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Abstract

We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and
NOAA ARCPAC campaigns in April 2008 together with multiyear (2003–2008) CO
satellite data from the AIRS instrument and a global chemical transport model (GEOS-
Chem) to better understand the sources, transport, and interannual variability of pollu-5

tion in the Arctic in spring. Model simulation of the aircraft data gives best estimates of
CO emissions in April 2008 of 26 Tg month−1 for Asian anthropogenic, 9.1 for European
anthropogenic, 4.2 for North American anthropogenic, 9.3 for Russian biomass burn-
ing (anomalously large that year), and 21 for Southeast Asian biomass burning. We
find that Asian anthropogenic emissions are the dominant source of Arctic CO pollu-10

tion everywhere except in surface air where European anthropogenic emissions are of
similar importance. Synoptic pollution influences in the Arctic free troposphere include
contributions of comparable magnitude from Russian biomass burning and from North
American, European, and Asian anthropogenic sources. European pollution dominates
synoptic variability near the surface. Analysis of two pollution events sampled by the15

aircraft demonstrates that AIRS is capable of observing pollution transport to the Arctic
in the mid-troposphere. The 2003–2008 record of CO from AIRS shows that inter-
annual variability averaged over the Arctic cap is very small. AIRS CO columns over
Alaska are highly correlated with the Ocean Niño Index, suggesting a link between El
Niño and northward pollution transport. AIRS shows lower-than-average CO columns20

over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian
Low hindering transport from Asia and associated with the moderate 2007–2008 La
Niña. This suggests that Asian pollution influence over the Arctic may be particularly
large under strong El Niño conditions.
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1 Introduction

The Arctic is a major receptor for mid-latitudes pollution (Shaw, 1995; Quinn et al.,
2007). Radiative forcing by pollutants in the Arctic including ozone, aerosols, and black
carbon deposited on snow could make a major contribution to regional and global
warming (Koch and Hansen, 2005; Shindell et al., 2006a; McConnell et al., 2007;5

Quinn et al., 2008; Shindell and Faluvegi, 2009). Several studies have identified pol-
lution transport pathways to the Arctic on the basis of model simulations and meteoro-
logical analyses (Eckhardt et al., 2003; Klonecki et al., 2003; Koch and Hansen, 2005;
Stohl, 2006; Shindell et al., 2008), but our ability to verify these pathways through
chemical observations has been limited. Polar-orbiting satellites offer unique platforms10

for this purpose. We present here an analysis of the sources and transport of Arctic
pollution in spring using the GEOS-Chem chemical transport model (CTM) to inter-
pret satellite observations of carbon monoxide (CO) from the Atmospheric InfraRed
Sounder (AIRS) together with aircraft measurements from the NASA ARCTAS (Arc-
tic Research of the Composition of the Troposphere from Aircraft and Satellites) and15

NOAA ARCPAC (Aerosol, Radiation, and Cloud Processes affecting Arctic Climate)
campaigns.

Despite 50 years of observations of Arctic pollution, there remains considerable
uncertainty concerning the sources. Surface-based studies conducted in the 1970s
and 1980s focused on anthropogenic pollution transported from Eastern Europe and20

Siberia (Carlson, 1981; Rahn, 1981; Raatz and Shaw, 1984; Barrie, 1986). Wintertime
influence from these regions is facilitated by cold surface temperatures and stable con-
ditions, enabling low-altitude isentropic transport to the Arctic (Barrie, 1986; Klonecki
et al., 2003; Stohl, 2006; Law and Stohl, 2007). Pollutants from Asia and North Amer-
ica, emitted at lower latitudes and therefore warmer temperatures, were thought to be25

inhibited from entering the Arctic by the “polar dome”, an isentropic transport barrier.
Recent research has called into question the predominance of Europe as the main

source of Arctic pollution. Modeling studies have shown that while near-surface pollu-
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tion may still be dominated by European sources, transport from Asia and North Amer-
ica is possible at higher altitudes, facilitated by lofting of pollutants by warm conveyor
belts (WCBs) (Koch and Hansen, 2005; Stohl, 2006; Shindell et al., 2008). Further-
more, with the collapse of the Soviet Union, strict emission controls in the European
Union, and the rapid industrialization of China and Southeast Asia, the global distri-5

bution of emissions has changed dramatically over the past 20 years. Several studies
show increasing contributions from Asia but disagree quantitatively on the importance
of this source for overall Arctic pollution (Koch and Hansen, 2005; Stohl, 2006; Shindell
et al., 2008). As interest in Arctic pollution has broadened from air quality to climate im-
pacts, there is a pressing need to understand pollution sources not only at the surface10

but throughout the troposphere.
Biomass burning has recently been suggested as an additional important source of

Arctic pollution. Black carbon records in Greenland ice cores show large concentra-
tions attributable to fire emissions dating back to the pre-industrial era (McConnell et
al., 2007), and more recent measurements in snow find that biomass burning accounts15

for more than 90% of the black carbon deposited in the Arctic in spring (Hegg et al.,
2009). Fires in Eastern Europe and Russia have been shown to cause substantial
increases in the atmospheric loading of pollutants including CO, ozone, and aerosols
measured at surface sites in the European Arctic (Stohl et al., 2007). Early analysis
of the ARCPAC aircraft data used here also suggests a substantial contribution from20

Russian forest fires and central Asian agricultural burning to atmospheric pollution over
Alaska (Warneke et al., 2008).

CO is emitted by incomplete combustion, and we use it here as a tracer of pollution.
Its atmospheric lifetime against oxidation by the hydroxyl radical (OH) is on average
two months, long enough to track transport on intercontinental scales but short enough25

to show well-defined concentration gradients (Staudt et al., 2001; Heald et al., 2003a;
Liu et al., 2003; Liang et al., 2004). In a recent intercomparison of 11 CTMs, simu-
lated CO concentrations disagreed by a factor of 2–3 at all altitudes in the Arctic due
to model differences in emissions, transport, and OH concentrations (Shindell et al.,
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2008). There is a need to better understand CO sources and transport to the Arctic as
an indicator of pollution influence.

Satellite observations present a unique perspective to address these issues. CO
is readily detectable from space at infrared (IR) wavelengths, and data are available
from a number of satellite instruments, including MOPITT, AIRS, TES, SCIAMACHY,5

and IASI. AIRS is particularly promising for studying pollution transport to the Arc-
tic because of its high spatial density (up to 70% global coverage daily) (McMillan
et al., 2005), sensitivity at high latitudes, cloud-clearing capabilities (Susskind et al.,
2003), and multi-year record (continuous observations since mid-2002). It is a nadir-
viewing thermal IR sounder onboard NASA’s polar-orbiting Aqua satellite and retrieves10

CO at 4.7 µm (McMillan et al., 2005). As with all thermal IR sounders, the sensitivity
to CO is strongest in the mid-troposphere and generally weak in the boundary layer,
with little vertical resolution (Warner et al., 2007; McMillan et al., 2008); however, in
some instances, AIRS can see CO enhancements down to the top of the boundary
layer (McMillan et al., 2009a). AIRS CO retrievals have been validated at mid-latitudes15

(McMillan et al., 2009b), but application to the Arctic has not previously been tested.
Aircraft data from the ARCTAS and ARCPAC campaigns based in Alaska in April

2008 can help evaluate the utility of the AIRS data for observing long-range transport
to the Arctic. The in situ measurements provide highly accurate information on the
structure of Arctic CO distributions, allowing an independent test of the AIRS CO data.20

The aircraft observations can further provide quantitative constraints on sources of CO
in the Arctic.

