Fault Tolerant Design for most flight systems 

 Mission Scenario 

− Spiral down and Map Asteroid 1 

− Sample Asteroid 1 

− Perform Asteroid 1 sample return at Earth 

− Repeat for second asteroid 

− Ensures first asteroid sample not at risk during second asteroid sampling 

 SA away from surface 

These risks, with proper pro-active planning can be mitigated early to avoid becoming problems late in the 
development life cycle. 

7.3 Reliability 
None performed for this study. 
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8.0 TRADE SPACE ITERATIONS 
Two different trade options were explored in the five cases run on the multiple small body sample return 
study. The first option looked at using different thruster technologies. Cases 1, 2, and 3 used the three 
different thruster technologies NEXT, BPT-4000 and HiVAC respectively. A secondary set of trades was 
run on the science payload and the SRC to explore the ceiling and basement of science capabilities of this 
mission. In cases 1a and 3a, a slightly larger single SRC was returned to the Earth from the Near Earth 
Asteroids, rather than two SRC. Both cases used the NEXT thruster but case 1a delivered a larger science 
payload while case 3a delivered the standard baseline science package used in cases 1, 2 and 3.  

The baselined case 1a and case 3a returned a single sample capsule of a slightly larger size than cases 1, 2 
and 3. 

Table 8.1—Spacecraft Case Comparison 

 Case 1 Case 1a Case 2 Case 3 Case 3a 
Launch  
vehicle  

Atlas 401  Atlas 401  Atlas 521  Atlas 401  Atlas 401  

Thruster  NEXT  NEXT  BPT-4000  HiVAC  NEXT  

Science  
payload  

Baseline science 
package  

Super science 
package  

Baseline science 
package  

Baseline Science 
package  

Baseline science 
package  

SRC  2 full size  1 slightly larger size  2 full size  2 full size  1 slightly larger size  

 
 
 

Table 8.2—Spacecraft Total Mass Comparison 

 
 
  

Case 1 Case 1a Case 2 Case 3 Case 3a

WBS Main Subsystems
Total Mass 

(kg)
Total Mass 

(kg)
Total Mass 

(kg)
Total Mass 

(kg)
Total Mass 

(kg)
01 Moon Sampler Spacecraft 1251.3 1262.8 1561.8 1416.8 993.8

06.1 Science Payload 29.3 60.3 29.3 29.3 29.3
06.2 Moon Sampler Lander 1111.8 1141.0 1422.3 1277.3 903.1

06.2.1 Attitude Determination and Control 53.6 53.6 53.6 53.6 53.6
06.2.2 Command and Data Handling 37.3 37.3 37.3 37.3 37.3
06.2.3 Communications and Tracking 30.7 30.7 30.7 30.7 30.7

06.2.4 Electric Power 133.7 133.7 133.7 133.7 133.7
06.2.5 Thermal Control 47.3 47.3 47.3 47.3 47.3
06.2.6 Propulsion 208.1 209.3 217.2 179.5 154.3
06.2.7 Propellant 425.1 451.8 726.9 620.5 272.8
06.2.8 Structures and Mechanisms 175.7 176.9 175.2 174.3 173.2
06.3 Sample Return Craft (total, empty) 110.2 61.4 110.2 110.2 61.4

06.3.1 Electrical Power Subsystem 7.2 7.2 7.2 7.2 7.2
06.3.2 Thermal Control (Non-Propellant) 5.4 5.4 5.4 5.4 5.4
06.3.3 Structures and Mechanisms 97.6 48.8 97.6 97.6 48.8

Estimated  Spacecraft Dry Mass 826.2 810.9 834.9 796.3 721.0
Estimated Spacecraft Wet Mass 1251.3 1262.8 1561.8 1416.8 993.8

