
Abstract 
Consistency-based diagnosis relies heavily on the 
assumption that discrepancies between model pre-
dictions and sensor observations can be detected 
accurately. When sources of uncertainty like sensor 
noise and model abstraction exist robust schemes 
have to be designed to make a binary decision on 
whether predictions are consistent with observa-
tions. This risks the occurrence of false alarms and 
missed alarms when an erroneous decision is made. 
Moreover when multiple sensors (with differing 
sensing properties) are available the degree of 
match between predictions and observations can be 
used to guide the search for fault candidates. In this 
paper we propose a novel approach to handle this 
problem using Bayesian networks. In the consis-
tency-based diagnosis formulation, automatically 
generated Bayesian networks are used to encode a 
probabilistic measure of fit between predictions 
and observations. A Bayesian network inference 
algorithm is used to compute most probable fault 
candidates.  

1 Introduction 
Consistency-based diagnosis techniques [Hamscher, et al., 
1992] compare model predictions against sensor observa-
tions for isolating faults. Structural and behavioral models 
are used to predict system behavior under hypothesized no-
minal and faulty conditions. The hypotheses whose predic-
tions best match the sensor observations are reported as the 
diagnosis. Rather than look at a pre-enumerated set of hypo-
theses, these approaches use techniques like conflict di-
rected search and backtracking to maintain a short list of 
consistent hypotheses. This has been applied to discrete [De 
Kleer and Williams, 1987; Williams and Nayak, 1996; Ku-
rien and Nayak, 2000], discrete-event [Sampath et al., 
1996], continuous [Gertler, 1988; Mosterman and Biswas, 
1999] and hybrid [Narasimhan and Biswas, 2003] domains. 
 One of the assumptions in these approaches is that we can 
say with absolute certainty if predictions and observations 
are consistent with each other.  For example, the Living-
stone 2 system [Kurien and Nayak, 2000] uses monitors to 
make this decision and the TRANSCEND system [Moster-

man and Biswas, 1999] uses a symbol generation scheme to 
make a decision that is statistically robust. If any inconsis-
tencies are detected, information about the inconsistencies 
(including variables involved in the inconsistencies and pos-
sibly the direction or magnitude of the inconsistencies) is 
used to guide the search for alternate fault candidates. Fault 
candidates that resolve the observed discrepancies (resolv-
ing conflicts entailed by the discrepancies for example) are 
generated according to some user-defined criteria (typically 
based prior probabilities and size of the chosen candidates. 

However in a lot of situations it may be very difficult to 
determine if model predictions exactly match sensor obser-
vations. Some reasons for this difficulty include (i) imper-
fect/abstract models resulting in imprecise predictions, (ii) 
sensor noise resulting in imprecise observations, and (iii) 
uncertain operating conditions and environment resulting in 
imprecision predictions and observations. An error in mak-
ing this binary decision (either reporting a discrepancy when 
there is none or not reporting a discrepancy when one ex-
ists) will result in erroneous diagnosis results. Additionally 
the actual degree of fit between predictions and observations 
for individual variables might provide useful diagnostic 
information allowing us to limit the search for fault candi-
dates (resulting in faster diagnosis). 

Some probabilistic approaches address this problem by 
setting up a Bayesian formulation (as opposed to the consis-
tency-based approach) to solve problem [Dearden and Clan-
cy, 2002; Hofbaur and Williams, 2004;]. Typically candi-
dates have weights/probabilities associated with them and 
these weights are updated at each time step based on the 
model and observed values.  Candidates that represent faults 
may be introduced in several ways including importance 
sampling [Dearden and Clancy, 2002] and using a consis-
tency-based diagnosis scheme [Narasimhan, et al., 2004]. 

