

....

Orion Integrated GN&C

Ы

J

101

ian

Kay Chevray NASA/JSC

October 2009

Outline

Orion Project

As Background:

- Project Orion Mission
- IGNC role in Orion Program

Design and Development Plans:

- External Interfaces
- Functional Architecture
- GN&C Software Overview
- Development and Validation Process
- Key Challenges

Project Orion Mission At-A-Glance

Orion Project

ISS Design Reference Mission

Ref: Orion GN&C Subsystem Design Review February 2009

Lunar Design Reference Mission

Orion Integrated GN&C / K. Chevray

- Orion GN&C team operates under Multiple Organizational Design and Engineering (MODE) team agreement between NASA and prime contractor, Lockheed-Martin (LM)
 - MODE team arrangement allows NASA engineers to collaborate with the prime contractor during design process
 - Allows to leverage off of NASA's experience with manned systems
 - Allows greater insight into prime contractor's design
 - Each MODE team within the GN&C Subsystem Products Team (GNC SPT) is co-led by a NASA lead and a LM lead

As a NASA side lead, I have responsibilities on both sides

- As a System Manager, monitor design activities and evaluate the design
 - 30 System Managers and 80 Subsystem Managers
- The roles are expected to diverge after CDR, as LM personnel concentrates on test and verification while NASA personnel will focus on assessment of LM data for vehicle acceptance

• iGNC is a MODE team that is responsible <u>at the subsystem level</u> for:

- Systems Engineering
- Inter-MODE team integration and external interfaces
- Requirements
- Flight software architecture including Phases, Segments, and Modes
- Fault Detection, Isolation, and Recovery (FDIR)
- Test and Verification
- Simulation development

In addition, iGNC personnel participates in the following activities with other organizations

- Constellation (level II) requirements coordination through Flight Performance System Integration Group (FPSIG) – CARD and IRD requirements
- Coordination with the International Space Station (ISS) for Rendezvous, Proximity Operations, and Docking (RPOD) related topics – Orion/ISS IRD requirements, docking conditions

MODE Team Responsibilities

Orion Project

Integrated GN&C (iGNC):

Requirements, verification, sim development, and technical integration

Ascent Abort (AAMT):

Handles GN&C for all ascent aborts including LAS and SM aborts

Orbit (OMT):

Handles navigation filter design and GN&C for on-orbit, transit, and RPOD

• Entry (EMT):

Handles entry GN&C including CM burns, guided entry, and roll under mains

Operability and Piloting (OPMT):

Handles manual control, flight displays, and ops interfaces across mission

Contingency Return (CRMT):

Handles GN&C for BEC/MRC vehicle capabilities

Navigation Systems (NavSys):

Nav hardware design and system integration across all mission phases

External Interfaces

Orion Project

Orion Integrated GN&C / K. Chevray

Ref: Orion GN&C Subsystem Design Review February 2009

606E GN&C Subsystem Boundary Diagram

Orion Integrated GN&C / K. Chevray

Ref: Orion GN&C Subsystem Design Review February 2009

Orion GN&C FSW Overview

Ref: Orion GN&C FSW Overview W. Tamblyn

- GN&C MODE teams responsible for the development of GN&C algorithms
 - Guidance, navigation, control, executive, FDIR, parameters for display
- Algorithms documented in modeled based design tool (Matlab/Simulink)
 - FSW provides the executive architecture
 - Architecture developed by GN&C FSW architecture working group, co-led by GN&C and FSW
 - GNC provides the detailed algorithms within the architecture (CSCI's)
 - Simulation capability to close the loop directly with the FSW algorithms during the development phase
- Auto-coded version of the Matlab/Simulink becomes the flight software at the CSCI level
- Flight software then will get tested and verified via various test facilities

Communication

- With the size of Orion Project and the GN&C team, maintaining an open communication channels is difficult
- Need to find the right balance of enough participation to make correct decisions vs. too many people attending too many meetings to get the "real" work done

Horizontal vs. vertical integration

 GN&C team is organized by flight phase, which allows for easier integration inside a given phase. iGNC is responsible for horizontal integration across various flight phases, which requires matrixed support from flight phase teams.

Requirements management

- Flow down from Level II (Constellation Program) and Level III (Orion Project) through Crew Module and Service Module Specifications to GN&C Specifications
- Performance allocations at the vehicle level
- GN&C subsystem spec vs. flight software requirements
- How many requirements is too many?

Test and verification

- Development vs. formal verification testing
- Testing at subsystem vs. system level
- Time required to complete the verification in test facilities