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Aircraft lidar works by shooting laser pulses toward the earth and recording the return
time and intensity of any of the light returning to the aircraft after scattering off
atmospheric particles and/or the Earth’s surface. The scattered light signatures can be
analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few
optical assumptions, can be analyzed to retrieve estimates of optical properties such as
atmospheric transparency. Radar works in a similar fashion except it sends pulses
toward earth at a much larger wavelength than lidar. Radar records the return time and
intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter
from optically thin cirrus and aerosol layers whose particles are too small for the radar to
detect. Radar can provide reflection profiles through thick cloud layers of larger
particles that lidar cannot penetrate. Only after merging the two instrument products
can accurate measurements of the locations of all layers in the full atmospheric column
be achieved. Accurate knowledge of the vertical distribution of clouds is important
information for understanding the Earth/atmosphere radiative balance and for improving
weather/climate forecast models.

This paper describes one such merged data set developed from the Tropical
Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in
July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud
Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed
concerning cloud probability through the atmospheric column and frequency of the
number of cloud layers. These statistics were calculated for the full study area, four
sub-regions, and over land compared to over ocean across all available flights. The
results are valid for the TC4 experiment only, as preferred cloud patterns took priority
during mission planning.

The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94
percent of the time during the ER-2 flights. One to three cloud layers were common,
with the average calculated at 2.03 layers per profile. The upper troposphere had a
cloud frequency generally over 30%, reaching 42 percent near 13 km during the study.
There were regional differences. The Caribbean was much clearer than the Pacific
regions. Land had a much higher frequency of high clouds than ocean areas. One
region just south and west of Panama had a high probability of clouds below 15 km
altitude with the frequency never dropping below 25% and reaching a maximum of 60%
at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for
TC4 scientists as they try to understand the complexities of the tropical atmosphere.
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ABSTRACT: Only in recent years when nadir pointing lidars and cloud-profiling radars

flew together on high-altitude aircraft or satellites have accurate measurements of the

locations of all cloud layers in the full atmospheric column been achievable. Lidar

provides sensitivity to thin layers whose particles are too small for the radar to see;

radar provides the beam penetration through thick cloud layers that lidar cannot

penetrate.

NASA ER-2 aircraft experiments have provided the opportunity to formulate sets of

vertical cloud location profiles using the Cloud Physics Lidar (CPL) and the Cloud Radar

System (CRS). This paper focuses on results from the Tropical Composition, Cloud

and Climate Coupling (TC4) campaign based in Costa Rica in July-August 2007.

The unique data set that was developed produces cloud location arrays along track

for every flight. Profiles show where lidar only, radar only, or both are observed.

Statistics of vertical cloud probability and average number of cloud layers are shown for

the whole study area, sub-regions, and for land versus ocean areas. The percentages

of cloudy pixels and of surface return detections are calculated.

Although the cloud patterns flown over with the ER-2 were biased toward specific

experiment objectives, the merged data set provides an excellent tool for characterizing

the vertical cloud distributions that were actually observed during the campaign. The
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30 flights sampled an area where cloud occurrence was 94%. The upper troposphere had

31 a cloud frequency reaching 42% during the study. The Caribbean was the most cloud-

32 free while the Panama Bight was the cloudiest.

33

34	 1. Introduction

35	 Accurate knowledge of the vertical distribution of clouds is important information for

36 understanding the Earth/atmosphere radiative balance and for improving

37 weather/climate forecast models (McFarquhar et al., 2000). Nadir pointing lidar and

38 cloud radar profiles obtained from high-altitude aircraft or satellites are complementary

39 measurements and have only recently shown their utility for obtaining accurate

40	 information on the locations of all cloud layers in the full atmospheric column (McGill et

41	 al., 2004 and Mace et al., 2009). Backscatter lidar measures attenuated backscatter up

42	 to an optical depth threshold (~3.0). It is highly sensitive to optically thin cirrus and

43 aerosol layers whose particles are often too small for the radar to detect. Radar

44 measures reflectivity and is highly sensitive to clouds composed of large ice crystals

45 and can easily penetrate dense convective cloud that lidar cannot. Knowledge of the

46 overlap region where both instruments detect cloud signals is important for retrieval

47	 algorithms for ice particle size and other cloud properties that use both radar and lidar

48 measurements. Excellent references for using combined lidar and radar data for cloud

49	 retrieval properties are Okamoto et al. (2003) and Tinel et al. (2005).