We examine here the influence of different source types (fuel combustion, biomass
burning) and mid-latitude source regions on Arctic pollution in spring, using the GEOS-
Chem CTM as a platform for intercomparing the aircraft and satellite datasets. We first25

use the aircraft observations to constrain the CO sources in the CTM and subsequently
use the CTM to quantify the source contributions to Arctic CO pollution. The aircraft
observations together with the CTM are used to test the ability of AIRS to observe
high-latitude pollution transport. We then use AIRS observations to investigate the
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interannual variability of CO transport to the Arctic.

2 Model description

We use the GEOS-Chem CTM version 8-01-04 (http://acmg.seas.harvard.edu/geos/
index.html) driven by GEOS-5 assimilated meteorology from the NASA Global Model-
ing and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS). The5

native resolution of GEOS-5 is 0.5◦×0.667◦ with 72 vertical levels; we regrid to 2◦×2.5◦

for input to GEOS-Chem. The GEOS-Chem simulation of CO has previously been
used to track intercontinental transport of pollution (Li et al., 2002; Heald et al., 2003a;
Liu et al., 2003; Duncan and Bey, 2004; Jaffe et al., 2004; Liang et al., 2004; Zhang
et al., 2008) and has been extensively compared to in situ and satellite observations10

(Jaeglé et al., 2003; Kiley et al., 2003; Liu et al., 2003; Heald et al., 2006; Koike et al.,
2006; Duncan et al., 2007; Duncan and Logan, 2008; Hudman et al., 2008).

We simulate April 2008 preceded by a 10-month spin-up. We use a linear CO simula-
tion (Duncan et al., 2007) with monthly mean archived OH concentrations from a previ-
ous GEOS-Chem full-chemistry simulation (Park et al., 2004). The annual global mean15

OH concentration in our simulation is 10.8×105 molecules cm−3. This is close to the 25-
model mean of 11.1±1.7×105 molecules cm−3 reported in the Shindell et al. (2006a)
CTM intercomparison and higher than the 9.4×105 molecules cm−3 reported for GEOS-
Chem in that comparison. For source attribution, the linearity of the model permits us
to include tagged CO tracers from individual sources that are consistent with the overall20

CO simulation.
Anthropogenic (fossil fuel and biofuel) sources of CO are simulated using state-of-

the-science regional emission inventories as described in Table 1. Emissions from
sources not accounted for in the regional inventories are taken from the EDGAR
3.2 FT2000 global emissions inventory for 2000 (Olivier et al., 1999; Olivier and25

Berdowski, 2001). Biomass burning emissions are from the Fire Locating and Mon-
itoring of Burning Emissions (FLAMBE) inventory (Reid et al., 2009), which pro-
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vides carbon emissions at 1◦×1◦ spatial resolution and hourly temporal resolution
based on both MODIS and GOES satellite fire counts (Naval Research Laboratory,
http://www.nrlmry.navy.mil/flambe/). CO emissions are subsequently calculated using
emission factors from Andreae and Merlet (2001). All emissions are injected into the
local planetary boundary layer as defined from the GEOS-5 data. While this could5

cause an underestimate of vertical transport of CO from the most energetic fires, re-
cent work has shown that direct free tropospheric injection of biomass burning plumes
is infrequent (Labonne et al., 2007; Kahn et al., 2008; Val Martin et al., 2009).

Additional sources of CO in our simulation include oxidation of methane (CH4) and
non-methane volatile organic compounds (NMVOCs). Methane is specified using10

latitudinally-resolved observations from the NOAA/ESRL/GMD network (Dlugokencky
et al., 2008). A yield of one CO molecule per oxidized CH4 molecule is assumed.
Oxidation of anthropogenic and biomass burning NMVOCs is simulated by increasing
direct CO emissions from these sources by 19% and 11%, respectively (Duncan et
al., 2007). Biogenic NMVOC sources in the model include isoprene, monoterpenes,15

methanol, and acetone. All NMVOCs are assumed to oxidize immediately to CO with
yields given by Duncan et al. (2007).

Model CO emissions for April 2008 are shown in Fig. 1 and summarized in Table 1.
The highest emissions (red hotspots in Fig. 1) are due to biomass burning, with par-
ticularly intense fire activity over Southeast Asia (Vietnam and Myanmar) and over20

southern Russia near the Russia-China border. The FLAMBE inventory includes 51 Tg
of CO emissions from Southeast Asian fires. This value is more than twice that re-
ported in previous studies (e.g., 18 Tg month−1 for April in Duncan et al. (2003) and
23 Tg month−1 in Heald et al. (2003b) and in other inventories (e.g., 6 Tg month−1 in
GFED2). Satellite fire counts for the region show no significant increases in burning25

in 2008 relative to other years (Acker and Leptoukh, 2007). The FLAMBE emissions
inventory is probably too high, as discussed further below. Russian fires during April
2008 were much more intense than usual at that time of year because of lower-than-
normal snow cover during the previous winter (Warneke et al., 2008). Figure 2 shows
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a timeseries of 2001–2008 monthly fire counts from the MODIS instrument aboard the
Terra satellite. Satellite fire counts over Russia in April 2008 were 2.5 times the April
average and higher than for any month of the record except May 2003.

