
NASA Tech Briefs, July 2009 35

A performability-oriented conceptual
framework for software rejuvenation has
been constructed as a means of increas-
ing levels of reliability and performance
in distributed stateful computing. As
used here, “performability-oriented” sig-
nifies that the construction of the frame-
work is guided by the concept of analyz-
ing the ability of a given computing
system to deliver services with gracefully
degradable performance. The frame-
work is especially intended to support
applications that involve stateful replicas
of server computers.

Software rejuvenation has been recog-
nized as a simple yet effective means of
preventing accumulation of software er-
rors that, if allowed to accumulate, could
degrade the capacity or cause failure of
a computer system. When a software sys-
tem is voluntarily rebooted, with high
probability, errors accumulated during
previous execution are eliminated and
the system regains its full capacity. Al-
though software rejuvenation has been
investigated extensively, it has not, until
now, been considered for stateful appli-
cations that involve server replicas. The
problem of software rejuvenation in
such applications is complicated by the

following considerations: When software
rejuvenation temporarily stops a long-
running replica server, R, the post-reju-
venation performance of R may be re-
duced because the stoppage may cause
the state of R to become inconsistent
with the nominal state of other replicas.
In that case, R would be unable to pro-
vide services at its full capacity until con-
sistency with the states of the other repli-
cas was restored.

The present performability-oriented
framework is based on three building
blocks: a rejuvenation algorithm, a set of
performability metrics, and a performa-
bility model. The performability metrics
and model both take account of the re-
duced nature of post-rejuvenation per-
formance pending restoration of consis-
tency. The performability model also
takes account of the possibility that post-
rejuvenation consistency-restoration
processes could be vulnerable to failures
because of the potential performance
stress caused by service requests accumu-
lated during rejuvenation.

The basic version of the rejuvena-
tion algorithm uses pattern-matching
mechanisms to detect pre-failure con-
ditions. To compensate for the inabil-

ity of pattern-matching mechanisms to
detect pre-failure-condition patterns
other than those known a priori, an en-
hanced version of the algorithm ac-
commodates a random timer and pro-
vides for synergistic coordination of
both detection-triggered and timer-
triggered rejuvenation. It has been
demonstrated, via model-based evalua-
tion, that this performability-oriented
framework enables error-accumula-
tion-prone distributed applications to
continuously deliver gracefully degrad-
able services at the best possible per-
formance levels, even in environments
in which the affected systems are
highly vulnerable to failures. It has
also been shown that software rejuve-
nation can be realized as an integral
part of the infrastructures in stateful
distributed computing applications
that guarantee eventual consistency of
the states of server replicas.

This work was done by Savio Chau of Cal-
tech for NASA’s Jet Propulsion Laboratory.

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-42352.

Information Sciences

A Software Rejuvenation Framework for Distributed Computing
This framework supports graceful degradation of services at best possible performance levels.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm for solving a particular
nonlinear independent-component-
analysis (ICA) problem, that differs from
prior algorithms for solving the same
problem, has been devised. The problem
in question — of a type known in the art
as a post nonlinear mixing problem — is
a useful approximation of the problem
posed by the mixing and subsequent
nonlinear distortion of sensory signals
that occur in diverse scientific and engi-
neering instrumentation systems.

Prerequisite for describing this partic-
ular post nonlinear ICA problem is a de-

scription of the post nonlinear mixing
and unmixing models depicted schemat-
ically in the figure. The mixing model
consists of a linear mixing part followed
by a memoryless invertible nonlinear
transfer part. The unmixing model con-
sists of a nonlinear inverse transfer part
followed by a linear unmixing part. The
source signals are recovered if each op-
eration in the unmixing sequence is the
inverse of the corresponding operation
in the mixing sequence.

