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Abstract

Volatile organic emissions were detected post-perihelion in the long period comet Ci2006
M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity,
observations using the infrared Cryogenic Echelle Spectrometer (CSHELL) at the NASA-
IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio
Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL
(H2O, CO, CH1014, CHI , and CH,), and two additional species (HCN and CS) were
measured with the ARID 12-m. These revealed highly depleted CO and somewhat enriched
CH,,OH compared with abundances observed in the dominant group of long-period (Oort
cloud) cornets in our sample and similar to those observed recently in Comet 8P/Tuttle.
This may indicate highly efficient H-atom addition to CO at very low temperature 	 10 —
20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C12006 M4 had nearly
"normal" CM, and CHI , suggesting a processing history similar to that experienced by the
dominant group. When compared with estimated water production at the time of the
millimeter observations, HCN was sli ghtly depleted compared with the normal abundance
in comets based on 1R observations but was consistent with the majority of values from the
millimeter. The ratio CS/HCN in C12006 M4 was within the range measured in ten comets
at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared
with most comets may indicate that the icy grains incorporated into C/2006 M4 were
exposed to higher H-atom densities, or alternatively to similar densities but for a longer
period of time.

Keywords: Cornets, composition; Cornets, origin; Molecular spectroscopy; Comet 02006
M4 (SWAN)



Unedited preprint, Accepted for Publication in Icarus, I I May 2009 	 page 3 of 3

1. INTRODUCTION

Comets formed relatively far from the Sun, beyond the "frost line," and they reside for

long periods of time in the outer Solar System. Their abundances can therefore provide

clues to the formation and evolution of the Solar System. The original structures and

compositions of ices contained within their nuclei (i.e., native ices) should reflect local

conditions (chemistry, temperature, degree of radiation processing) prevalent when and

where they formed (e.g., DiSanti and Mumma 2008, Bockelee-Morvan et al. 2004, Irvine

et al. 2000, Mumma et al. 1993). Although comets contain relatively primitive icy

material remaining from the epoch of Solar System formation, the extent to which they

are modified from their initial state is a fundamental question in cometary science.

The current orbits of comets provide information on their recent dynamical

history, however tracing cometary origins is complicated by their radial migration in the

proto-planetary disk and by dynamical interactions with the growing giant planets

(Levison and Morbidelli 2003, Gomes et al. 2005', Tsinganis et al. 2005 5 , Morbidelli et

al. 2008). Such interactions placed cornets into (at least) two principal present-day

reservoirs: the Oort cloud (OC) and the Edgeworth-Kuiper belt (.KB), thought to be the

principal source regions for "nearly-isotropic" (long-period, dynamically-new, and

Halley-type) comets and "ecliptic" (e.g., Jupiter-family) comets (.1FCs), respectively.

Comet nuclei remain largely unaltered until perturbed into the inner Solar System (Stern

2003, Gladman 2005), at which time sublimation of surface (or near-surface) native ices

releases parent volatiles into the coma where they can be measured spectroscopically.

Spectroscopic investigations reveal chemical diversity among comets, based on

studies of parent volatiles at infrared (e.g., Mumma et al. 2003, DiSanti and Mumma

2008) and radio wavelengths (e.g., Biver et al. 2002), implying a range of natal

conditions experienced by pre-cometary ices (see also Bockelee-Morvan et al. 2004).

Fundamental clues to natal conditions can be provided both by measuring native ice

abundances within an individual comet, and by building a taxonomy through

compositional comparisons among comets front. both OC and KB populations.

This paper combines post-perihelion infrared and millimeter spectral

observations of the long-period comet C'2006 N14 SWAN (hereafter 02006 M4) that

characterize its native ice composition. Discovered on 20 June 2006 with the Solar Wind

ANisotropy instrument (SWAN) of the Solar Heliospheric Observatory (Matson and

Mattiazzo 2006 IAUC 8?29), 02006 M4 was initially assigned an eccentricity e = 1.0

In particular. then papers detail the recently developed "Nice Model."
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based on 39 observations spanning 12-21 July 200€ (Tearno and Hoenig 2006 IAUC

8733; see also MPEC 2006-N38).