To compare GEOS-Chem and in situ aircraft CO, the model is sampled along the
flight track at the same time and location as the observations. The aircraft data are av-5

eraged over the GEOS-Chem grid and time-step. For comparison with AIRS, GEOS-
Chem is sampled at the AIRS overpass locations and averaged over a 3-hour win-
dow centered at the 13:30 local overpass time. AIRS retrieves CO profiles on nine
trapezoidal pressure layers sampled from the 100 AIRS pressure levels. GEOS-Chem
model profiles are convolved to AIRS retrieval space using the convolution equation10

(Olsen et al., 2007; McMillan et al., 2009b) and summed over the 100 pressure levels
to compute the modeled total CO column:

ŷm =
∑

za exp
(

FAF′ · ln
zm
za

)
, (1)

where ŷm is the convolved model column, zm is the original model profile of partial
columns interpolated onto the 100 AIRS pressure levels, za is the AIRS retrieval a pri-15

ori profile of partial columns, F is a 100×9 matrix that defines the nine vertical trape-
zoidal layers on which AIRS CO is retrieved, F’ is its pseudo-inverse, and A is a 9×9
averaging kernel matrix in the trapezoidal space. The degrees of freedom (DOF) for
signal, measuring the number of pieces of information in the vertical profile, are gener-
ally less than 1.5 (Kopacz et al., 2009b), so we use total column CO rather than profiles20

for comparison. The column sensitivity as indicated by the averaging kernels is low in
the boundary layer and has a broad maximum at 300–600 hPa (Warner et al., 2007;
McMillan et al., 2009a, b).
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3 CO observations and constraints on sources

Jacob et al. (2009) give a general description of the NASA ARCTAS campaign. A ma-
jor goal was to observe long-range transport of pollution to the Arctic using a DC-8
aircraft based in Fairbanks, Alaska from 1 to 19 April 2008. CO measurements were
made using the Differential Absorption of CO Measurement (DACOM) instrument at5

a frequency of 1 Hz and accuracy of 2% (Sachse et al., 1987). The NOAA ARCPAC
campaign (Warneke et al., 2008) took place concurrently using a WP-3D aircraft also
based in Fairbanks with flights from 3 to 23 April 2008 (all but one after 11 April).
CO measurements were made by vacuum ultraviolet resonance fluorescence at a fre-
quency of 1 Hz and accuracy of 5% (Holloway et al., 2000).10

Observed and modeled CO concentrations along the ARCTAS and ARCPAC flight
tracks are shown in Fig. 3. Observed concentrations during ARCTAS ranged from 23 to
296 ppbv (excluding observations south of 55◦ N from transit flights). Less than 1% of
the observations had concentrations greater than 250 ppbv. Low values signify strato-
spheric air and are removed for subsequent analysis as described below. Observed15

concentrations during ARCPAC ranged from 96 to 383 ppbv. The highest CO concen-
trations were observed over and around Alaska and were due to Asian pollution and
Russian fires, as discussed below. High-CO layers were also sampled elsewhere, in
particular near the North Pole by the DC-8. The GEOS-Chem simulation with prior
emissions (Fig. 3, middle panels) shows qualitative agreement with the observations20

but quantitative discrepancies are evident. Modeled concentrations are generally too
low, although they are sometimes too high in plumes over and around Alaska, suggest-
ing different model errors for the different sources affecting the Arctic.

Figure 4 shows the median vertical distribution of the aircraft CO observations along
with the corresponding model values. Observations of stratospheric air, diagnosed as25

[O3]/[CO]>1.25 mol mol−1 (Hudman et al., 2007), were removed from the data set. The
median observed CO concentration at the surface was 160 ppbv. The data show little
or no decrease up to 5 km and a sharp decrease above. The ARCTAS data show
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the most variability in the mid-troposphere (3–6 km). The ARCPAC data show greater
variability than the ARCTAS data at all altitudes.

The red lines in Fig. 4 show the median CO profiles from the GEOS-Chem simu-
lation with prior emissions. Relative to both aircraft data sets, the model is 10 ppbv
low near the surface, although this difference decreases with altitude and disappears5

in the upper troposphere. The underestimate of CO at northern extratropical latitudes
in spring is a general problem in current CTMs (Shindell et al., 2006b). We correct
the discrepancy in the simulation by adjusting emissions based on the assumption that
emission errors in the model are systematic while model transport errors are random.
We estimate the correction to emissions by performing least squares multiple linear10

regression to the aircraft observations of model results for five tagged tracers of CO
sources: (1) North American anthropogenic (fossil fuel and biofuel), (2) European an-
thropogenic, (3) Asian anthropogenic, (4) Russian biomass burning, and (5) Southeast
Asian biomass burning. The fit is conducted separately for the ARCTAS and ARCPAC
tropospheric data. The ARCTAS fit includes 1454 points from 9 flight days and the15

ARCPAC fit includes 1251 points from 9 flight days. In both cases, data are included
from transit flights to the Arctic.

Table 2 shows the emission scaling factors from the two least squares fits with confi-
dence intervals determined using the bootstrap method. Despite sampling differences
between the two campaigns (see Fig. 3), the corrections from the two datasets are20

largely consistent, both pointing to a model underestimate of anthropogenic emissions
and an overestimate of biomass burning emissions. We find that we need to increase
anthropogenic emissions from East Asia and from Europe to correct the underestimate
of the background (Fig. 4) and in the eastern part of the ARCTAS domain (Fig. 3).
Based on the ARCTAS data, no correction is needed for our North American anthro-25

pogenic emissions (Table 2), where our prior emissions are consistent with recent esti-
mates (Hudman et al., 2008; Kopacz et al., 2009b). The downward correction to North
American emissions implied by the ARCPAC data does not seem robust in view of the
limited influence of the North American source in the Alaskan Arctic.
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Our finding that current anthropogenic emission inventories for Europe and Asia are
too low is consistent with the recent inverse model analysis of Kopacz et al. (2009b),
which was constrained by an ensemble of satellite data (MOPITT, AIRS, and SCIA-
MACHY) and verified against aircraft and ground-based measurements. They found
that the inventories need to be increased in seasons other than summer. Their opti-5

mized April anthropogenic emissions of 8.0 Tg month−1 for Europe and 28 Tg month−1

for Asia are close to our estimates for April using the ARCTAS-based corrections of
9.1 Tg month−1 for Europe and 26 Tg month−1 for Asia. As suggested by Kopacz et
al. (2009b), the spring underestimate may reflect seasonal under-accounting of emis-
sions from residential fuel use or vehicle cold starts. These sources are included in our10

model for Asia but with the assumptions that residential fuel use peaks from November
through March and that cold starts have no seasonal variation. It is unlikely that the
discrepancy over Asia reflects growth in CO emissions since 2006 (the base year for
the emissions inventory), as recent increased energy use has largely been offset by
technology renewals (Zhang et al., 2009).15

The ARCTAS and ARCPAC datasets both suggest that we need to decrease biomass
burning emissions in the FLAMBE inventory by a factor of 0.4 over Southeast Asia
to correct the CO model overestimate over and around Alaska. The downward cor-
rection results in an optimized estimate of 21 Tg CO from Southeast Asian fires in
April, in agreement with previous estimates of 18–23 Tg month−1 (Duncan et al., 2003;20

Heald et al., 2003b). Data from both campaigns similarly indicate a large overestimate
of Russian biomass burning emissions in the FLAMBE inventory, although they dis-
agree quantitatively. The ARCPAC data imply a Russian biomass burning source of
15 Tg month−1, 70% larger than the source from the ARCTAS data of 9.3 Tg month−1.
This discrepancy could reflect the deliberate sampling of biomass burning plumes by25

the NOAA aircraft. As will be shown, the difference has little impact on our overall
conclusions. For all subsequent analysis, we use the ARCTAS correction factors in
our optimized simulation because they are better constrained by spatial coverage. The
resulting emission estimates are given in Table 1 and Fig. 1.