50	 Combined lidar and radar products were investigated in the U.S. using ground-based

51	 instruments (Clothiaux et al., 2000). They obtained useful information, but had

52	 difficulties with insects in the boundary layer and low thick clouds obscuring high thin
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53 clouds. The conclusion was that they could not guarantee accurate full column cloud

54	 locations. The first test of combining high-altitude (20 km) nadir lidar and radar data

55 was achieved during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-

56 Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002 (Jensen et al, 2004)

57 using Cloud Physics Lidar (CPL) (McGill et al. 2002, 2003) backscatter measurements

58 at 532 and 1064 nm and the Cloud Radar System (CRS) (Li et al., 2004 and Racette et

59 al., 2003) reflectivity measurements at 94 GHz onboard the NASA ER-2 aircraft (McGill

60 et al., 2004). This study analyzed anvil morphology and radar optical depth (OD)

61	 sensitivity for specific case studies. McGill et al. (2004) also describes the basic steps

62 for co-aligning and combining the lidar and radar data sets.

63	 With the launch of the CloudSat (Stephens et al., 2002) and CALIPSO (Winker et al.,

64 2003) satellites in April 2006, a combined data set using the CALIOP lidar and CPR

65 radar has been developed and is called the 2B-GEOPROF-LIDAR product (Mace et al.

66 2007). It is the first cloud profiled observation set with global coverage, from June 2006

67	 until present. Applications of this combined product are detailed in Mace et al. (2009).

68	 Three NASA ER-2 aircraft experiments during the summers of 2006 and 2007, with

69 the CPL and CRS on board, have provided the opportunity to formulate new sets of

70	 high-quality merged vertical cloud location profiles. In this paper, we will show results of

71	 a straightforward cloud statistical analysis applied for the first time to an entire field

72 experiment, the Tropical Composition, Cloud and Climate Coupling (TC4) campaign

73 based in Costa Rica in July-August 2007. The focus of TC4 was to characterize the

74 cloud and chemical composition of the tropical tropopause region by satellite and high-

75	 altitude aircraft remote sensing and medium and high-altitude aircraft in-situ
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76 measurements. TC4 cloud properties are examined in the current study since we are

77	 interested in understanding the cloud layer structure in a variety of complex tropical

78 cloud formations during TC4.

79

80 2. Merged Data Sets and Products

81	 Our approach to merging CPL and CRS is similar to McGill et al. (2004), except that

82 CRS data is mapped directly to the CPL 30 m vertical bin locations to facilitate

83	 implementation of joint algorithms using radar and lidar measurements. CRS reflectivity

84 is measured at a horizontal resolution of 0.5 s (~100 m along track) and a vertical

85 resolution of 37.5 m. CPL retrieves cloud and aerosol backscatter and optical

86	 properties products at 1 s (~200 m along-track) horizontal resolution and 30.0 m vertical

87 resolution. CPL standard products contain top and bottom heights of all layers sensed

88	 by the lidar, developed using an adjustable threshold algorithm. We developed a similar

89 threshold technique using the CRS reflectivity profiles to develop top and bottom

90 heights of all radar layers sensed. The minimum detectable reflectivity is about -28 dBZ

91 for CRS at a range of 15 km from the ER-2. We did not attempt to correct for radar

92 attenuation for the merged data sets, so the top and bottom height of the radar layers

93 are subject to the sensitivity of the CRS radar. CPL minimum detectable backscatter is

94	 ~4.0 x 10-7 m -1 sr-1 at a range of 10 km. This sensitivity allows for identification of sub-

95	 visible cirrus and all significant aerosol layers.

