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Abstract

The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and
physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO)
erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss
measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure
may have been compromised because samples were often not in consistent states of dehydration during
the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission
exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and
Contamination Experiment (PEACE) flown as part of the Materials International Space Station
Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately
measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to
July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery’s
STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness
samples) were selected specifically to represent a variety of polymers used in space as well as a wide
variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully
dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield
data for high-fluence (8.43× 10 21 atoms/cm2). The resulting data was used to develop an erosion yield
predictive tool with a correlation coefficient of 0.895 and uncertainty of ±6.3 × 10 –25 cm3/atom. The
predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space
atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which
represents an improvement over an earlier (December 2008) version.
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1.0 Introduction

Early Space Shuttle flight experiments found that hydrocarbon polymers exposed to the LEO
environment would gradually erode as a result of atomic oxygen exposure. The atomic oxygen interacts
with the polymers causing the surface to convert to volatile oxidation products. The atomic oxygen
erosion rates differed from one type of polymer to another (Refs. 1 to 6). This erosion susceptibility is
measured as the atomic oxygen erosion yield, which is the volume lost per incident atomic oxygen atom,
given in cm3/atom (Ref. 7). Numerous LEO flight experiments have been performed that have
contributed to the available data on atomic oxygen erosion yields for a variety of materials.
Many of the experiments were conducted on various short duration shuttle missions including
STS-5 (Ref. 1), STS-8 (Ref. 8), and the Evaluation of Oxygen Interactions with Materials-3
(EOIM-3) experiment on STS-46 (Ref. 9). In addition, many materials were evaluated after
lengthy LEO exposure (5.8 yr) on the Long Duration Exposure Facility (LDEF) (Ref. 10).
Unfortunately, many of these early experiments did not utilize dehydrated mass loss
measurements, and the resulting mass loss due to atomic oxygen exposure may have been
obscured because samples were often not in consistent states of dehydration during the pre-flight
and post-flight mass measurements. This is a particular problem for short duration mission
exposures or low erosion yield materials. Inconsistent states of dehydration can cause erroneous
erosion yields because polymer mass loss due to oxidation can be indistinguishable from changes
in the amount of absorbed water in the polymer.

Forty different material samples, collectively called the Polymer Erosion and Contamination Experiment
(PEACE) Polymers, have been exposed to the LEO space environment on the exterior of the ISS for nearly
4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The purpose of the MISSE
2 PEACE Polymers experiment was to accurately determine the AO erosion yield of a wide variety of
polymeric materials exposed for an extended period of time to the LEO space environment. The majority of
samples were thin film polymers, flown with numerous layers stacked together (Refs. 11 and 12). Carefully
obtained dehydrated pre-flight and post-flight mass measurements, as well as accurate density measurements,
were used to determine accurate high-fluence (8.43× 1021 atoms/cm2) erosion yield data for the MISSE 2
PEACE Polymers samples (Refs. 11 and 12). For many samples, multiple layers of the polymers were used
to insure that the materials would not be oxidized all the way through.

The materials chosen for the MISSE 2 PEACE experiment were selected specifically to represent
many polymers typically used in space as well as a wide variety of polymer chemical structures. The
intent of choosing a variety of polymer structures was that the diversified data could assist with the
development of an atomic oxygen erosion yield predictive tool. This tool could then be used to predict
LEO erosion yields of new polymers based on chemical structure and simple low-cost ground laboratory
test data, thus bypassing the need for actual in-space LEO testing for new polymers that are developed.

As LEO erosion yield data gradually became available, it was noticed that some polymers, such as the
fluoropolymers, had low erosion yields compared to polyimide Kapton H. On the other hand, those
containing significant amounts of single bonded oxygen, such as polyoxymethylene, had higher erosion
yields than Kapton H. The dependence of atomic oxygen erosion yield on chemical structure has been
explored based on early available LEO data (Refs. 13 to 15). A variety of approaches were considered in
this paper to develop an erosion yield predictive formula based on best fit criteria to the MISSE 2 PEACE
spaceflight data (Ref. 12).