Inclusion of additional astrometric observations led to a slightly hyperbolic orbit

(see IFL's H0RIZONS website: url http://ssd.jpl ,nasa.gov/horizons-egi), suggesting that

C/2006 M4 may be entering the solar system for the first time (i .e., that it may be

dynamically new). However, the original value for I/a (0.000194 AU - '; Nakano 2008)

places its aphelion at 1.03x10` AU, indicating a dynamical origin in the inner Oort cloud

reservoir and calling into question its dynamical status (returning long-period versus

new). In any case, our observations occurred post -perihelion, so even if dynamically new

any radiation (or cosmic ray) processed outer layers (over its residence time in the Oort

cloud) would likely have been lost through erosion prior to our observations, making our

measurements a probe of less processed underlying material.

Visual estimates projected C/2006 M4 to reach magnitude 6 (or brighter) by mid

October 2006 (IAUC 8766; CBET 738), however it experienced approximately a 1,5-2-

magnitude surge in brightness around 24 October, followed by a sharp decline (Yoshida

2007); we incorporate this into our analysis in Section 4.2. Optical imaging revealed a

prominent ion tail but no discernable dust tail, suggesting that the observed coma was

composed primarily of gaseous species. This made C /2006 M4 a good target for our

study.

2. OBSER'V AT IONS

2.1 Target-of-opportunity observations at the NASA Infrared Telescope Facility
The comet was discovered after the normal application deadline for the Fall 2006

proposal cycle. A target-of-opportunity request was submitted to use the long slit

Cryogenic Echelle Spectrometer (CSHELL; Tokunaga et al. 1990) at the NASA Infrared

Telescope Facility on Mauna Kea, Hl, based on its favorable geocentric velocity (see

Table 1) and (especially) its availability during daylight hours since night time observing

was fully scheduled.

A total of eleven hours of clock time were granted at the IRTF. We used

CS14ELL with a 1 arc-second--wide slit, resulting in a spectral resolving power (^ '/Ai) of

-- 25,000 that permitted studies of individual line intensities. Flux calibration was

achieved throu gh observations of the IR standard star BS7235 using a wide (4 arc-

second) slit.

The CSHELL observations targeted specific emissions from CO, C11, C,H,, and

CH;011, and these were measured simultaneously or nearly simultaneously with 1-1,0 for
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its proxy OH*) to ensure reliable mixing ratios between trace constituents and water (Fig.

1). The significant geocentric velocity (A-dot) of C12006 M4 displaced its lines of CH,

and CO from their opaque telluric counterparts to regions of exceptionally high

atmospheric transmittance (90 — 90 percent).

[INSERT FIGURE I HERE]

Measuring HCN in comets represents a principal means of probing nitrogen

chemistry in the early solar system, and is fairly routine with modern infrared

spectrometers, even in less productive comets (see, e.g., Magee-Sauer et al. 1999, Ma gee-

Sauer et al. 2002, Mumma et al. 2003, Bockel6e-Morvan et al. 2004, N/lagee-Sauer et al.

2008, DiSanti and Mumma 2008, and references therein). Our observing plan included a

CSHELL setting that targets bath I-ICN and CH,. However, we were unable to utilize it

due to the extremely limited amount of observing time available for Cl2006 IV14,

especially considering that a stringent test of abundances (particularly that of CH.)

would have required a time on source comparable to that spent on the setting that samples

H 2 O emission near 3450 cm - ' (Table 1).

We used the standard ABBA observing sequence, with an east-west (along-slit)

nod of 15 arc--seconds (half the slit length) between A- and B-beam positions (e.g., see

discussions in Dello Russo et al. 2004, DiSanti et al. 2006). The observations were

conducted during daylight, so the CSHELL CCD guider could not be used. Instead,

following every 1 — 2 ABBA sequences (approximately 5 -,. 10 minutes of clock time) the

comet was imaged through the CSHELL open (30 x 30 arc-second) aperture, to re-

position it in the slit and to update tracking rates as warranted. Cometary drift was

generally I ---- 2 arc-seconds or less (approximately commensurate with the seeing

conditions), and was primarily along the length of the slit. This preserved cometary

signal in the slit and made it possible (upon reduction), based on temporal interpolation

of comet positions in the images, to spatially register all A and B scans separately prior to

combining them.

