

Flight Testing ACAT/FRRP

AutomaticCollisionAvoidanceTechnology/FighterRiskReductionProject

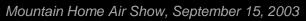
Mark Skoog ACAT Project Manager NASA/Dryden Flight Research Center

BACKGROUND

//

12

88ABW-2009-1524


Fighter Risk Reduction Project

- FRRP Goal
 - Common Modular Architecture for All Aircraft
 - Transition Technology from Research to Production ASAP to begin Mishap Rate Reduction
 - 5 Fatalities and 7 Mishaps Due to CFIT that were Preventable Since Project Start

-	23:1 ROI	Lives	A/C	\$B	Туре
	USAF GCAS	62	<mark>81</mark>	3.7	F-16, F-22, F-35
	USAF+USN	247	283	12.7	F-16, F-22, F-35, F-18

Approach

- Utilize the Small Team of Experts
- Primary Products
 - Technology Guides
 - Modular Software Architecture
- Milestones
 - Flying May 2009 through Mar 2010

Auto-Collision Avoidance Development

- 22 Years of Development on the AFTI/F-16
- Ground & Air Collision Avoidance
- AFRL Managed
- Over 2500 Auto-Recoveries in Flight
- Over 40 Evaluation Pilots
- Prevented the Loss of the AFTI/F-16 in 1995
- Findings
 - 1. Do No Harm
 - 2. Do Not Interfere
 - 3. Prevent Collisions
 - Collision Avoidance is a Crosscutting Technology

Background

Design Criteria In Order of Priority

1. Do No Harm

- Only maneuver the aircraft if there is reasonable certainty that it will **not** make the situation worse
- Integrity Management