In this paper we propose an alternate approach using 
Bayesian networks, which attempts to solve this problem 
within a consistency-based framework but using a Bayesian 
network as a component. In our approach, a consistency-
based diagnosis engine is the driving force. The engine is 
responsible for maintaining a set of candidates “consistent” 
with the observations seen so far. At each time step the en-
gine tests each candidate for consistency with the current 
observations. Rather than looking for a binary decision on 
the consistency of the candidate, the consistency test is used 

Using Bayesian networks for Candidate Generation in Consistency-based Diagnosis

Sriram Narasimhan & Ole Mengshoel 
UC Santa Cruz & USRA RIACS 

M/S 269-3, NASA Ames Research Center, 
Moffett Field, CA 94043 

Sriram.narasimhan-1,ole.j.mengshoel@nasa.gov 
 

https://ntrs.nasa.gov/search.jsp?R=20090028756 2019-08-30T07:42:58+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10550065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to provide probabilistic measure of the degree of fit between 
predictions and observations for each observed variable. 
The engine then utilizes a Bayesian network (BN) that en-
codes the structure associated with the current model as well 
as probabilistic information in the form of prior probabilities 
of faults and the probability of fit for observable variables 
(computed in the consistent testing step earlier). The BN can 
then be queried for the most probable assignment of values 
to all variables, a subset of which correspond to faults in the 
system. This information can then be used to update the 
candidate set maintained by the diagnosis engine.  

In this paper we will focus on a specific consistency-
based diagnosis system called HyDE [Narasimhan and 
Brownston, 2007] and show our approach works in that 
framework. However the ideas are general and can be 
adapted to other consistency-based diagnosis systems. We 
will describe the makeup of the BN, how it can be con-
structed automatically from existing models in the HyDE 
framework (this is the only part that would be different for a 
different diagnosis technology) and how it can be integrated 
with a consistency-based diagnosis engine. Initial experi-
ments, with a two tank system, show a significant improve-
ment in the diagnostic accuracy, when our novel approach is 
used. 
 The rest of paper is divided as follows. Section 2 presents 
some back ground on BN and the consistency-based diagno-
sis paradigm we will be assuming. Section 3 presents the 
Hybrid Diagnosis Engine (HyDE) and its diagnosis archi-
tecture. Section 4 presents our novel approach of using BN 
for candidate generation. Section 5 presents some examples 
and results from using this combined approach. Section 6 
presents conclusions and scope for future work. 

2 Background 

2.1 Consistency-based Diagnosis 
Several interpretations of consistency-based diagnosis exist 
in the literature [Hamscher, et al., 1992]. In order to take 
into account the hybrid and dynamic nature of the systems 
being diagnosed, we will be using the following representa-
tion of consistency-based diagnosis as our basis. We assume 
that the consistency-based diagnosis uses a “generate and 
test” paradigm to detect and isolate faults. The diagnosis 
engine maintains a set of consistent candidates which is 
updated at each time step by adding or pruning candidates 
based on the observations from sensors. The candidates 
represent hypotheses about faults that have occurred in the 
system with associated time stamps. At each time step can-
didates in the candidate set are tested for consistency against 
observations available at that time step. If a candidate is 
found to be inconsistent, it is dropped from the set. New 
candidates are generated by backtracking in the model from 
the point of inconsistency (typically an intermediate step of 
generating conflicts is used). The newly generated candi-
dates can be tested and added to the candidate set if found to 
be consistent with observations. The test for consistency 
uses models that can be used to predict what the system is 

expected to do. The predictions can be compared against 
observations to check for consistency. 

2.2 Bayesian networks  
A Bayesian network (referred to as BN in the rest of this 
paper), or a belief network, is a probabilistic graphical mod-
el that represents a set of variables and their probabilistic 
independencies. The term "Bayesian networks" was coined 
by Judea Pearl [Pearl, 1985] to emphasize three aspects: 

1. The often subjective nature of the input informa-
tion. 

2. The reliance on Bayes's conditioning as the basis 
for updating information. 

3. The distinction between causal and evidential 
modes of reasoning, which underscores Thomas 
Bayes's posthumous paper of 1763. 