96	 CRS and CPL merged data sets and products were developed for each flight line

97 during TC4. Cloud and aerosol layer location for the full atmospheric column for every

98 ~200 m (1 s) along track were calculated for periods when both the CPL and CRS were
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99 operating. These profiles show where lidar only, radar only, or both signals were

100 observed. The corresponding temperature and pressure profiles, matching the

101	 resolution of the combined system, were also recorded. Surface return information for

102	 both lidar and radar were recorded. Statistics of vertical cloud probability and average

103 number of cloud layers were calculated and regional differences were tabulated. The

104 same statistics were tabulated for data over land verses over ocean. Overall

105 percentage of cloudy pixels and frequency of lidar and radar surface return detection

106 were formulated. Extinction and cumulative OD profiles from the CPL-sensed portion of

107 the cloud column were passed to the merge file output.

108	 To better understand the parameters involved in the statistical analysis of clouds

109 during TC4, CPL-CRS merge products are calculated from a short segment (108 km) of

110 the August 8, 2007 flight over the Pacific Ocean (Figure 1). Figure 1 a shows an image

111	 of lidar vertical profiles from the optically thick anvil cirrus. The fact that there are no

112	 surface returns visible in the image is the only clue that the cloud is physically thicker

113 than the lidar portrays. The lidar does however detect the very thin tropopause cirrus

114 on the right side of the image at 16 km. Figure 1 b images the merged signals of lidar

115	 and radar combined. In this image, the full vertical extend of the true cloud volume is

116 shown. To image both the lidar and radar signals together, each were normalized

117	 based on their respective typical signal ranges. Radar surface returns are not displayed

118	 on this image.

119	 From the type characterization map in Figure 2a, the total number of layers and the

120 layer top and bottom heights can be calculated per profile. In this example, there were

121	 no aerosol layers detected. Cloud pixels sensed only by lidar are shown in green, only
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122 by radar in red, and where both instruments sensed cloud in yellow. The yellow region

123	 is referred to as the overlap region. The overlap region varies in physical thickness

124 depending on the cloud properties of the profile. Vertical cloud frequency profiles can

125 be accumulated when a tally is kept where pixels are populated with clouds. The thick

126 black line at the bottom of the characterization map of Figure 2a marks the detected

127 surface return location for the CRS radar. The radar signal penetrates to the earth’s

128	 surface and produces a signal spike when it hits the earth, unless the signal is totally

129 attenuated by moderate to heavy rain. Therefore, lack of a radar surface return can be

130 used to locate significant rain regions. There was no surface return detected by the

131	 lidar in this example. The lidar attenuates much sooner than the radar, and in general,

132 attenuates at an optical depth of ~3.

133	 Cumulative optical depth is another product from the merge file, calculated in the

134 area of the cloud where an extinction profile can be retrieved from the lidar data. Figure

135	 2b shows the lidar region of the anvil cloud in Figure 2a with cumulative optical depth

136 displayed. From an experiment-wide accumulation of these profiles, the average height

137	 of a specific optical depth can be calculated.

138

139 3. Vertical Cloud Climatology during TC4

140	 Merge data sets were processed for 12 of the 13 flights during TC4. CRS hardware

141 problems caused July 25 data to be missed. The ER-2 was based at San Jose, Costa

142 Rica and executed flights in and around Central America, the Caribbean Sea, and the

143	 Pacific Ocean. Cloud statistics were developed for the following five geographic

144 regions: Full TC4 Study Area, San Jose, Panama Bight, Caribbean, and Pacific South.
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145 Figure 3 shows the location of these regions on a map of Central America. The regions

146 were selected by the authors based on target areas during the TC4 deployment. Over

147 land versus over ocean statistics were also compared. We use the word climatology

148 loosely in this study since the data base only covers a 26 day period during one year.