2. Do Not Impede the Pilot from Performing Mission Operations

- Nuisance free flight
- Algorithm & Flight Controls

3. Prevent Collisions

- Save lives
- Algorithm & Flight Controls

Auto GCAS Common Architecture

Integrity Management

Sense Own-State

 Sufficient to support trajectory estimation

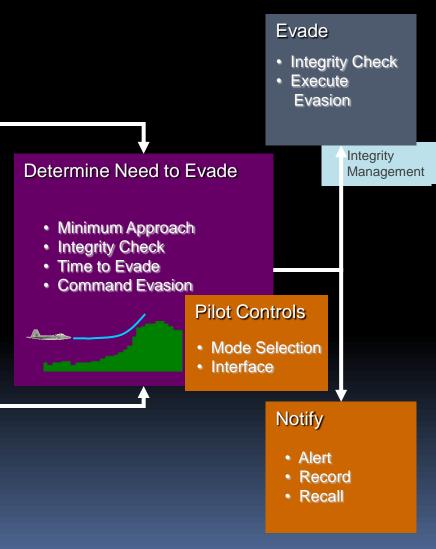
Sense Terrain

• DTED

Map Handler

Predict Evasion Trajectories

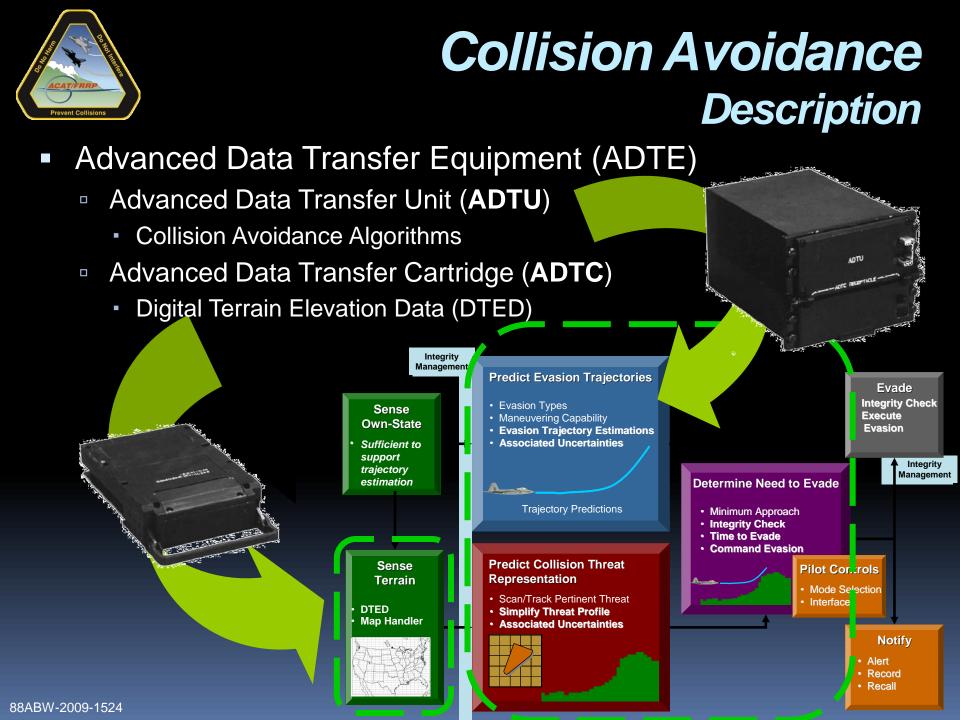
• Evasion Types


- Maneuvering Capability
- Evasion Trajectory Estimations
- Associated Uncertainties

Trajectory Predictions

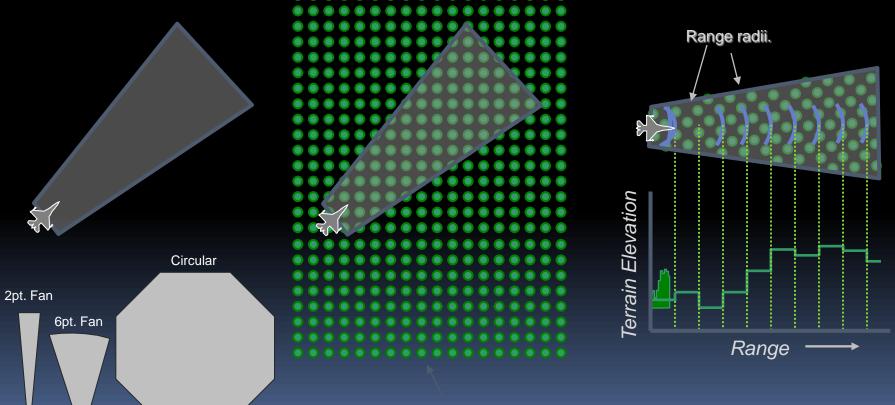
Predict Collision Threat Representation

- Scan/Track Pertinent Threat
- Simplify Threat Profile
- Associated Uncertainties



Auto GCAS Description

- Automatically Prevents Collision with the Ground
 - Avionics Project Future Aircraft Trajectory Over Digital Terrain
 - Avionics Request an Evasion Maneuver at Last Instance
 - Flight Controls Automatically Perform Recovery
 Recovery model easily tailored to different aircraft
 No additional sensors required
 High authority <u>autopilot momentarily takes control from pilot</u>
 Embedded integrity monitoring prevents erroneous system behavior
 Pilot selectable recovery (PARS) for disorientation cases