Bayesian networks are directed acyclic graphs whose 
nodes represent variables, and whose arcs encode condition-
al independencies between the variables. Nodes can 
represent any kind of variable, be it a measured parameter, a 
latent variable or a hypothesis. If there is an arc from varia-
ble x1 to another variable x2, x1 is called a parent of x2, and 
x2 is a child of x1. Associated with each variable xi is a joint 
probability distribution which specifies the probability of xi 
taking each value in its domain for all possible value as-
signments for the parents of xi.   

Efficient algorithms exist that perform inference and 
learning in Bayesian networks. Because a BN is a complete 
model for the variables and their relationships, it can be 
used to answer probabilistic queries about them. For exam-
ple, the BN can be used to find out updated knowledge of 
the state of a subset of variables when other variables values 
(called evidence) are known. This process of computing the 
posterior distribution of variables given evidence is called 
probabilistic inference.  

Formally, BN can be defined as  BN = ({X},{E},{P}) 
where X={x1,x2,…,xm} are the m variables in the BN with 
associated conditional probability distributions 
P={p1,p2,…,pm} and E={e1,e2,…,en} represent the n arcs 
between variables in {X} with ei = xj→xk for i≠k.   

3 Hybrid Diagnosis Engine (HyDE)  
Hybrid Diagnosis Engine (HyDE) is a model-based reason-
ing engine for hybrid (discrete + continuous) diagnosis. 
HyDE is able to diagnose multiple discrete faults using con-
sistency checking between prediction from hybrid models 
and sensor observations. We first describe the models used 
by HyDE in its reasoning. 

3.1 HyDE Models 
A HyDE model is made up of the following elements: 

1. The set C of the components of the system. 
2. The set L of operating modes of all components 

called Locations. 
3. The set TR of allowed transitions between the loca-

tions of the same component. Each transition tr Є TR 
is of the form lfrom→lto,g where lfrom Є c & lto Є c for 



some c Є C and g is a guard indicating the conditions 
under which the transition may be taken. An empty 
guard is used to encode a special kind of transition 
called unguarded transition. Unguarded transitions 
can be used represent, among other things, faults in 
the system. 

4. The set V of variables and the set VD of domains as-
sociated with the variables, specifying the allowed 
values (data types) for the variables. 

5. The propagation model PM specifies the behavior of 
the system within a time step as relations over va-
riables. This includes: 

a. Global model PMg = Rg(V), where Rg is the 
global set of relations constraining values of 
variables. These relations are valid at all 
times. 

b. Local models PMl = Rl(V) for each l Є L, 
where Rl is the set of local relations con-
straining values of variables. These relations 
are applicable only when the system (cor-
responding component) is in location l.  

6. The integration model IM specifies the evolution of 
values each variable across time steps. It specifies 
how state variable values at one time step can be 
computed from state variable values and derivative 
(of state) variable values at the previous time step.  

7. The dependency model DM specifies qualitative how 
variables in the model are influenced by local rela-
tions. 

3.1 HyDE Reasoning 
The reasoning algorithm in HyDE (illustrated in Figure 1) 

essentially maintains a set of candidates D.  The goal of 
HyDE is to find the candidates that best match the observa-
tions seen so far. Each candidate contains a possible trajec-
tory of system behavior evolution represented in the form of 
a hybrid state (HS) history and transition history. The hybr-
id state is a snapshot of the entire system state at any single 
instant. It associates all components with their current loca-
tions and all variables with their current values. The hybrid 
state history tracks hybrid states at beginning and end of all 
time steps of the system behavior evolution. The transition 
history tracks transitions taken by all components at all time 
steps. In order to avoid monotonic growth in the histories, a 
user-defined parameter called history window is used to 
restrict the length of history saved.  