2.0 Erosion Yield Modeling Concepts

The modeling information used to develop an atomic oxygen predictive tool consisted of the MISSE
2 PEACE Polymers LEO atomic oxygen erosion yield data (from Refs. 11 and 12), polymer chemical
structure information concerning the number and types of chemical bonds, polymer density information
(from Refs. 11 and 12), and fractional ash content data (from Ref. 16). The atomic oxygen predictive tool
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was developed using these properties and assuming an unknown degree of dependence, which was tuned
to the highest correlation between actual LEO results and the predictive tool. Thus, for every physical
property or chemical bond type, a degree of dependence was assumed that was optimized to provide the
closest match between predicted and actual erosion yields. Sequential and multiple iterations were used to
gradually maximize the correlation coefficient between the predicted atomic oxygen erosion yield and the
measured atomic oxygen erosion yield.

2.1 LEO Atomic Oxygen Erosion Yield Data From MISSE 2

Atomic oxygen erosion yield data was obtained from the MISSE 2 PEACE Polymers experiment,
which exposed 41 one-inch diameter samples, including two Kapton H polyimide atomic oxygen fluence
witness samples, to the LEO space environment. This experiment was flown in MISSE Passive
Experiment Container 2 (PEC 2) Tray 1, sample tray E5, which was attached to the exterior of the
International Space Station Quest Airlock, and placed in a ram facing orientation. This experiment was
subjected to directed ram atomic oxygen along with solar and charged particle radiation and was exposed
to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005. It was retrieved during a
space walk on July 30, 2005 during Discovery’s STS-114 Return to Flight mission. Figure 1 shows
MISSE 2 on the International Space Station. Figures 2 and 3 show pre-flight and post-flight photos of the
MISSE 2 PEACE Polymers experiment tray containing the 40 polymers and pyrolytic graphite.

Details of the specific polymers flown, flight sample fabrication, solar and ionizing radiation
environmental exposure, pre-flight and post-flight characterization techniques, and atomic oxygen
fluence calculations are presented in References 11 and 12. The atomic oxygen fluence was found to be
8.43× 1021 atoms/cm2. Results of x-ray photoelectron spectroscopy (XPS) contamination analysis of two
MISSE 2 sapphire witness samples in tray E6 (located on the same MISSE surface and next to tray E5)
indicated the space experiment had received very little contamination. An extremely thin silica
contaminant layer of 1.3 and 1.4 nm was on each slide, respectively (Ref. 16).

Figure 1.—MISSE 2 Passive Experiment Container Tray 1 holding the PEACE Polymers
experiment attached to the International Space Station from August 16, 2001 to July 30, 2005.
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Figure 2.—Photograph of the MISSE 2 PEACE Polymers experiment prior to flight. The labels shown indicate the
materials defined in Table I.

Figure 3.—Photograph of the MISSE 2 PEACE Polymers experiment post-flight.

The MISSE 2 PEACE Polymers experiment LEO atomic oxygen erosion yield data, which was used
to develop the predictive tool, is given in Table I (Refs. 11 and 12). In six cases, the actual erosion yield is
probably greater than the value listed because a portion or all of the exposed area of the flight sample was
completely eroded away. In these cases, the measured erosion yields were also included in the data set to
develop a predictive erosion yield equation because, in general, the samples appeared that they were
completely eroded at a fluence level very close to the full mission fluence.

TABLE I.—MISSE 2 PEACE POLYMERS EROSION YIELD DATA
Material Polymer

abbreviation
LEO MISSE 2
Erosion Yield

(cm3/atom)
Acrylonitrile butadiene styrene ABS 1.09×10–24

Cellulose acetate CA 5.05×10–24

Poly-(p-phenylene terephthalamide) PPDT (Kevlar) 6.28×10–25

Polyethylene PE > 3.74× 10–24

Polyvinyl fluoride PVF (clear Tedlar) 3.19×10–24

Crystalline polyvinylfluoride with white pigment PVF (white Tedlar) 1.01 × 10–25

Polyoxymethylene; acetal; polyformaldehyde POM (Delrin) 9.14×10–24

Polyacrylonitrile PAN 1.41 × 10–24

Allyl diglycol carbonate ADC (CR-39) > 6.80× 10–24
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Material Polymer
abbreviation