The low dust continuum emission made imaging the comet during daytime

challenging. We found that its visibility peaked near 352 yrn, corresponding to the

approximate center of the CH 3OH v, band {with Q-branch at 3516 prm, or 2844 crV '), as

methanol was relatively abundant in 0`2006114 (.see below) and so contributed most of

the intensity at this wavelength. To ininirnize potential shifts in wavelength calibration

and mismatches in flat fielding, the echelle grating was Kept stationary for the duration of

each given setting. The CSHELL low resolution (T 'rA^. 8M circular variable filter (used

for transmitting only the desired echelle order) was tuned to 2844 cm - ' for imaging the

comet between spectral sequences.
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[INSERT TABLE I I

2.2 Millimeter observations with ARO 12-in telescope

Observations of C/2006 M4 were conducted using the Arizona Radio Observatory (ARO)

12-m telescope on Kitt Peak, AZ (Table 1). The ARO 12_m observations targeting HCN

and CS in C12006 M4 were conducted during several observing runs spanning 2006

October 30 to November 10. Dual-channel SIS mixers operated in single-sideband mode

with image rejection around 20 dB were employed in the 2 rnm (for the J = 3 _.. 2

transition of CS) and 3 mm (for J = 1 ---- 0 of HCN) bands, and filter banks having

resolutions of 250 and 100 kHz, respectively, were used as back-ends. The spectral

temperature scale was determined by the chopper-wheel method, corrected for forward

spillover losses, and is given in terms of antenna temperature, T." (K). The radiation (or

equivalent brightness) temperature, T R , is then derived from the corrected beam

efficiency, it , as T,, = T,'/rl,. The epherneris employed was JPL reference orbits #10 for

October and #11 for November. Nearby planets were used to check focus and positional

accuracy at regular intervals. Data were taken in position -switching mode with the off

position located +30 arc-minutes west in azimuth. HCN and CS were clearly detected in

the millimeter observations (Fig. 2).

At millimeter wavelengths, HCN is the standard against which abundances of

other cometary volatiles (both parent and daughter species) are measured, and the limited

observing time available for C/2006 M4 with CSHELL made the millimeter observations

of paramount importance. CS tests the role of sulfur in the formative region and provides

an additional comparative among cornets (see discussion in Section 4.A, and Biver et al.

2002, Biver et al. 2006).

[INSERT FIGURE 21

3. DETERMINATION OF MOLECULAR ABUNDANCES

The production rate (Q, molecules s - ') of a parent volatile is expressible for both IR and

millimeter observations in terms of the column density N (molecules m ") in the beam:

Q J ^^ l^t3i'Ef11C
R -

clwale

A

TWAX)

Here ;„E,  (m) is the area subtended by the beam, T 1 AU (S) is the photo-dissociation.

lifetime of the parent molecule evaluated at heliocentric distance Rj, = I AU, and f(x)

represents the fraction of all molecules in the coma that are encompassed within the

beam. The dimensionless factor	 accounts for loss of flux due to aperture effects or

(1)

beam dilution_
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3.1 Production rates from infrared spectra
We used customized IR data processing algorithms to produce orthogonal spatial-spectral

frames from the raw CSHELL data (Villanueva et al. 2006, DiSanti et al. 2006, DiSanti

et al. 2001). Wavelength calibration was applied to these processed data through

comparison of observed sky radiance with spectra synthesized using a rigorous line-by-

line, layer-by-layer radiative transfer model of the terrestrial atmosphere (GENLN2,

Edwards 1992). We updated this model to properly include pressure-shift coefficients

along with the latest spectroscopic parameters (Villanueva et al. 2008).