At each time step ti in the reasoning process, HyDE tests 

each candidate for consistency with observations at ti. This 
involves computing the hybrid state at the end of ti (HSti+) 
from the HS at the beginning of ti (HSti-) and the model en-
tailed by the HS.  A subset of variable values in HSti+ cor-
responds to predictions for observed variables. These pre-
dicted values are compared against corresponding observa-
tions. If they are found to be inconsistent then a candidate 
generator is created which finds unguarded transitions (one 
or more) that can possibly resolve the inconsistency. A tran-
sition can possibly resolve an inconsistency if the relations 
from the source location of the transition directly or indi-
rectly influence the variable found to be inconsistent. Since 
multiple transitions may resolve an inconsistency and typi-
cally multiple inconsistencies (across time) may occur after 
a fault, a search process is needed to identify the most im-
portant transitions. Importance is judge based on criteria like 
maximum prior probability and minimum size. A candidate 
manager is responsible for pruning candidates that were 
found to be inconsistent and adding candidates by querying 
the candidate generators. The reasoning algorithm can be 
summarized as follows: 
1. Initialize consistent candidate set with the empty candi-

date Dc = {dempty} where dempty = (HS0,{}) and HS0 is 
the initial hybrid state of the system which is assumed 
to be known and the system is assumed to be in nomin-
al state (no unguarded transitions have been taken). 

2. Repeat at each time step ti for each candidate dk Є Dc 
2.1. Advance the hybrid state from the end of the pre-

vious time step (HSti-1+) to the beginning of the 
current time step (HSti-). 

2.2. Compute HS at end of time step (HSti+) from HSti-, 
current values of input variables (Uti), global con-
straints (Rg) and local constraints associated with 
current system location obtained from HSti- (Rlti). 

2.3. Compare sensor values for observed variables Vobs 
with predicted values Vobs(HSti+) to identify in-
consistent variables Vinconsistent C Vobs. 

2.4. In the dependency model, trace backwards from 
each v Є Vinconsistent to identify all local relations 
that influence v. The locations associated with 
these relations together form a conflict (if the sys-
tem is assumed to be in these locations then v be-
comes inconsistent).  

2.5. Possible transitions that can resolve a conflict are 
the unguarded transitions out of the locations that 
form the conflict. Compute a set of unguarded 
transitions TR (selecting the best set based on us-
er-specified ranking criteria) that resolve conflicts 
associated with all inconsistent variables Vinconsis-

tent. TR and the HS history from dk can then be 
used to generate a new candidate dpotential. Dpotential 
can then be tested to see if it actually resolves the 
conflict by tracking its behavior prediction. If it is 
found consistent with the observations then it is 
added to the candidate set (Dc = Dc U dnew) else it 
is discarded. 

2.6. Remove the inconsistent candidate from the can-
didate set (Dc = Dc – dk).  

Figure 1: HyDE Reasoning Architecture 



 
For more details about the HyDE reasoning algorithm 

please refer to [Narasimhan and Brownston, 2007]. 

3.2 Bayesian networks for Candidate Generation in 
HyDE  

When we look at the steps of the HyDE reasoning algo-
rithm, step 2.3 assumes that we can make a binary decision 
on which observations are inconsistent with predictions. 
Based on this decision, new candidates may be added (and 
the inconsistent one eliminated) using a conflict directed 
search. This approach fails when inconsistencies cannot be 
detected accurately. It also fails to make use of the magni-
tude/degree of the inconsistency which might be a useful 
guide when searching for candidates. We propose a mod-
ified HyDE reasoning algorithm that uses the degree of in-
consistency (rather than expecting to make a binary decision 
based on it) by constructing a BN and generating candidates 
to be tested by computing the most probable hypothesis in 
the BN.   

The basic idea is to estimate a probabilistic measure of 
the (in)consistency between model predictions and sensor 
observations. Depending on the domain of the variable and 
sensor noise properties this may be achieved by simply thre-
sholding or by other means like the probability distribution 
function of a Gaussian distribution (which we will see in the 
example later). In order to use this probabilistic measure 
effectively, we use an automatically constructed BN in place 
of the dependency model for candidate generation. The 
structure of the BN is determined by the propagation and 
integration model (Bullets 5 & 6 from the HyDE model de-
scription). The conditional probability distributions in the 
BN are obtained from prior probabilities of unguarded tran-
sitions and the estimated probabilistic measured of 
(in)consistency between predictions and observations.  
 We modify HyDE reasoning algorithm in the following 
ways. We add an initialization step (1a) that initializes the 
BN for the initial candidate. 

