
Source of Acquisition
NASA Washington, D. C.

(12) United States Patent
Oakley

IIh^^II^US007i741BI^IRIW

(io) Patent No.:	 US 794 P74 1
(45) Date of Patent:	 Jan.13,2009

(54) ANALYSIS RESISTANT CIPHER METHOD
AND APPARATUS

(75) Inventor: Ernest C. Oakley, Pasadena, CA (US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 734 days.

(21) Appl. No.: 10/956,712

(22) Filed:	 Oct. 1, 2004

(51) Int. Cl.
H04K 1/00	 (2006.01)

H04N 71167	 (2006.01)
G06F 7152	 (2006.01)
G06K 9146	 (2006.01)

(52) U.S. Cl 380/217; 380/28; 708/656;
382/233

(58) Field of Classification Search 380/217,
380/28; 708/656; 382/233

See application file for complete search history.

(56)	 References Cited

U.S. PATENT DOCUMENTS

5,297,073 A *	 3/1994 Davidian 708/655
5,442,699 A	 8/1995 Arnold et al 38014
5,796,837 A	 8/1998 Kim et al 380/28
5,828,754 A * 10/1998 Hogan 341/69
5,991,415 A	 11/1999 Shamir 380/30
6,125,182 A *	 9/2000 Satterfield 380/28
6,269,163 131	 7/2001 Rivestetal380/28
6,304,658 B 1	 10/2001 Kocher et al 380/30
6,330,332 B 	 12/2001 Itoh et al 380/28

6,504,929 BI 1/2003 Tsunoo	 380/28
6,539,092 BI 3/2003 Kocher	 380/252
6,696,993 132 * 2/2004 Karczewicz	 341/67
7,095,896 82 * 8/2006 Abe et al 382/233

2001/0002486 Al 5/2001 Kocher et al 713/171
2003/0044003 Al 3/2003 Chari et al 380/28

(Continued)

OTHER PUBLICATIONS

John Kelsey, Lecture Notes in Computer Science, Compression and
Information Leakage of Plaintext, Publisher: Springer-Verlag
Heidelberg, ISSN: 0302-9743, vol. 2365/2002, Chapter: p. 263-276;
Online date: Aug. 2003.
Niels Ferguson et al., "Helix—Fast Encryption and Authentication in
a Single Cryptographic Primitive," pp. 1-18, Oct. 1, 2004.

Primary Examiner--ChristopherA Revak
Assistant Examiner—Bryan Wright
(74) Attorney, Agent, or Firm—Mark Homer

(57)	 ABSTRACT

A system for encoding and decoding data words including an
anti-analysis encoder unit for receiving an original plaintext
and producing a recoded data, a data compression unit for
receiving the recoded data and producing a compressed
recoded data, and an encryption unit for receiving the com-
pressed recoded data and producing an encrypted data. The
recoded data has an increased non-correlatable data redun-
dancy compared with the original plaintext in order to mask
the statistical distribution of characters in the plaintext data.
The system of the present invention further includes a decryp-
tion unit for receiving the encrypted data and producing a
decrypted data, a data decompression unit for receiving the
decrypted data and producing an uncompressed recoded data,
and an anti-analysis decoder unit for receiving the uncom-
pressed recoded data and producing a recovered plaintext that
corresponds with the original plaintext.

15 Claims, 7 Drawing Sheets

M

ANTI-ANALYSIS
ENCODEAUNIT

RECORDEDDATA	 l06

D1
DATA

COMPPMON
UNIT

COMPAESSED 170
RECORDED DATA

ENCRYPTION UNIT

I

PNCRYPTW DATA	 I1
COMM
CHANNEL

RECOYEU+9
RAWTEXT

126

AND-ANALYSIS
DECODERt1Nrr

muwr
124

12

DECRYPISDDATA 1--110

DECRYPTIONUNIT

V_100

https://ntrs.nasa.gov/search.jsp?R=20090029854 2019-08-30T07:40:25+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10550168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 7,477,741 Bl
Page 2

U.S. PATENT DOCUMENTS

2003/0133567 Al	 7/2003 Yajimaetal380/30
2003/0142818 At	 7/2003 Raghunathan et al. 380/1
2003/0152230 At	 8/2003 Eaker 380/255

2003/0212899 Al	 11/2003 Curtis 713/200
2004/0003275 At	 1/2004 Nakada et a1 713/193
2004/0208231 At * 10/2004 Suzuki 375/130

* cited by examiner

RAINTEXINAL	 l02	
RECOVERED	 128
PLAINTEXT

tD
104)	 126

ANTI-ANALYSIS	 ANTI-ANALYSIS
ENCODER UNIT	 DECODER UNIT

RECORDEDDATA	 106	 UNCOMPRESSED	 4'
RECORDED DATA	

124	
0

109)	
122	 ^

DATA
COMPRESSION	 DATA

UNIT	 DECOMPRESSION
UNIT

COMPRESSED	 110°'
RECORDED DATA

112
DECRYPTED DATA	 120

ENCRYPTION UNIT

114)I18

cri
C/]

ENCRYPTED DATA11	 DECRYPTION UNIT

COMM	 J
CHANNEL

FIG. I	
k, loo

b^

b
Q9

rD

0
0

w
to
0
0

^a

0

A A^1

302

FIG.2 -

X11 /	 .19 A	 n1A
Llb L1U L14	 LIL L1U LUIS	 LUO LU4

blaadoaolaaa b baaJaaad b2 aaadaujaaab d

FIG. 3

i/j^
Vl
J
46vvvv.p
td

S 'DIJ
n	

)OXO	QoXO	OoXO	ooXo	ooXO	voXo	OIXo	OVX

r

+,n+,	nn+,	nt4,	+.r+,	or+,	one,	ter+,	nr+,	
zos

n

M

.c

00N
eri

d
c^

Aa^

a

00X0 =010 10 10 10101 010'101010101 I 1 01 010= 0 I XO

OitiL ZIV

ti0X0=00110000000.000000=00X0

801,vi t,

00X0 == of xo 010 101 0ol 010100 0 0 0olol 110

got,91t,

00X0 == 00X0 0101010 0 00 00 00 00 10 0

bOti0	I	0	t	0

--sit

KX0 =0	0	1

zoti

(9

P4

n
r
etn

V1

L

)0X0	00X0	00X0	00X0	00x0	
bOXO	OIXO	ObX

[[[

ti0t^90b	Otb	bIb	RI 	stet,	7I+,	nr4.ll'ẐOS

0
er

0
a^

0N
M

a
ti

*XO	ZOXO	ISO	00X0	OOXO	OOXO	
00x0	OOx

[FFffFFrTl III[

ti09909	019	tiI9	R19	stno;710	nrn

9 Md

Mo	ZOXO	IOXO	00X0	00x0	OOXO	00x0
	OOX

109	909	0I9	big 7ST700 I9	Rio	a =;TO

)0x0	00X0	00x0	OOXO	00X0	VOXO	
0[x0	ON

[[[

^Ob	90b	Otte	bib	Rti,	stn+,	7r+,	nra,

Z09

Z09

`ql"^ZOS

A4

^r

rr

r
w
0

a\
0a
N

M

c
0
ti

a^

8 Did

8Q8

11	Jill	IIIIIII	I-IIIIII	1111111	1111

 Ot8	ZT8 - tiIR	gist	Q1Q	n'Q 	P770

t^ZB	9Z8	SZ8	0£8	UR	QCQ

Otr8	Ltlt,8	L 9ti8	L Rt R	LncR	7c4	L +,c4

958	858	098	Z92	b9R	L4952	Q09	niQ

q+...+q+q=Q= °q I Iq zq I £q bq 1 Sq 1 9q cq

'^ 908	'^ t08	Z08

902 1	 904 i	 906 *

	