System LeveL Growth Calculations
Dry Mass w/ Desired System Level Growth 927.1 913.7 937.5 884.9 799.5
Additional Growth (carried at system level) 100.9 102.8 102.6 88.6 78.5
Total Wet Mass with Growth 1352.2 1365.5 1664.4 1505.4 1072.3
Available Launch Performance to C3 (kg) 1375.4 1421.9 1686.4 1600.0 1200.0
Launch margin available (kg) 23.2 56.4 22.0 94.6 127.7
Estimated Spacecraft Inert Mass (for traj.) 1021.5 1009.8 1058.6 996.0 856.0

0 0 0 0

Sample Return Craft Total Mass
Total Mass 

(kg)
Total Mass 

(kg)
Total Mass 

(kg)
Total Mass 

(kg)
Total Mass 

(kg)

Estimated Sample Return Craft Mass 110.2 61.4 110.2 110.2 61.4

Total with System Level Growth 121.3 67.5 121.3 121.3 67.5

Number of Sample Return Craft 2 1 2 2 1
Total Mass per Sample Return Craft (empty) 60.6 67.5 60.6 60.6 67.5
Total Mass, Sample Returned 1 1 1 1 1
Total Mass, Sample Return Capsule (Full) 61.6 68.5 61.6 61.6 68.5

Spacecraft Total Mass Comparison
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8.1 Case 1—Baseline 
Case 1 using the NEXT thruster system for electric propulsion was chosen as the baseline for this study 
report and is documented in detail in the subsystem sections. 
 
 

Table 8.3—Case 1—System Summary 

 
 
 
 
 

Table 8.4—Case 1—Sample Return Craft Summary 

 
  

GLIDE
container Mars_Moons_Sampler: NEA_sampler_case1

Spacecraft Master Equipment List Rack-up (Mass)
COMPASS S/C 

Design 

WBS Main Subsystems CBE Mass (kg)
Growth 

(kg) Total Mass (kg)
Aggregate 
Growth (%)

01 Asteroids Sampler Spacecraft 1138.3 113.0 1251.3
06.1 Science Payload 25.2 4.1 29.3 16%
06.2 Asteroids Sampler Lander 1019.8 92.1 1111.8

06.2.1 Attitude Determination and Control 44.3 18.7 53.6 42%
06.2.2 Command and Data Handling 29.3 8.0 37.3 27%
06.2.3 Communications and Tracking 24.2 6.5 30.7 27%

06.2.4 Electric Power 115.5 18.2 133.7 16%

06.2.5 Thermal Control 40.1 7.2 47.3 18%

06.2.6 Propulsion 192.1 16.0 208.1 8%

06.2.7 Propellant 425.1

06.2.8 Structures and Mechanisms 148.9 26.8 175.7 18%
06.3 Sample Return Craft (total, empty) 93.3 16.9 110.2 18%

06.3.1 Electrical Power Subsystem 6.0 1.2 7.2 20%
06.3.2 Thermal Control (Non-Propellant) 4.6 0.8 5.4 18%

06.3.3 Structures and Mechanisms 82.7 14.9 97.6 18%
Estimated  Spacecraft Dry Mass 713 113 826.2 16%
Estimated Spacecraft Wet Mass 1138 113 1251.3

System LeveL Growth Calculations Total Growth
Dry  Mass Desired System Level Growth 713 214 927.1 30%
Additional Growth (carried at system level) 101 14%
Total Wet Mass with Growth 1138 214 1352.2

Available Launch Performance to C3 (kg) 1375.4

Launch margin available (kg) 23.2

Estimated Spacecraft Inert Mass (for traj.) 808 214 1021.5

Sample Return Craft Total Mass CBE Mass (kg) Growth (kg) Total Mass (kg)
Aggregate 
Growth (%)

Estimated Sample Return Craft Mass 93.3 16.9 110.2 18%

Total with System Level Growth 93 28 121.3 30%

Number of Sample Return Craft 2

Total Mass per Sample Return Craft (empty) 60.6 kg
Total Mass, Sample Returned 1 kg
Total Mass, Sample Return Capsule (Full) 61.6 kg
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8.2 Case 1a  
Case 1a uses the same NEXT thrusters to perform all the interplanetary burns as Case 1. The mission still 
carries a single SRC and takes science from the two asteroids chosen in the mission analysis section. The 
change in this case is that the science payload used on cases 1 through 3, has been increased on Case 1a to 
what is called a super science payload.  Note that in this table, the word “Moon” appears. This table was 
built off of the Mars Moon Sampler mission done previously by COMPASS and the words were not 
changed in time to make it into this report.  