19046

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/19035/2009/acpd-9-19035-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/19035/2009/acpd-9-19035-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 19035–19080, 2009

Source attribution
and interannual

variability of Arctic
pollution

J. A. Fisher et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Modeled CO concentrations from the optimized simulation using the ARCTAS-based
corrections are shown along the flight tracks in Fig. 3 (lower panels) and the profiles
are shown as blue lines in Fig. 4. The source correction eliminates the model error
in the lower and middle troposphere relative to ARCTAS and reduces it relative to
ARCPAC. After source correction, the Pearson correlation coefficient between ARCTAS5

observations and simulation improves from r=0.49 to r=0.59. The optimized sources
based on ARCTAS do not improve the correlation between ARCPAC observations and
simulation, with r=0.49 for both prior and optimized simulations. The low correlation
coefficients are driven by the high CO values found in some fine-structure plumes,
where large model error is expected due to both plume smearing and displacement10

(Rastigejev et al., 2009); however, removing the plumes before performing the least
squares fits did not significantly alter the resultant source correction factors.

Independent comparison of model results with observations was conducted using
CO column data from a surface site at Eureka, Nunavut (80◦ N, 86◦ W) and from the
AIRS satellite instrument. The measurements at Eureka were made with a Bruker15

Fourier Transform Spectrometer (FTS) (Batchelor et al., 2009). Intercomparison with
the DC-8 during a spiral over the site on 8 April 2008 showed agreement within
0.01×1018 molecules cm−2 (0.5%). Figure 5 shows that the source correction reduces
the mean model bias relative to observations from −6% with prior sources to −2% with
optimized sources.20

Figure 6 shows the mean April 2008 AIRS CO columns compared to the GEOS-
Chem model values from the optimized simulation. In this study we use version 5
AIRS CO retrievals (available from http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/
by-data-product/) and, following the recommendations in McMillan et al. (2009b), in-
clude only daytime AIRS observations with DOF for signal greater than 0.5 retrieved25

over surfaces with temperature above 250 K. Both AIRS and GEOS-Chem show the
highest pollution levels in the European sector of the Arctic, followed by the Asian sec-
tor. The North American Arctic is least polluted. Transport of European pollution takes
place directly northward over Scandinavia, while transport from Asia is northeastward,
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entering the Arctic over Siberia and Alaska. Averaged over the Arctic, GEOS-Chem
is 4% lower than AIRS. The discrepancy may reflect in part a high bias in the AIRS
data, which has been identified at mid-latitudes (McMillan et al., 2009b; Yurganov et
al., 2009) but has not been evaluated in the Arctic. Comparison with the prior simu-
lation (not shown) revealed positive errors over the southern Russian fire source and5

outflow regions due to the significant overestimate of fire emissions. Meanwhile, the
optimized GEOS-Chem simulation shows the largest underestimate over the region of
the Russian fires, which may indicate that the factor of three downward correction to
the FLAMBE inventory is too large. Applying the factor of two correction implied by the
ARCPAC data (Table 2) leads to a small reduction in the error over the fires and has10

little impact elsewhere.

4 Sources of Arctic pollution in April 2008

We use the GEOS-Chem simulation to decompose the optimized simulated CO vertical
profiles from ARCTAS and ARCPAC (Fig. 4, blue lines) into the contributions from
individual sources. The median profiles of the five dominant sources along the flight15

tracks are shown in Fig. 7. For both campaigns, mean concentrations are dominated
by Asian anthropogenic emissions along with a substantial contribution from European
anthropogenic emissions, especially at low altitude. These largely reflect the wintertime
accumulation of CO over the scale of the northern extratropical hemisphere. Emissions
from Russian fires, which didn’t begin until April (Fig. 2), have much less impact on the20

mean pollution influence.
Synoptic pollution influences are better measured by the variability (horizontal bars

in Fig. 7), and here we see distinct differences between the two campaigns. During
ARCPAC, the variability at all altitudes is largely dominated by the Russian biomass
burning source, consistent with the large biomass burning plume influence observed25

during the campaign (Warneke et al., 2008). The Russian biomass burning contribu-
tion is much smaller during ARCTAS and is comparable to the contributions from all
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three mid-latitude continents, reflecting differences in sampling strategy between the
two campaigns. During ARCTAS, the European anthropogenic source dominates the
variability at the surface, indicating direct low-altitude transport to the Arctic. The Asian
anthropogenic and Russian biomass burning sources have the most variability in the
middle and upper troposphere. This reflects the dominant pathway of Asian outflow5

in spring involving uplift in WCBs off the Pacific coast, as was previously observed in
the TRACE-P aircraft campaign (Liu et al., 2003). Stohl (2006) identified this as the
only major transport pathway from Asia to the Arctic, with subsequent influence at the
Arctic surface involving subsidence on a time scale of a month. The lifetime of CO
is sufficiently long for this subsidence to operate, leading to a general Asian pollution10

influence in the Arctic background.
Figure 8 shows the April 2008 mean contributions of each tracer in different alti-

tude bands over the scale of the Arctic. Asian anthropogenic emission is the dom-
inant contributor throughout the Arctic above 2 km, reflecting the high-altitude WCB
transport pathway. There is some lifting of European pollution affecting the middle tro-15

posphere in the European and Siberian sectors of the Arctic. In the boundary layer,
Asian and European anthropogenic influences are of comparable magnitude but have
distinct geographical signatures. European influence dominates in the European sec-
tor of the Arctic, reflecting near-surface northward transport over Scandinavia, and
also over eastern Siberia, reflecting westerly transport. We see from Fig. 8 that this20

trans-Siberian transport is the dominant pathway by which European pollution affects
Alaska. Our finding of European influence lifted to the middle troposphere and trans-
ported across Siberia in April differs from the prevailing winter situation (Klonecki et al.,
2003; Stohl, 2006) when European pollution is strongly confined to the boundary layer
and the circulation around the Siberian high carries it to the Arctic rather than across25

Siberia.
Relative to other anthropogenic sources, pollution from North America makes little

contribution to Arctic background concentrations. North American influence is limited
to the lowest 5 km and to the Canadian Archipelago, Davis Strait, and Greenland. Like
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Asian sources, North American emissions reach the Arctic via uplift and transport as-
sociated with WCBs (Stohl, 2006); however, CO emissions in North America are much
weaker than in Asia (Table 1).