Assuming optically thin conditions, column densities were determined from the

CSHELL data using line fluxes (F„ r,,, W m-'-), corrected for atmospheric transmittance at

each Doppler-shifted line frequency, and fluorescence g-factors (W molecule-),

4,x	 F,ine_ R 2IR	

Q gliftCJAU

in which Q (ster) is the solid angle subtended by the beam — we used 15-row spectral

extracts (i.e., a 10 arc-second aperture) centered on the nucleus for our analysts. This

translated to approximately 800x2400 kni at the comet on UT November 7, and 840x2500

km on November 10. For the CSHELL observations, the fraction f(x) in Eq. i is calculated

for square pixels (with x being the ratio of pixel size to photo-dissociation scale length; see

the Appendix of Hoban et al. 1991 for details) assuming constant gas production and

uniform outflow at constant speed (taken to be 800 Rj, -° m s"', consistent with line widths

measured in the ARQ spectra; see below).

The factor g5,al, (> I for our CSHELL observations) corrects for slit losses due to

seeing and to potential drift of the comet arising from uncorrected errors in telescope

tracking, in particular as arise from (slight) drift perpendicular to the slit. The production

rate corresponding to gscale = 1.0 is referred to as the nucleus-centered Q; gSe ^, je is typically

determined from the sum of spatial profiles for several lines because this summed profile

has higher signal-to-noise compared with individual line profiles. Applying gscale to the

nucleus-centered Q for each line yields its global Q. The overall molecular production rate

is then the weighted mean of line-by-line global Qs (['able 2). The methodology for

deter fining molecular production rates is detailed in the literature (e.g., Magee-Satter et al.

1999, Dello Russo et al. 2040, DiSanti et al. 2001, DiSanti et al. 2006, Magee-Sauer et al.

2002, Bonev 2005).

(2)

INSERT TABLE 21



Unedited Preprint, Accepted for Publication in Icarus, 11 May 2009 	 page 8 of 8

3.2 Production rates from millimeter observations

Abundances for HCN and C5 were derived from the ARO 12-m observations assuming

the source filled the (circular) beam of the telescope. Again assuming the emissions to be

optically thin (based on intensities of HCN hyperfine components; see Fig. 2A), the

column density was calculated as:

3k f ,r dv , ,2 ^..,
rnclPsr	 3	 S	 —E^ Wr-„^

in which v (MHz) is the frequency, f T Rdv, ;2 (K km s- ) represents the integrated intensity

corrected for main beam. efficiency, S,j lr f 2 is the line strength (1t,, being the permanent

dipole moment, in Debye), ^, is the rotational partition function, and g, and E, are

respectively the statistical weight and energy of the upper rotational state.

For the millimeter observations, the factor A, 7ea,,, from Eq. I is given by

jc(D,,.,12)", where the beam diameter D,, ,,. = A tan(1.22?JI),,) and D,,, = 1.2 m; this

translates to approximately D,.,,,, = 5.44 x 10' km at the comet for the HCN observations

and 3.28 x 10' km for the CS observations. Assuming the source fills the beam, q,3,e

1.0 and, if solely native production and spherically-symmetric gas outflow at constant

speed in the coma are assumed, f(x) can be calculated following Yamamoto (1982).

Using a Monte Carlo formalism (as was done here) results in essentially the same

production rates as those given by the strictly spherically-symmetric case. Terrestrial

atmospheric opacity is included in the calibrati on of the millimeter observations.

HCN and CS were assumed to be parent species, and their production rates were

determined using a Monte Carla model for a purely native source (Milani et al. 2006;

Remijan et al. 2008). The model traces the trajectories of molecules that are ejected from

the cornet surface and enter the telescope beam. Input parameters include molecular

lifetime, gas outflow velocity, telescope beam size, and observed column density. From

our line profiles (Fig. 2) we measured outflow velocities of - 730 m s - ' and -u 1000 m s"

respectively for HCN and CS, and adopt 800 R^ a.s m s' in our analysis, as stated

previously.

If CS is a photo-destruction product of CS, (Snyder et al. 2001), only slight

adjustments to the input parameters are introduced in calculating Q. Under this

assumption, lifetime-, and velocities of both parent (CS ,,) and daughter (CS) are used,

while other input parameters are held unchanged from their values assumin g CS itself is a

parent species. Because CS, has a very short photo-dissociation scale length (- 300 km,

corresponding to T- 370 R,,' s; Huebner et al. 1992), much smaller than the beam radius

(3)
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(1.64 x 10' km), this translates to a negligible change in Q (,, compared with its value

assuming CS to be a parent.