Table 8.5—Case 1a—System Summary 

 
 
 
 
 

Table 8.6—Case 1a—Sample Return Craft Summary 

 
  

GLIDE 
container: Mars_Moons_Sampler: NEA_sampler_case1a

Spacecraft Master Equipment List Rack-up (Mass)
COMPASS S/C 

Design 

WBS Main Subsystems CBE Mass (kg)
Growth 

(kg) Total Mass (kg)
Aggregate 
Growth (%)

01 Moon Sampler Spacecraft 1154.7 108.1 1262.8
06.1 Science Payload 54.0 6.3 60.3 12%
06.2 Moon Sampler Lander 1048.7 92.3 1141.0

06.2.1 Attitude Determination and Control 44.3 18.7 53.6 42%
06.2.2 Command and Data Handling 29.3 8.0 37.3 27%
06.2.3 Communications and Tracking 24.2 6.5 30.7 27%

06.2.4 Electric Power 115.5 18.2 133.7 16%

06.2.5 Thermal Control 40.1 7.2 47.3 18%

06.2.6 Propulsion 193.3 16.0 209.3 8%

06.2.7 Propellant 451.8

06.2.8 Structures and Mechanisms 149.9 27.0 176.9 18%
06.3 Sample Return Craft (total, empty) 52.0 9.5 61.4 18%

06.3.1 Electrical Power Subsystem 6.0 1.2 7.2 20%
06.3.2 Thermal Control (Non-Propellant) 4.6 0.8 5.4 18%

06.3.3 Structures and Mechanisms 41.4 7.4 48.8 18%
Estimated  Spacecraft Dry Mass 703 108 810.9 15%
Estimated Spacecraft Wet Mass 1155 108 1262.8

System LeveL Growth Calculations Total Growth
Dry  Mass Desired System Level Growth 703 211 913.7 30%
Additional Growth (carried at system level) 103 15%
Total Wet Mass with Growth 1155 211 1365.5

Available Launch Performance to C3 (kg) 1421.9

Launch margin available (kg) 56.4

Estimated Spacecraft Inert Mass (for traj.) 799 211 1009.8

Sample Return Craft Total Mass CBE Mass (kg) Growth (kg) Total Mass (kg)
Aggregate 
Growth (%)

Estimated Sample Return Craft Mass 52.0 9.5 61.4 18%

Total with System Level Growth 52 16 67.5 30%

Number of Sample Return Craft 1

Total Mass per Sample Return Craft (empty) 67.5 kg
Total Mass, Sample Returned 1 kg
Total Mass, Sample Return Capsule (Full) 68.5 kg
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8.3 Case 2 
Case 2 ran the same mission to the same two asteroids using the BPT-4000 thruster model for the electric 
propulsion system. Two SRCs were returned to Earth as in case 1. Note that in this table, the word “Moon” 
appears. This table was built off of the Mars Moon Sampler mission done previously by COMPASS and the 
words were not changed in time to make it into this report. 
 