LEO MISSE 2
Erosion Yield

(cm3/atom)
Polystyrene PS 3.74× 1 0–24

Polymethyl methacrylate PMMA > 5.60×10–24

Polyethylene oxide PEO 1.93 × 10–24

Poly(p-phenylene-2 6-benzobisoxazole) PBO (Zylon) 1.36×10–24

Epoxide or epoxy EP 4.21× 10–24

Polypropylene PP 2.68× 10–24

Polybutylene terephthalate PBT 9.11 ×1 0–25

Polysulphone PSU 2.94×10–24

Polyurethane PU 1.56×10–24

Polyphenylene isophthalate PPPA (Nomex) 1.41 × 10–24

Pyrolytic graphite PG 4.15 ×1 0–25

Polyetherimide PEI > 3.31 × 10–24

Polyamide 6 or nylon 6 PA 6 3.51 × 10–24

Polyamide 66 or nylon 66 PA 66 1.80×10–24

Polyimide PI (CP1) 1.91×10–24

Polyimide (PMDA) PI (Kapton H) 3.00×10–24

Polyimide (PMDA) PI (Kapton HN) 2.81 × 10–24

Polyimide (BPDA) PI (Upilex-S or US) 9.22× 10–24

High temperature polyimide resin PI (PMR-15) > 3.02×10–24

Polybenzimidazole PBI > 2.21 × 10–24

Polycarbonate PC 4.29×10–24

Polyetheretherketone PEEK 2.99×10–24

Polyethylene terephthalate PET (Mylar) 3.01 × 10–24

Chlorotrifluoroethylene CTFE (Kel-f) 8.31 × 10–25

Ethylene-chlorotrifluoroethylene ECTFE (Halar) 1.79×10–24

Tetrafluorethylene-ethylene copolymer ETFE (Tefzel) 9.61 × 10–25

Fluorinated ethylene propylene FEP 2.00×10–25

Polytetrafluoroethylene PTFE 1.42×10–25

Perfluoroalkoxy copolymer resin PFA 1.73 × 10–25

Amorphous Fluoropolymer AF 1.98×10–25

Polyvinylidene fluoride PVDF (Kynar) 1.29×10–24

2.2 Modeling Variable Considerations

Upon a cursory inspection of the atomic oxygen erosion yields from the MISSE 2 PEACE Polymers
data, as well as previous LEO flight experiments, it was clear that polymers with a significant
abundance of pendent fluorine and/or chlorine atoms (such as fluorinated ethylene propylene and
chlorotrifluoroethylene) have low atomic oxygen erosion yields relative to Kapton H polyimide in LEO.
Conversely, polymers with significant oxygen in their backbone (such as polyoxymethylene) had much
higher atomic oxygen erosion yields. It is far less clear as to what degree the erosion yield depends upon
mixes of in-the-chain or pendent oxygen, nitrogen, and benzyl rings and/or whether the bonding is single,
double or triple. Thus, many approaches were explored to correlate chemical structure, the number atoms
of each type in a polymer repeat unit, and number of bonds of each type (single, double, or triple as well
as carbon bonding to what atoms) in the polymer repeat unit.

Polymer density was also considered as a potential erosion yield dependent variable because densely
packed atoms should have lower erosion yields than loosely packed atoms because it would take more
atoms to remove the same amount of volume. Data on polymer density was either obtained from supplier
information or density gradient column testing.

Most polymers contain some fraction of inorganic material that does not become volatile upon
reaction with atomic oxygen. The post-atomic oxygen exposure nonoxidizable residue is called ash. The
presence of resulting fragile remaining ash may be a portion of the debris shown on or above some of the
samples in the MISSE 2 PEACE Polymers experiment postflight photo shown in Figure 3. As atomic
oxygen erodes a polymer that contains inorganic material in LEO, the resulting nonvolatile ash begins to
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accumulate on the eroded surface of the polymer, tending to shield the underlying polymer from
oxidation. As a result, the ash content of polymers reduces the polymer’s erosion yield by shielding the
polymer from atomic oxygen. If one compares the erosion yield of clear polyvinyl fluoride (clear Tedlar)
with that of white Tedlar, it becomes evident that the titanium dioxide pigment particles in white Tedlar
shield its surface, resulting in a very low erosion yield of 0.101 × 1 0 –24cm3/atom compared to a much
higher erosion yield, 3.19× 10–24cm3/atom, for clear Tedlar. Although the ash content expressed as a
fractional volume of ash would be more correct when considering erosion yield effects, it is much easier
to use the mass fraction of ash because the densities of the ash are difficult to measure.

