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ABSTRACT

High-frequency vibroacoustic modeling is typically performed using energy-based techniques such as Sta-

tistical Energy Analysis (SEA). Energy models require an estimate of the internal damping loss factor. Un-

fortunately, the loss factor is difficult to estimate analytically, and experimental methods such as the power

injection method can require extensive measurements over the structure of interest. This paper discusses the

implications of estimating damping loss factors using the impulse response decay method (IRDM) from a

limited set of response measurements. An automated procedure for implementing IRDM is described and

then evaluated using data from a finite element model of a stiffened, curved panel. Estimated loss factors

are compared with loss factors computed using a power injection method and a manual curve fit. The paper

discusses the sensitivity of the IRDM loss factor estimates to damping of connected subsystems and the

number and location of points in the measurement ensemble.

1. INTRODUCTION
High frequency energy models of vibrating structures require estimates of damping loss factors of
subsystems or components of the structure. Due to the complex nature of damping, experimental
methods are often the tool of choice for determining these loss factors, especially on novel struc-
tures or materials. Numerous references can be found on damping loss factor determination from
experimental data (see, for example'-'). Methods for computing loss factors are based on either a
modal, decay-rate, or power injection approach.' Modal approaches are suitable for well-spaced
resonances, but become impractical at high modal density. Power injection methods require es-
timation of energy levels of connected components and knowledge of the mass of the structure.
Decay rate methods require fewer measurements, but yield estimates of total loss factors, which
include all forms of energy loss such as internal damping and energy transfer through boundaries
to surrounding structural components, fluids, or supporting test fixtures.

The goal of the current paper is to examine an automated decay rate method applied to data
from a limited portion of a complex structure. The envisioned application is one where the test
engineer has access to only a portion of a structure for response measurements, thus rendering the
power injection method impractical. A finite element model of an aircraft sidewall was chosen
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Figure 2: Drive point locations on panel 13.
Figure 1: Dimensions and stiffener locations.

for the study due to its mixture of global and local behavior depending on the frequency range of
analysis. Trends in the computed loss factor versus frequency are related to loss factors computed
from power injection methods and to the known loss factors of the components of the structure
from the finite element model. The effect of an energy discontinuity between drive and response
points on the computed loss factor is discussed.

The paper begins with a description of the numerical model of a curved, stiffened sidewall
used to generate frequency responses. An automated procedure for computing loss factors from
these frequency responses is then described. Results of applying the automated procedure to fre-
quency responses for various combinations of component damping in the numerical model are then
discussed, followed by conclusions.

2. ANALYSIS
The decay rate method discussed here assumes impulse responses are computed from band-limited
frequency responses, and in turn normalized Schroeder decay curves are computed from the im-
pulse responses. A normalized Schroeder decay function at sampling instants t t, is computed from
L samples of an impulse response, h.(tk ), as 7'9

	

d(tk ) = EL tk ja2(S) = 1 — EGk o h2(.$)	
(1)Es o h2(S)	 Es o h2(S)

Schroeder showed that the decay computed from a single impulse response is equivalent to an
ensemble average of squared decays,' and hence is much smoother than Hilbert transforms of
individual squared impulse responses.

A. Numerical Model
Frequency responses for this analysis were generated using a finite element model of a periodically
stiffened, curved aluminum structure driven by a point force normal to the surface. The modeled
structure is shown in figure 1. Curved, rectangular ring-frames were spaced at 0.38 m intervals
along the z-axis, and rectangular stringers were spaced at 0.24 m intervals along the B-axis; mid-
planes of both stiffeners coincided with the mid-plane of the skin. Material properties and stiffener



Table 1: Properties and dimensions.
E 7.0e10 N/m
V 0.33

P 2700 kg/m3
skin thickness 0.001 m

ring frame width 0.01905 m
ring frame height 0.0508 m

stringer width 0.0508 m
stringer height 0.0155 m

Table 2: Node spacing.
1/3-octave center spacing
frequency (Hz) (mm)

f <= 250 16
250 < f <= 500 11
500 < f <= 1250 9
1250 < f <= 2500 8

Table 3: Damping variations for computational runs.
Computational Input location Component loss factors

run #s (see fig. 2)
3,4,5 3,4,5 rJskin = 0.015, ?]stiffeners = 0.05

13,14,15 3,4,5 rJskin = 0.015, ?]stiffeners = 0.05 1 7]drivenpanel = 0.05

dimensions are given in table 1. The skin was modeled using CQUAD4 plate elements and the
stiffeners were modeled using CBEAM elements. The nodal spacing was varied with analysis
frequency, as listed in table 2, to ensure sufficient elements per structural wavelength without
excessive grid sizes at low frequency. The panel edges in the z and 0 directions were constrained
to zero in-plane displacement.