 
 

Table 8.7—Case 2—System Summary 

 
 
 
 
 

Table 8.8—Case 2—Sample Return Craft Summary 

 
  

GLIDE 
container: Mars_Moons_Sampler: NEA_sampler_case2

Spacecraft Master Equipment List Rack-up (Mass)
COMPASS S/C 

Design 

WBS Main Subsystems CBE Mass (kg)
Growth 

(kg) Total Mass (kg)
Aggregate 
Growth (%)

01 Moon Sampler Spacecraft 1448.1 113.8 1561.8
06.1 Science Payload 25.2 4.1 29.3 16%
06.2 Moon Sampler Lander 1329.6 92.8 1422.3

06.2.1 Attitude Determination and Control 44.3 18.7 53.6 42%
06.2.2 Command and Data Handling 29.3 8.0 37.3 27%
06.2.3 Communications and Tracking 24.2 6.5 30.7 27%

06.2.4 Electric Power 115.5 18.2 133.7 16%

06.2.5 Thermal Control 40.1 7.2 47.3 18%

06.2.6 Propulsion 200.5 16.8 217.2 8%

06.2.7 Propellant 726.9

06.2.8 Structures and Mechanisms 148.5 26.7 175.2 18%
06.3 Sample Return Craft (total, empty) 93.3 16.9 110.2 18%

06.3.1 Electrical Power Subsystem 6.0 1.2 7.2 20%
06.3.2 Thermal Control (Non-Propellant) 4.6 0.8 5.4 18%

06.3.3 Structures and Mechanisms 82.7 14.9 97.6 18%
Estimated  Spacecraft Dry Mass 721 114 834.9 16%
Estimated Spacecraft Wet Mass 1448 114 1561.8

System LeveL Growth Calculations Total Growth
Dry  Mass Desired System Level Growth 721 216 937.5 30%
Additional Growth (carried at system level) 103 14%
Total Wet Mass with Growth 1448 216 1664.4

Available Launch Performance to C3 (kg) 1686.4

Launch margin available (kg) 22.0

Estimated Spacecraft Inert Mass (for traj.) 842 216 1058.6

Sample Return Craft Total Mass CBE Mass (kg) Growth (kg) Total Mass (kg)
Aggregate 
Growth (%)

Estimated Sample Return Craft Mass 93.3 16.9 110.2 18%

Total with System Level Growth 93 28 121.3 30%

Number of Sample Return Craft 2

Total Mass per Sample Return Craft (empty) 60.6 kg
Total Mass, Sample Returned 1 kg
Total Mass, Sample Return Capsule (Full) 61.6 kg
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8.4 Case 3  
Case 2 ran the same mission to the same two asteroids using the HiVAC thruster model for the electric 
propulsion system. Two SRCs were returned to Earth as in case 1 and 2. Note that in this table, the word 
“Moon” appears. This table was built off of the Mars Moon Sampler mission done previously by 
COMPASS and the words were not changed in time to make it into this report. 
 
 
 

Table 8.9—Case 3—System Summary 

 
 
 
 
 

Table 8.10—Case 3—Sample Return Craft Summary 

 
  

GLIDE 
container: Mars_Moons_Sampler: NEA_sampler_case3

Spacecraft Master Equipment List Rack-up (Mass)
COMPASS S/C 

Design 

WBS Main Subsystems CBE Mass (kg)
Growth 

(kg) Total Mass (kg)
Aggregate 
Growth (%)

01 Moon Sampler Spacecraft 1301.2 115.6 1416.8
06.1 Science Payload 25.2 4.1 29.3 16%
06.2 Moon Sampler Lander 1182.7 94.6 1277.3

06.2.1 Attitude Determination and Control 44.3 18.7 53.6 42%
06.2.2 Command and Data Handling 29.3 8.0 37.3 27%
06.2.3 Communications and Tracking 24.2 6.5 30.7 27%

06.2.4 Electric Power 115.5 18.2 133.7 16%

06.2.5 Thermal Control 40.1 7.2 47.3 18%

06.2.6 Propulsion 160.8 18.7 179.5 12%

06.2.7 Propellant 620.5

06.2.8 Structures and Mechanisms 147.7 26.6 174.3 18%
06.3 Sample Return Craft (total, empty) 93.3 16.9 110.2 18%

06.3.1 Electrical Power Subsystem 6.0 1.2 7.2 20%
06.3.2 Thermal Control (Non-Propellant) 4.6 0.8 5.4 18%

06.3.3 Structures and Mechanisms 82.7 14.9 97.6 18%
Estimated  Spacecraft Dry Mass 681 116 796.3 17%
Estimated Spacecraft Wet Mass 1301 116 1416.8