Ash content used to develop the predictive tool described in this paper was determined
experimentally for each of the 39 PEACE polymers (including Kapton H) and pyrolytic graphite. It was
determined as the fraction of the initial dehydrated polymer mass that is nonvolatile and remains after the
polymer has been completely oxidized in an RF plasma asher. This was accomplished by placing pieces
of each polymer in thin aluminum foil cups that were previously exposed to atomic oxygen to remove
organic coatings that typically reside on aluminum foil as a result of foil processing. The samples in the
aluminum cups were then ashed for several hundred hours in a RF plasma asher operated on air (Ref. 16)
until only ash remained. Figure 4 shows scanning electron microscope (SEM) images of the ash
remaining from white Tedlar and polyethylene oxide. Using energy dispersive spectroscopy the white
Tedlar ash indicated the presence of titanium as expected for the titanium dioxide pigment particles and
the ash from polyethylene oxide indicated a mix of metal elements.

Unfortunately, a gradual buildup of inorganic contamination from the asher itself complicates the
process of determining ash content because the added mass from contaminants is observed as additional
ash. This buildup is especially prevalent if the ashing is continued long after the organic portion of the
polymer is completely oxidized. Additionally, materials with low erosion yields in the asher environment
tend to accumulate more contamination than those with high erosion yields. The contamination is also
difficult to correct for because it depends on the surface area of the ash which is difficult to measure.

The effect of ash content on erosion yield in an end Hall hyperthermal atomic oxygen facility was
determined by measuring the erosion yield of five epoxy resin samples which were purposely filled with
various amounts of fumed silica. Epoxy resin with no-added fumed silica was found to also contain some
ash as indicated in Table II as a result of ashing samples of the cured epoxy. An additional amount of ash,
in the form of fumed silica, was weighed and mixed with both parts of the uncured epoxy to achieve a
total mass fraction ash indicated in Table II which was used to plot Figure 5.

(a)
	

(b)

Figure 4.—Scanning electron microscope images of the ash remaining after several hundred hours of RF
plasma asher air plasma exposure. (a) White Tedlar titanium dioxide ash particles. (b) Ash remaining from
polyethylene oxide.
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TABLE II.—ASH CONTENT OF THE FIVE SAMPLES USED TO MEASURE
EROSION YIELD DEPENDENCE ON MASS FRACTION ASH

Mass fraction of ash
in as-received epoxy

Mass fraction of
fumed silica added
(as ash) to epoxy

Total mass fraction
ash of sample

Ratio of atomic oxygen
erosion yield relative to
neat (no ash) polymer

0.0453 0.0000 0.0453 0.912
0.0453 0.0837 0.1252 0.758
0.0453 0.1662 0.2039 0.758
0.0453 0.3336 0.3638 0.330
0.0453 0.4167 0.4431 0.214
0.0453 0.4998 0.5225 0.120
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R o 0.6
W W
V .+d	 0.4
Zc 0

°-0 0 0.2
0
W

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2

Mass Fraction Ash, A

Figure 5.—Erosion yield dependence on mass fraction ash in epoxy for a Kapton H effective
fluence of 1.24x1020 atoms/cm2.

The effect of the total mass fraction ash on the erosion yield was measured using an end Hall
hyperthermal atomic oxygen source operated on pure oxygen at ~70 eV. It was necessary to use
hyperthermal rather than thermal energy atomic oxygen attack because thermal energy atomic oxygen is
not greatly attenuated (compared to LEO hyperthermal atomic oxygen) in reaction probability as a result
of impingement upon ash surfaces. Because particle-filled epoxy resins tend to have a resin rich surface
all the samples were abraded prior to atomic oxygen exposure to ensure that the surfaces exposed to
atomic oxygen were representative of the bulk material.

The results of the erosion yield dependence upon mass fraction ash for a Kapton H effective fluence
of 1.24× 1020 atoms/cm2 is shown in Figure 5. The erosion yield of the neat epoxy resin (if there was no
ash at all in the resin) was estimated based on the slope of the curve shown in Figure 5 and the intercept at
zero mass fraction ash.

The solid line in Figure 5 is an equation which models the observed dependence given by

Ey = Eoe− KA/t1–Al	 (1)

where
Eo Erosion yield of epoxy without any ash content in end Hall test
Ey Erosion yield of epoxy with ash content
K Erosion yield attenuation constant = 1.94 for a Kapton H effective fluence of 1.24× 10 20 atoms/cm2

A Mass fraction ash
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The erosion yield dependence function in Equation (1) was designed to produce an erosion yield of
zero if the ash mass fractional content is one and an erosion yield of Eo if the ash content is zero (neat
polymer). This observed erosion yield dependence on ash content was also quantifiably consistent with
end Hall atomic oxygen exposure of clear and white Tedlar, thus suggesting that the equation is probably
reasonably accurate for all ash containing polymers.

