

Environmental Control and Life Support System (ECLSS)

System Engineering Workshop

Life Sciences Department

ISU SSP 2009

Ames Research Center, USA

Agenda

THE REAL STREET

- Recap SSP09 Lecture on ECLSS
 - ✓ ECLS Subsystems
 - ✓ Non Regenerative (Backpacking) vs. Regenerative
 - Open loop vs. Closed Loop
 - Physical-chemical vs. Bioregenerative
 - ✓ Equivalent System Mass (ESM)
 - Applications for ECLS subsystem design
- US Spacecraft ECLS Subsystem component description
 - ✓ Mercury, Gemini, Apollo, Skylab, Shuttle, ISS, CEV, LL, LO
 - Detail Air Revitalization, Pressure Control, and Water
- Team Projects
 - ✓ Split into 4 teams → Shop at "ECLS-mart" → Determine ESM
 - 2 teams with Mission Scenario #1
 - 2 teams with Mission Scenario #2
 - $\checkmark\,$ Out brief ESM to Department and discuss variations

The Human "Box"

Recap on ECLSS (1/4)

You already learned...

- <u>Why we need ECLSS?</u> → To SUSTAIN human life and workability
- Main Subsystems (Functions) of ECLSS
 - ✓ Atmosphere Revitalization and/or Pressure Control Subsystem (ARS, ACS, or PCS)
 - CO₂ and trace gas removal
 - · Pressure control (gas storage, relief valves, introduction valves, pressure gages)
 - Atmospheric constituents monitoring (O₂, N₂, H₂O, CO₂, trace gasses)
 - Forced convection air flow
 - ✓ Potable Water Recovery and Management Subsystem (PWS or WRM)
 - Potable water processing and/or storage
 - · Alternate water processing and/or storage
 - Water quality monitoring (TOC, pH, Microbiology)
 - ✓ Temperature and Humidity Control (THC)
 - Depending on vehicle, may be performed with ARS + Active Thermal Control Subsystem
 - Atmospheric control of temperature and humidity with heat exchanger and forced convection
 - Passive equipment cooling (via cabin airflow)
 - ✓ Waste Management and/or Collection Subsystem (WMS or WCS)
 - Human waste management solid, liquid, and gas seperation
 - ✓ Fire Detection and Emergency Management Subsystem (FDS)
 - · Smoke detectors, fire extinguishers, portable breathing masks
 - Strategy for cabin fire, chemical release, and/or depressurizing cabin

Recap on ECLSS (2/4)

□ You already learned...(continued)

- Non Regenerative / Open Loop
 - ✓ Backpacking mission (high consumables / resupply usage)
 - ✓ Simple, reliable
 - ✓ Resources are linearly dependent on flight time

Regenerative / Closed Loop

- ✓ Recycling of resources (low consumables / resupply usage)
- Minimized overboard losses
- $\checkmark\,$ Increased power, thermal, and initial mass requirements
- \checkmark Lower reliability, based on higher complexity
- \checkmark Trade off for closed loop occurs for missions of ~3 months in duration
 - Varies dependent on number of crew, spacecraft volume, in situ resources, etc.

"Physical – chemical – mechanical"

 \checkmark Uses physical, chemical, and mechanical devices for ECLS processing

Bioregenerative

- Uses living organisms to produce or break down organic molecules for ECLS processing
- \checkmark "Put the Earth in a little box" so we can go somewhere else

Recap on ECLSS (3/4)

You already learned...(continued)

- One of many analysis tools used to trade spacecraft system optimization is...
- Equivalent System Mass (ESM)
 - ✓ Evaluates trade study options for spacecraft life support systems
 - ✓ Identifies which option meets all the requirements while providing the lowest launch cost
 - Mass
 - Volume
 - Power
 - Cooling
 - Crew Time
 - Provides a 'total system impact' for comparison in overall vehicle life support system selection

Recap on ECLSS (4/4)

□ You already learned...(continued)