A direct frequency response analysis in MSC Nastran1was used to determine the frequency
responses. Damping in the direct frequency response is implemented as a complex stiffness. 10 The
finite element analysis is inherently narrowband, hence decay curves for 1/3-octave bands were
obtained by applying a bandpass, frequency-domain filter to frequency responses computed over
a bandwidth slightly wider than each 1/3-octave band. To reduce the computational burden, the
spacing between analysis frequencies varied depending on the 1/3-octave band. Since A f = T,
where T is the impulse response length, a criterion of T60lT = 0.3 was used to determine T,
where T6o is the time for an impulse response with a loss factor of 0.015 to decay by 60 dB. The
loss factor of 0.015 corresponded to the minimum loss factor in the model. This approach easily
satisfies the criterion suggested by Jacobsen 3 that T60 1T < 2.5.

Multiple computational 'runs' were performed for various locations of the normal input force
and panel damping, listed in table 3. The locations of the force on the driven panel are indicated
in figure 2. A single force was applied in each run, so for example, run 3 had a single force at
location 3, while run 4 had a single force at location 4. The dashed rectangle in figure 2 labeled
interior nodes denotes nodes spaced a small distance away from the stiffeners. Note that the only
difference between runs 13-15 and runs 3-5 is an increase in damping of the driven panel from
0.015 to 0.05.

B. Automated IRDM procedure
An automated procedure was used to estimate decay rates of Schroeder decay curves. A linear
regression" was used to determine the parameters of a simple exponential model of the decays,
given by

d(t) = ci e -121	 (2)



where d denotes an approximation of the measured decay, d(t). This model is admittedly simple
given the complexity and time-varying behavior of energy decay in coupled systems. 12 Nonethe-
less, application of this simple model is easily automated, and its use here is restricted to initial
portions of energy decays.` The loss factor is given by q = c2 12irf, where f is the center fre-
quency of the band under study. The multiple correlation coefficient, R 2 , was computed for each
regression to quantify the correlation between d(t) and d(t), where 0 < R 2 < 1. A perfect fit, when
R2 = 1, indicates the data is perfectly described by equation 2. A less than perfect fit is caused by
several factors, including measurement noise, time delay between the input and response points,
beating between closely spaced resonances, decay rates of connected subsystems, and dynamics
of bandpass filters applied to the data. 3,6,7

Because most decay curves are more complicated than the simple exponential in equation 2,
the results of the curve-fit will depend on the fitted portion of the decay curve. 3,1 Early decays
are associated with total loss factors (combinations of damping and coupling), while later decays
are more susceptible to measurement noise and filtering effects. In the current work, an exponen-
tial was fitted to the first [-2,-17] dB of decay, as suggested in the references. 3,6 In addition, a
screening procedure was used to eliminate decays that deviated significantly from a simple expo-
nential. While deviation from a simple exponential can be important, the screening was used here
to eliminate impulse responses from bands with no resonances, which is primarily a low-frequency
phenomenon. If R2 < 0.02 or rl > 0.8, the frequency response was removed from further analy-
sis. These values were determined by examination of typical decay curves, and by consideration
of the decay of the impulse response of the frequency domain window applied to the frequency
responses.'

Once a set of frequency responses had been screened, the corresponding normalized Schroeder
decays were averaged together, with no time-shifting, to obtain a single decay that was then fitted
using equation 2. This averaging was done to reduce the variance of the estimated loss factor.

C. Manual IRDM procedure
Loss factors computed with the automated IRDM routine were compared with loss factors obtained
by a manual procedure. A manual curve fitting procedure can be useful for dealing with non-ideal
decays created by multiple slopes or high noise levels. It can be difficult to create an automated
procedure that is robust to the variability seen in these types of decays. The manual procedure
was applied to averaged Schroeder decay curves, similar to the automated procedure. The manual
procedure fitted the earliest portion of the decay curve, where both the start and length of the fitted
decay were left up to the judgment of the practitioner.