The solid line in Figure 6 represents the same Equation (1) erosion yield dependency constant K,
1.94, as in the Figure 5 plot.

Table III lists the density, ρ, and mass fraction of the polymer that is ash, A, measured for each of the
MIS SE 2 PEACE polymers.
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Figure 6.—Erosion yield of Tedlar relative to neat Tedlar as a function of ash.

TABLE III.—MISSE 2 PEACE POLYMERS DENSITY AND FRACTIONAL ASH CONTENT
Material Polymer

abbreviation
Density

( Ref. 12)
ρ

(g/cm3)

Mass fraction of
polymer that is ash

( Ref. 16), A

Acrylonitrile butadiene styrene ABS 1.05 0.0458

Cellulose acetate CA 1.2911 0.00283

Poly-(p-phenylene terephthalamide) PPDT (Kevlar) 1.4422 0.00372

Polyethylene PE 0.918 0.0203

Polyvinyl fluoride PVF (Clear Tedlar) 1.3792 0.00285

Crystalline polyvinylfluoride with
white pigment

PVF (White Tedlar) 1.6241 0.295

Polyoxymethylene; acetal;
polyformaldehyde

POM (Delrin) 1.3984 0.00902

Polyacrylonitrile PAN 1.1435 0.00184

Allyl diglycol carbonate ADC (CR-39) 1.3173 0.00265

Polystyrene PS 1.0503 0.00042

Polymethyl methacrylate PMMA 1.1628 0.00028

Polyethylene oxide PEO 1.1470 0.00112
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Material Polymer
abbreviation

Density
( Ref. 12)

P
(g/cm3)

Mass fraction of
polymer that is ash

( Ref. 16), A

Poly(p-phenylene-2 6-benzobisoxazole) PBO (Zylon) 1.3976 0.0109

Epoxide or epoxy EP 1.1150 0.0304

Polypropylene PP 0.9065 0.00184

Polybutylene terephthalate PBT 1.3318 0.0629

Polysulphone PSU 1.2199 0.00348

Polyurethane PU 1.2345 0.00664

Polyphenylene isophthalate PPPA (Nomex) 0.72 0.0476

Pyrolytic graphite PG 2.22 0.00154

Polyetherimide PEI 1.2873 0.00105

Polyamide 6 or nylon 6 PA 6 1.1233 0.00388

Polyamide 66 or nylon 66 PA 66 1.2252 0.00459

Polyimide PI (CP1) 1.4193 0.00171

Polyimide (PMDA) PI (Kapton H) 1.4273 0.00284

Polyimide (PMDA) PI (Kapton HN) 1.4345 0.00441

Polyimide (BPDA) PI (Upilex-S or US) 1.3866 0.00164

High temperature polyimide resin PI (PMR-15) 1.3232 0.000531

Polybenzimidazole PBI 1.2758 0.000927

Polycarbonate PC 1.1231 0.000992

Polyetheretherketone PEEK 1.2259 0.00177

Polyethylene terephthalate PET (Mylar) 1.3925 0.00826

Chlorotrifluoroethylene CTFE (Kel-f) 2.1327 0.00204

Ethylene-chlorotrifluoroethylene ECTFE (Halar) 1.6761 0.000655

Tetrafluorethylene-ethylene copolymer ETFE (Tefzel) 1.7397 0.00123

Fluorinated ethylene propylene FEP 2.1443 0.00534

Polytetrafluoroethylene PTFE 2.1503 0.0427

Perfluoroalkoxy copolymer resin PFA 2.1383 0.000298

Amorphous fluoropolymer AF 2.1463 0.0362

Polyvinylidene fluoride PVDF (Kynar) 1.7623 0.0358

It is expected that the erosion yield attenuation constant, K, increases with fluence for ash-containing
polymers as the surface of the ash containing polymers becomes more covered with remaining ash with
increasing atomic oxygen fluence. An approximation to this ash shielding dependence on fluence was
made by modeling the erosion yield of white Tedlar in hyperthermal atomic oxygen environments for the
low fluence end Hall test and the high fluence MISSE 2 LEO exposure as shown in Figure 7. In this
figure the erosion yield for the end Hall test was corrected to account for the differences between the
Kapton H effective fluence of the end Hall exposure and in-space exposure using the ratio between
Kapton H and white Tedlar erosion yields for both environments.
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Figure 7.—Erosion yield ash attenuation constant, K, as a function of fluence, F.