More specifically, in the models,
s(n) = [s1(n),s2(n),...sN(n)]T

is an N×1 column vector representing N
independent source signals at time n that
one seeks to estimate. This vector is mul-
tiplied by A, an initially unknown N×N
matrix that represents the linear mixing
of the source signals. The N signals re-
sulting from the mixing are represented
by N×1 column vector

v(n) = [v1(n),v 2(n),...vN(n)]T.
Each of these signals is then subjected to
nonlinear distortion represented by a
function that is initially unknown and
could differ from the functions that rep-
resent the distortions of the other sig-

Kurtosis Approach to Solution of a Nonlinear ICA Problem
A gradient-descent algorithm minimizes the kurtosis of an output vector.
NASA’s Jet Propulsion Laboratory, Pasadena, California

https://ntrs.nasa.gov/search.jsp?R=20090027787 2019-08-30T07:31:33+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10549897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

36 NASA Tech Briefs, July 2009

nals. For the ith mixture signal, the dis-
torted signal is given by xi = fi(vi), where
fi is one of the initially unknown nonlin-
ear functions. Thus, the vector

x(n) = [x1(n),x2(n),...xN(n)]T

represents instrumentation signals pre-
sented for analysis. The distortion in sig-
nal xi is removed by means of a corre-
sponding initially unknown inverse
nonlinear function gi. Finally, the signals
are unmixed by means of initially un-

known matrix W to obtain output vector
u(n) = [u 1(n),u2(n),...uN(n)]T.

In the ideal case, W would be the inverse
of A and the output vector u would equal
the vector, s, of source signals.

The particular nonlinear ICA problem
is to calculate the nonlinear inverse func-
tions gi and matrix W such that u calcu-
lated by use of them is a close approxima-
tion of s. For the purpose of the present
algorithm for solving this problem, it is

assumed that the inverse nonlinear func-
tions gi are smooth and can be approxi-
mated by polynomials. The algorithm
finds the components of the unmixing
matrix W and the coefficients of the poly-
nomial approximations of gi by a gradi-
ent-descent method. This algorithm uti-
lizes the kurtosis of the components of
the output vector u as an objective func-
tion (in effect, an error measure) that it
seeks to minimize. In using the kurtosis,
this algorithm stands in contrast to prior
algorithms that utilize other objective
functions, including statistical functions
other than the kurtosis.

This work was done by Vu Duong and
Allen Stubberud of Caltech for NASA’s Jet
Propulsion Laboratory.

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Innovative Technology Assets Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
(818) 354-2240
E-mail: iaoffice@jpl.nasa.gov
Refer to NPO-43088, volume and number

of this NASA Tech Briefs issue, and the
page number.

f1
v1s1 g1

x1 u1

f2
v2s2 g2

x2 u2

fN
vNsN gN

xN uN

A W

Mixing Model Unmixing Model

Mixing and Distortion Operations and their inverses are represented in these block-diagram represen-
tations of mixing and unmixing models.

“Robust Real-Time Reconfigurable
Robotics Software Architecture”
(“R4SA”) is the name of both a software
architecture and software that embodies
the architecture. The architecture was
conceived in the spirit of current prac-
tice in designing modular, hard, real-
time aerospace systems. The architec-
ture facilitates the integration of new
sensory, motor, and control software
modules into the software of a given ro-
botic system. R4SA was developed for
initial application aboard exploratory
mobile robots on Mars, but is adaptable
to terrestrial robotic systems, real-time
embedded computing systems in gen-
eral, and robotic toys.

The R4SA software, written in clean
ANSI C, establishes an onboard, real-
time computing environment. The
R4SA architecture features three lay-
ers: The lowest is the device-driver
layer, the highest is the application

layer, and the device layer lies at the
middle (see figure).

The device-driver layer handles all
hardware dependencies. It completely

hides the details of how a device works.
Activities directed by users are performed
by means of well-defined interfaces. Each
type of device driver is equipped with its
own well-defined interface. For example,
the device-driver interface for an analog-
to-digital converter differs from that for a
digital-to-analog converter.

The device layer provides the means
for abstracting the high-level software in
the application layer from the hardware
dependencies. The device layer provides
all motion-control computations, includ-
ing those for general proportional + in-
tegral + derivative controllers, profilers,
controllers for such mechanical compo-
nents as wheels and arms, coordinate-
system transformations for odometry
and inertial navigation, vision process-
ing, instrument interfaces, communica-
tion among multiple robots, and kine-
matics for a multiple-wheel or
multiple-leg robot.

Robust Software Architecture for Robots
Generalized software can be readily tailored for specific applications.
NASA’s Jet Propulsion Laboratory, Pasadena, California

The R4SA Architecture features three levels
correspond ing to different levels of abstraction.

Device Driver Layer

Hardware

Device Layer

Application Layer

S
Y
S
T
E
M