F-0 0 0 1 0 0 1	 1 = 19 =1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

	

Y/V	 Yoa	 Ybd	 Y64	 962	 960	 958	 956

	

1 1 1 11 1 tt .1, 1 1 11 1 111 1 1	 1 11

X20	 0x04	 0x00	 Ox00	 0x01	 0x00	 Ox00	 OxOC

You	 94th	 946	 944	 942	 940

1	

I I I HE

	 l	 ._ .

	 1 11111111111
X00	 0x20	 0x08	 0x10	 Ox00	 Ox10	 Ox00	 0x00

	

YJO	 You	 Ys'+	 viz)	 9JU	 928	 926	 924

1	 l	 1	 l	
1H II I

x02	 0x04	 0x01	 0x02	 Ox00	 0x08	 Ox00	 0x10

	

YLL	 YLV	 Yla	 Yld	 914	 912	 910	 908

	

1	 1	 l	 l	 1 1 . 1 Pill
x20	 MO	 Ox00	 0x12	 .Ox00	 OxO4	 Ox2O	 Ox0c

FIG. 9

w
00

0
v

.pvvV

^d

V1

0

w
N0

v
0
-h

902	 9 i	 906

F",
0	 0 0	 1	 0	 0 1 1	 1 = 19 =1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

ruv	 yv+	 you	 yD5	 956	 954	 946	 942

Ox00	 0x00	 0x00	 Ox00	 Ox00	 0x00	 0x00	 0x00

yLfv 	 you	 920	 9133	 914	 908	 962	 934

l	 J

X00	 0x00	 0x00	 0x00	 Ox00	 Ox00	 0x01	 0x01

»o	 yJL	 you	 yso	 VI 1.	 95U	 928	 948

	

1 Li I I I IJ I I I I I I] I I I I I LLI]]	 J	 l

0x02	 0x02	 0x04	 0x04	 0x04	 0x08	 0x08	 0x10
A A A	 n /1 •	 _
r^t^r	 yew YID)	 9 /U	 952	 922	 910	 920

1	 l	 l	 1	 1	 1	 l	 1	 l

X10	 0x10	 0x12	 0x20	 0x20	 0x20	 0x20	 0x80

FIG. 10

d
v
.p

av
v

td

US 7,477,741 B1

ANALYSIS RESISTANT CIPHER METHOD
AND APPARATUS

FIELD OF THE INVENTION

The present invention relates to the recoding of data, and
more particularly to a recoding of plaintext data prior to
encryption in order to inhibit cryptanalysis.

DESCRIPTION OF RELATED ART

Although there are many excellent modern data encryption
methods, they can sufferfrom a common fault, if they encode-
in-place and create a ciphertext output file which is the same
length as the plaintext input file. This sameness in length
implies that the ciphertext may still be vulnerable to a Crypt-
Analytic attack, where the statistical distribution of charac-
ters may be an aid to eventually breaking the encryption.
Thus, there exists a need to mask the statistical distribution of
characters in a plaintext in order to reduce vulnerability to
Crypt-Analytic attack.

BRIEF SUMMARY OF THE INVENTION

The present invention teaches an enhancement to many
modern encryption methods, by re-coding the original plain-
text file from in a format conforming to either the American
Standard Code for . Information Interchange (ASCII) or the
Extended Binary Coded Decimal Interchange Code (EB-
CDIC) text, for example, into a differently-coded file that has
less information-density and hence more potential redun-
dancy. Some types of re-coding are more effective at intro-
ducing non-correlatable data redundancy, which increases
the file size. Some types ofre-codings can permit sorting-and-
ordering, to group the redundancy so that it can be minimized
by an ancillary Data Compression Engine. This recovers
some of the original compactness, without rendering the file
impossible to reconstruct.

The re-coding advantage arises not from merely increasing
file bulk, but in introducing non-correlatable data-redun-
dancy to reduce the coding efficiency of the plaintext file
which masks the statistical distribution of data characters and
renders the corresponding ciphertext file less susceptible to
Crypt-Analytic attack which can include statistical methods
of attack, Linear cryptanalysis, and Differential cryptanaly-
sis. The ancillary Encryption Engine is still needed to provide
the complex cross-shuffling of the data, and to permit the
acceptance and manipulation of one or more unique keys.
Plaintext in this context means unencrypted data.

The present invention teaches two algorithms or schemes,
called CIPHER08 and CIPHER32, alluding to their initial,
but not final, increase in file-size. The final file-size is deter-
mined by how much non-correlatable data-redundancy can be
removed by an ancillary Data-Compression Engine, before
the intermediate file is sent to the ancillary Encryption
Engine, for conversion into the resulting ciphertext file.
Future research may show that the simpler CIPHER08 algo-
rithm is sufficient to render the resulting ciphertext file suffi-
ciently immune from Crypt-Analytic attack.

In that case, the need for the more complex CIPHER32
algorithm may be reduced. However, current practice shows
that there may be a need for more than one level of data
security, in the interests of conserving bandwidth and/or pro-
cessing time. This is determined by how long in time that an
encrypted file must continue to resist Crypt-Analytic attack.
Alternatively, applying the two schemes sequentially might
serve to better protect an especially sensitive message.

The CIPHER32 algorithm might be so effective so as to
render the Courier-Pouch obsolete for messages requiring the
highest secrecy. That is, messages could be so secure, that
exposing them in a public communications channel would

5 incur negligible risk of compromise. It is anticipated that even
if unintended third-parties were to know and understand these
enhancement algorithms, they would still not be able to
remove their correlation masking-effect, without also know-
ing the encryption key.

ro CIPHER08 and CIPHER32 are not encryption methods,
but are schemes for appending external non-invertibility to
encryption engines which are invertible. That is, the engines
operate bi-directionally with the same key. Some encryption
engines do apply non-invertibility, but do so internally, which

15 does not disguise the plaintext as do CIPHER08 and
CIPHER32.

In one embodiment, the present invention teaches a system
including an anti-analysis encoder unit for receiving an origi-
nal plaintext and producing a recoded data, a data compres-

20 sion unit for receiving the recoded data and producing a
compressed recoded data, and an encryption unit for receiv-
ing the compressed recoded data and producing an encrypted
data. The recoded data has an increased non-correlatable data
redundancy compared with the original plaintext. The system

25 of the present invention further includes a decryption unit for
receiving the encrypted data and producing a decrypted data,
a data decompression unit for receiving the decrypted data
and producing an uncompressed recoiled data, and an anu-
analysis decoder unit for receiving the uncompressed recoded

3o data and producing a recovered plaintext that corresponds
with the original plaintext.