A best fit curve drawn through the data is given by

	

K = (1.80x10–16 )F0.76	 (2)

Additional erosion yield dependencies were considered for the predictive model including the
physical density (in grams/cm 3). For example, a foam polymer would have a high erosion yield compared
to a fully dense polymer.

Also considered was the packing density of atoms, which relates to how densely the atoms
theoretically could be packed in comparison to the actual volume of the repeat unit where larger spaces
would occur between atoms due to van der Waals bonding or void spaces. Loosely packed atoms should
result in a high erosion yield compared to densely packed atoms. The minimum volume of the atoms that
make up a polymer repeat unit, VΣ, was based on the sum of the atoms making up the polymer repeat unit
assuming each atom’s volume is determined by its covalent radii.

The actual volume, Vr, of each repeat unit was determined based on the chemical structure of the
repeat unit as well as the molecular weight and density of the material. Thus, if the ratio of VΣ/Vr was
much less than one, the polymer’s erosion yield would be higher than that of a similarly structured
polymer with tightly packed atoms. Values of VΣ/Vr are given in Reference 16.

3.0 Results and Discussion

Over 100 different types of equations were tested using the information in the previous section to
determine a formula with a high correlation coefficient, R2, with the actual LEO erosion yield data. An
initial erosion yield model (December 2009 version) which produced a correlation coefficient of 0.914
was modeled using a linear assumption of dependency relations and made extensive use of bonding
information of the atoms in a repeat unit (Ref. 16). However, this equation was found to produce negative
erosion yields in some cases for polymers that were not flown as part of the MISSE 2 PEACE Polymers
experiment.

An alternative approach (September 2009 version) was then pursued, which used the dependency
variables (such as atomic populations per repeat unit) as exponents with appropriate constants to optimize
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the correlation coefficient. This prevented negative erosion yield values and enabled significant
simplification of the predictive equation with very little loss in the correlation coefficient.

This simpler approach resulted in a reasonably high correlation coefficient with actual LEO MISSE 2
PEACE polymer data. The resulting equation used atomic populations in the repeat unit as well as
physical density, packing density, ash content, and the number of single and double oxygen bonds in the
repeat unit. The predictive LEO erosion yield equation is given by

Ey = Co(VE/Vr ) C E/r (p) 
CpeX 	

(3)

where
X = (CC/tNC + CH/tNH + CsO/tNsO + CdO/tNdO + CN/tNN + CCl/tNCl +

+ CF/tNF + CS/tNS) /Nt + (CO/CNO + CN/CNN + CF/CNF +

+ CH/CNH + CCl/CNCl + CS/CNS )/ NC – K[(A)]/(1-A)

and
K = (1.80x10–16 

)F0.76

The coefficients Co, CE/r9 Cp9 CC/t9 CH/t9 CsO/t9 CdO/t9 CN/t9 CCl/t9 CF/t9 C S/t9 CO/C, CN/C9 CF/C, CH/C9 CCl/C9
CS/C, and K are constants associated with the various terms relating to the number of atoms, bonds, or
physical characteristics of the polymers are given by

Ey Atomic oxygen erosion yield in LEO, cm 3/atom
VE The sum of the volume of the atoms making up the polymer repeat unit based on

their covalent radii, cm3

Vr The actual volume of each repeat unit determined based on the chemical
structure of the repeat unit as well as the molecular weight and density of the

material
p	 Density of the polymer, grams/cm 3

NC Number of carbon atoms in polymer repeat unit
NH Number of hydrogen atoms in polymer repeat unit
NsO Number of single bonded oxygen atoms in the polymer repeat unit
NdO Number of double bonded oxygen atoms in the polymer repeat unit
NN Number of nitrogen atoms in polymer repeat unit
NCl Number of chlorine atoms in polymer repeat unit
NF Number of fluorine atoms in polymer repeat unit
NS Number of sulfur atoms in polymer repeat unit
Nt Total number of atoms in polymer repeat unit
NO Number of oxygen atoms in the polymer repeat unit
A Mass fraction of ash in the polymer
F	 Atomic oxygen fluence, atoms/cm2

