
NASA Tech Briefs, August 2009 29

Information Sciences

Algorithm for Detecting a Bright Spot in an Image
Corrections for background intensity and dark current are included.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm processes the pixel in-
tensities of a digitized image to detect
and locate a circular bright spot, the ap-
proximate size of which is known in ad-
vance. The algorithm is used to find im-
ages of the Sun in cameras aboard the
Mars Exploration Rovers. (The images
are used in estimating orientations of the
Rovers relative to the direction to the
Sun.) The algorithm can also be adapted
to tracking of circular shaped bright tar-
gets in other diverse applications.

The first step in the algorithm is to
calculate a dark-current ramp — a cor-
rection necessitated by the scheme that
governs the readout of pixel charges in
the charge-coupled-device camera in
the original Mars Exploration Rover ap-
plication. In this scheme, the fraction
of each frame period during which
dark current is accumulated in a given
pixel (and, hence, the dark-current
contribution to the pixel image-inten-
sity reading) is proportional to the
pixel row number. For the purpose of
the algorithm, the dark-current contri-
bution to the intensity reading from
each pixel is assumed to equal the aver-
age of intensity readings from all pixels
in the same row, and the factor of pro-
portionality is estimated on the basis of
this assumption. Then the product of
the row number and the factor of pro-
portionality is subtracted from the read-

ing from each pixel to obtain a dark-
current-corrected intensity reading. 

The next step in the algorithm is to
determine the best location, within the
overall image, for a window of N ×N pix-
els (where N is an odd number) large
enough to contain the bright spot of in-
terest plus a small margin. (In the origi-
nal application, the overall image con-
tains 1,024 by 1,024 pixels, the image of
the Sun is about 22 pixels in diameter,
and N is chosen to be 29.) 

The window is placed at a given posi-
tion within the overall image. A
weighted average of the intensities of
the 4N – 4 outer pixels of the window is
taken as an estimate of background in-
tensity and subtracted from a weighted
average of the intensities of the remain-
ing inner (N – 2) × (N – 2) pixels of the
window to obtain a background-cor-
rected weighted sum of pixel intensities
for the window. The weighted averages
are simply pixel-intensity averages mul-
tiplied by common denominators so as
to obviate floating-point arithmetic op-
erations and thereby accelerate compu-
tations. The window is then moved to
an adjacent column position, and
weighted averages for the new position
are calculated from the previous
weighted averages by adding the appro-
priate values for the new outer and
inner pixels and subtracting the corre-

sponding values for the pixels that have
been left behind or changed in status
between the inner and the outer. This
process is repeated until the computa-
tions have been performed for all possi-
ble window positions. The position that
yields the highest background-cor-
rected weighted sum of pixel intensities
is assumed to contain the bright spot of
interest (the image of the Sun in the
original application), and the window is
then used to locate the bright spot
more precisely as described next. 

Within the inner (N – 2) × (N – 2) por-
tion of the window, the position of the
bright spot is determined by means of a
simple centroid calculation, using the
background-corrected pixel intensities.
Because the window position selected as
described above may not necessarily be
the optimum one, the centroid calcula-
tion is performed twice in an iterative
process: For the second centroid calcula-
tion, the window is re-centered on the
centroid determined by the first cen-
troid calculation.

This work was done by Carl Christian
Liebe of Caltech for NASA’s Jet Propulsion
Laboratory.

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41801.

Extreme Programming: Maestro Style
Modifications have been made to suit a specific development environment.
NASA’s Jet Propulsion Laboratory, Pasadena, California

“Extreme Programming: Maestro
Style” is the name of a computer-pro -
gramm ing methodology that has evolved
as a custom version of a metho dology,
called “extreme programming” that has
been practiced in the software industry
since the late 1990s. The name of this
version reflects its origin in the work of
the Maestro team at NASA’s Jet Propul-
sion Laboratory that develops software

for Mars exploration missions.
Extreme programming is oriented to-

ward agile development of software rest-
ing on values of simplicity, communica-
tion, testing, and aggressiveness.
Extreme programming involves use of
methods of rapidly building and dissem-
inating institutional knowledge among
members of a computer-programming
team to give all the members a shared

view that matches the view of the cus-
tomers for whom the software system is
to be developed. Extreme programming
includes frequent planning by program-
mers in collaboration with customers,
continually examining and rewriting
code in striving for the simplest work-
able software designs, a system
metaphor (basically, an abstraction of
the system that provides easy-to-remem-

https://ntrs.nasa.gov/search.jsp?R=20090029264 2019-08-30T07:44:44+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10550114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


30 NASA Tech Briefs, August 2009

Adaptive Behavior for Mobile Robots
A robotic system attempts to both preserve itself and progress toward a goal.
NASA’s Jet Propulsion Laboratory, Pasadena, California

The term “System for Mobility and Ac-
cess to Rough Terrain” (SMART) de-
notes a theoretical framework, a control
architecture, and an algorithm that im-
plements the framework and architec-
ture, for enabling a land-mobile robot to
adapt to changing conditions. SMART is
intended to enable the robot to recog-
nize adverse terrain conditions beyond
its optimal operational envelope, and, in
response, to intelligently reconfigure it-
self (e.g., adjust suspension heights or
baseline distances between suspension
points) or adapt its driving techniques
(e.g., engage in a crabbing motion as a
switchback technique for ascending
steep terrain). Conceived for original ap-
plication aboard Mars rovers and similar
autonomous or semi-autonomous mo-
bile robots used in exploration of remote
planets, SMART could also be applied to
autonomous terrestrial vehicles to be
used for search, rescue, and/or explo-
ration on rough terrain.