In another embodiment, the present invention teaches a
method for encoding including the steps of obtaining an origi-
nal data word in a plaintext, generating a group of new data

35 words consisting of a predetermined number of new data
words equal to the number of data bits in the original data
word, sorting the new data words in the group into either an
ascending or descending order based on the binary value of
the new data words in order to facilitate compression; and

ao outputting the group of new data words.
Each original data word has a fixed number of data bits,

ones or zeros, occupying known positions within the data
word. Each new data word has the corresponding data bit
from the original data word in the same position while the

45 remaining bits of each new data word are zero. The total
number of data bits in each original data word can be 8-bits,
16-bits, or 32-bits, for example. The sorting order of the
sequentially generated groups of new data words can be alter-
nating ascending and descending. The initial sorting order of

50 the sequentially generated groups of new data words can be
either ascending or descending.

In another embodiment, the present invention teaches a
method for decoding including the steps of obtaining a group
of data words where each word has at most one bit set to the

55 value one in mutually exclusive positions and outputting a
single data word consisting of all the value one bits in their
mutually exclusive positions while the remaining bits are set
to value zero. In this case, the group of data words can be
sorted in either an ascending or a descending order.

60 In another embodiment, the present invention teaches a
method of encoding including the steps of obtaining an origi-
nal data word in an original plaintext, calculating the binary
value of the original data word to determine a number of
binary ones, distributing the number of binary ones randomly

65 among a group of new data words, sorting the new data words
in the group into either an ascending or a descending order
based on the binary value the new data words in order to

US 7,477,741 B 1
3 4

facilitate compression, and outputting the group of new data
words. Alternatively, the sorting of new data words in the
group can be randomly determined into either an ascending or
a descending order. This random sorting of new words greatly
enhances the obscuration of the plaintext and can somewhat 5
reduce the possible compaction of the sorted data by a data
compression engine.

Each original data word contains a fixed number of data
bits occupying known positions within the data word, and
each data bit is designated as either a one or a zero. The ro
number of new data words in the group is determined from the
maximum possible number of data ones plus one and divided
by the number of data bits in each data word. Alternatively,
the maximum possible number of data ones plus one is the
maximum numerical value plus one. Although the preferred 15
number of data bits in each data word is 8-bits, the total
number of data bits in each original data word can also be
16-bits or 32-bits. If the number of data bits in the original
data word is 8, then the number ofnew data words in the group
is 32 since 2"8-1 is the maximum numerical value and 2"8 is 20
the maximum numerical value plus one. Dividing this maxi-
mum numerical value plus one by the word size yields the
number of new data words. Expressed mathematically, (2"8)/
8=256/8=32.

Similarly, if the number of data bits in the original data 25
word is 16, then the number of new data words in the group is
4,096 since 2"16=65,536=4,096*16. Although larger word
sizes are possible with this algorithm, they may not be prac-
tical due to processing and memory constraints in a typical
processor. The sorting order of the sequentially generated 30
groups of new data words can be alternating ascending and
descending. The initial sorting order of the sequentially gen-
erated groups of new data words can be either ascending or
descending. Alternatively, the initial sorting order can be
randomly chosen to be either ascending or descending. 	 35

In another embodiment, the present invention teaches a
method for decoding including the steps of obtaining a group
containing data words, summing the number of ones in each
of the plurality of data words in the group to produce a one
sum value, and outputting a single data word having the one 4o
sum value represented as a binary value. Each of the words in
the group can be sorted in either an ascending or descending
order.

BRIEF DESCRIPTION OF THE DRAWINGS 	 45

The exact nature ofthis invention, as well as the objects and
advantages thereof, will become readily apparent upon con-
sideration of the following specification in conjunction with
the accompanying drawings in which like reference numerals 50
designate like parts throughout the figures thereof and
wherein:

FIG.1 is a block diagram showing recoiling, compression,
encryption, transmission, decryption, decompression and un-
recoding according to an embodiment of the invention. 	 55

FIG. 2 shows a generic mapping of bits in a sample original
data word to a group of generated data words according to an
embodiment of the invention.

FIG. 3 shows a generic mapping of bits in a sample original
data word to a group of generated data words where the 60
generated data words are concatenated together according to
an embodiment of the invention.

FIG. 4 shows a specific mapping of bits in a sample original
data word to a group of generated data words according to an
embodiment of the invention. 	 65

FIG. 5 shows a specific mapping of bits in a sample original
data word to a group of generated data words where the

generated data words are sorted and concatenated together
according to an embodiment of the invention.

FIG. 6 shows a group of newly generated words with a first
mapping of bits from a first original data word that is sorted in
ascending order followed by a second group of newly gener-
ated words with a second mapping of bits from a second
original data word that is sorted in descending order.

FIG. 7 shows a group of newly generated words with a first
mapping of bits from a first original data word that is sorted in
descending order followed by a second group of newly gen-
erated words with a second mapping of bits from a second
original data word that is sorted in ascending order.

FIG. 8 shows a generic mapping of bits in a sample original
data word to a group of generated data words according to an
embodiment of the invention.

FIG. 9 shows a specific mapping of bits in a sample original
data word to a group of generated data words according to an
embodiment of the invention.

FIG. 10 shows a specific mapping of bits in a sample
 original data word to a group of generated data words where

the generated data words are sorted and concatenated
together according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made in detail to the preferred
embodiments of the. invention, examples of which are illus-
trated in the accompanying drawings. While the invention
will be described in conjunction with the preferred embodi-
ments, it will be understood that they are not intended to limit
the invention to these embodiments. On the contrary, the
intention is intended to cover alternatives, modifications and
equivalents, which may be included within the spirit and
scope of the invention as defined by the appended claims.

Furthermore, in the following detailed description of the
present invention, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. However, it will be obvious to one of ordinary skill
in the art that the present invention may be practiced without
these specific details. In other instances, well known meth-
ods, procedures, components, and circuits have not been
described in detail as not to unnecessarily obscure aspects of
the present invention.

In reference to FIG. 1, a recoded encryption and decryption
system 100 for increasing non-correlatable data redundancy
to inhibit analysis and includes an anti-analysis encoder unit
104, a data compression unit 108, an encryption unit 112, a
decryption unit 118, a data decompression unit 122, and an
anti-analysis decoder unit 126. Re-coding introduces a non-
correlatable data-redundancy to reduce the coding efficiency
of the plaintext file which masks the statistical distribution of
the data characters and renders the corresponding ciphertext
file less susceptible to Crypt-Analytic attack which can
include statistical methods of attack, Linear cryptanalysis,
and Differential cryptanalysis.

The anti-analysis encoder unit 104 receives an original
plaintext 102 and produces a recoded data 106. The recoded
data 106 has an increased non-correlatable data redundancy
as compared with the original plaintext 102. The data com-
pression unit 108 receives the recoded data 106 and produces
a compressed recoded data 110. The encryption unit 112
receives the compressed recoded data 110 and produces an
encrypted data 114. The encrypted data 114 is transmitted
through a communication channel 116 to the decryption unit
118. The communication channel 116 can be a wireless com-
munication path, a wire-based communication path, an opti-

US 7,477,741 B1
5 6

cal communication path, transferring files via transportable
media, or may include printed text, for example.