D. Transient SEA
Limitations of the exponential model in equation 2 are illustrated using a simplified transient SEA13
model of two coupled subsystems. Assuming the damping of the ith subsystem is 77i and the
coupling from i to j is 77i3 , the rate of change of subsystem energies after input power is removed
can be written 14

^

dE(t)^_ _w th + 7712	 —7121	
[E (t)]	 (3)dt	 —7712	 712 + 7721

The free responses of the two subsystems are given by the sum of exponentials

E, (t) = A, e" t + B, 6121, E2 (0 = A2e" t + B2e12t	 (4)
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Figure 3: Energy decays in 2-subsystem model

where the A and B coefficients are determined by initial conditions. The exponents are given
by the eigenvalues of the rl matrix, which are entirely real, indicating the energy decays with no
oscillation. ' I Even for this simple system, the rate of energy decay in either subsystem depends on
relative values of damping and coupling in the two subsystems, and on initial conditions.'

Example decays for two coupled subsystems with equal modal density and are shown in fig-
ure 3. The coupling loss factor was 0.001. The initial conditions corresponded to a steady unit
power applied to the driven subsystem, which was then set to zero at t = 0. Rates of decay, de-
termined by a curve fit, are shown for the early decay of the driven system and later decay of the
non-driven system. In both figures, the driven system's initial decay rate exceeds its damping loss
factor due to energy sharing with the non-driven system. In figure 3(b), where the driven system's
damping exceeds the non-driven system's, a dual-slope decay is evident. The decay rate of the
non-driven system asymptotically approaches a value, subject to the initial condition, dE2 1dt = 0.
In either case, the decay rate computed from a curve fit to either subsystem clearly depends on
the portion of fitted decay. A fit that encompasses a transition between two slopes, such as at
t = 0.3 sec in figure 3(b), will produce an intermediate decay rate.

E. Power injection method
Lyon postulated using the balance between transported and dissipated energy as a means of mea-
suring damping. 13 This technique has become known as the Power Injection Method (PIM) for
damping estimation. The loss factor is defined as the ratio of the energy lost per radian to the max-
imum potential energy of the system,`` • 16 recognizing that at resonance, the maximum potential
energy, or maximum strain energy, equals the maximum kinetic energy, or total energy, of the sys-
tem. Off resonance, total energy is more difficult to define, 17 but either peak strain or peak kinetic
energy were used here. Assuming a harmonic force input at frequency W has complex amplitude
F, and the structure has a complex velocity response v, the loss factor is given by

_ Re{Fv*} (5)
2wEsE,peak

A global loss factor is obtained if EsE,peak corresponds to the peak strain energy of the entire
structure. A local total loss factor, which includes damping losses and coupling losses, is obtained
if EsE,peak corresponds to the peak strain energy of a smaller portion of the structure, such as a
driven panel.
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Figure 4: System loss factors from global PIM.	 Figure 5: Loss factors from local PIM.

3. RESULTS

A. Loss factors from PIM
Loss factors were computed using the power injection method and either peak strain or peak kinetic
energy from the finite element analysis. System loss factors, where the total energy of the structure
was used in the denominator of equation 5, are shown in figure 4. The blue curves show loss
factors averaged over runs 3-5 while the red curves show loss factors averaged over runs 13-15
(where the damping of the driven panel was increased to 5%). Solid lines, in both colors, indicate
loss factors computed using peak strain energy, while dotted lines indicate loss factors computed
using kinetic energy (elemental strains were computed only up to 500 Hz). The green dashed lines
indicate the panel and stiffener loss factors of 1.5% and 5%.

For both sets of computational runs, the solid and dotted lines overlap above about 315 Hz,
indicating a sufficiently resonant response to assume equality of peak strain and peak kinetic en-
ergy. The modal density drops below 315 Hz; there were 22 modes in band at 315 Hz, 8 modes
at 250 Hz, and 2 modes at 200 Hz. Between resonances, the total energy is difficult to define
in terms of either strain or kinetic energy.' However, because the band-averaged kinetic energy
drops below the average strain energy, loss factors from kinetic energy greatly exceed those from
strain energy below 315 Hz. Above 1000 Hz, the loss factors for both damping configurations
approach the loss factor of the driven panel. Between 315 and 1000 Hz, the loss factor depends on
the damping and fractional energy levels of the structure's components, and thus varies between
the 1.5% panel damping and 5% stiffener damping.