Shindell et al. (2008) previously found in a multi-model CO intercomparison that the
Arctic in spring was most sensitive to European sources, followed by North American5

then Asian sources. The difference with our results reflects the magnitude of emis-
sions. The multi-model mean total emissions (anthropogenic and biomass burning) in
Shindell et al. (2008) were 156, 90, and 129 Tg a−1 for East Asia, Europe, and North
America, respectively; whereas our corresponding totals are 236, 89, and 80 Tg a−1 for
anthropogenic sources alone. Our higher Asian emissions and lower North American10

emissions are consistent with recent inverse analyses (Heald et al., 2004; Streets et
al., 2006; Hudman et al., 2008; Tanimoto et al., 2008; Fortems-Cheiney et al., 2009;
Kopacz et al., 2009a,b).

Although Southeast Asian fires were a large northern hemispheric source of CO dur-
ing April 2008 (Fig. 1 and Table 1), their influence on the Arctic is minimal because of15

the low latitude of emissions and the dominance in spring of venting by deep convec-
tive events (Liu et al., 2003). The small fraction of these emissions that reaches the
Arctic does so in the upper troposphere (Figs. 7 and 8), reflecting isentropic transport
(Klonecki et al., 2003) along with transport by WCBs (Bey et al., 2001; Liu et al., 2003;
Liang et al., 2004). Even in the upper troposphere, the Southeast Asian fire influence20

is smaller than the Asian anthropogenic influence.

5 Variability of Arctic pollution observed by AIRS

AIRS provides a unique perspective on variability of transport to the Arctic. In this
section we first test the ability of AIRS to observe long-range pollution transport to the
Arctic by investigating two pollution events of different origins observed by the aircraft25

during ARCTAS. We then assess the representativeness of the April 2008 observations
using the AIRS multi-year record (2003–2008).
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Figure 9 shows CO concentrations on 16 April 2008 as observed by the DC-8 aircraft
and modeled by GEOS-Chem as well as total column CO as observed by AIRS and
modeled by GEOS-Chem. CO concentrations of up to 250 ppbv, among the highest
during the ARCTAS campaign, were observed at altitudes of 3.5–5 km over western
Alaska and the Norton Sound during this flight. The enhancement was well captured5

by GEOS-Chem, which shows the source to be a mix of Asian pollution and Eurasian
fires. Further evidence for a biomass burning source comes from elevated observations
of hydrogen cyanide (HCN) and acetonitrile (CH3CN). More than half of the back tra-
jectories in Fig. 9 passed directly over the agricultural fires in southeastern Russia and
Kazakhstan at low altitude before being lifted, likely by WCBs, to the mid-troposphere.10

Turning to the satellite observations, we see qualitative agreement between measured
and simulated total column CO throughout the Arctic, although AIRS is consistently
higher than GEOS-Chem as previously discussed. Both AIRS and GEOS-Chem show
an extensive plume stretching from eastern Russia across the Pacific to Alaska. For-
ward trajectories from the sampled plume indicate that the plume did not travel pole-15

ward after being sampled; however, it eventually entered the Arctic over the Canadian
Archipelago and the Davis Strait eight to ten days later. This example therefore illus-
trates AIRS’s ability to observe WCB lofting and outflow from Eurasia to the Arctic.

Figure 10 shows a different case on 9 April 2008, when a CO enhancement was ob-
served at the North Pole at altitudes below 2 km. Concentrations in the plume were20

165–170 ppbv. Backward trajectories indicate that the plume traveled slowly from
northeastern Europe across Siberia, remaining at low altitude. Although trajectories
pass over the Russian burning region, this was before the most intense fires began,
and observed concentrations of HCN and CH3CN were negligible. GEOS-Chem indi-
cates that the primary source of CO in the plume was European pollution mixed with25

some Asian pollution. Forward trajectories show that much of the polluted airmass re-
mained at low altitude over the pole for at least the next ten days. We see from Fig. 10
that AIRS did not detect the plume. This reflects a lack of sensitivity at low altitude for
this case, as GEOS-Chem convolved with the AIRS averaging kernels similarly misses
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the polar enhancement. In part, the lack of sensitivity to this very low altitude CO
plume results from the limited vertical resolution of AIRS CO retrievals and the general
difficulty of any thermal IR sounder to see near-surface CO (McMillan et al., 2009a).
In this instance, the lack of sensitivity is compounded by small thermal signals due to
the ice-covered surface and a possible lack of thermal contrast in the polar boundary5

layer. The inability of AIRS to observe such low-altitude pollution may limit identifica-
tion of near-surface transport events, which, as we have seen from the GEOS-Chem
simulation, are primarily from Europe.

The 2003–2008 April mean CO columns from AIRS are shown in Fig. 11, along
with the anomalies for each year. The major features described for 2008 (Fig. 6 and10

Sect. 3) are also seen in the multi-year mean, with the European sector of the Arctic
being the most polluted and the North American sector the cleanest. The anomaly
maps show little variability north of the Arctic Circle with mean April column ranging
from 2.06×1018 molecules cm−2 to 2.11×1018 molecules cm−2, despite larger year-to-
year differences at mid-latitudes. We find that the interannual variability in the Arctic CO15

column is most strongly correlated with mean Arctic sea level pressure (SLP, taken from
the GEOS data), with a Pearson correlation coefficient r of −0.81. We attribute this
anti-correlation to the higher degree of Arctic isolation associated with high pressure
conditions, preventing poleward transport of CO from mid-latitudes.

Pollution transport to the Arctic is thought to be enhanced under the positive phase20

of the North Atlantic Oscillation (NAO) (Eckhardt et al., 2003; Duncan and Bey, 2004)
due to stronger surface westerlies and anomalous southerly flow (Hurrell et al., 2003).
Previous studies found strong positive correlations, most pronounced at the surface,
between NAO strength and Arctic pollution accumulation in winter and spring (Eckhardt
et al., 2003; Duncan and Bey, 2004). In contrast, we find here that the AIRS CO25

column in April is insignificantly negatively correlated with February–April mean NAO
index (taken from the NOAA Climate Prediction Center, available at http://www.cpc.
noaa.gov). This lack of correlation may be due to (1) our focus on spring, when the
NAO index is typically weak (Hurrell et al., 2003), (2) the lack of sensitivity of AIRS to
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surface concentrations where the correlation is strongest, and (3) the limited range of
NAO variability (less than ±1) over the period of the AIRS record.

We turn now to April 2008, which was characterized by strong SLP anomalies, as
seen in Fig. 12 (Fuelberg et al., 2009), and associated anomalies in Arctic CO col-
umn, as seen in Fig. 11. The polar cap had positive SLP anomalies of up to 10 hPa,5

likely contributing to the slightly lower-than-average Arctic CO concentrations shown in
Fig. 11. Positive pressure anomalies of more than 10 hPa were seen over the North
Pacific with weaker negative anomalies further north, indicating that the climatological
Aleutian low pressure system was less intense and shifted northward. CO columns
were anomalously low over Alaska and most of the regions sampled during the ARC-10

TAS campaign (Fig. 11). In contrast, columns in the European outflow region north of
Scandinavia were slightly higher than normal.