The decryption unit 118 receives the encrypted data 114
and produces a decrypted data 120. The text decompression
unit 122 receives the decrypted data 120 and produces an 5

uncompressed recoded data 124. The anti-analysis decoder
unit 126 receives the uncompressed recoded data 124 and
produces a recovered plaintext 128 that corresponds with the
original plaintext 102. 	

1C
CIPHER08 (NCIPH08 and DCIPH08): In one embodi-

ment, the recoded encryption and decryption system 100 for
increasing non-correlatable data redundancy uses a scheme
called CIPHER08 which includes an encoding scheme called
NCIPH08 and a decoding scheme called DCIPH08. In refer- 15

ence to FIG. 2, the NCIPH08 scheme introduces data-redun-
dancy by splitting each data word of original plaintext 202
into a number of single-bit bit-plane words (204 to 218) based
on the number of bits in the word of original plaintext 202. 20

For example, an original data word 202 having eight bits is
obtained from the original plaintext 102. The eight bits of the
original data word 202 occupy particular positions within the
original data word shown as b0 to b7. A group of eight new

25
words (204 to 218) is generated. Each of these generated new
words (204 to 218) contains only one bit in a position that
corresponds to the position of the bit within the original data
word 202, while the rest of the bits in the generated word are
zeros. FIG. 3 shows the generated words (204 to 218) as they 3b
are concatenated to form a group 302 that is then output as a
part of the recoded data 106. The CIPHER08 algorithm may
be implemented on a suitably programmed microcomputer.

FIG. 4 shows a specific mapping of bits in a sample original
data word 402 having a value of 0x54 to a group of eight 35

generated data words (404 to 418). The bit in the b0 position
of the original data word 402 is mapped to the b0 position of
the generated data word 404. The bit in the bl position of the
original data word 402 is mapped to the b position of the 40
generated data word 406. Similarly, the remaining bits of the
original data word 402 are each mapped to the corresponding
position within a newly generated data word yielding a on-
to-one correspondence between each of the bits of the origi-
nal data word and a correspondingly located bit having the 45

same value in each of the generated words (404 to 418).
FIG. 5 shows a specific mapping of bits in a sample original

data word to a group of generated data words (404 to 418)
where the generated data words are sorted and concatenated

50
together to form a sorted group 502 according to an embodi-
ment of the invention. The mutually exclusive mapping of the
bits of the original data word 402 onto the generated words
(404 to 418) permits the data to be extracted after sorting.

FIG. 6 shows the group 502 of newly generated words with 55
a first mapping of bits from a first original data word that is
sorted in ascending order followed by a second group 602 of
newly generated words with a second mapping of bits from a
second original data word that is sorted in descending order.
The newly generated word 616 follows the newly generated 60
word 404 and illustrates an alternating ascending and
descending order sort.

FIG. 7 shows a group of newly generated words with a first
mapping of bits from a first original data word that is sorted in
ascending order followed by a second group of newly gener- 65
ated words with a second mapping of bits from a second
original data word that is sorted in descending order. The

newly generated word 416 follows the newly generated word
604 and illustrates an alternating descending and ascending
order sort.

As with the description of FIG. 6, the determination of
ascending and descending may be a matter of perspective
where the order the words are transmitted or stored can deter-
mine whether subsequent word groups are sorted in an
ascending or descending manner. Hence, these notations are
relative. An aspect of using the alternating ascending or
descending sort is that the zero value words will be grouped
together and permit a more efficient compression result from
the data compression unit 108. The choice for the sorting
order of the very first group of new data words, whether
ascending or descending, may be made randomly or by a
default choice of either order. As an alternative, the choice of
either an ascending or descending sorting order between sub-
sequent word groups can also be made randomly. This can
contribute to the data obscuration of the original plaintext
while potentially sacrificing some measure of data compres-
sion since the zero value words may not always be grouped
together as with an alternating ascending and descending sort
order between subsequent words.

Clearly, there are four choices regarding sorting of the new
data words between subsequent word groups: ascending only, .
descending only, alternately ascending and descending, and
randomly either ascending or descending. Each of these
single-bit bit-plane words can contain only one unique value
based on a binary assignment of value depending on the
particular bit position. For example, each bit represents a
binary digit that can be only one of two values, zero or one. If
each word of original plaintext has 8 data bits, the individual
values for each data bit range from one (1) if the b0 bit is set
to the value one, to one-hundred twenty-eight (128) if the b7
bit is set to the value one, while each of the generated words
will be all zeros if the corresponding bit is set to the value
zero.

Therefore, each original data word is expanded into eight
one-byte bit-planes, organized into 8-byte blocks if the word
size of the original plaintext word is 8 bits. Similarly, other
word sizes may be used including 4-bit, 16-bit, 32-bit, and
64-bit words. Furthermore, the 8-byte blocks are internally
sorted in alternate ascending and descending order [repre-
sented as /, \, /, \, ...1, to further maximize the grouping of
zero-valued bytes together, even in subsequent blocks. The
ancillary data-compressionofthe blocked filewill produce an
intermediate file in which the 8-byte block boundaries are
blurred, thus rendering the blocking-structure indistinct.

The compressed intermediate file has a reduced statistical
correlation with the original plaintext file, and the ancillary
Encryption Engine will yield a ciphertext file possessing a
blocking structure impossible to reconstruct, without the
encryption key. A file which has been encoded using the
NCIPH08 scheme, and subsequently compressed, can have
only one of two possible variable lengths, depending on the
initial sort-order [/,1, ...1 of the encoded file if the alternating
ascending and descending sort order is used. However, the
NCIPH08 scheme benefits from the use of random sort order-
ing between subsequent words since more than two possible
variable lengths are then possible.

Below is an example QBASIC Program code to implement
the NCIPH08 scheme:

US 7,477,741 B1
7
	

8

N C I P H 0 8- eNcode module ofCIPHERO&
Ernest C. Oakley	 QBASIC Program	 20020620
%.I_S	 & - LL	 F—S	 # - F—L

I$ - "c.\HEX256.bin7 'Test file.
OPEN I$ FOR BINARY ACCESS READ AS #1
-

'Test file.
-- - ------ ----- --------	 ------------------------

HMS$ - MIDS(TIMU, 1, 2) + MID$(TIME$, 4, 2) + MID$(TMIE$,7, 2)
OS -*c:\NC" + HMS$ + ".bin" 	 'Bit-plane output
.	 0$ - "c:\NCIPH08. bin" 'Bit-plane.
OPEN 0$ FOR BINARYACCESS WRITE AS #2 'Bit-plane.

RANDOMIZE TIMER 'Epoch past midnight.
SRT-% - INT(RND - 2)
I

Initial sort ASC'ng or DES'ng9

P& - I
-----°--------- ---------------------------------

'Initialize output Me-pointer.