149	 Further, it does not capture much diurnal effect, with most flights in the local morning.

150 The fact that the days and locations of aircraft flights coincided with predefined cloud

151	 pattern goals created a bias toward specific cloud patterns in each region. However,

152 this data base does accurately reflect the actual cloud distribution that was present

153 below the ER-2 aircraft for the duration of the experiment, which was our goal.

154 3.1 Vertical Cloud Statistics by Geographic Region

155	 Table 1 displays various cloud statistics calculated during TC4 for the entire area

156	 and the four sub-regions. The probability of having a cloud in any 1 s profile is very high

157 in all regions except the Caribbean. The Caribbean had a much different cloud pattern

158 compared to the other regions with a tendency to have only one or two scattered high

159	 layers (if any at all) and only a few cumuli. The Pacific South region tended to have

160 more low clouds, especially stratocumulus. The other regions had complex cloud

161	 systems at many levels. Inferring from the lidar surface return frequency for the full TC4

162 study area, only about 31 % of the profiles had total column optical depth below 3.0.

163 The Caribbean region was an exception with 97%. The radar surface return frequency

164 was very high, averaging 93.5% for the full TC4 study area. This infers the percentage

165 of profiles where moderate or heavy rain obscured the radar reached 6.5%. On

166 average for the full study area, the vertical cloud zone ranged from 12.3 km down to 4.0
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167 km, or 8.3 km thick. The region with the highest average cloud tops was the San Jose

168 region, where tops averaged 15.1 km.

169	 The cumulative optical depth heights should be interpreted as follows: starting at the

170	 aircraft altitude, the lower the height to reach the specific optical depth level, the more

171	 transparent the middle and upper portion of the troposphere is. If the height is near sea

172	 level, this means the atmosphere did not fully reach the optical depth threshold. For the

173 full study area, the average height of optical depth 1.0 was 6.0 km and optical depth 3.0

174 was 4.3 km. The Caribbean region easily had the most transparent atmosphere. It

175	 should be noted that the cumulative optical depth includes aerosol layers. Only in the

176 Caribbean region were aerosols (Saharan dust) prevalent. The number of merged

177	 profiles analyzed for each region is tabulated in the legend of Figure 4. An overall total

178 of 135525 profiles were analyzed. We note that the Caribbean region had six times

179 fewer profiles than did the region-by-region average, mostly due to the fact only two

180 flights focused on the region and one of those had missing data.

181	 The two most important statistics from this study are the frequency distribution of the

182	 number of cloud layers in the total atmospheric column and the vertical distribution of

183 those clouds. Figure 4 shows the frequency distribution of the number of cloud layers

184 for the full study area and the four sub-regions. The Pacific South region was a region

185 of optically thin cirrus layers and frequent stratocumulus. The Panama Bight region was

186 a region of active thunderstorms and complex cloud formations. Most regions averaged

187 near two layers per profile, with less than a 6% occurrence of clear sky and less than

188 2% occurrence of 6 or more layers. The Caribbean and the Pacific South were the

189 exceptions, averaging 0.70 and 1.68 layers, respectively. The Caribbean region was
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190 dominated by clear sky (57% occurrence). The Pacific South region layer distribution

191 showed a peak in the one-layer category, which occurred over 40% of the time.