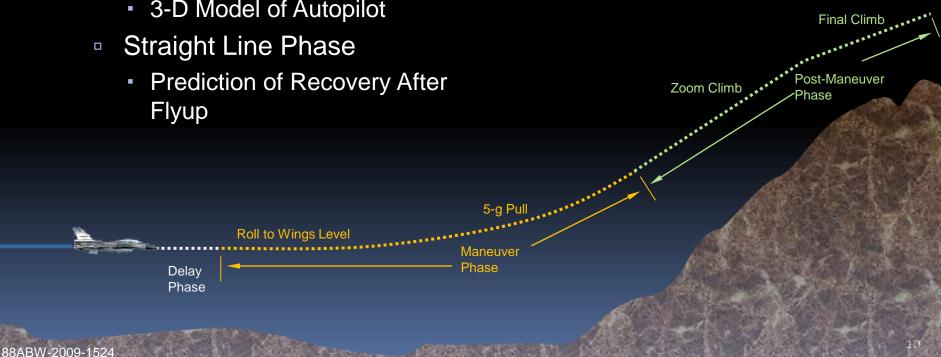


Scanning Process Overview

- 1. Generate Scan Shape
- 2. Collect Terrain Points

3. Generate 2-D Profile (max height in each range bin)

Digital Terrain Elevation Posts



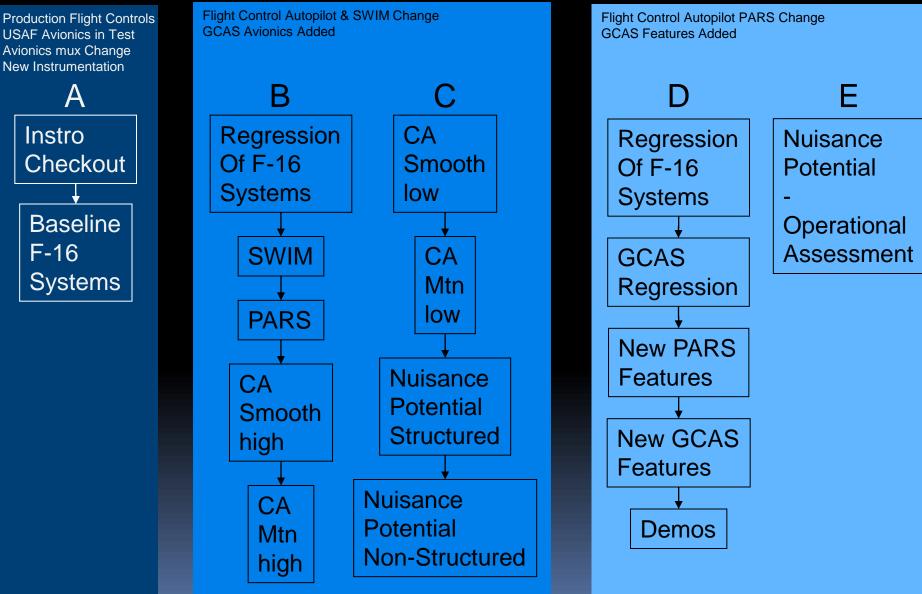
Trajectory Prediction

- **Model Recovery**
 - **Delay Phase**
 - 3-D Integration of A/C States
 - Maneuver Phase
 - 3-D Model of Autopilot

Model Aircraft ullet

- Mass Properties
- Configuration
- Available Thrust

FLIGHT TEST


88ABW-2009-1524

Auto GCAS Test Objectives

- 1. Collect data on individual subsystem contributions to overall Auto GCAS error budget
 - Navigation Solution
 - Digital Terrain Elevation Data
 - Autopilot Precision
- 2. Evaluate the ability of Auto GCAS to stay within pilot physiological limits during a recovery
- 3. Evaluate Auto GCAS in an operationally representative envelope
 - Collision Prevention Across Flight Envelope
 - Evaluation of Mission Impact

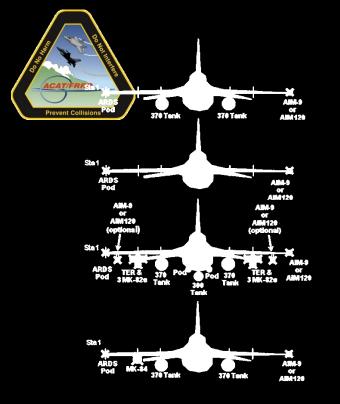
Block Test Flow

Test Resources Flight / Real-Time

Test Aircraft

- F-16D Block 50
- M5.1 Baseline
 - In Flight Test
 - Auto-GCAS Modifications
- Instrumentation
 - On-Board Recording
 - Hardwired
 - PLA
 - Speed Brake
 - Total Mux
 - Ethernet
 - HUD Video
 - Voice
 - Real-Time
 - Hardwired PLA & Speed Brake
 - Select Mux
 - Select Ethernet
 - HUD Video
 - Hot Mike

Mobile Mission Control Room (MMCR)


- Front End
 - Mobile
 - Antenna
 - Chapter 10
 - Decryption
- Control Room
 - Modified Trailer
 - 8 Workstations
 - IADS
 - Dual UHF Radios
 - Multi-RV A-Cs
 - Indep. Generator

15

Flight Test Scope

- Envelope
 - 200 knots to Vmax
 - To 90° Dives
 - Upright to Inverted
 - Stores Variations
 - Terrain Variations