System LeveL Growth Calculations Total Growth
Dry  Mass Desired System Level Growth 681 204 884.9 30%
Additional Growth (carried at system level) 89 13%
Total Wet Mass with Growth 1301 204 1505.4

Available Launch Performance to C3 (kg) 1600.0

Launch margin available (kg) 94.6

Estimated Spacecraft Inert Mass (for traj.) 792 204 996.0

Sample Return Craft Total Mass CBE Mass (kg) Growth (kg) Total Mass (kg)
Aggregate 
Growth (%)

Estimated Sample Return Craft Mass 93.3 16.9 110.2 18%

Total with System Level Growth 93 28 121.3 30%

Number of Sample Return Craft 2
Total Mass per Sample Return Craft (empty) 60.6 kg
Total Mass, Sample Returned 1 kg
Total Mass, Sample Return Capsule (Full) 61.6 kg
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8.5 Case 3a  
Case 3 went to the same two asteroid targets, but this time only brought along minimal science package 
onboard and only returned one SRC to the Earth. The NEXT thruster system was used for electric 
propulsion. Note that in this table, the word “Moon” appears. This table was built off of the Mars Moon 
Sampler mission done previously by COMPASS and the words were not changed in time to make it into 
this report. 
 
 

Table 8.11—Case 3a—System Summary 

 
 
 
 
 

Table 8.12—Case 3a—Sample Return Craft Summary 

 
 

  

GLIDE 
container: Mars_Moons_Sampler: NEA_sampler_case3a

Spacecraft Master Equipment List Rack-up (Mass)
COMPASS S/C 

Design 

WBS Main Subsystems CBE Mass (kg)
Growth 

(kg) Total Mass (kg)
Aggregate 
Growth (%)

01 Moon Sampler Spacecraft 887.8 106.0 993.8
06.1 Science Payload 25.2 4.1 29.3 16%
06.2 Moon Sampler Lander 810.6 92.5 903.1

06.2.1 Attitude Determination and Control 44.3 18.7 53.6 42%
06.2.2 Command and Data Handling 29.3 8.0 37.3 27%
06.2.3 Communications and Tracking 24.2 6.5 30.7 27%

06.2.4 Electric Power 115.5 18.2 133.7 16%

06.2.5 Thermal Control 40.1 7.2 47.3 18%

06.2.6 Propulsion 137.5 16.8 154.3 12%

06.2.7 Propellant 272.8

06.2.8 Structures and Mechanisms 146.7 26.4 173.2 18%
06.3 Sample Return Craft (total, empty) 52.0 9.5 61.4 18%

06.3.1 Electrical Power Subsystem 6.0 1.2 7.2 20%
06.3.2 Thermal Control (Non-Propellant) 4.6 0.8 5.4 18%

06.3.3 Structures and Mechanisms 41.4 7.4 48.8 18%
Estimated  Spacecraft Dry Mass 615 106 721.0 17%
Estimated Spacecraft Wet Mass 888 106 993.8

System LeveL Growth Calculations Total Growth
Dry  Mass Desired System Level Growth 615 184 799.5 30%
Additional Growth (carried at system level) 78 13%
Total Wet Mass with Growth 888 184 1072.3

Available Launch Performance to C3 (kg) 1200.0

Launch margin available (kg) 127.7

Estimated Spacecraft Inert Mass (for traj.) 672 184 856.0

Sample Return Craft Total Mass CBE Mass (kg) Growth (kg) Total Mass (kg)
Aggregate 
Growth (%)