The anomalously low CO columns over Alaska and much of the North American
Arctic in April 2008 are of particular interest given the flight domain of ARCTAS and
ARCPAC. We find that the interannual variability of the April CO column over Alaska15

is highly correlated (r=0.80) with the February–April mean Ocean Niño Index (ONI,
a measure of the El Niño-Southern Oscillation, again taken from the NOAA Climate
Prediction Center), as shown in Fig. 13. The correlation is significant at the p=0.10
level. Atmospheric teleconnections from ENSO have long been known to affect the
strength and position of the Aleutian low pressure system (Bjerknes, 1966; Niebauer,20

1988). During El Niño conditions, the Aleutian low intensifies and shifts to the south-
east of its climatological mean position (52◦ N, 175◦ E; Rodionov et al., 2005), while
during La Niña conditions it weakens and shifts to the west. Niebauer et al. (1988)
found that this change alters the low-level flow over the central Pacific, bringing Asian
outflow north toward Alaska during El Niño years (see their Fig. 7) and decreasing25

the northward flow of Asian air during La Niña years. We suspect that this mecha-
nism extends to higher altitudes and explains the correlation between the ONI and the
AIRS CO column over Alaska. While there have been no strong El Niño years since
the beginning of the AIRS record, a moderate La Niña with monthly ONI values up to
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−1.4 occurred from fall 2007 through spring 2008. The La Niña persisted through April
(ONI=−0.8) and began to dissipate in May. In April 2008, the Aleutian low was less
intense and shifted northward in a mean sense (Fig. 12), likely resulting in a decrease
in transport of Asian CO to Alaska and explaining the low CO anomaly in the AIRS
data.5

The specific meteorological conditions that characterized April 2008 have important
implications for the interpretation of the ARCTAS and ARCPAC aircraft data. As dis-
cussed in Sect. 4, we find from these data that CO pollution throughout the Arctic is
dominated by the Asian anthropogenic source, despite the anomalously weak pole-
ward transport from this source in April 2008. El Niño conditions would be expected10

to lead to larger Asian influence and consequently more CO pollution in the Arctic. In-
deed, this seems to have been the case for 2003, the only El Niño year in our record,
when CO columns were anomalously high over Alaska, the Chukchi Sea, and much of
the North American Arctic (Fig. 11). Additional data during a strong El Niño year would
be needed to verify this link.15

6 Conclusions

We used CO observations from the NASA ARCTAS and NOAA ARCPAC aircraft cam-
paigns as top-down constraints in a global 3-D chemical transport model (GEOS-
Chem) to quantify the sources of pollution to the Arctic in spring 2008. Through com-
parisons with aircraft and GEOS-Chem, we demonstrated that AIRS satellite measure-20

ments of CO captured the mean spatial structure of Arctic pollution in April 2008 as well
as events in the free troposphere but did not detect all events in the boundary layer be-
cause of low sensitivity in the thermal IR. We subsequently used the 2003–2008 record
of AIRS CO observations in the Arctic in April to investigate the interannual variability
of pollution transport from northern mid-latitudes.25

Least squares regression of the GEOS-Chem CO simulation to the ARCTAS and
ARCPAC aircraft observations shows that anthropogenic CO emissions in Europe are
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underestimated by 50% in the EMEP inventory and anthropogenic emissions in Asia
are underestimated by 20% in the Streets et al. (2006) inventory updated for 2008. The
discrepancy is consistent with the recent inverse analysis of Kopacz et al. (2009b) and
may reflect a winter-spring seasonal underestimate of emissions from residential fuel
use and vehicle cold starts. April 2008 saw anomalous fire activity in southern Russia5

in addition to seasonal biomass burning in Southeast Asia. We find that the FLAMBE
inventory with hourly resolution based on MODIS and GOES fire data overestimates
these emissions by a factor of two to three. Optimized April 2008 emissions obtained
by fitting GEOS-Chem to the ARCTAS aircraft data are 26 Tg month−1 for Asian anthro-
pogenic, 9.1 Tg month−1 for European anthropogenic, 4.2 Tg month−1 for North Amer-10

ican anthropogenic, 9.3 Tg month−1 for Russian biomass burning, and 21 Tg month−1

for Southeast Asian biomass burning. The resulting simulation shows no significant
bias (mean of −2%) relative to ground-based column data at Eureka (80◦ N, 86◦ W). It
also shows a 4% underestimate relative to AIRS in the Arctic, although this may reflect
in part a high bias in the AIRS data (McMillan et al., 2009b).15

We find in GEOS-Chem that CO concentrations over the Arctic in spring are domi-
nated at all altitudes by Asian anthropogenic sources. The exception is at the surface
where European anthropogenic sources are of comparable importance. This anthro-
pogenic dominance, despite the large biomass burning emissions in April 2008, reflects
the wintertime accumulation of anthropogenic CO on the scale of the northern extrat-20

ropics. European pollution influence in April extends to the free troposphere and also
across Siberia following westerly flow. This contrasts with the prevailing pattern in win-
ter when stratification confines European pollution to the surface and the Siberian high
pressure system suppresses westerly transport. Synoptic pollution influences over the
Arctic during April 2008, as measured by CO variability, show contributions of similar25

magnitude in the free troposphere from biomass burning in Russia and anthropogenic
emissions in North America, Europe, and Asia. European anthropogenic CO domi-
nates the variability at the surface, reflecting low-altitude pollution intrusions. Asian
and biomass burning synoptic transport events take place mainly in the free tropo-
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sphere through warm conveyor belts (WCBs) and are followed by slow subsidence.
We find that AIRS can readily detect these events because of their high altitude but
may not detect European pollution events in the boundary layer because of the lack of
thermal contrast with the surface.

AIRS CO observations in April, both for 2008 and for the multiyear record (2003–5

2008), show the highest levels of pollution in the European Arctic sector, followed by the
Asian sector and with the North American sector being cleanest. This is consistent with
GEOS-Chem, where synoptic lifting of European pollution contributes to the European
sector. The North American sector is relatively clean, despite WCB injections off the
east coast of North America, because CO emissions there are relatively small. Mean10

April AIRS CO columns for 2003–2008 show little interannual variability when averaged
over the Arctic polar cap. What little variability exists is most strongly correlated with
Arctic sea level pressure (r=−0.81) and can be explained by decreased pollution inflow
from mid-latitudes under high-pressure conditions. We find little correlation with the
NAO index, which could reflect the limited range of this index in spring over the 2003–15

2008 period as well as AIRS’s lack of sensitivity in the boundary layer.
AIRS CO columns over Alaska in April 2008 are anomalously low compared to other

years, despite the anomalously high Russian biomass burning influence. We find that
AIRS CO in this region is highly correlated with the Ocean Niño Index (r=0.80). The
low CO columns over Alaska in April 2008 were associated with La Niña conditions20

in fall 2007 through spring 2008 that weakened the Aleutian low pressure system.
As a result, transport of Asian emissions was likely predominantly eastward over the
Pacific without the northward deflection normally associated with the Aleutian low. This
suggests that the impact of Asian pollution in the Arctic could be very large under strong
El Niño conditions, so far missing from the AIRS record.25
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Table 1. Global CO sources for April 2008 used in GEOS-Chem simulations.