192	 To get a feel for the average cloud volume, Figure 5 shows the vertical frequency

193	 distribution of cloudy pixels in the full TC4 study area. Figure 6 shows the same for the

194 four sub-regions. Each plot has four distributions: 1) CPL sensed clouds only (blue), 2)

195 clouds sensed by both instruments (yellow), 3) CRS sensed clouds only (red), and 4)

196 total cloud volume from the merged CPL/CRS clouds (green). The blue, yellow, and red

197 plots are mutually exclusive and sum up to the green plot. For the TC4 study area as a

198 whole, the chance of cloud occurrence was highest (just above 40%) between 12 and

199	 13 km. The vertical distribution is somewhat bimodal with another frequency peak near

200 1 km, probably due to scattered cumulus and stratocumulus. The CPL found few

201 clouds between 9 and 2 km because of signal attenuation, but did pick up the low

202 cumulus when the signal was not fully attenuated. The radar observed its highest cloud

203 frequency between 8 and 10 km.

204	 Cloud volumes for the four regions in Figure 6 each show unique characteristics.

205	 For the Pacific South region, the highest frequency of clouds (32%) occurred below 1

206 km, influenced by the predominance of stratocumulus. Two other lesser peaks

207 occurred, one at 10 km and another at 15 km. For the Panama Bight region, clouds

208 were frequent at all levels, with the highest frequency (60%) at 12-13 km. Because of

209	 lidar signal attenuation, the cloud distribution relied on the CRS radar below 8 km. The

210 San Jose region was dominated by clouds above 11 km, reaching 75% occurrence at

211	 14 km. The Caribbean region showed a bimodal distribution, but each peak cloud

212 frequency was less than 25%.



213 3.2 Vertical Cloud Statistics by Surface Type

214	 The TC4 cloud analysis was also performed separately for land versus ocean areas.

215 Because water dominates the region and was the preferred destination during most

216 flights, there were six times more profiles over water than over land. Table 2 shows the

217 same parameters as Table 1, except separated by water and land regions. Because

218 the CRS surface return height was the parameter used to determine land or water,

219 profiles that did not have a radar surface return were not used and thus the true

220 frequency was not available. Both land and ocean categories had a high frequency of

221	 cloudy profiles and similar lidar surface return frequency. In this data base, profiles over

222 land recorded the highest average cloud top height, which was 3.1 km higher than over

223 the ocean. Profiles over land reached an optical depth value of 1.0 sooner, but reached

224 a value of 3.0 later than over the ocean.

225	 Figure 7 displays the layer count frequency distribution for profiles over land and

226 water. The analysis showed that profiles over land had more of a tendency for multiple

227 cloud layers, with an average of 2.35 layers, as opposed to profiles over the ocean,

228 which had an average of 1.95. The number of profiles in each category is displayed in

229 the legend. Figure 8 shows the vertical frequency distribution differences between

230 clouds over land and over water. Profiles over land had a very high frequency (75%) of

231	 cloud between 13 and 14 km, but dropped off significantly below that altitude. The

232 vertical cloud distribution over the ocean region mimics the study area as a whole with a

233 minimum of 14% at 4 km and peaking at 37% at 12 km.

234

235 4. Conclusion
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236I. 	 The newly developed CPL lidar and CRS radar merged product is an excellent tool

237 for doing vertical cloud analysis and has helped to characterize the vertical cloud

238	 distributions during the TC4 field experiment. The results are valid for this field

239	 experiment only, as preferred cloud patterns took priority during mission planning. The

240 TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94% of the

241 time during the ER-2 flights. One to three cloud layers were common, with the average

242 calculated at 2.03 layers per profile. The average top of the highest cloud layer reached

243	 12.350 km. From the CPL lidar data, it was determined that the average height where

244 the cumulative optical depth reached 1.0 was at 5.968 km and where the optical depth

245	 reached 3.0 was at 4.258 km. From analysis of the vertical cloud distribution, the upper

246 troposphere had a cloud frequency generally over 30%, reaching 42% near 13 km

247 during the study. There were regional differences. The Caribbean was more cloud-free

248 than the other regions. Profiles over land had a much higher frequency of high clouds

249 than over ocean areas. The Panama Bight region had the highest probability of clouds

250 throughout the vertical column, with the frequency never dropping below 25% below 15

251	 km altitude.