Test Safety Philosophy

Time is a Better Metric than Distance

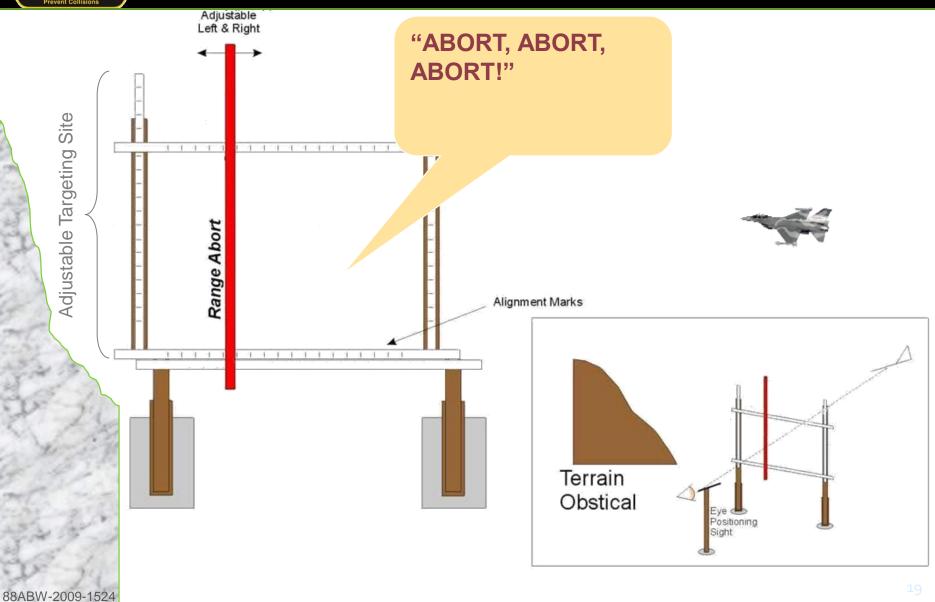
- Measure of Performance
 - Available Reaction Time
 - Normalizes Dependencies on Dive & Speed
 - Accounts for A/C Performance
 - Uses High-Fidelity Simulation for Predictions

Recovery Initiation

Available

Reaction

Time


Recovery Profile If Delayed

Too Late

Test Example

The Contraption Concept

Smooth Terrain Test Approach

Runs Conducted at

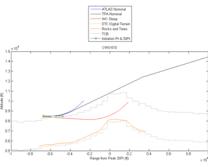
Lower Available

Reaction Time

- Technical
 - Validate Simulation & PARS
 - Collect Data where Sim is Poor
 - Verify PARS Nuisance Potential Evaluation
 - Demonstrate Mishap Prevention
- Safety
 - Simulate all Runs First
 - Execute initial Runs with ≥ 4 Seconds of Available Reaction Time prior to Build Down
 - Build Down Specific "Mishap" Runs to No Lower than 1.5 sec. of Available Reaction Time
 - 3, 2, 1.5 sec. Progression/Sequence
 - Sequence Stopped as Crew Reaches Comfort Threshold
 - Crew will Monitor Ground Proximity
 - Control Room will Monitor Abort Parameters
 - Altitude, Dive, Bank, Airspeed (KCAS/KTAS), System Status

Typical Collision Avoidance Run

Example of Current Version of Run Card


Warlock Peak Procedures

- a. Confirm TCB, PRTA, and Setup **Conditions** with Control
- Turn Base to IP, Call "Overflying IP, Mark" b.
- "Control Ready Cleared to Maneuver" C.
- Establish Setup Conditions Aiming at Warlock Peak
- Confirm AGCAS ACTV & Call "On e. Conditions"
- **Control Calls Count Down**
- If Control Calls ABORT Before Recovery a. Initiation:
 - Engage PARS with Gun Trigger & Manually Recover
- h. After Flyup, Allow A/C to Clear Peak **Before Maneuvering**
- **Rate Recovery** i.

Pre-requisite Test PAU-024	rity 1
· · · · · · · · · · · · · · · · · · ·	
Abort Conditions Run-Quality	
Dive 2° Dive -2 to 2°	
Bank 15° Bank -15 to 15°	
Airspeed 490 T Airspeed 460 to 490 T	
Altitude 8390 MSL Nz 0.8 to 1.2 g	
Range N/A Throttle Speedbrake MIL CLOSED	

Predicted Altitude Loss 0 ft (364 ft AGL) Worst Case ABORT Alt. Loss (Including 4 sec AR1 245 ft

Simulated Mountainous	
Sequence of Events	Results
Level Approach to Mountain Aimed 1000' Below Peak	0° Dive Wings Level 299 KCAS
	2222 g = 222

ak	Wings Level 299 KCAS					
	101' Floor Set 470' Min. Alt.					

Mountain

Simulated Mishap Mountainous Recovery uence of Event

Abort

88ABW-2009-1524

Smooth

Low Alt Eval

QUESTIONS

88/

2009