DO WHILE (NOT EOF(I)) ----

--------- ------

I
A$ = IN?UTS(l, #1) 'Get unconverted Characters.
IF A$ - " " THEN EXIT DO . Null-string?
B% = ASC(A$) 'Input byte numeric equivalent.
FOR E%-0 TO 7 'Exponent-of-two.

T$ - T$ + CHRS((B% MOD 2) • 2 &fftfi; EO/,) 'Low-order bit set?
B%-B%\2 'Discard a lo-order bit.

NEXT E% 'Next Exponent-of-two.
-------- - - -- - - - -------------------- - ---- --- ---	 ---
BUBBLE-SORT with Flag (switch) is, for THIS purpose, faster than
SHELL or other sorts which require more computational overhead for

small records. ---------------------
CONST FALSE% - 0, TRUE% NOT FALSE
DO 'Bubble-sort with flag.
FLAG% - FALSE% 'No exchanges have occured.
FOR K*/o -1 TO 7 'Byte-wise in Block.
SELECT CASE SRTO/o Depending on Sort-Order:

CASE 0 'Ascending9
P$ - MID$(T$, K-/., 1)
Q$ - MID$(T$, K%+1, 1)
IF P$ > Q$ THEN Not ascending?

MID$(T$, K%, 1) = Q$ 'Exchange.
MID$(T$, KIK + 1, 1) - P$ 'Exchange.
FLAG% = TRUE% 'Exchange has occured.

ENDIF
CASE 1 'DEscending?

P$ - MID$(T$, K-/., 1)
Q$ - MID$(T$, KI/o +1, 1)

IF P$ < Q$ THEN Not ascending?
MID$(T$, K%,1) - Q$ 'Exchange.
MID$(T$, K%+ 1, 1) - P$ ' Exchange.
FLACTolo - TRUEo/o 'Exchange has occured.

END IF --------------------
END SELECT 'Depending on Sort-Order:
NEXT K% ------

LOOP WHILE FLAG% 'Continue 'til no more exchanges.
SRT*/. - SKI'/. XOR I
-

' Reverse sort-order, next pass.
I-- - -- ---- - ----------- - -- - ----------- -------------

PUT #2, P&, T$

'Output one 8-byte field/file.

I& - I& + I 'IN-bytes accumulate count.
0& - 0& + 8 'OUT-bytes accumulate count.
P&-P&+ g ' Increment output Me-pointer.
T$ - " " 'Null-out Tally output string.
LOOP "Til end-of-file.

'Come here at End-of-File.
I

PRINT "File4ength—I ="; LOF(I), "Bytes-in -";
--------------------------- — ----------
I&

PRINT "Calculated Bytes-out 	 8 * I&
PRINT "File-length-2 -"; LOF(2), "Bytes-out 0&
PRINT "Skipped? 	 (LOF(l) - 1&)
CLOSE #1, #2

SYSTEM

US 7,477,741 B1
9

Below is an example QBASIC Program code to implement
the decode module of CIPHER08:

I D C I P H 0 8— Decode module of CIPHER08. 	 I
I Ernest C. Oakley	 QBASIC Program	 2002_06_20	 1
I % = LS	 & = I_L	 I = F_S	 # = F_L	 I

I$= "c:\NCIPH08.bin"	 'Bit-planes.
OPEN I$ FOR BINARY ACCESS READ AS #1 	 'Bit-planes.

O$ _ "c.\DCIPH08.bin"	 ' Plaintext.
OPEN O$FOR BINARY ACCESS WRITE AS #2 	 Plaintext.

-----	 --- ------- ---	 -------------------------------------
CLS
PO& =1
	

' Initialize output file pointer.

DO WHILE (NOT EOF(1))
T$ = INPUT$(8, #1) Get length=8 records.
C% = 0 Clear output character accum.
FOR PT%- I TO 8 Accumulate eight bit-planes.

S$ — MID$(T$, PTO/6, 1) 'Isolate single byte-slice.
IF S$ m "" THEN EXIT FOR 'Null-string?
A% —ASC(S$) 'Bit-plane partial sum
C% — C% ORA"/o 'Boolean-sum bit-planes.

NEXT PT% 'Next byte-slice.
z$ = CHR$(C%) 'Convert one I-byte Character.
I& = I& + 8 'Increment input counter.
PUT #2, PO&, Z$ ' Output one I -byte Character.
PO& = PO& + 1 'Increment output pointer.
0&-0&+1 'Increment output counter.
LOOP ' 'Til end-of-file.

'Come here for End-of-File.
PRINT "Filelength_1 -a'; LOF(1), "Bytes-in ='; I&
PRINT "File-length---2 ='; LOF(2), "Bytes-out="; O&
CLOSE #1, #2

SYSTEM

10

CIPHER32 (NCIPH32 and DCIPH32): In one embodi- 40
ment, the recoded encryption and decryption system 100 for
increasing non-correlatable data redundancy uses a scheme
called CIPHER32 which includes an encoding scheme called
NCIPH32 and a decoding scheme called DCIPH32. This
algorithm introduces data-redundancy by converting the 45
decimal equivalent of an 8-bit plaintext character into a series
of from one (1) to two-hundred fifty-five (255) bits, randomly
distributed throughout a 32-byte block. That is, CIPHER32
converts the source ASCII plaintext file into Tally Language.

One definition of Tally Language is symbolized by count- 50

ing items in groups of five; four vertical marks grouped by a
fifth horizontal slash which organizes the set. A mark (or
slash) is the only character in that number system, and this
one character does not possess positional-value. In 55
CIPHER32's implementation of Tally Language, only the
total number of set-bits in the 32-byte block is significant;
neither the zero-bit positions nor the resultant pattern of the
bits in each of the 32-bytes in the block, are significant. The
CIPHER32 algorithm may be implemented on a suitably 60
programmed microcomputer.

At this point in the algorithm, the complete randomness of
the values of the bytes in the 32-byte block is a strength that
may be sufficient. However, these blocks are likely to have 65
little inherent redundancy, and yield only a small degree of
compression efficiency. If the 32-bytes in a block are sorted,

the redundancy will be improved, without compromising the
coding. Furthermore, the 32-byte blocks can be internally
sorted in alternate ascending and descending order [/, \, /,
\, ... J, to further maximize the grouping ofsame-valued bytes
together, even in subsequent blocks. Despite this sorting
within a block, the total number of set bits within the block is
not changed, so the bit-count total for the block remains the
same, and still accurately represents the equivalent decimal
value of the original source byte.

The sorting-and-ordering and subsequent data-compres-
sion will produce an intermediate file in which the 32-byte
block boundaries are completely blurred, thus rendering the
blocking-structure indistinct. The compressed intermediate
file no longer has any correlation with the original plaintext
file, and the ancillary Encryption Engine will yield a cipher-
text file possessing a blocking structure impossible to recon-
struct, without the encryption-key.

A file which has been CIPHER32 (NCIPH32) encoded,
and subsequently compressed, can have many possible vari-
able lengths, depending on the initial sort-order of the
encoded file, and the random decimal-equivalent values ofthe
bytes which were selected to create the required total bit-
count for the 32-byte blocks.