1a. Initialize the BNempty associated with nominal candi-
date with nodes for locations of components at start of 
time step 0. If lji be the location of component ci in HS0- 
then BNempty = ({xc1,xc2,…,xcm},{Pc1,Pc2,…,Pcm},{}) 
where Pci = { p(ci in lji) = 1.0, p(ci in ljk|k ≠ i) = 0.0} 

Steps 2.3 through 2.6 are modified as follows: 
2. Repeat at each time step ti for each candidate dk Є Dc 

2.3. Compare sensor values for observed variables Vobs 
with predicted values Vobs(HSti+) to assign proba-
bilities to each variable being consistent. For v Є 
Vobs, p(v=CONSISTENT) = δ(vti ,vˆti) where δ is a 
user-customizable comparison function (for ex-
ample thresholding). p(v=INCONSISTENT) = 1- 
p(v=CONSISTENT). 

2.4. Construct the BN for ti and for the transition from 
time step ti-1 to ti and append it to BN for the can-
didate BNdk = BNdk U ({Xti},{Eti},{Pti}). This step 
is discussed in more detail in the next section. 
Truncate parts of the BN referring to time steps 
prior to the horizon (time steps outside the history 

window). BNdk = BNdk – ({XtH},{EtH},{PtH}) for 
all tH < ti – thistory where thistory is a user specified 
time history window. 

2.5. Query BNdk for the Most Probable Explanation 
(MPE) which provides the most likely assignment 
of values for all variables in the BN. A subset of 
these variables corresponds to transitions taken by 
all components at all time steps in the time history 
window. This subset will be used to generate a 
new candidate dnew with hybrid state obtained 
from dk. If dnew = dk then nothing needs to be 
done. However if dnew ≠ dk then dnew is added to 
the set of consistent candidate (Dc = Dc U dnew). 

2.6. Check the probability of the dk in the BN and if it 
falls below a certain threshold pcutoff then remove 
dk from Dc (Dc = Dc – dk). 

We describe the automatic construction of the BN models 
(step 3.4) for a specific candidate dk at a specific time step tI 
in section 4. 

3.3 Example and Results 
To illustrate the advantage of using the proposed approach, 
we present a two tank example. The system consists of two 
tanks with outlet pipes from both tanks and a connecting 
pipe between the two tanks. A flow source feeds liquid into 
the first tank. Each of the pipes and the source can be in 
nominal mode (resistance is specified constant) or in hig-
hResistance mode (resistance is 5 times the specified con-
stant). The actual highResistance fault in the system is 
usually not exactly 5 times but could vary between 4 and 6 
times the resistance.  The out flows from both outlet pipes 
are the only observed variables. The sensors associated with 
the out flows are assumed to have White Gaussian noise.   
The HyDE model of this example is illustrated in Figure 2. 
 In this example, due to feedback effects, all of the faults 
will eventually impact both observed variables. However 
the presence of integrating elements in the form of tank ca-

pacitances will introduce a time delay in the propagation of 
fault effects. For example, if Pipe1 is in highResistance 
mode then we should see an immediate influence in the ob-
served Pipe1 outflow while the influence on Pipe2 outflow 
will take a few time steps to manifest. If we use a purely 
consistency based diagnosis then we have to wait until both 
observations have deviated (because no fault influences only 
one observation) and even then all fault candidates are poss-
ible and they will be tested in the order of prior probabilities 
(Pipe12, Pipe2, Pipe1, Source in that order for this exam-
ple). The presence of sensor noise and uncertainty about 
actual magnitude makes it very difficult to absolutely de-

 
Figure 2: HyDE model of Two Tank Sys-

tem 



termine if sensor observations deviate from model predic-
tions. If the sensor noise is high or if the actual fault magni-
tude is not close to 5, the chances of misclassification are 
also quite high.  