Source CO Emission (Tg month−1)

Prior Simulationa Optimized Simulationb

Anthropogenicc 51 59

North Americad (172.5–17.5◦ W, 24–88◦ N) 4.2 4.2
Europee (17.5◦ W–60◦E, 33–88◦ N) 6.2 9.1
Siberiaf (60–172.5◦E, 50–88◦ N) 0.4 0.4
Asiag (60–152.5◦E, 0–50◦ N) 22 26
Rest of the worldf 9.9 9.9
Secondary production from NMVOC oxidationh 8.1 9.4

Biomass Burningi 104 50

North America (172.5–17.5◦ W, 24–88◦ N) 0.3 0.3
Europe (17.5◦ W–60◦E, 33–88◦ N) 2.0 2.0
Russia/Kazakhstan (60–152.5◦E, 33–60◦ N) 29 9.3
Southeast Asia (60–152.5◦E, 0–33◦ N) 51 21
Rest of the world 12 12
Secondary production from NMVOC oxidationh 10 4.9

Biogenicj 29 29

Methane 71 71

TOTAL 255 209

a Monthly source totals from the original GEOS-Chem emission inventories
b Changes from the prior simulation reflect source corrections based on the ARCTAS aircraft observations (Table 2)
c Anthropogenic sources include fossil fuel and biofuel emissions
d North America includes Canada, the U.S., and Mexico. Primary emissions over the U.S. are derived by decreasing the U.S. Environmental Protection
Agency National Emission Inventory (EPA-NEI99, http://www.epa.gov/ttnchie1/net/1999inventory.html) CO emissions by 60%, following Hudman et al. (2008).
Canadian emissions are from the Criteria Air Contaminants (CAC) inventory (Environment Canada, http://www.ec.gc.ca/pdb/cac/cac home e.cfm) and Mexi-
can emissions are from the Big Bend Regional Aerosol and Visibility Observational Study Emissions Inventory (BRAVO) (Kuhns et al., 2005).
e European anthropogenic emissions are from the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in
Europe (EMEP) inventory (Vestreng and Klein, 2002).
f Siberian and “rest of the world” anthropogenic emissions are from the EDGAR 3.2 FT2000 inventory (Olivier et al., 1999; Olivier and Berdowski, 2001).
g Asian emissions are derived from the NASA INTEX-B inventory for 2006 (Zhang et al., 2009) with seasonality based on monthly activity levels of NOx
emissions (Zhang et al., 2007).
h Secondary CO sources are computed by increasing direct CO emissions by 11% for biomass burning emissions and by 19% for anthropogenic emissions
(Duncan et al., 2007). Over the U.S, anthropogenic CO is increased by 39% rather than 19% to account for the improved CO source estimate from Hudman
et al. (2008).
i Biomass burning CO emissions are from the FLAMBE inventory (Reid et al., 2009) and are computed as described in the text.
j The source from the oxidation of biogenic NMVOCs is computed following Duncan et al. (2007) and includes acetone and methanol as well as the Model of
Emissions of Gases and Aerosols from Nature (MEGAN) inventory for isoprene and monoterpenes (Guenther et al., 2006).
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Table 2. Aircraft-based corrections to CO sources in GEOS-Chema.

GEOS-Chem Source Source correction factor
ARCTAS ARCPAC

North American anthropogenic 0.99±0.11 0.74±0.27
European anthropogenic 1.46±0.11 1.55±0.32
Asian anthropogenic 1.19±0.08 1.34±0.21
Russian biomass burning 0.32±0.05 0.54±0.13
Southeast Asian biomass burning 0.42±0.07 0.41±0.21

a Source correction factors to the prior emission inventories of Table 1 were derived using
a multiple linear regression between GEOS-Chem tagged tracers and aircraft observations
from ARCTAS (1 to 19 Apr 2008) and ARCPAC (3 to 23 Apr 2008) as described in the text.
Anthropogenic sources include fossil fuel and biofuel. Errors show the 95% confidence interval
calculated by the bootstrap method. The source correction factors from ARCTAS are used for
the optimized simulation.
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Figure 1. CO combustion sources for April 2008 (excluding secondary CO from oxidation of 

biogenic NMVOCs and methane). Values are shown for the optimized simulation but patterns are 

similar for the prior simulation. 

Fig. 1. CO combustion sources for April 2008 (excluding secondary CO from oxidation of
biogenic NMVOCs and methane). Values are shown for the optimized simulation but patterns
are similar for the prior simulation.
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Figure 2. Monthly mean fire counts (cloud and overpass corrected) for southern Russia and 

Kazakhstan (33-60°N, 60-152.5°E) from the MODIS instrument aboard the Terra satellite. Fire 

counts for April of each year are in red. The red solid line shows the 2001-2008 April mean. Data 

courtesy of NASA Goddard Earth Sciences Data and Information Services Center. 

Fig. 2. Monthly mean fire counts (cloud and overpass corrected) for southern Russia and
Kazakhstan (33–60◦ N, 60–152.5◦E) from the MODIS instrument aboard the Terra satellite. Fire
counts for April of each year are in red. The red solid line shows the 2001–2008 April mean.
Data courtesy of NASA Goddard Earth Sciences Data and Information Services Center.
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Figure 3. CO concentrations during ARCTAS (1 to 19 April 2008) and ARCPAC (3 to 23 April 

2008). Aircraft observations (top) are compared to model values sampled along the flight tracks 

and using prior (middle) or optimized (bottom) emissions. The flight tracks extend from 0 to 12 

km altitude; low values correspond to the stratosphere. Observations south of 55°N taken during 

transit flights are excluded. For ARCTAS flights, observed CO concentrations range from 23 to 

296 ppbv, while modeled concentrations range from 33 to 243 ppbv with prior emissions and 34 

to 213 ppbv with optimized emissions. For ARCPAC flights, observed concentrations range from 

96 to 383 ppbv, while modeled concentrations range from 112 to 255 ppbv with prior emissions 

and 114 to 197 ppbv with optimized emissions. 