(INSERT TABLE 3 1

3.3 Rotational temperatures

For both the CSHELL and ARO observations, a small number of lines were measured.

For this reason, knowledge of rotational temperature (T,,,,) in the coma is needed to

establish the population distribution among rotational levels and thereby determine

accurate column densities from measured line intensities. (The dependence on T «,, is

explicitly manifested through g,;,, in Eq. 2, and through e_ E ' `1T_, f ^,, in Eq. 3.)

Obtaining a reliable measure of T,,, requires measuring lines that sample a range

in rotational energy. Because each CSHELL setting encompasses a limited spectral

range (approximately 0.23% of the central wave number), and also due to the limited

IRTF° time available to Measure the chemistry of C12006 M4, only the 3452 cm' water

setting satisfied this criterion — we measured T,,, = 77 29j ,^ K for Hz0 on November 10,

based on four lines sampling rotational energies ranging from 40 — 400 cm - ' (see inset

to Fig. I E). We therefore adopt T,,,, = 80 K in reporting global production rates for

molecules observed with CSHELL (Table 2), and list column densities and production

rates for HCN and CS assuming 60, 80, and 100 K (Table 3). In Table 4, we report

mixing ratios (i.e., abundances relative to H ZO) for 60, 80, and 100 K for species

measured with CSHELL. For 14CN and CS, we present mixing ratios for 60 and 80 K,

incorporating differences in estimated overall gas production between ARO and

CSHELL observations resulting from the reported outburst (see Section 4.2).

4. DzscUSSIO r

Our combined IR and millimeter results reveal an interesting parent volatile composition

for Ci2006 M4. Some intriguing possibilities for the processing history of its pre-

cometary ices emerge, particularly when compared with other comets previously

characterized. A comparison among cornets provides a context for inferring where

(perhaps also when, for how long, and or to what degree) processing occurred.

41. Dependence of abundances on rotational temperature
In Table 4 we list mixing ratios {abundances relative to H2O) at T,= 60, 80, and 100 K

for CO, CH,, CH 30H, and CH. in Ci2006 M4. The abundances of CO, C,H,;, and

CH.OH are independent of assumed rotational temperature to well within Ic y uncertainty.

This is primarily because the settings targeting their emissions include multiple lines that
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sample a range of rotational energies. The abundance of CH, is somewhat more sensitive

to Tra„ as is that of HCN (Table 4).

[INSERT FIGURE 3'1

Assuming T rot for the ARO observations agrees with that measured with CSHELL

for H2O, the abundance of HCN can be expressed relative to the weighted mean of H20

production rates for November 7, 9, and 10 (Fig. 3), however this comparison is

complicated. The aperture for CSHELL (— 800 x 2400 km; Section 3.1) is small

compared with the ARO beam sizes (5.4 x 10` km for HCN, 33 x I  km for CS; Section

3.2), so we must allow for possible differences in beam-averaged T,,,,. Perhaps more

significantly, the ratio HCN/1420 cannot be adequately assessed without also accounting

for differences in modeled water production rate between times of ARO and CSHELL

observations due to the decaying outburst (Table 4 note e, Fig. 4, and Section 4.2). The

abundance of CS is expressed relative to HCN (see Section 4.4) as is customary with

millimeter observations (Biver et al. 2002, Biver et al. 2006; see Section 4.4).

[INSERT TABLE 41

4.2. Accounting far temporal variability

The temporal coverage of HCN and CS with ARO encompassed that of the CSHELL

observations (Table 1), however three of the four dates on which HCN was observed and

two of four dates on which CS was observed were prior to our CSHELL run. Cl2006 M4

experienced a significant outburst on UT 24 October followed by a steep decline in

activity (see Yoshida 2007). Therefore, we also report a mixing ratios for HCN and CS

based on the estimated contemporaneous 11,0 production rate for each.