We ran 34 scenarios by varying the location (4 scenarios) 
and magnitude of fault (15 scenarios) as well as the sensor 
noise level (15 scenarios). If a sensor observation was not 
found to be within 2 standard deviations of a Gaussian dis-
tribution (95% of the time values sampled will be within 2 
standard deviations) with mean set to the model prediction 
and standard deviation set based on level of sensor noise 
then it was considered to be inconsistent. The results are 
summarized in Figure 3 (Dark Rectangles on the left). We 
can clearly see that there are a large number of missed 
alarms and false alarms when using a purely consistency-
based approach.  

For the second set of experiments we used the proposed 
modification to HyDE using BN. The BN was automatically 
generated from HyDE model (one example is illustrated in 
Figure 4) and probabilities for observed variables were 
computed using the probability distribution function for 
Gaussian distribution given by:  

 
Figure 3 (Light Rectangles on the right) shows the results of 
integrating the BN in the consistency-based diagnosis 
framework. There is a significant reduction in both missed 
and false alarms since this approach does not commit to a 
decision which may later turn out to be erroneous. However 
we do pay the penalty of using more time and computational 
resources for the BN computation.  

4 Automatic Generation of Bayesian net-
works 
We noted that in step 3.4 of the modified HyDE reasoning 
algorithm presented in the previous section, the BN for each 
candidate dk (BNdk) is augmented with the BN fragment at 
the current time step tj (BNti) and BN fragment for the tran-
sition from previous time step ti-1 to current time step ti 
(BNti-1→ti). BNdk = BNdk U BNti U BNti-1→ti. 

We first describe the automatic generation of BNti from the 
HyDE models and then describe the generation of BNti-1→ti.  

4.1 Bayesian network within a time step 
In order to generate the BN at a specific time step ti for can-
didate dk, we find the system location predicted by dk at the 
beginning of ti. This can be obtained from the hybrid state 
predicted by dk at the beginning of ti (HSti-). SLti = {l1ti, 
l2ti,…,lnti} = SL(HSti-) where ljti corresponds to the location 
of component cj. The next step is to construct the constraint 
system model (Rti) at ti as predicted by dk. This should al-
ready have been constructed in step 3.2 and can be re-used 
in the generation of BNti.   

In the reminder of this section we will omit the subscript 
ti for convenience.  BN is computed as follows. The nodes 
{X} in the BN consist of nodes corresponding to variables 
in the model (Xv) and nodes corresponding to components 
in the model (Xc): X = Xv U Xc 

•  Xv = {xv1, xv2,…,xvk} where xvi Є 
{CONSISTENT,INCONSISTENT} corresponds to 
variable vi in the constraint system model. 

•  Xc = {xc1,xc2,…,xcm} where xci Є Locations(li) cor-
responds to Component ci in the constraint system 
model. 

The arcs {E} between nodes in X are computed based on 
the currently valid relations R = Rg U RSL. We use the fol-
lowing algorithm for generating arcs in the BN: 

1. Create two variable lists, KNOWN (Xvk) & 
UNKNOWN (Xvu). Move all input and state va-
riables to Xvk and all other variables to Xvu. 

2. Create a TOBEPROCESSED relations list (RT) and 
move all relations in R to RT. 

3. Repeat until RT ≠ {} 
a. Find a relation r(XVka , XVua) = R Є RT 

where XVka represents variables in r be-
longing to Xvk and XVua represents va-
riables in r belonging to Xvu, such that 
size of XVu is minimum among all r Є R. 
In other words find the relation with few-
est numbers of UNKNOWN variables.  

b. Create a bi-partite graph with nodes from 
XVka on one side and nodes from Xvua on 
the other side and arcs from all nodes in 
XVka to all nodes in XVua. Make all the 
UNKNOWN variables in r depend on 
KNOWN variables in r. This encodes our 
intuition that the KNOWN variables in r 
would be used to compute values for the 
UNKNOWN variables in r. 

c. If r is a local constraint (i.e., r Є RSL) be-
longing to location lm of component cm 
then add an arc from the xcm to all x Є 
XVua. This encodes the dependency that a 
local relation will only be used when the 
system is in that location. 

d. Move all variables in XVua from Xvu to Xvk 
i.e., For each xVui Є xVui, XVui = XVui – vui 
& XVki = XVki U xVui. All UNKNOWN 

 
Figure 3: Consistency vs. Consistency + BN 
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variables in r can now considered to be 
KNOWN through computation. 

e. Remove r from the TOBEPROCESSED 
list. R = R - r.  