Loss factors computed using a local PIM analysis are shown in figure 5. This local PIM was im-
plemented using strain and kinetic energy of only the driven panel in the denominator of equation 5.
This is equivalent to assuming all energy in the structure is dissipated within the driven panel. As
expected, these local loss factors exceeded the system loss factors shown in the previous figure,
especially at low frequencies where the response is more global than local. Nonetheless, the local
loss factors approached the loss factor of the driven system above 1000 Hz. The sudden increase in
loss factor from 250 to 315 Hz is a result of the increased modal density at 315 Hz. A narrowband
analysis revealed that loss factors from strain energy were small between resonances and increased
sharply at resonance. Conversely, loss factors from kinetic energy were high between resonances
with sharp dips at resonances. As a result, the band-averaged loss factors computed from strain
energy were much lower than those computed from kinetic energy.
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Figure 6: Loss factors from automated IRDM for two damping configurations.

B. Automated IRDM results
Automated IRDM was applied to data from the same two damping configurations just discussed:
computational runs 3-5 and 13-15. For each run, the effect of response point location was investi-
gated for response points within the driven panel (panel 13), and response points outside the driven
panel ( panels 8, 12, 14, and 18). In both cases, response points were taken from an area a small
distance away from the stiffeners (see figure 2). At each response point and 1/3 octave band, the
frequency responses from the narrowband Nastran analysis were windowed using the magnitude
of a 6th order Butterworth bandpass filter with corner frequencies at the boundaries of the 1/3
octave band. The impulse response was then computed via inverse FFT and the Schroeder decay
computed. The initial -2 dB to -17 dB of each decay was fitted with the exponential in equation 2,
followed by application of the screening procedure. Frequency responses with R I less than 0.92 or
loss factors greater than 0.08 were removed from further analysis. The maximum acceptable loss
factor was approximately equal to the loss factor of the frequency domain Butterworth window.

In order to study the probability distributions of estimated loss factors, response points were
divided into sets of either 5 or 20. These set sizes were chosen arbitrarily to correspond to sparse
and dense measurement arrays that might be used in an experimental study of loss factors. For
each set of 5 or 20 points, the corresponding Schroeder decays from each of the three drive points
were averaged together and a single loss factor obtained for that averaged decay curve. Thus each
loss factor estimate consisted of an average of either 15 or 60 Schroeder decays. A log-normal
distribution was assumed for the data, and means and variances computed for the estimated loss
factors.

Figure 6 shows loss factors for the two damping configurations studied here. In the plots,
the solid line indicates the mean loss factor at the 1/3 octave band center frequencies, while the
dashed and dotted lines show two standard deviations about that mean for the 20-point and 5-point
averages, respectively. The blue data correspond to response points in the driven panel; the red
data correspond to response points outside the driven panel. The green lines are plotted at loss
factors of 1.5% and 5%, for reference. It should be noted that many response points on the driven
panel were within the direct field of the input force at low frequency. Application of the screening
procedure eliminated nearly all of those points from the analysis, which explains the lack of data
points on the blue curve below 315 Hz.

In general, estimated loss factors derived from response points in the driven panel approach
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Figure 7: Loss factors from manual IRDM for two damping configurations.

the loss factors of the driven panel above 1000 Hz. Loss factors derived from response points
outside the driven panel undetpredict the driven-panel loss factor above 1000 Hz. This agrees with
observations from the transient SEA analysis in figure 3 that fitting the initial decay for points in
the driven panel will overpredict the loss factor while fitting the initial decay for points outside
the driven panel will undetpredict the loss factor. The blue curve in figure 6(b) doesn't exceed the
driven panel loss factor above 1000 Hz, as might be expected from this discussion. This could
be due to multiple slopes in the decay, in which case the fitted decay slope will be a combination
of slopes. The multiple-slope case and how it affects an automated curve-fit is an area worthy of
further study.

Comparing the local PIM results (in figure 5) with the automated IRDM results shows that even
though the automated IRDM results are computed from a velocity variable, the low and middle
frequency results appear to be more reasonable than those from local PIM. The IRDM appears to
better reflect the dynamics of the structural response and is less sensitive to bias due to unmeasured
energy in the structure.