With all of the C coefficients for the Equation (3) optimized, the correlation coefficient between
predicted erosion yield and LEO measured erosion yield is 0.895. This correlation includes all of the
MISSE 2 PEACE polymers except polyethylene oxide, which appeared to have an anomalously low
erosion yield, for some unknown reason, compared to what is predicted based on the chemical and
physical properties. The values of the optimized C coefficients are listed in Table IV.
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TABLE IV.—DEFINITION AND VALUES OF THE OPTIMIZED
COEFFICIENTS ASSOCIATED WITH EACH VARIABLE

Symbol Definition Value
CO Proportionality constant which resulted from best fit linear equation relating the

measured atomic erosion yield to predicted erosion yield
3.02× 1030 cm3/atom

C sO/t Constant for single bonded oxygen atoms in the polymer repeat unit –0.94
CaO/t Constant for double bonded oxygen atoms in the polymer repeat unit –3.59
CN/t Constant for nitrogen atoms in the polymer repeat unit 4.42
CS/t Constant for sulfur atoms in polymer repeat unit –22.0
CCl/t Constant for chlorine atoms in polymer repeat unit –8.60
CF/t Constant for fluorine atoms in polymer repeat unit –1.54

CΣ/r Constant for ratio of sum of volume of atoms in repeat unit (based on their
covalent radii) to volume of the repeat unit

–2.86

CS/C Constant for the ratio of sulfur atoms to carbon atoms in the repeat unit 3.90

CP Constant for polymer density 4.87

CO/C Constant for the ratio of oxygen atoms to carbon atoms in the repeat unit 0.395

CF/C Constant for the ratio of the fluorine atoms to carbon atoms in the repeat unit –1.70

CH/C Constant for the ratio of the hydrogen atoms to carbon atoms in the repeat unit 0.053

CN/C Constant for the ratio of the nitrogen atoms to carbon atoms in the repeat unit –5.02
CCl/C Constant for the ratio of the chlorine atoms to carbon atoms in the repeat unit 1.48

K Erosion yield ash attenuation constant 8.30 for a fluence of
8.43 × 1021 atoms/cm2

E	 1.E-23
O

8.E-24

aD

c
6.E-24

O.y

O
Ẁ 	 4.E-24
V
asL

CD
2.E-24

2

O
0. E+00

0. E+00 2.E-24 4.E-24 6.E-24 8.E-24 1.E-23

Predicted Erosion Yield, cm3/atom

Figure 8.—Optimized linear fit between the LEO MISSE 2
PEACE atomic oxygen erosion yields and the predicted
erosion yields for the MISSE 2 mission with an atomic
oxygen fluence of 8.43x1021 atoms/cm2.

A plot of the optimized predicted erosion yields versus the LEO measured MISSE 2 PEACE Polymer
experiment erosion yields (with the exception of PEO) using Equation 4 and the constants in Table IV is
shown in Figure 8.
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The resulting predicted erosion yields have a correlation coefficient of 0.895 and an uncertainty
(standard deviation) of ±6.3× 10–25 cm3/atom when comparing predicted erosion yields with actual space
erosion yields (for 38 polymers and pyrolytic graphite). The predictive tool of Equations 3 and 4 allow for
erosion yield prediction at any atomic oxygen fluence. This is especially relevant for polymers containing
high fractional ash contents. A table listing the materials, their predicted erosion yields for the MISSE 2
fluence, and MISSE 2 measured erosion yields is given in Table V.