The conditional probability tables {P} are computed as fol-
lows: 

1. For all x Є Xv such that x corresponds to an input or 
state variable set p(x=CONSISTENT) = 1.0, 
p(x=INCONSISTENT) = 0.0. We will see in the 
next section that if there are arcs to the state va-
riables from the BN fragment at previous time step 
then the P for the state variables will be different. 

2. For all other variables (non-input and non-state) x Є 
Xv that have incoming arcs only from variables in 
Xv P is set to  

a. p(x=CONSISTENT|for all xv Є Xv, xv = 
CONSISTENT) = 1.0 

b. p(x=INCONSISTENT|for all xv Є Xv, xv = 
CONSISTENT) = 0.0 

c. p(x=CONSISTENT|there exists xv Є Xv, 
xv = INCONSISTENT) = 0.0 

d. p(x=INCONSISTENT| there exists xv Є 
Xv, xv = INCONSISTENT) = 1.0 

3. For variables x Є Xv with arcs from other variables 
Xv as well as arcs from xc(For any variable x Є Xv 
there can only be one variable xc Є Xc with an arc 
to x) the P when xc=lcurrent where lcurrent is current 
location of component c in SL is set 1 and 0 other 
wise 

a. p(x=CONSISTENT|xca≠la) = 0.0 
b. p(x=INCONSISTENT|xca=la) = 1.0. 

4. For all variables xc Є Xc, we set the probability of 
the variable being in the location predicted by the 

candidate to be 1 and probability of any other loca-
tion to be 0 

a. p(xca = lcurrent) = 1.0 
b. p(xca = lb for all lb ≠ lcurrent) = 0.0.  

As we will see in the next section, if xc has an arc 
from xc at the previous time step then the P is 
computed differently.   

4.2 Bayesian network across time steps 
Once we have generated the BN fragment for candidate dk 
at a specific time step ti (BNti) we have to connect it to BNdk 
(associated with earlier time steps). Let BNti-1 = ({Xti-1},{Eti-

1},{Pti-1}) represent the part of BNdk corresponding to the 
previous time step. We augment BNdk as follows: 

• First we add a new set of variables XT = 
{xT1,xT2,…,xTn} where xTi corresponds to an un-
guarded transition taken by component ci. Hence 
there will be n such variables where n is the num-
ber of components. The domain for any one of 
these variables xTa Є XT will be all the unguarded 
transitions out of lcurrent where lcurrent is the current 
location of component ca plus an additional transi-
tional called the self transition (Tself) which if tak-
en keeps the component in the same location.  

• Next we add arcs ET that represents the conditional 
dependence of the location of component at ti on 
the transition the component takes between ti-1 and 
ti. Each arc eT is of the form xT→xc[ti].  

• Then we add arcs Ec indicating the conditional de-
pendence of the location of a component at time 
step ti on the location of the same component at 
time step ti-1. Each arc ec is of the form xc[ti-

1]→xc[ti]. 

 
Figure 4: Bayesian network for Two Tank System 



• Then we add arcs Ev to represent the conditional de-
pendence of state variables on derivative variables 
as determined by the Integration model. For each 
state variable xv, we determine the set of derivative 
variable Xd that will be required to compute the 
value of xv. We then draw arcs from each xd Є Xd 
to xv. 

• The P for xc[ti-1] is unchanged since it has no new 
incoming arcs.  

• The P for x Є XTi is set to the prior probabilities of 
the corresponding unguarded transitions.  

