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Abstract

Bridgman crystal growth can be conducted in the so-called “detached” solidification 
regime, where the growing crystal is detached from the crucible wall.  A small gap 
between the growing crystal and the crucible wall, of the order of 100 micrometers or 
less, can be maintained during the process. A meniscus is formed at the bottom of the 
melt between the crystal and crucible wall. Under proper conditions, growth can proceed 
without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the 
process. Thermal and other process parameters can also affect the geometrical steady-
state stability conditions of solidification. The dynamic stability theory of the shaped 
crystal growth process has been developed by Tatarchenko [1]. It consists of finding a 
simplified autonomous set of differential equations for the radius, height, and possibly 
other process parameters. The problem then reduces to analyzing a system of first order 
linear differential equations for stability.  Here we apply a modified version of this theory 
for a particular case of detached solidification.  Approximate analytical formulas as well 
as accurate numerical values for the capillary stability coefficients are presented.  They 
display an unexpected singularity as a function of pressure differential. A novel approach 
to study the thermal field effects on the crystal shape stability has been proposed. In 
essence, it rectifies the unphysical assumption of the model [1] that utilizes a perturbation 
of the crystal radius along the axis as being instantaneous. It consists of introducing time 
delay effects into the mathematical description and leads, in general, to stability over a 
broader parameter range. We believe that this novel treatment can be advantageously 
implemented in stability analyses of other crystal growth techniques such as Czochralski 
and float zone methods.  

[1] V. A. Tatarchenko, Shaped Crystal Growth, Springer, 1993, pp. 19.
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DETACHED BRIDGMAN GROWTH

Dynamic Growth Stability –
V.A.Tatarchenko – Shaped Crystal Growth 
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SYSTEM  RESPONSE  TO  PERTURBATIONS
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Linear response of perturbed crystal radius and height 
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CAPILLARITY  PROBLEM

Young-Laplace equation
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CAPILLARY  COEFFICIENTS - THEORY
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CAPILLARY COEFFICIENTS - NUMERICS
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THERMAL  RESPONSE - BASICS

Boundary condition at the interface

Growth rate

Height perturbation – Tatarchenko’s model
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ONE-DIMENSIONAL  LUMP HEAT  MODEL
For melt

For crystal
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Perturbation of thermal gradient at the interface due to
crystal radius variation (convolution):



GENERALIZED  RESPONSE
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GENERALIZED RESPONSE CONT.
Tatarchenko model gives

Our model 
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Response for the induced perturbation can be studied by analyzing 
the roots of the following polynomial
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MODIFIED STABILITY CRITERION

Conditions for stable growth
Tatarchenko model
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MODEL APPROXIMATIONS 

o Environmental temperature is constant
o One-dimensional lump type approximation
o Capillarity – zero order model – no meniscus 

motion effects, no triple point effects



CONCLUSION

 Capillarity coefficients display singularity
 Thermal response for the radius perturbation is 

of the convolution type – this modified model is 
applicable for other types of shaped crystal 
growth:  Czochralski, Float Zone, etc. 