• $ESM = M + (V \cdot V_{eq}) + (P \cdot P_{eq}) + (C \cdot C_{eq}) + (CT \cdot D \cdot CT_{eq})$

where ESM = the equivalent system mass value of the system of
interest [kg],

- *M* = the total mass of the system [kg],
- *V* = the total pressurized volume of system [*m*_i],
- Veq = the mass equivalency factor for the pressurized volume infrastructure [kg/m₃],
- P = the total power requirement of the system [kW.] "
- *Peq* = the mass equivalency factor for the power generation infrastructure [kg/kW.],
- C = the total cooling requirement of the system [kW,] ,
- Ceq = the mass equivalency factor for the cooling infrastructure [kg/kW_{*}],
- CT = the total crewtime requirement of the system[CM-h/y],
- D= the duration of the mission segment of interest [y],
- *CTeq* = the mass equivalency factor for the crewtime support [kg/CM-h]

US Spacecraft ECLSS – Mercury (1960-1963)

- First flight May 5th, 1961, Alan Shepard, 15 min sub-orbital flight
- Six total manned flights with 1 crewmember
 - Longest was 34 hours, 19 minutes, 49 seconds
- Crewmembers wore suit for duration of flight
 - Suit revitalized atmosphere, controlled temperature & relative humidity
- Spacesuit normally unpressurized during flight
 - If necessary, crewmember could pressurize suit by closing visor
- Pressurized Volume = 1.56m³

<u>Subsystem</u> Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically	Stored O2	Stored H2O
	removed with	<u>Atmosphere</u> : 100% O2	Disinfection by
	consumable	@ 34.5kPa (5psia)	residual chlorine
Hardware (kg)	Lithium Hydroxide	O2 in 2 x 1.8kg Ni	6lb Bladder tank
	(LiOH) parallel	plated tanks at	back pressurized
	(redundant) path	51.7MPa (7500psia)	via squeeze bulb

US Spacecraft ECLSS – Gemini (1964 – 1966)

- Two unmanned flights + Ten manned flights
 - Manned flights were ~5 hours to ~14 days
 - Two crewmembers on each flight
 - Crewmembers again wore suits for the duration of the flight
 - Air revitalization, temperature, and humidity controlled separately in suit and in cabin
 - Improvements to life support system vs. Mercury
 - Supercritical O2 storage vs. high pressure
 - Integrated heat exchanger + water separator
 - Modularity in components for easier in-flight maintenance

Pressurized Volume = 2.26m³

<u>Subsystem</u> Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2 <u>Atmosphere</u> : 100% O2 @ 34.5kPa (5psia)	Stored H2O Cl biocide added prelaunch
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	Supercritical cryogenic O2 in 1 spherical tank at 5.86MPa (850psia)	Bladder tank back pressurized with O2

- Eleven crewed missions
 - Two Earth orbiting & two Lunar orbiting
 - One Lunar "swing by"
 - Six Lunar landings
- Apollo missions split into two sections
 - Command and Service Module (CSM)
 - Transported crew of 3 from Low Earth Orbit (LEO) to Low Lunar Orbit (LLO) and back to Earth
 - SM unpressurized with water, gas, electrical, etc.
 - Similar to CEV Crew Module (CM) & Service Module (SM)
 - Lunar Excursion Module (LEM) or Lunar Module (LM)
 - Ferried two crewmembers to the lunar surface and back to CSM
 - Both contained separate life support systems

US Spacecraft ECLSS – Apollo (CSM)

CSM Life Support

- Capable of providing life support for 3 crewmembers for 14 days
- Fuel cells provided energy + drinking water
- Oxygen tanks in SM fed CM for crew consumption as well as fuel cells
- Pressurized volume = 5.9m³

<u>Subsystem</u> Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2 <u>Atmosphere</u> : 100% O2 @ 34.5kPa (5psia)	Fuel cell provided + Cl biocide added daily
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	Supercritical cryogenic O2 in 2 x 145kg spherical Inconel Dewar tanks at 6.20MPa (900psia)	Al alloy tank with polyisoprene bladder, back pressurized w/ O2

US Spacecraft ECLSS – Apollo (LEM)

- ✤ Allowed 12 astronauts to walk on the surface of the moon
 - 2 crewmembers
 - Pressurized volume = 4.5m³