Below is an example QBASIC: Program code to implement
the encode module of CIPHER32:

US 7,477,741 B1
11
	

12

I	 N C I P H 3 2	 —	 eNcode module of CIPHER32. 	 I
I	 Ernest C. Oakley	 QBASIC Program	 2002_06_20	 1
I	 %— I_S	 & = I_L	 I = F_S	 # = F_L	 I
+===.a=a=^®==^_®_, ®=®=mss..®®^®...®_®^®®®^_® __®.®_^ +

I$	 'Test file.
OPEN I$ FOR BINARY ACCESS READAS #1	 'Test file.

HMS$ = MID$(TIME$, 1, 2) + MID$(THAE$, 4, 2) + MID$(TIME$,7, 2)
O$ _ "c:WC" + HMS$ + " .bin"	 'Tay-language output.
'OS = "c:INCIPH32 .bin"	 ' Tally-languange output.
OPEN O$ FOR BINARY ACCESS WRITE AS #2 	 ' Tally-language output.

What follows immediately are code -substitution strings, which are
randomly searched to provide randomly selected substitution codes
which contain the bit-count to match one of 32 sub -tallies.
The strings are preferable to integer arrays which must be loaded
with separate READS from DATA statements. Halfthe size, too.

B I$ = CHRS (1) + CHR$(2) + CHR$(4) + CHR$(8) + CHR$ (16) + CHRS(32)
B1$=Bl$+CHR$(64)+CHRS(128) '

B2S = CHR$(3) + CHR$ (5) +CHR$(6) + CHR$(9) + CHRS (10) + CHR$(12)
B2$ = B2$ + CHR$(17) + CHR$(18) + CHR$(20) + CHR$(24) + CHR$(33)
B2$ = B2$ + CHR$(34) + CHR$(36) + CHR$(40) + CHR$(48) + CHR$(65)
B2$ — B2$ + CHR$(66) + CHR$(68) + CHR$(72) + CHR$(80) + CHR$(96)
B2$ = B2$ + CHR$(129) + CHRS (130) + CHR$(132) + CHR$(136) + CHR$(144)
B2$ — B2$ + CHRS (160) +CHR$(192)

--
B3$ — CHR$(7) + CHR$(11) + CHR$ (13) + CHRS(14) + CHR$(19) + CHR$(21)
B3$ = B3$ + CHR$(22) + CHR$(25) + CHR$(26) + CHR$(28) + CHR$(35)
B3$ — B3$ + CHR$(37) + CHRS(38) + CHR$(41) + CHR$ (42) + CHRS (44)
B3$ = B3$ + CHR$(49) + CHRS (50) + CHR$(52) + CHR$(56) + CHR$(67)
B3$ — B3$ + CHR$(69) + CHRS(70) + CHR$ (73) + CHRS (74) + CHR$(76)
B3$ = B3$ + CHR$(81) + CHR$(82) + CHR$(84) + CHR$(88) + CHR$(97)
B3$ — B3$ + CHR$(98) + CHRS (100) + CHRS (104) + CHR$ (112) + CHRS(131)
B3$ = B3$ + CHR$(133) + CHRS (134) + CHR$(138) + CHR$(140) + CHR$(145)
B3$ = B3$ + CHR$(148) + CHR$(152) + CHRS(161) + CHRS (162) + CHR$(164)
B3$ = B3$ + CHR$(168) + CHR$(176) + CHRS(193) + CHRS(194) + CHR$(196)
B3$ = B3$ + CHR$(200) + CHR$(208) + CHR$ (224)

134$ = CHR$(15)+ CHRS(23) + CHR$(27) + CHR$(29) + CHR$ (30) + CHR$(39)
B4$ = B4S + CHRS(43) + CHR$(45) + CHR$(46) + CHR$(51) + CHR$(53)
B4$ = B4$ + CHR$(54) + CHRS(57) + CHR$ (58) +CHRS (60) + CHR$(71)
B4$ = B4S + CHR$(75) + CHRS(77) + CHR$(78) + CHR$(83) + CHR$(85)
B4$ — 134S + CHR$(86) + CHRS(89) + CHR$(90) + CHR$(92) + CHR$(99)
B4$ = B4$ + CHR$(101) + CHR$(102) + CHR$(105) + CHR$(106) + CHR$(108)
134S — B4$ + CHR$(113) + CHR$(114) + CHR$(116) + CHR$(120) + CHR$(135)
B4$ — B4$ + CHR$(139) + CHR$(141) + CHR$(142) + CHR$(147) + CHR$(149)
B4$ = B4$ + CHR$(150) + CHR$(153) + CHRS(154) + CHR$(156) + CHR$(163)
B4$ = B4$ + CHR$(165) + CHR$(166) + CHR$ (169) + CHR$(170) + CHR$(172)
B4$ =B4$ +CHR$(177) +CHR$(178) +CHR$(180) +CHR$(184) +CHR$(195)
B4$ — B4S + CHR$(197) + CHR$(198) + CHRS(201) + CHR$(202) + CHRS(204)
B4S = B4$ + CHR$(209) + CHR$(210) + CHRS(212) + CHR$ (216) + CHR$(225)
B4$ — B4$ + CHR$(226) + CHR$(228) + CHR$(232) + CHR$(240)

B5$ -CHR$(31) + CHRS(47) + CHR$(55) + CHR(59) + CHR$(61) + CHRS(62)
B5$ = B5$ + CHRS (79) + CHR$ (87) + CHR$(91) + CHR$(93) + CHR$(94)
135$ = B5$ + CHR$(103) + CHRS (107) + CHRS(109) + CHR$(110) + CHR(115)
B5$ — B5$ + CHR$ (117) + CHR$(118) + CHRS(121) + CHRS(122) + CHR$(124)
B5$ =B5$ + CHRS (143) +CHR$(151) +CHR$(155) +CHR$(157) +CHR$(158)
B5$ — B5$ + CHR$(167) + CHRS (171) + CHRS(173) + CHR$(174) + CHRS(179)
B5$ = B5$ + CHR$(181) + CHR$ (182) + CHRS (185) + CHR$(186) + CHR$(188)
B5$ — B5$ + CHRS (199) + CHRS(203) + CHR$ (205) + CHRS(206) + CHRS(211)
B5S = B5$ + CHRS (213) + CHRS(214) + CHRS(217) + CHR$(218) + CHRS(220)
B5$ — B5$ + CHRS(227) + CHR$(229) + CHR$(230) + CHR$(233) + CHR$(234)
B5S = B5$ + CHR$(236) + CHR$(241) + CHRS(242) + CHR$(244) + CHR$(248)

B6$ = CHR$(63) + CHR$(95) +CHR$(111) + CHR$(119) + CHR$(123)
B6$ = B6S + CHR$(125) + CHR$(126) + CHRS(159) + CHRS(175) + CHR$(183)
B6$ — B6$ + CHR$ (187) + CHR$ (189) + CHR$(190) + CHR$(207) + CHR$(215)
B6S — B6$ + CHRS (219) + CHRS (221) + CHR$(222) + CHR$(231) + CHR$(235)
B6$ — B6$ + CHRS (237) + CHRS (238) + CHRS(243) + CHR$(245) + CHR$(246)
B6S — B6S + CHRS(249) + CHR$ (250) + CHR$(252)

B7$ = CHRS (127) + CHRS (191) + CHR$(223) + CHR$(239) + CHR$(247)
137S = B7$ + CHRS (251) + CHR$(253) + CHR$(254)

US 7,477,741 B1
13
	

14

continued

SCREEN 12	 016 30x80 640x480
RANDOMIZE TIMER 	 Epoch past midnight.
P& -1	 'Initialize output file-pointer.