To accomplish this, we reproduced the light curve of C2006 iVI4 using fitted

expressions that relate its visual magnitude to R, and A (Yoshida 2007). We then applied

the expression (Jorda et al. 2008) relating Q(H20) to visual magnitude (reduced to A = I

AU) based on 234 measurements in 37 comets. The resulting "activity curve" is shown

in Fig. 4 — we note that our points from. Fig. 3 are grouped tightly about this fit. Based on

the weighted mean UT date for the HCN observations (November 3.0), this suggests a

commensurate fitted value of Q(HO) = 2.05 x 10 2' molecules s'. We list our "most

probable" HCN abundance (0.13 t 0.02 percent), assuming T, = 60 K for HCN and T„,

= 80 K for 1-1,0. For comparison, we also list its abundance assuming both HCN and

H 2O are characterized by 'f , = 80 K (see Table 4, note `e'). Therefore, unless T,,,, for
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HCN is well above 100 K (which seems very unlikely), HCN is depleted in C12006 M4

compared with its "normal" abundance as measured in the IR (see discussion in Section

4.4).

However, our most probable mixing ratio for HCN is consistent with values found

for the majority of 24 cornets observed at millimeter wavelengths (see Figs. I and 2 of

Biver et al. 2002, and Section 4.4). This may reflect what appears to be differences

between. HCN abundances derived from IR and millimeter observations, the latter being

systematically lower by a factor of 2 among measured comets (e.g., see Magee-Sauer et

al. 2008, and references therein). This can be tested through coordinated observations.

[INSERT FIGURE 41

4.3. Relation to the chemistry of oxidized carbon
An important recognized path for converting CO to the chemically linked molecules

H,CO and CH30H is H-atom addition reactions on surfaces of icy interstellar grains prior

to their incorporation into the nuclei of comets (Hudson and Moore 1999, Watanabe and

Kouchi 2002, Hiraoka et al. 2002, Watanabe et al. 2004). This process is analogous to

production of cometary ethane through hydrogenation of C,H,, proposed to explain the

relatively high abundance of C.,H,, to CH 4 first observed in CI1996 B2 (Hyakutake)

(Mumma et al. 1996). Subsequent studies routinely reveal hi gh CA abundances in

comets, orders of magnitude higher than the amount of C,H 6 produced through gas phase

nebular chemistry (Prinn and Fegley 1989). This demonstrates that H-atom addition is

likely a common and important process in the evolution of such grains.

Laboratory experiments show hydrogenation of CO to be efficient only at very

low temperatures (— 10 -w 20 K), the yields being highly dependent on fluence (i.e.,

density) of atomic hydrogen, temperature (i.e., H-atom retention time), and whether CO

is housed structurally with H.0 in the ice (e.g., see Watanabe et al. 2004). One measure

of this conversion can be represented by the sum of H,CO and CH 2 OH abundances

divided by the sum of all three abundances (DiSanti et al. 2002).

Due to the limited amount of available observing time, we were unable to observe

H,CO in Cr2006 M4. Despite this, the severely depleted abundance of CO coupled with

somewhat enriched CH,0H (Table 4) suggests highly efficient conversion of CO,

approximately 90 percent or higher -- note that, by the above definition, the presence of

non-negligible H,CO would further increase the conversion efficiency. This measure

assumes that all CO converts to H^CO or CH 30H, and that these- two molecules arise

solely from H-atom addition to CO, thereby representing a limiting case,
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This interpretation of measured abundances may be compromised if icy grains in

the inner proto-solar nebula were thermally processed prior to their final incorporation

into the nucleus. It is possible that the grains incorporated into 012006 M4 originally had

a higher endowment of CO that later was preferentially lost through vaporization in

subsequent warmer nebular environs. In this case one might also expect depletion of the

only slightly less volatile CH I , however methane falls in the "normal" range in this comet

(Table 4). alternatively, some fraction of the initial CO budget may subsequently have

been locked up in complex or ganic material, for example the "CHON" particles
Zn

discovered during the Giotto encounter with comet IP/Halley (Kissel et al. 1986;

Huebner 1987; Mitchell et al. 1987; Milam et al. 2006). The very weak observed optical

/ IR continuum in C/2006 M4 implies a low abundance of approximately micron-sized

grains, so a commensurate paucity of smaller grains (e.g., CHON) might be expected. In

any case, observed and primordial (pre-cometary) abundances of CO could differ

substantially, and our measured conversion efficiency may reflect processing history of

ices more than natal conditions in the proto-solar cloud.