<u>Subsystem</u> Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2 <u>Atmosphere</u> : 100% O2 @ 34.5kPa (5psia)	Stored H2O with iodine biocide (Cl corrosion concerns) added via "MCV"
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	<u>Descent</u> : compressed O2 at 18.6MPa (2700psia) <u>Ascent</u> : Supercritical cryogenic O2 in Inconel bottles at 5.86MPa (850psia)	3 tanks (1 descent, 2 ascent) silicone rubber bladder

US Spacecraft ECLSS – Skylab (1973 – 1974)

- ✤ First U.S. Space Station (pressurized volume = 361m³)
 - Study effects of long-duration space flight on humans
 - Three Skylab missions of 28, 59, and 84 days
 - 3 crewmembers on each mission
- Skylab life support (updates)
 - Added a 2 canister molecular sieve vs. LiOH
 - Method for monitoring water biocide (iodine) in-flight
 - UV smoke detectors

<u>Subsystem</u> Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	Partially closed loop (some overboard loss) CO2 chemically removed via regenerative source	Stored O2/N2 <u>Atmosphere</u> : Mixed 72%O2 / 28%N2 @ 5psia (34.5kPa)	Stored H2O (iodine biocide, added in-flight, but removed prior to drinking)
Hardware (kg)	2 canister molecular sieve, regenerative Zeolite combination adsorbs CO2 + H2O & desorbs when exposed to vacuum	O2/N2 stored in gaseous form @ 3000psia (20.7MPa) in bottles	10 stainless steel metal bellows tanks back pressurized with N2

US Spacecraft ECLSS – Shuttle (1981 – present)

- ✤ 4 7 crewmembers per mission
- Varying mission durations of ~14days
 - Early missions were ~4 days, and missions have been as long at 18days.
- Always Low Earth Orbit Operations
- Pressurized Volume = 132m³

<u>Subsystem</u> Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2/N2 <u>Atmosphere</u> : Mixed 21.7%O2 / 78.3%N2 @ 14.7psia (101kPa)	Stored H2O (iodine biocide, added pre-flight, and during with MCV, but removed prior to drinking)
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	O2/N2 stored in gaseous form @ 3300psia (22.8MPa) in bottles. 4N2 tanks, O2 cryogenic storage.	4 stainless steel metal bellows tanks back pressurized with N2

- Currently provide life support for 6 person crew
- US Operating Segment designated "National Laboratory"
- 6 month expeditions (current human limit requirement)
- Pressurized Volume = 711m³ (as of July 2009)

<u>Subsystem</u> Feature	<i>Air Revitalization (CO2 Removal)</i>	Pressure Control	Potable Water
Method	Partially closed loop (some overboard loss) CO2 chemically removed	Atmosphere: Mixed 21.7%O2 / 78.3%N2 @ 14.7psia (101kPa)	Stored water (iodine or AgF biocide) or processed via WPA/UPA
Hardware (kg)	4 bed molecular sieve with 2 regenerative Zeolite beds to remove CO2, desorbed with heat and pressure	Oxygen @ max 3000psia for EVAs or generated with Oxygen Generation Assembly (electrolysis)	Stored in WPA tanks fed to the US water bus or stored in collapsible containers (CWCs/PWRs)

- Initial Operational Capability, ~2015
- Similar split to Apollo
 - CM = Crew Module (pressurized volume 15.6m³ [~550cu ft])
 - SM = Service Module (unpressurized, storage volume)
- ISS mission
 - Expected 4 person crew to ISS with 6 months quiescent operations + ~6 days maximum active crew time
- Lunar mission ~2020
 - ~21 days maximum active crew time + ~6 months quiescent operations during lunar habitation

<u>Subsystem</u> Feature	<i>Air Revitalization (CO2 Removal)</i>	Pressure Control	Potable Water
Method	Partially closed loop (some overboard loss) CO2 chemically removed	Mixed O2/N2 @ 14.7psia – ISS, ~10.2psia – lunar	Stored water (baselined AgF biocide)
Hardware (kg)	Regenerative pressure swing assembly w/ solid amine adsorbs CO2 + H20 & desorbs when exposed to vacuum	O2/N2 stored @ ~5000psia in Composite Overwrap Pressure Vessels	~5 Inconel bellows tanks in service module

US Spacecraft ECLSS Altair/Lunar Lander (~2020)