TABLE V.—COMPARISON OF PREDICTED AND MEASURED
ATOMIC OXYGEN EROSION YIELDS

Material Polymer
abbreviation

Predicted
erosion yield,

cm3/atom

MISSE 2
erosion yield,

cm3/atom
Acrylonitrile butadiene styrene ABS 2.12×10–24 1.09×10–24

Cellulose acetate CA 5.63×10–24 5.05 × 10–24

Poly-(p-phenylene terephthalamide) PPD-T (Kevlar) 1.92×10–24 6.28×10–25

Polyethylene PE 3.04×10–24 3.74×10–24

Polyvinyl fluoride—clear PVF (Clear Tedlar) 2.94×10–24 3.19×10–24

Polyvinyl fluoride—with white pigment PVF (White Tedlar) 9.39×10–26 1.01×10–25

Polyoxymethylene; acetal; polyformaldehyde POM (Delrin) 9.03 × 10–24 9.14× 10–24

Polyacrylonitrile PAN 1.42×10–24 1.41 × 10–24

Allyl diglycol corbonate ADC (CR-39) 5.83 × 10–24 6.80× 10–24

Polystyrene PS 3.43×10–24 3.74×10–24

Polymethyl methacrylate PMMA 6.17×10–24 5.60×10–24

Polyethylene oxide PEO 7.02×10–24 1.93 × 10–24

Poly-(p-phenylene-2 6-benzobisoxazole) PBO (Zylon) 1.91×10–24 1.36×10–24

Epoxide or Epoxy EP 3.24× 10–24 4.21 × 10–24

Polypropylene PP 3.58×10–24 2.68×10–24

Polybutylene terephthalate PBT 2.31 × 10–24 9.11 × 10–25

Pulysulphone PSU 2.95 × 10–24 2.94×10–24

Polyurethane PU 1.73×10–24 1.56×10–24

Polyphenylene isophthalate PPPA (Nomex) 1.84× 10–24 1.41 × 10–24

Pyrolytic graphite PG 9.41 × 10–25 4.15 × 10–25

Polyetherimide PEI 2.66×10–24 3.31 × 10–24

Polyamide 6 or nylon 6 PA 6 2.40×10–24 3.51 × 10–24

Polyamide 66 or nylon 66 PA 66 2.28×10–24 1.80×10–24

Polyimide PI (CP1) 2.02×10–24 1.91×10–24

Polyimide (PMDA) PI (Kapton HN) 1.91 × 10–24 2.81 × 10–24

Polyimide (BPDA) PI (Upilex-S) 1.83 × 10–24 9.22× 10–25

Polyimide (PMDA) PI (Kapton H) 1.93×10–24 3.00×10–24

High temperature polyimide resin PI (PMR-15) 2.33 × 10–24 3.02× 10–24

Polybenzimidazole PBI 1.83 × 10–24 2.21 × 10–24

Polycarbonate PC 3.94 × 10–24 4.29×10–24

Polyetheretherketone PEEK 3.03 × 10–24 2.99 × 10–24

Polyethylene terephthalate PET (Mylar) 3.44× 10–24 3.01 × 10–24

Chlorotrifluoroethylene CTFE (Kel-f) 6.03 × 10–25 8.31 × 10–25

Ethylene-chlorotrifluoroethylene ECTFE (Halar) 1.94×10–24 1.79×10–24

Tetrafluoroethylene-ethylene copolymer ETFE (Tefzel) 1.26× 10–24 9.61 × 10–25

Fluorinated ethylene propylene FEP 9.82× 1 0–26 2.00×10–25

Polytetrafluoroethylene PTFE 7.09×10–26 1.42×10–25

Polyvinylidene fluoride PVDF (Kynar) 1.26×10–24 1.29×10–25

Perfluoroalkoxy copolymer resin PFA 7.54× 10–26 1.73 × 10–25

I Amorphous fluoropolymer AF 1.38×10–25 1.98×10–25
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4.0 Summary

A predictive tool was developed to estimate the LEO atomic oxygen erosion yield of polymers based
on the results of the MISSE 2 PEACE Polymers experiment, which accurately measured the erosion yield
of a wide variety of polymers and pyrolytic graphite. The flight experiment materials were selected
specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical
structures. The September 2009 version predictive tool utilizes the chemical structure, atomic populations
of the polymer repeat unit, oxygen bonding information, and physical properties (such as density and
ash content) that can be measured in ground laboratory tests. The prediction does not require the use of
asher erosion yield information. The tool has a correlation coefficient of 0.895 and an uncertainty of
±6.3× 10–25 cm3/atom when compared with actual MISSE 2 PEACE Polymers space data (for 38 polymers
and pyrolytic graphite). One polymer, polyethylene oxide (PEO), was found to be significantly off the
linear fit for some unknown reason and was not used in the predictive tool equation. The predictive tool
does appear to predict reasonable atomic oxygen erosion yields, even for those polymers that yielded a
negative erosion value with the previous predictive process. The tool also allows for the prediction of
atomic oxygen erosion yields as a function of fluence which is relevant for polymers containing high ash
contents. The intent of the predictive tool is to be able to make estimates of LEO atomic oxygen erosion
yields for new polymers without requiring expensive and time consumptive in-space testing.
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