C. Manual results
Results of manually fitting the slopes of the Schroeder decay curves for the two damping configura-
tions are shown in figure 7. The high frequency trend of the manual IRDM is similar to automated
IRDM for points inside and outside the driven panel. However, for frequencies below 500 Hz, loss
factors from the manual fit are generally higher than the automated fit. This is likely due to the
flexibility of the manual fit relative to the rigid nature of the automated procedure. The automated
approach estimated the slope of the first -2 dB to -17 dB of decay. The manual approach estimated
the slope of the initial decay, whether or not that decay occurred within a fixed decay range. Thus,
if multiple slopes were present, the manual approach was more likely to estimate the initial slope,
and based on the transient SEA results (figure 3(b)), this initial slope will be higher than a later
slope.

4. CONCLUSIONS
Three methods for computing loss factors from frequency responses were compared using data
from a finite element model of a stiffened, curved shell. A power injection method was compared
with a manual decay rate and an automated decay rate method. For the automated decay rate



method, Schroeder decays were assumed to decay as a single exponential and a linear regression
was used to determine the decay rates over the first -2 dB to -17 dB of decay. Loss factors estimated
using either decay rate method depended on the location of response points relative to the force
input. When located within the same structural component as the applied force, the estimated loss
factor approached the component's true loss factor above 1000 Hz. When an energy discontinuity,
such as a stiffener, separated the response and drive points, the resulting loss factor depended
on loss factors of components on either side of the discontinuity. Results from the automated
procedure compared favorably with the manual curve fit above 500 Hz, however, below 500 Hz
the manual fit produced higher loss factor estimates. This may be due to the presence of multiple
decay rates causing the Schroeder decay to deviate from a single exponential. Either decay rate
method produced better loss factor estimates below 1000 Hz than a local power injection method
that used only the kinetic energy of the driven panel.

REFERENCES
[1] D.A. Bies and S. Hamid. In situ determination of loss and coupling loss factors by the power injection method.

Journal of Sound and Vibration, 70(2):187-204, 1980.

[2] K. De Langhe and P. Sas. Statistical analysis of the power injection method. Journal of the Acoustical Society
of America, 100(1):294-303, 1996.

[3] F Jacobsen and D. Bao. Acoustic decay measurements with a dual channel frequency analyzer. Journal of Sound
and Vibration, 115(3):521-537, 1987.

[4] Brandon C. Bloss and Mohan D. Rao. Estimation of frequency-averaged loss factors by the power injection and
the impulse response decay methods. Journal of the Acoustical Society of America, 1 17(1):240-249, January
2005.

[5] M. Carfagni and M. Pierini. Determining the loss factor by the power input method (PIM), part 1: Numerical
investigation. ASME Journal of Vibration and Acoustics, 121:417-421, July 1999.

[6] L. Wu, A. Agren, and U. SundMck. A study of the initial decay rate of two-dimensional vibrating structures in
relation to estimates of loss factor. Journal of Sound and Vibration, 206(5):663-684, 1997.

[7] Nino, Xiang. Evaluation of reverberation times using a nonlinear regression approach. Journal of the Acoustical
Society ofAmerica, 98(4):2112-2121, 1995.

[8] Julius S. Bendat and Allan G. Piersol. Random. Data. Wiley-Interseience, New York, second edition, 1986.

[9] M.R. Schroeder. New method of measuring reverberation time. Journal of the Acoustical Society of America,
37(3):409-412, 1965.

[ 10] MSC.Software Corporation, Santa Ana, CA. MSC Nastran Version. 68 Basic Dynamic Analysis User's Guide,
2004.

[11] N.R. Draper and H. Smith. Applied Regression Analysis. John Wiley and Sons, 2nd edition, 1981.

[12] G. Maidanik. Some elements in statistical energy analysis. Journal of Sound and Vibration, 52(2):171-191,
1977.

[ 13] Richard H. Lyon and Richard G. DeJong. Theory and Application of Statistical Energy Analysis. Butterworth-
Heinemann, second edition, 1995.

[14] H.B. Sun, J.C. Sun, and E.J. Richards. Prediction of total loss factors of structures part III: Effective loss factors
in quasi-transient conditions. Journal of Sound and Vibration, 106(3):465-479, 1986.

[15] R.J. Pinnington and D. Lednik. Transient statistical energy analysis of an impulsively excited two oscillator
system. Journal of Sound and Vibration, 189(2):249-264, 1996.

[16] Daniel J. Inman. Engineering Vibration. Prentice Hall, Upper Saddle River, New Jersey, 2001.

[17] Eric E. Ungar and Edward M. Kerwin, Jr. Loss factors of viscoelastic systems in terms of energy concepts.
Journal of the Acoustical Society of America, 34(7):954-957, 1962.