In SMART, controlling the motion of
the robot, managing the “health” of the
robot, and managing resources are con-
sidered as parts of a free-flow behavior
hierarchy that autonomously adapts to
changing conditions. Tasks that must be
performed in the continuing develop-
ment of SMART are to provide for safe,
adaptive mobility on highly sloped ter-

rain include:
• Determination of strategies for adap-

tive reconfiguration and driving that
are nearly optimal with respect to
safety and are computationally feasible
for on-board implementation,

• Determination of a representation for
uncertainty in sensing and prediction
of the state of the robot and its envi-
ronment, and

• Determination of resource-manage-
ment strategies that mitigate such risks
as those of the loss of battery power
and/or drive motors.
SMART is based largely on a prior ar-

chitecture denoted Biologically In spired
System for Map-based Auton omous
Rover Control (BISMARC), which, in
turn is based on a modified free-flow hi-
erarchy. BISMARC has been used with
success in a number of different simu-
lated mission scenarios, wherein it has
been demonstrated to afford capabilities
for retrieving objects cached at multiple
locations, fault tolerance on missions of
long duration, and preparing terrain
sites for habitation by humans. BIS-
MARC includes provisions for all aspects
of safety, self-maintenance, and achieve-
ment of goals, as needed to support a
sustained presence on the surface of a re-
mote planet.

BISMARC is organized as a two-level

system. From stereoscopic images ac-
quired by cameras aboard the robot, the
first level generates hypotheses of motor
actions. The second level processes these
hypotheses, coupled with external and
internal inputs, to generate control sig-
nals to drive the actuators on the robot.

The figure illustrates the free-flow ac-
tion-selection hierarchy of BISMARC and
SMART. The rectangular boxes represent
behaviors, while the ovals represent sen-
sory inputs (either fixed, direct, or de-
rived). At the top are the high-level behav-
iors, including Don’t Tip Over, Go to
Goal, Avoid Obstacles, Preserve Motors,
Warm Up, Get Power, and Sleep at Night.
The intermediate-level behaviors
(Change Center of Gravity, Avoid Obsta-
cles, Rest, and Sleep) are designed to in-
teract with both the short-term memory
(which corresponds to perceived sensory
stimuli), and the long-term memory
(which encodes remembered sensory in-
formation). Control loops are prevented
by use of temporal penalties, which con-
strain the system to repeat a given behav-
ior no more than a predetermined num-
ber of times. The bottom-level behaviors
(Tilt Arm, Change Shoulder Angles,
Move, Rest, Stop, Sleep) fuse the sensory
inputs and the activations of the higher-
level behaviors in order to select appropri-
ate actions for safety and achieving goals.

ber software-naming conventions and
insight into the architecture of the sys-
tem), programmers working in pairs,
adherence to a set of coding standards,
collaboration of customers and pro-
grammers, frequent verbal communica-
tion, frequent releases of software in
small increments of development, re-
peated testing of the developmental
software by both programmers and cus-
tomers, and continuous interaction be-
tween the team and the customers.

The environment in which the Maes-
tro team works requires the team to
quickly adapt to changing needs of its
customers. In addition, the team cannot
afford to accept unnecessary develop-
ment risk. Extreme programming en-
ables the Maestro team to remain agile
and provide high-quality software and
service to its customers. However, several
factors in the Maestro environment have

made it necessary to modify some of the
conventional extreme-programming
practices. The single most influential of
these factors is that continuous interac-
tion between customers and program-
mers is not feasible. The major resulting
differences between the Maestro and
conventional versions of extreme pro-
gramming are the following:
• Because customers are not always avail-

able for planning sessions, members of
the team act on behalf of customers
during these sessions.

• In an elaboration of the frequent-plan-
ning and incremental-release concept,
releases and planning meetings are syn-
chronized with a fixed one-week itera-
tion cycle that facilitates maintenance
of focus on the development task.

• Metaphors are occasionally used as
needed in specific instances, but the
conventional extreme-programming

concept of a system metaphor is aban-
doned as not being helpful.

• In a departure from the simplest-de-
sign rule, the team sometimes devel-
ops software infrastructure that affords
capabilities, beyond those required in
the current iteration, that may be use-
ful later in the development process.

• In the absence of continuous involve-
ment of customers and of frequent
testing of software by customers, there
is heavy reliance on automated testing.
This work was done by Jeffrey Norris, Jason

Fox, Kenneth Rabe, I-Hsiang Shu, and Mark
Powell of Caltech for NASA’s Jet Propulsion
Laboratory. Further information is contained
in a TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41811.