252II. 	 Work is nearing completion on an enhanced merged ER-2 instrument data set that

253 will include the MODIS Airborne Simulator (MAS) radiometer and vertical Doppler radar

254 velocity for more complex data analysis.

255
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317	 Table 1: Cloud and Optical Statistics by Geographic Region

Statistic
Full TC4 San Jose Panama Caribbean Pacific South

Study Area Region Bight Region Region Region

Cloudy Profile
Frequency (%) 94.3 98.7 98.4 44.1 94.4

CPL Lidar
Surface Return 30.6 37.8 20.3 97.1 30.1
Frequency (%)

CRS Radar
Surface Return 93.5 89.6 91.2 99.9 99.3
Frequency (%)

Avg. Ht. (km) of
Highest Cloud 12.350 15.087 13.364 10.704 8.709

Top (258.4 h Pa) (144.5 h Pa) (192.1 h Pa) (339.0 h Pa) (460.5 h Pa)
Avg. Ht. (km) of

Lowest Cloud 3.994 5.480 4.094 7.338 2.411
Bottom (700.2 hPa) (607.3 hPa) (680.5 hPa) (516.8 hPa) (826.9 hPa)

Avg. Ht. (km)
where Cumulative 5.968 7.117 8.044 0.098 2.103
OD Reaches 1.0 (590.6 hPa) (537.3 hPa) (453.1 hPa) (1002.5 hPa) (833.1 hPa)
Avg. Ht. (km)

where Cumulative 4.258 3.457 6.470 0.085 1.644
OD Reaches 3.0 (698.9 hPa) (756.6 hPa) (552.5 hPa) (1003.9 hPa) (866.9 hPa)

Table 2: Cloud and Optical Statistics by Surface Type

Statistic Over Land Over Ocean

Cloudy Profile
Frequency (%) 96.2 93.6

CPL Lidar
Surface Return 39.8 31.0
Frequency (%)

Avg. Ht. (km) of
Highest Cloud 14.870 11.733

Top (147.7 hPa) (286.3 hPa)
Avg. Ht. (km) of

Lowest Cloud 4.793 4.018
Bottom (646.1 hPa) (700.7 hPa)

Avg. Ht. (km) where
Cumulative 6.283 5.502

OD Reaches 1.0 (567.5 hPa) (619.0 hPa)
Avg. Ht. (km) where

Cumulative 3.037 3.956
OD Reaches 3.0 (762.3 hPa) (719.3 hPa)

318
319
320

321
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Figure Captions

Figure 1. a) CPL attenuated lidar profiles only and b) merged CPL lidar-CRS radar profiles during a nine
minute (108 km) segment of the August 8, 2007 ER-2 flight over the Pacific Ocean during TC4. The fact
that there are no lidar surface returns visible in (a) is the only clue that the cloud is physically thicker than
the lidar portrays. In image (b), the full vertical extend of the true cloud volume is retrieved.

Figure 2. a) The type characterization map for the same scene as in Figure 1 b. This maps the vertical
location of cloud pixels that only CPL detected (green), cloud pixels that only CRS detected (red), and
cloud pixels that were detected by both instruments (yellow). No aerosol layers were detected. The thick
black line at 0 altitude is the radar surface return location indicator. b) Cumulative optical depth
calculations from the CPL lidar portion of the cloud complex. In this case, the lidar signal becomes totally
attenuated at an optical depth of ~3.0.

Figure 3. Map of the overall TC4 experiment study area (black box) and the four sub-regions of the
experiment conducted July-August, 2007 near Central America. The San Jose region is green, the
Caribbean region is yellow, the Panama Bight region is red, and the Pacific South region is blue.

Figure 4. The frequency distribution of the total number of cloud layers in the atmospheric column for the
full TC4 experiment and each of the four sub-regions. The average number of cloud layers for the full
study area was 2.03. Each sub-region showed a similar distribution except for the Caribbean region,
which was much clearer. The number of profiles in each data set is shown in the legend.