- Initial Operational Capability, ~2020
- Lunar sortie (~8 days on the Moon)
 - Expected 4 person crew on CEV to the Moon, with ~8 days active operations in Altair/Lunar Lander
 - No support from pre-positioned surface assets, primarily suited operations
- Lunar habitation (~6 months on the Moon)
 - 4 person crew on CEV to the Moon, with ~6 months active operations on the moon (mixed between Lunar Lander and Lunar Outpost)

<u>Subsystem</u> Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2/N2 <u>Atmosphere</u> : Mixed O2/N2 @ ~10.2psia	Stored water
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	N2/O2 stored in descent stage Only O2 stored in ascent stage	Expected in suit drink bag

- Initial Operational Capability, TBD
- Lunar habitation (~6 months on the Moon)
 - 4 person crew on CEV to the Moon, with ~6 months active operations on the moon (mixed between Lunar Lander and Lunar Outpost)
 - Expected to include power, habitats, surface mobility (LER), and resource utilization
- Opportunity for closed loop, bioregenerative life support
 - Will most likely stage the approach
 - Initial capability/construction (similar to Altair life support)
 - Interim capability/construction physical/chemical life support (similar to ISS but relying on 1/6 g)
 - Final capability/sustaining bioregenerative mixed with physical/chemical

Team Projects

□ Split into teams of 4 (count off)

- <u>2 teams = Mission Scenario #1</u>
 - ✓ 6 crewmembers, 30 days, 0 g, pressurized volume
 - *Veq*=
 - *Peq*=
 - *Ceq*=
 - *CTeq*=
- <u>2 teams = Mission Scenario #2</u>
 - ✓ 4 crewmembers, 180 days, Lunar Gravity (1/6 g), pressurized volume
 - *Veq*=
 - *Peq*=
 - *Ceq*=
 - *CTeq*=
- No Discussion between teams with the same scenarios

❑ Assumptions

- All infrastructure is the same (not included in ESM calculation)
 - ✓ Ducts, pipes, crew interfaces, power interface, etc.

References (1/2)

- Anderson, M., Curley, S., Stambaugh, I., Rotter, H. 2009 "Altair Lander Life Support: Design Analysis Cycles 1, 2, and 3" 2006-01-2095. Society of Automotive Engineers (SAE).
- Bagdigian, Robert M. 2008 "Considerations Regarding the Development of an Environmental Control and Life Support System for Lunar Surface Applications" 2008-01-2187. Society of Automotive Engineers (SAE).
- Barta, D., Ewert, M. 2009 "Development of Life Support System Technologies for Human Lunar Missions" 2009-01-2483. Society of Automotive Engineers (SAE).
- Constellation Program (CxP) document 70024 Rev C, "Human-Systems Integration Requirements"
- Diamant, Bryce L., Humphries, W. R. 1990. "Past and Present Environmental Control and Life Support Systems on Manned Spacecraft" 901210. Society of Automotive Engineers (SAE).
- Drysdale, Alan. 2007. "How Many Life Support Systems Do We Need?" 2007-01-3226. Society of Automotive Engineers (SAE).
- ISU SSP 2008 Presentation by Dr. Douglas Hamilton, "Environmental Control and Life Support"

References (2/2)

- ISU SSP 2008 Presentation by Dr. N. Tolyarenko, "Environmental Control and Life Support System"
- □ ISU SSP 2009 Presentation by Dr. Angie Buckley and Dr. Gilles Clement, "Life Support Systems during Space Missions"
- □ Levri, Julie A. et. al. September 2003. NASA/TM-20030212278, "Advanced Life Support Equivalent System Mass Guidelines Document"
- □ Lewis, John F., et. al. 2009. "Crew Exploration Vehicle Environmental Control and Life Support Development Status" 2009-01-2457. Society of Automotive Engineers (SAE).
- Lewis, John F., Russell, James F. 2008 "Project Orion, Environmental Control and Life Support System Integrated Studies" 2008-01-0198. Society of Automotive Engineers (SAE).
- Peterson, Laurie, et. al. 2006 "Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination" 2008-01-2083. Society of Automotive Engineers (SAE).
- Peterson, Laurie, et. al. 2006 "Recommendations for Water Systems in Future Space Applications" 2006-01-2095. Society of Automotive Engineers (SAE).

