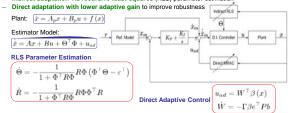
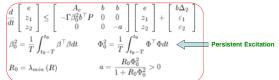
Adaptive Flight Control for Aircraft Safety Enhancements Nhan Nguyen, Irene Gregory, Suresh Joshi

Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control


Motivation

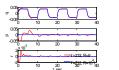
Despite 5 decades of research, adaptive control still cannot gain acceptance in safety-critical control systems. Challenges include:


- · Complex nonlinear behaviors vs. well-understood linear systems
- Lyapunov theory cannot predict boundedness in presence of unmodeled dynamics
- Metrics for stability and performance not yet available
- No guidance on adaptive gain selection for trade-off between performance and robustness Certification of adaptive control is a major V&V hurdle to overcome

Technical Approach

- · Hybrid (composite) direct-indirect adaptive control provides a flexible framework
- Indirect adaptation via recursive least-squares (RLS) parameter estimation

Bounded linear stability method provides piecewise approximate LTI margin analysis in a moving time window via the use of Co


$$G(s) = \left(sI - A_p + B_p \hat{B}_p^{*-1} \hat{A}_p^*\right)^{-1} B_p \hat{B}_p^{*-1} \left(K_p + \frac{K_i + \Gamma \beta_0^2 P_{22}}{s^2} + \frac{\Gamma \beta_0^2 P_{12}}{s^2}\right)$$

$$G^*(s) \approx \frac{K_p s^2 + \left(K_i + \Gamma \beta_0^2 P_{22}\right) s + \Gamma \beta_0^2 P_{12}}{s^3} \text{ if } \hat{A}_p^* \to A_p, \ \hat{B}_p^* \to B_p$$

Use approximate transfer function to estimate local stability margin for a moving time window

Simulation

Conclusion

- Hybrid adaptive control can enhance adaptation by reducing both modeling and tracking errors at the same time
- Bounded linear stability analysis can provide practical conservative estimates of

Direct Adaptive Control With Unknown Actuator Failures

Objective

New direct adaptive control methods are being developed for systems with unknown actuator failures

· Theoretically guaranteed stability and tracking performance

Technical Challenges

- Mathematical modeling, formulation, and analytical framework development
- Accommodation of actuator failures, disturbances, model uncertainties, actuator saturation

Technical Approach

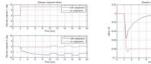
Direct model reference adaptive control (MRAC):

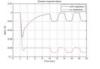
Formulations with increasing complexity and decreasing assumptions

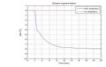
- Actuator failures of unknown magnitude and time of occurrence
- State tracking with state feedback
- Output tracking with state feedback
- Output tracking with output feedback

Actuator failure models

- Loss of effectiveness: $u_j(t) = k_j(t)v_j(t), k_j(t) \in [0,1], t \ge t$
- Control surface locked in unknown position: $u_j(t) = \overline{u}_j, t \ge t_j, j = 1,2,...,m$
- Failure values k_i , \bar{u}_i , and failure time t_i , pattern (which actuators have failed) are


Solution


Adaptive control laws for handling actuator failures:


- State tracking: $\lim_{t\to\infty} \{x(t) x_m(t)\} = 0$
 - State feedback low complexity, most assumptions $v(t) = K_{-}^{T} x(t) + k_{+} r(t) + k_{+}(t)$; $\dot{k}_{1i} = -\operatorname{sgn}(k_{x2i}^*)\Gamma_{1i}x(t)e^T(t)Pb_M; e = x - x_m$ $\dot{k}_{2j} = -\operatorname{sgn}(k_{12j}^*)\gamma_{2j}r(t)e^T(t)Pb_M;$ $\dot{k}_{+} = -\operatorname{sgn}(k_{+}^{*})\gamma_{+}e^{T}(t)Pb_{+}$ $P = P^{T} > 0$; $PA_{m} + A_{m}^{T}P = -Q < 0$; $\Gamma_{1,i} = \Gamma_{1,i}^T > 0; \gamma_{2,i}, \gamma_{3,i} > 0; j = 1,2,...m$
- Output tracking: $\lim_{t\to\infty} \{y(t) y_m(t)\} = 0$
- State feedback higher complexity, fewer assumptions

Example Application – GTM (Joshi, Khong)

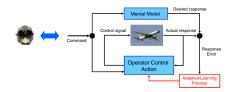
- One of two elevators locks in unknown position at t = 2 sec
- Square wave elevator command applied at t = 10 sec
- Remaining operational elevator seamlessly takes over for failed elevator

Conclusions

- Direct MRAC can compensate for unknown actuator failures
 - Signal boundedness and asymptotic tracking
 - State or output tracking using state feedback has manageable level of complexity
- · Continuing research:
 - Accommodation of multiple failures: disturbances: actuator saturation; unmodeled dynamics: damage nonlinear systems; adaptive propulsion control; application to full GTM math model

Adaptive Control with Adaptive Pilot Eleme **Stability and Performance Implications**

Motivation


Different adaptive control approaches on different platforms exhibited unpredict interactions with pilot-in-the-loop (IFCS F-15, Navy F/A-18C)

Adaptive controller will have full control authority

These combined factors have significant implications for closed loop system sta and performance as well as present potentially significant V&V challenge.

Technical Approach (Trujillo, Morelli, Grego

Mathematically define the pilot as an adaptive controller

For system stability and performance analysis, model the pilot as an adaptive controller; therefore, analyze a system consisting of two adaptive controllers of potentially different architectures. In addition, this analysis will provide:

- Design requirements on adaptive controller to compliment pilot's actions
- Predicted analytical bounds on pilot-in-the-loop task specific performance

Framework for analyzing interaction between two adaptive elements will facilitate identification of problematic adaptive controller/adaptive pilot model interactions explore these problematic interactions in detail in a simulation and/or flight test worst case uncertainty in linear robustness analysis guiding detailed Monte Car

Current Work in Progress

- Use system identification techniques to build a pilot model that changes as sy dynamics change → initial model of a pilot as an adaptive element • Pilot in the loop with an Λ_4 adaptive controller on the GTM in the simulation a
- flight test. (scheduled for Dec. 2008) Analytically calculate stability robustness margins of an Λ₁ adaptive controller and comp
- those obtained from flight data
- Adaptive pilot model from system identification will fly the maneuvers from G1 flight test in batch simulation
- Compare adaptive pilot model performance to research pilot performance from flight dat

Implications

- · Analytically evaluate stability and performance of a closed-loop system with a adaptive controller while explicitly incorporating the pilot.
- Provide a framework for analytical analysis of interaction of two adaptive elen in a closed-loop system with changing dynamics → identify and characterize interactions leading to potentially conflicting actions (e.g. flight and structural control systems or flight and propulsion control systems)
- Contribute to functional allocation between pilot and adaptive control scheme well as pilot's situational awareness of system's capabilities