-- -----------------------°- ----------
DO WHILE (NOT EOF(1))
AS - INPUT$(1, #1) 	 'Get unconverted Character.
IF AS - "" THEN EXIT DO	 'Null-string?
SRT%- INT(RND' 2) 	 'Initial sort ASC'ng or DES'ng?
B%-ASC (A$)	 'Decimal equivalent.
FOR C%- 32 TO 1 STEP -1	 'Sub-tallies divisor & index.

D% - B% \ C%	 'Calculate integer sub-tally.
B%- B% - D%	 'Calculate new remainder.
IF D% - 8 THEN D% - (&HFF) ' Eight bits, only one way.
IF D% - 7 THEN D%- ASC(MID$(B7$, RND * (LEN(B7$) - 1) + 1, 1))
IF D% - 6 THEN D% - ASC(MID$(B6$, RND • (LEN(B6$) - 1) + 1, 1))
IF D%-5 THEN D% - ASC(MID$(B5$, RND o (LENO35$) - 1) + 1, 1))
IF D%-4 THEN D%-ASC(MID$(B4$, RND * (LEN(B4$) - 1) + 1, 1))
IF D%=3 THEN D%-ASC(MID$(B3$, RND • (LEN(B3$) - 1) + 11 1))
IF D%- 2 THEN D% - ASC(MID$(B2$, RND • (LEN(B2$) - 1) + 11 1))
IF D%- I THEN D%-ASC(MID$(BI$, RND • (LEN(BI$) - 1) + 1, 1))
T$ - T$+ CHR$(D%) 	 'Concatenate block-string.

NEXT C%	 Next Block byte-count.

BUBBLE-SORT with Flag (switch) is, for THIS purpose, faster than
SHELL or other sorts which require more computational overhead for
small records. '----------------------------------

CONST FALSE/6 - 0, TRUE% - NOT FALSE
DO 'Bubble-sort with flag.
FLAG%- FALSE% 'No exchanges have.occured.
FOR K% -1 TO 31 'Byte-wise in Block
SELECT CASE SRT% 'Depending on Sort-Order:

CASE 0 ' AScending?
P$ - MID$(T$, K%, 1)
Q$ - MID$(T$, K%+ 1, 1)
IF P$ > Q$ THEN 'Not ascending?

MID$(T$, K%,1) - Q$ 'Exchange.
MID$(T$, K%+ 1, 1) - P$ 'Exchange.
FLAG°/ - TRUE% 'Exchange has occured.

END IF '-------------------------------
CASE I ' DEscending?

P$ - MID$(T$, K%,1)
Q$ - MID$(T$, K%+ 1,1)
IF P$ < Q$ THEN 'Not descending?

MID$(T$, K%, 1) - QS 'Exchange.
MID$(T$, K%+ 1, 1) - P$ 'Exchange.
FLAG% - TRUE% 'Exchange has occured.

ENDIF ' ------------------------------
END SELECT 'Depending on Sort-Order:
NEXT K% --	 ----	 -	 -
LOOP WHILE FLAG% ' Continue 'til no more exchanges.
SRT%- SRT% XOR 1 'Reverse sort-order, next pass.

PUT #2, P&, T$ 'Output one 32-byte field/file.
T$ - "" 'Initial Block null-string.
I& - I& + I 'IN-bytes accumulate count.
0&-0&+32 ' OUT-bytes accumulate court.
P& - P& + 32 'Increment output file-pointer.
SRT%- SRT°/ XOR 1 'Reverse sort order next pass.

LOOP	 ' 'Til end-of-file.

'Come here at End-of-file.

PRINT "Skipped? - "; (LOF(1) - I&)
PRINT "File4ength-1 ="; LOF(1), "Bytes-in -"; I&
PRINT "Calculated Bytes-out -'; 32 . I&
PRINT "File-length-2 -"; LOF(2), "Bytes-out -"; O&
CLOSE #1, #2

SYSTEM

US 7,477,741 B1
15
	

16
Below is an example QBASIC Program code to implement

the decode module of CIPHER32:

I D C I P H 3 2— Decode module of CIPHER32.	 I
I Ernest C. Oakley	 QBASIC Program	 2002_06_20	 1
I % - I_S	 & - I_L	 ! - F_S	 # - F_L	 I

I$ - "c:\NCIPH32.bin"	 Tally-tang.
OPEN I$ FOR BINARY ACCESS READ AS #1 	 ' Tally-tang.

O$ _ "c.\DCIPH32.bin"
	

Plaintext.
OPEN O$ FOR BINARY ACCESS WRITE AS #2

	
Plaintext.

--.------------- --------------------
CLS	 '
PO& = I 'Initialize output file pointer.
CT/6 = 32 'Block byte-count.

DO WHILE (NOT EOF(1)) I— — --- 	 --- — — —
T$ — INPUT$(CT%, #I) 'Get fixed-length records.
IF T$ — ""THEN EXIT DO ' Null-string?
C%-0 'Clear output character accum.
FOR PT% — 1 TO CT% 'Accumulate 32 sub-tallies.

S$ — MID$(T$, PT%, I) 'Isolate single sub-tally.
IF S$ =""THEN EXIT FOR 'Null-string?
A%—ASC(S$) 'Convert byte to integer.
FOR E% - 0 TO 7 'Sum eight bits.
IF (A% MOD 2) THEN 'Is to-order bit SET.

C% - C% + 1 'Arithmetic-sum bits.
END IF '
A% - A% \ 2 'Drop lo-order bit.

NEXT E% 'Sum Eight bits.
NEXT PT% ' Next sub-tally.
Z$ — CHR$(C"/u) 'Convert one 1-byte Character.
PUT #2, PO&, Z$ 'Output one 1-byte Character.
PO& = PO& + 1 Increment output pointer.
I& - I& + 32 Increment input counter.
O& - O& + I Increment output counter.
LOOP ' 'Til end-of-file.

' Come here at End-of-file.