• The P for xc[ti] associated with component c is com-
puted as follows. Based on the location of c at ti-1 
and the transition T taken by component between 
ti-1 and ti, we can deduce the location of c at ti. The 
probability for this location is set to 1 and the 
probabilities for the rest of the locations are set to 
0. 

o p(xca[ti]=lb|xca[ti-1]=lc & xT=lc→lb) = 1.0 
o p(xca[ti]=lb|xca[ti-1]=lc & xT=lc→ld, ld≠lb) = 

0.0 
• The P for xv[ti] for all state variables is updated by 

setting it to be CONSISTENT when all derivative 
variables that influence it from the previous time 
step (Xd[ti-1]) and corresponding state variable 
from previous time step (xv[ti-1]) are 
CONSISTENT 

o p(xv[ti]=CONSISTENT| Xd[ti-

1]=CONSISTENT & xv[ti-

1]=CONSISTENT) = 1.0 
o p(xv[ti]=CONSISTENT| there exists xd Є 

Xd such that xd[ti-1]=INCONSISTENT | 
xv[ti-1]=INCONSISTENT) = 0.0 

o p(xv[ti]=INCONSISTENT) = 1 - 
p(xv[ti]=CONSISTENT) 

6 Conclusion and Future Work 
We presented a new approach for incorporating probabilistic 
information in a consistency-based diagnosis framework. 
This approach uses automatically constructed BN models 
for candidate generation. The conditional probability distri-
butions in the BN are based on probabilistic measures of the 
consistency between model predictions and observations. 
BN inference can be used to identify the most likely hypo-
thesis which if different from the original candidate is used 
to generate a new candidate. 

The approach presented in this section differs from typi-
cal consistency-based approaches in that it is able to deal 
with uncertainty when comparing observations and predic-
tions from the model. It differs from typical BN approaches 
to diagnosis in that it uses BN inference only for the candi-
date generation rather than entire diagnosis process [Roy-
choudary et al., 2006].   
 This new approach combining BN and consistency-based 
is meant to be useful when a significant amount of uncer-
tainty exists in testing candidates for consistency. In such 
situations the use of the proposed approach will result in 
fewer false alarms and missed alarms. Additionally because 

fewer candidates are likely to be tested, there is an im-
provement in time and memory performance as well. How-
ever in some cases there might be an increase in time and 
memory performance because of the need to construct the 
BN and perform inference on it. For the purposes of this 
paper we used the SAMIAM tool from UCLA 
(http://reasoning.cs.ucla.edu/samiam/) for Bayesian network 
inference. In future work we would like to explore the use 
of strategies to improve the performance of the BN infe-
rence including pre-generation and compilation approaches 
suggested by Darwiche [Chavira and Darwiche, 2007]. 
 Once we have established the framework to integrate BN 
inference for candidate generation in consistency-based di-
agnosis there is scope for incorporating several kinds of 
uncertainty in the reasoning. For example, sensor noise can 
be modeled directly by the conditional probability distribu-
tions for the BN variables corresponding to observable va-
riables. Similarly it is possible to incorporate uncertainty 
about model parameters in the BN. In future work we would 
like to explore the extension of BN to support other such 
forms of uncertainty and see how that improves the sensitiv-
ity of the diagnosis algorithm.   
 As we mentioned earlier this approach can be easily 
adapted to work with other consistency-based techniques as 
well. This can be achieved by providing an algorithm to 
construct the BN from whatever modeling paradigm is be-
ing used. For example, the temporal causal graphs in the 
TRANSCEND system [Mosterman and Biswas, 1999] al-
ready provide a structure that can be used to construct the 
BN. Even more diagnostic power is possibly by changing 
the BN variable states to (-, 0, +) as used in the 
TRANSCEND reasoning algorithms. The signal to symbol 
transformation algorithms have to be modified to output a 
probabilistic measure of consistency (or a probability distri-
bution over -, 0, + if those states are used). Using this ap-
proach, TRANSCEND would not be forced to commit to a 
set of candidates generated by the initial backtracking. Al-
ternately it might be possible to start the fault isolation rea-
soning earlier since it is not essential for 100% accuracy in 
determining symbols. 
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