Figure 5. The vertical cloud distribution statistics for the full TC4 experiment in 2007. CPL sensed
clouds only are shown in blue, clouds sensed by both instruments are in yellow, CRS sensed clouds only
are in red, and total cloud volume from the merged CPL/CRS clouds is in green. The blue, yellow, and
red plots are mutually exclusive and sum up to the green plot.

Figure 6. The vertical cloud distribution statistics for the four sub-regions of the TC4 experiment of 2007.
The plots are the same type as Figure 5. Each sub-region had its own unique distribution.

Figure 7. The frequency distribution of the total number of cloud layers over land (black) and over ocean
(red). The average number of cloud layers for each region was 2.35 and 1.95 respectively. The number
of profiles in each data set is shown in the legend.

Figure 8. The vertical cloud distribution statistics over land (left) and over ocean (right) for the TC4
experiment. CPL sensed clouds only are shown in blue, clouds sensed by both instruments are in yellow,
CRS sensed clouds only are in red, and total cloud volume from the merged CPL/CRS clouds is in green.
Land profiles, which occurred much less frequently than water profiles, contained high-altitude clouds
over 70% of the time.
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Figure 1. a) CPL attenuated lidar profiles only and b) merged CPL lidar-CRS radar profiles
during a nine minute (108 km) segment of the August 8, 2007 ER-2 flight over the Pacific
Ocean during TC4. The fact that there are no lidar surface returns visible in (a) is the only
clue that the cloud is physically thicker than the lidar portrays. In image (b), the full vertical
extend of the true cloud volume is retrieved.



Figure 2. a) The type characterization map for the same scene as in Figure 1 b. This
maps the vertical location of cloud pixels that only CPL detected (green), cloud pixels
that only CRS detected (red), and cloud pixels that were detected by both instruments
(yellow). No aerosol layers were detected. The thick black line at 0 altitude is the
radar surface return location indicator. b) Cumulative optical depth calculations from
the CPL lidar portion of the cloud complex. In this case, the lidar signal becomes
totally attenuated at an optical depth of ~3.0.
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Figure 3. Map of the overall TC4 experiment study area (black box) and the four
sub-regions of the experiment conducted July-August, 2007 near Central America.
The San Jose region is green, the Caribbean region is yellow, the Panama Bight
region is red, and the Pacific South region is blue.



Figure 4. The frequency distribution of the total number of cloud layers in the atmospheric
column for the full TC4 experiment and each of the four sub-regions. The average number of
cloud layers for the full study area was 2.03. Each sub-region showed a similar distribution
except for the Caribbean region, which was much clearer. The number of profiles in each
data set is shown in the legend.
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Figure 5. The vertical cloud distribution statistics for the full TC4 experiment in 2007. CPL
sensed clouds only are shown in blue, clouds sensed by both instruments are in yellow,
CRS sensed clouds only are in red, and total cloud volume from the merged CPL/CRS
clouds is in green. The blue, yellow, and red plots are mutually exclusive and sum up to the
green plot.
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Figure 6. The vertical cloud distribution statistics for the four sub-regions of the TC4
experiment of 2007. The plots are the same type as Figure 5. Each sub-region had its
own unique distribution.
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Figure 7. The frequency distribution of the total number of cloud layers over land
(black) and over ocean (red). The average number of cloud layers for each region
was 2.35 and 1.95 respectively. The number of profiles in each data set is shown in
the legend.
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Figure 8. The vertical cloud distribution statistics over land (left) and over ocean (right)
for the TC4 experiment. CPL sensed clouds only are shown in blue, clouds sensed by
both instruments are in yellow, CRS sensed clouds only are in red, and total cloud volume
from the merged CPL/CRS clouds is in green. Land profiles, which occurred much less
frequently than water profiles, contained high-altitude clouds over 70% of the time.
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