Fig. 3. CO concentrations during ARCTAS (1 to 19 April 2008) and ARCPAC (3 to 23 April 2008). Aircraft observa-
tions (top) are compared to model values sampled along the flight tracks and using prior (middle) or optimized (bottom)
emissions. The flight tracks extend from 0 to 12 km altitude; low values correspond to the stratosphere. Observations
south of 55◦ N taken during transit flights are excluded. For ARCTAS flights, observed CO concentrations range from
23 to 296 ppbv, while modeled concentrations range from 33 to 243 ppbv with prior emissions and 34 to 213 ppbv
with optimized emissions. For ARCPAC flights, observed concentrations range from 96 to 383 ppbv, while modeled
concentrations range from 112 to 255 ppbv with prior emissions and 114 to 197 ppbv with optimized emissions.
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Figure 4. Median vertical distribution of CO concentrations in ARCTAS (1 to 19 April 2008) and 

ARCPAC (3 to 23 April 2008), averaged over 1-km altitude bins. Observations are compared to 

model values with prior and optimized emissions. Black horizontal bars are the standard 

deviations of the observations. Stratospheric observations identified by [O3]/[CO] > 1.25 mol 

mol-1 have been removed. 

 

Figure 5. CO columns at Eureka, Nunavut, Canada (86.4° W, 80.0° N) for 1 to 20 April 2008. 

Measurements by a ground-based Fourier Transform Spectrometer are compared to model values 

with both prior and optimized sources. Black vertical bars show the uncertainties of the 

measurements. 

Fig. 4. Median vertical distribution of CO concentrations in ARCTAS (1 to 19 April 2008) and
ARCPAC (3 to 23 April 2008), averaged over 1-km altitude bins. Observations are compared
to model values with prior and optimized emissions. Black horizontal bars are the standard de-
viations of the observations. Stratospheric observations identified by [O3]/[CO]>1.25 mol mol−1

have been removed.
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Figure 5. CO columns at Eureka, Nunavut, Canada (86.4° W, 80.0° N) for 1 to 20 April 2008. 

Measurements by a ground-based Fourier Transform Spectrometer are compared to model values 

with both prior and optimized sources. Black vertical bars show the uncertainties of the 

measurements. 

Fig. 5. CO columns at Eureka, Nunavut, Canada (86.4◦ W, 80.0◦ N) for 1 to 20 April 2008.
Measurements by a ground-based Fourier Transform Spectrometer are compared to model
values with both prior and optimized sources. Black vertical bars show the uncertainties of the
measurements.
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Figure 6. Mean CO columns during April 2008 observed by the AIRS satellite instrument and 

simulated by GEOS-Chem with optimized sources (and AIRS averaging kernels applied). The 

right panel shows the percent difference between the two. GEOS-Chem was sampled along the 

AIRS orbit tracks at the time of successful retrievals (see text). 

 

Figure 7. Median vertical distribution along the ARCTAS and ARCPAC flight tracks of GEOS-

Chem CO concentrations tagged by source region and type: Asian anthropogenic (As. Anth., 

blue), European anthropogenic (Eur. Anth., green), North American anthropogenic (N.A. Anth., 

red), Russian biomass burning (Rus. BB, orange) and Southeast Asian biomass burning (As. BB, 

purple). Horizontal bars are standard deviations. 

Fig. 6. Mean CO columns during April 2008 observed by the AIRS satellite instrument and
simulated by GEOS-Chem with optimized sources (and AIRS averaging kernels applied). The
right panel shows the percent difference between the two. GEOS-Chem was sampled along
the AIRS orbit tracks at the time of successful retrievals (see text).
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Figure 7. Median vertical distribution along the ARCTAS and ARCPAC flight tracks of GEOS-

Chem CO concentrations tagged by source region and type: Asian anthropogenic (As. Anth., 

blue), European anthropogenic (Eur. Anth., green), North American anthropogenic (N.A. Anth., 
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Fig. 7. Median vertical distribution along the ARCTAS and ARCPAC flight tracks of GEOS-
Chem CO concentrations tagged by source region and type: Asian anthropogenic (As. Anth.,
blue), European anthropogenic (Eur. Anth., green), North American anthropogenic (N.A. Anth.,
red), Russian biomass burning (Rus. BB, orange) and Southeast Asian biomass burning (As.
BB, purple). Horizontal bars are standard deviations.

19074

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/19035/2009/acpd-9-19035-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/19035/2009/acpd-9-19035-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 19035–19080, 2009

Source attribution
and interannual

variability of Arctic
pollution

J. A. Fisher et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion
38 

 

Fig. 8. Contributions of different mid-latitude source regions to CO pollution in the Arctic in April 2008, as indicated by
the GEOS-Chem simulation. Results are shown as mean CO mixing ratios in altitude bands of 0–2, 2–5, and 5–10 km.
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Figure 8. Contributions of different mid-latitude source regions to CO pollution in the Arctic in 

April 2008, as indicated by the GEOS-Chem simulation. Results are shown as mean CO mixing 

ratios in altitude bands of 0-2, 2-5, and 5-10 km. 

 

Figure 9. Russian biomass burning event over Alaska sampled by the DC-8 aircraft on 16 April 

2008. The top left panels show aircraft observations of CO concentrations compared to the 

GEOS-Chem model. The bottom left panels show the AIRS CO column concentrations observed 

on that day compared to the GEOS-Chem model. The right panels show 10-day backward and 

forward trajectories from the plume location taken from the FLEXPART model run with WRF 

meteorological fields. 

Fig. 9. Russian biomass burning event over Alaska sampled by the DC-8 aircraft on 16 April
2008. The top left panels show aircraft observations of CO concentrations compared to the
GEOS-Chem model. The bottom left panels show the AIRS CO column concentrations ob-
served on that day compared to the GEOS-Chem model. The right panels show 10-day back-
ward and forward trajectories from the plume location taken from the FLEXPART model run
with WRF meteorological fields.
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Figure 10. Same as Fig. 9, but for a European pollution event at the pole on 9 April 2008. Fig. 10. Same as Fig. 9, but for a European pollution event at the pole on 9 April 2008.
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Figure 11. 2003-2008 mean April CO columns from AIRS (top) along with anomalies in CO 

column for each April in the AIRS record. 
Fig. 11. 2003–2008 mean April CO columns from AIRS (top) along with anomalies in CO
column for each April in the AIRS record.
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Figure 12. Mean sea level pressures for April 2003-2008 (left) and 2008 only (middle). The 2008 

anomaly is shown at right. 

 

Figure 13. Year-to-year variability of mean April AIRS-observed CO column over Alaska (168-

140°W, 54-72°N) and mean Ocean Niño Index (ONI) averaged over February-April for each 

year. Positive values of the ONI (red) indicate El Niño conditions while negative values (blue) 

Fig. 12. Mean sea level pressures for April 2003–2008 (left) and 2008 only (middle). The 2008
anomaly is shown at right.
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Fig. 13. Year-to-year variability of mean April AIRS-observed CO column over Alaska (168–
140◦ W, 54–72◦ N) and mean Ocean Niño Index (ONI) averaged over February-April for each
year. Positive values of the ONI (red) indicate El Niño conditions while negative values (blue)
indicate La Niña conditions. The Pearson correlation coefficient of r=0.80 is significant at the
p=0.10 level. The ONI data were obtained from the NOAA Climate Prediction Center, available
at http://www.cpc.noaa.gov.
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