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Abstract

Bridgman crystal growth can be conducted in the so-called “detached” solidification
regime, where the growing crystal is detached from the crucible wall. A small gap
between the growing crystal and the crucible wall, of the order of 100 micrometers or
less, can be maintained during the process. A meniscus is formed at the bottom of the
melt between the crystal and crucible wall. Under proper conditions, growth can proceed
without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the
process. Thermal and other process parameters can also affect the geometrical steady-
state stability conditions of solidification. The dynamic stability theory of the shaped
crystal growth process has been developed by Tatarchenko [1]. It consists of finding a
simplified autonomous set of differential equations for the radius, height, and possibly
other process parameters. The problem then reduces to analyzing a system of first order
linear differential equations for stability. Here we apply a modified version of this theory
for a particular case of detached solidification. Approximate analytical formulas as well
as accurate numerical values for the capillary stability coefficients are presented. They
display an unexpected singularity as a function of pressure differential. A novel approach
to study the thermal field effects on the crystal shape stability has been proposed. In
essence, it rectifies the unphysical assumption of the model [1] that utilizes a perturbation
of the crystal radius along the axis as being instantaneous. It consists of introducing time
delay effects into the mathematical description and leads, in general, to stability over a
broader parameter range. We believe that this novel treatment can be advantageously
implemented in stability analyses of other crystal growth techniques such as Czochralski
and float zone methods.

[1] V. A. Tatarchenko, Shaped Crystal Growth, Springer, 1993, pp. 19.
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DETACHED BRIDGMAN GROWTH
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SYSTEM RESPONSE TO PERTURBATIONS

Linear response of perturbed crystal radius and height

SR=A,0R+ A,5h
Sh=A,0R+A4,0h

Stable growth if AR R T Ahh <0
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CAPILLARITY PROBLEM

Young-Laplace equation
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CAPILLARY COEFFICIENTS - THEORY
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CAPILLARY COEFFICIENTS - NUMERICS
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THERMAL RESPONSE - BASICS

Boundary condition at the interface V.L= k @_T_ k, o1,
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ONE-DIMENSIONAL LUMP HEAT MODEL
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Perturbation of thermal gradient at the interface due to
crystal radius variation (convolut|on)
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GENERALIZED RESPONSE
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Laplace transform solution
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GENERALIZED RESPONSE CONT,

Tatarchenko model gives P (I, -T.)
e LR’s,

Our model
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Response for the induced perturbation can be studied by analyzing
the roots of the following polynomial
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MODIFIED STABILITY CRITERION

Conditions for stable growth

Our model
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MODEL APPROXIMATIONS

Environmental temperature is constant
One-dimensional lump type approximation

Capillarity — zero order model - no meniscus
motion effects, no triple point effects



CONCLUSION

Capillarity coefficients display singularity

Thermal response for the radius perturbation is
of the convolution type - this modified model is
applicable for other types of shaped crystal
growth: Czochralski, Float Zone, etc.