-----	 ------------	 -----------

PRINT "File4ength_1 —"; LOF(I), "Bytes-in a'; I&
PRINT "File-length-2 ="; LOF(2), "Bytes-out —"; O&
CLOSE #I, #2

SYSTEM

The present invention enhances current encryption meth- 	 black art, and those skilled in it are not likely to reveal to what
ods by introducing a large measure of true randomness into 45 degree that the state-of-the-art can recover plaintext from
what must ultimately be a deterministic process. The purpose

	
intractable ciphertext codes. It is still anticipated that the

is not to introduce a new encryption method, but to remove	 methods described in the present invention will prove valu-
correlatable clues which limit the effectiveness of many exist- 	 able in expanding data security in a field already possessing
ing Encryption Engines. The phrase "true randomness" needs 	 many mature products.
further qualification. For these two algorithms, even pseudo- 50 One historical failing of good encryption methods can
randomness is sufficient, for the values to have no usable 	 occur due to a human mistake of re-encrypting the same
correlation with the source plaintext. 	 message with a previously used key. Some modern methods

Both of the encryption-enhancement algorithms described, 	 tend to minimize the likelihood of this happening by requiring
create a blurring of the block boundaries. Each block repre- 	 the use ofa Nonce, which is a word used only once and causes
sents a separate single byte or character of the source plain- 55 the resulting ciphertext to be different, even when the same
text. Hence the blurring is actually a "random fusion" of the 	 encryption key is used. However, the introduction of Nonces
edges of the source bytes, and that fusion implies that the 	 can further complicate key administration. Anti-analysis
block edges overlap for one or more bits, thus obscuring	 encoding makes the need for Nonces largely unnecessary and
source-character separation. It is not known how to equate 	 avoids the associated additional complexity.
this random-obscuring with any certain fixed level of tradi- 60 FIG. 8 shows a generic data word 802 that can be mapped
tional encryption key-width, such as (say) 256 —bits—wide. It	 to a decimal value D 804, for example, corresponding to a
will vary from block-to-block, depending on chance merg- 	 decimal value of the generic data word 802. The decimal
ings in the Data Compression phase of the enhancement 	 value D 804 corresponds to a discrete number of data bits 806,
process.	 the number of discrete data bits corresponding to the decimal

Academe, Government security agencies, and some inde- 65 value D 804. Each of the number of discrete data bits 806 is
pendent researchers have adequate resources to exhaustively 	 scattered among a collection of generated words (808 to 870)
evaluate the efficacy of these algorithms. Crypt-Analysis is a	 according to the CIPHER32 algorithm. In this case, this algo-

US 7,477,741 B1
17

rithm introduces data-redundancy by converting the decimal
equivalent of an 8-bit plaintext character into a series of from
one (1) to two-hundred fifty-five (255) bits, randomly distrib-
uted throughout a 32-byte block. That is, CIPHER32 converts
the source ASCII plaintext file into Tally Language. The 5
CIPHER32 algorithm may be implemented on a suitably
programmed microcomputer.

FIG. 9 shows an example of a data word 902 having a
hexadecimal value of Ox 13 and being converted into the deci-
mal value Od19 904 and being represented by nineteen "1" to
bits 906. In this case, the nineteen "1" bits are shown ran-
domly scattered among the 32 data bytes for an 8-bit imple-
mentation as shown. Note, more than one bit may be set in a
particular generated data word such as in generated data word
916. As before, the rest of the bits not shown as "1" are "0". 15
FIG. 10 shows the generated data words (908 to 970) from
FIG. 9 sorted according to a low-to-high sorting order. The
choice for the sorting order of the very first group of new data
words, whether ascending or descending, may be made ran-
domly or by a default choice of either order. As an alternative, 20
the choice of either an ascending or descending sorting order
between subsequent word groups can also be made randomly.
As in the case with NCIPHO8, the NCIPH32 algorithm can be
implemented using four choices regarding sorting of the new
data words between subsequent word groups: ascending only, 25
descending only, alternately ascending and descending, and
randomly either ascending or descending.

Those skilled in the art will appreciate that various adap-
tations and modifications of the just-described preferred
embodiments can be configured without departing from the 30

scope and spirit of the invention. Therefore, it is to be under-
stood that, within the scope ofthe amended claims, the inven-
tion may be practiced other than as specifically described
herein.	

35

What is claimed is:
1. An encoding method for a plaintext, comprising:
obtaining an original data word from a plurality of data

words in an original plaintext, each original data word
40

having a predetermined number of data bits occupying
predetermined positions within the data word, each data
bit being designated as one of a one or a zero;

generating a group of new data words using a processor
consisting of a predetermined number of new data words 45

equal to the number of data bits in the original data word,
each new data word having the corresponding data bit
from the original data word in the same position while
the remaining bits are zero; 	

so
sorting the new data words in the group using a processor

into one of an ascending and a descending order based
on the binary value of the new data words in order to
facilitate compression; and

outputting the group of new data words. 	 55
2. The encoding method of claim 1,
wherein the predetermined number of data bits in the origi-

nal data word is one of 8,16 or 32.
3. The encoding method of claim 1,
wherein the sorting order of the sequentially generated 60

groups of new data words is one of ascending only,
descending only, alternately ascending and descending,
and randomly either ascending or descending.

4. The encoding method of claim 1,
wherein the initial sorting order of the first generated group 65

of new data words is randomly chosen from one of an
ascending and a descending order.

18
5. A decoding method for an encoded plaintext, compris-

ing:
obtaining a group consisting of a plurality of data words,

each of the plurality of data words having at most one bit
set to the value one in mutually exclusive positions; and

outputting a single data word consisting of all the value one
bits in their mutually exclusive positions while the
remaining bits are set to value zero.

6. The decoding method of claim 5,
wherein the group of data words is sorted in one of an

ascending and descending order.
7. An encoding method for a plaintext, comprising:
obtaining an original data word from a plurality of data

words in an original plaintext, each original data word
containing a predetermined number of data bits occupy-
ing predetermined positions within the data word, each
data bit being designated as one of a one or a zero;

calculating the binary value of the original data word to
determine a number of binary ones;

distributing the number of binary ones, using a processor,
randomly among a group having a predetermined num-
ber ofnew data words, the predetermined number ofnew
data words in the group being determined from the maxi-
mum possible number of data ones plus one and divided
by the number of data bits in each data word;

sorting the new data words in the group using a processor
into one of an ascending and a descending order based
on the binary value the new data words in order to
facilitate compression; and

outputting the group of new data words.
S. The encoding method of claim 7,
wherein the predetermined number of data bits in the origi-

nal data word is one of 8, 16 or 32.
9. The encoding method of claim 7,
wherein the initial sorting order of the first generated group

of new data words is randomly chosen from one of an
ascending and a descending order.

10. The encoding method of claim 7,
wherein the sorting order of the sequentially generated

groups of new data words is one of ascending only,
descending only, alternately ascending and descending,
and randomly either ascending or descending.

11. The encoding method of claim 10,
wherein the boundaries between sequentially generated

groups are blurred rendering the blocking-structure
indistinct.

12. The encoding method of claim 8,
wherein the predetermined number of data bits in the origi-

nal data word is 8, and
wherein the predetermined number of new data words in

the group is 32.
13. The encoding method of claim 8,
wherein the predetermined number of data bits in the origi-

nal data word is 16, and
wherein the predetermined number of new data words in

the group is 4096.
14.A decoding method for an encoded plaintext encoded

by the method of claim 7, comprising:
obtaining a group containing a plurality of data words;
summing the number of ones in each of the plurality of data

words in the group to produce a one sum value;
outputting a single data word having the one sum value

represented as a binary value.
15. The decoding method of claim 14,
wherein the plurality of data words in the group are sorted

in one of an ascending and descending order.