Estimated Sample Return Craft Mass 52.0 9.5 61.4 18%

Total with System Level Growth 52 16 67.5 30%

Number of Sample Return Craft 1

Total Mass per Sample Return Craft (empty) 67.5 kg
Total Mass, Sample Returned 1 kg
Total Mass, Sample Return Capsule (Full) 68.5 kg
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APPENDIX A—ACRONYMS AND ABBREVIATIONS 
ACS Attitude Control System 

AO Announcement of Opportunity 

APXS Alpha Particle X-Ray 
Spectrometer 

ARU Array Regulator Unit 

AU Astronomical Unit 

BAE British Aerospace 

BCCU Battery Charge Control Unit 

BOL beginning of life 

C&DH Command and Data Handing 

C3 Launch energy per unit mass 

CBE current best estimate 

CCB Common Core Booster 

CEV Crew Exploration Vehicle 

CG Center of Gravity 

Comm Communications 

COMPASS COllaborative Modeling and 
Parametric Assessment of Space 
Systems 

COPV Composite Overwrapped Pressure 
Vessel 

COTS commercial off-the-shelf 

DCIU Digital Control Interface Unit 

DMR  Design for Minimum Risk 

DOF Degree of Freedom 

DSN Deep Space Network 

DTE direct to Earth 

EELV Evolved Expendable Launch 
Vehicle 

ELV Expendable Launch Vehicle 

EM Electro Magnetic 

EP Electric Propulsion 

FEA  finite element analysis  

FOM figure of merit 

GSFC NASA Goddard Space Flight 
Center 

GLIDE GLobal Integrated Design 
Environment 

GN&C  Guidance, Navigation and Control 

GRC  NASA Glenn Research Center 

GSE Ground Support Equipment 

HiVAC High-Voltage Hall Accelerator 

HPA High Pressure Assembly 

HQ NASA Headquarters 

IACO Integration, Assembly and 
Checkout 

IMDC I M Design Center 

IMU Inertial Measuring Unit 

IP Internet protocol 

JPL NASA Jet Propulsion Laboratory 

KSC NASA Kennedy Space Center 

LIDAR Light Detection and Ranging 

LPA Low Pressure Assembly 

LSP Launch Service Program 

LSTO Launch Service Task Order 

MEL Master Equipment List 

MEOP Manufacturers Expected Operating 
Pressure 

MLI multilayer insulation 

MGA Mass Growth Allowance 

MPU Makeup Power Unit 

NASA National Aeronautics and Space 
Administration 

Nav navigation 

NEA Near Earth Asteroid 

NEARER Near Earth Asteroids Rendezvous 
and sample Earth Returns 

NEXT NASA Evolutionary Xe Thruster 

NLS NASA Launch Services  

OTS off-the-shelf 

PEL Power Equipment List 

PICA Phenolic Impregnated Carbon 
Ablator 
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PM Program Management 

PMAD Power Management and 
Distribution 

PMS Propellant Management System 

PM preliminary model 

PPM  Propellant and Propellant 
Management 

PPU power processing unit 

RCS Reaction Control System 

RHS radioisotope heater unit 

S/C spacecraft 

SADA SA Drive Assembly 

SE&I Systems Engineering and 
Integration 

SEP Solar Electric Propulsion 

SLOC single line of code 

SN signal-to-noise 

SPACE System Power Analysis for 
Capability Evaluation 

SPU solar power unit 

SRC sample return capsule 

STO System Test Operations 

TDRSS Tracking and Data Relay Satellite 
System 

TPS Thermal Protection System 

TRL Technology Readiness Level 

TWTA Traveling Wave Tube Amplifier 

VACCO Vacuum and Air Components 
Company of America 
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APPENDIX B—RENDERED DESIGN DRAWINGS 

 
Figure B.1—Rendered Baseline Case 1—Deployed View 

 
Figure B.2—Rendered Baseline Case 1—Close View of Main Body 
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Figure B.3—Transparent Baseline Case 1—Main Bus View 1 

 
Figure B.4—Transparent Baseline Case 1—Main Bus View 2 
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