Inter-comparison of abundances for CO, H,CO, and C1-H 3OH in comets, molecular

disks around young stars, and proto-stellar cloud cores would be particularly valuable for

understanding the (potential) processing (chemical and/or thermal) experienced by

organic matter during different stages of planetary system fort-nation. However, such

studies are beyond the scope of the present paper.

4.4. Abundance comparisons with other comets

Comparisons among comets suggest interesting possibilities. The molecules in Table 4

are listed from left to right in order of increasing vacuum sublimation temperature. We

arbitrarily adopt the following classifications for mixing ratios relative to those measured

in four OC comets (which we refer to tentatively as "organics-normal" comets; see notes

`a' and `F in Table 4). "Severely" refers to values that are three standard deviations (3(T)

or more and more than a factor of two from normal, while "slightly" (or "somewhat")

refers to values between 1 o and 3o or within a factor of two from normal. A range of

native ice compositions is seen even among the small number of comets measured in

detail (about two dozen between IR and millimeter regimes; Mumma et al. 2003.

Bockelee-Morvan et al. 2004, Crovisier 2007, DiSanti and N'lumma 2008 and references

therein)'.

Organics-normal comets show chemical signatures similar to (although not

identical to) those observed in dense interstellar clouds (Mumma et al. 2003; Bockelee-

e Note that these classifications are based on small number statistics.
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Morvan et al. 2004; Charnley and Rodgers 2008), suggesting the ices incorporated into

the nuclei of these comets experienced processing at low temperatures. Compared with

the composition--normal group of comets, our measurements of C/2006 M4 indicate

severely depleted CO and somewhat enriched CH2OH, while CH. and C2Hh are consistent

with normal. After accounting for estimated differences in gas production between IRTF

and ARO observations (Fig. 4), our abundance of HCN is somewhat depleted relative to

normal IR values in cornets but is consistent with that found in the majority of comets

measured at millimeter wavelengths (see Table 4, note `e'), which cluster near HCN;'H2O

— 0.1 percent (see Figs. I and 2 in Biver et al. 2002). Our abundance ratio CS/HCN is

0.63--0.101 and 0.59±0.094 for T,p, = 6010 and 80 K, respectively; this incorporates

differences in the mean UT for HCN and CS observations assuming their production

rates track that estimated for H 2O (Fig. 4). The ratio CS/HCN in C/2006 M4 falls within

the range (0.5 — 1.2) measured at millimeter wavelengths in nine of 24 comets (Biver et

al. 2002) plus 153P/Ikeya-Zhang (Biver et al. 2006). Of these ten cornets, seven have

probable Oort cloud origin and three are JFCs.

The hyper-volatiles CO and CH4 exhibit the largest variations in abundance

among comets, however they are not correlated, demonstrating that thermal

considerations alone cannot explain molecular abundances in cornets (Gibb et al. 2003).

Fully interpreting the large variation in CO abundances among cornets involves

distinguishing the amount initially condensed onto grains versus the degree of subsequent

alteration, for example through H-atom addition or incorporation into complex molecules

as discussed previously.

Inspection of Table 4 shows that our abundances of CO and CH 2OH in C/2006

M4 were very similar to those in Comet 8P/Tuttle (136hnhardt et al. 2008), the

composition of which also suggested highly efficient conversion of C 2H2 to C,H,

(exceeding 85%). (Because CH, was not measured in C/2006 N14, this comparison is

not possible.) However, C/2006 M4 had normal abundances of CH, and CH I;, 2 -- 3

times higher than their corresponding values in 8P Tuttle (Bonev et al. 2008; 136hnhardt

et al_ 2008). Provided our "most probable" abundance for HCN in 012006 M4 is valid,

this makes HCN only somewhat less depleted than its value in Comet "Tuttle (Bonev et al.

2008), notwithstanding the systematic difference between HCN abundances based on IR

and millimeter observations mentioned previously (Section 4.2). We note that

preliminary results from TRAM and CSO measurements (Biver et al. 2008x) place the

abundance of HCN in 8PsTuttle towards the low end of the distribution measured among

comets.
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Low CO abundances were also observed in fang-period comet CJ 1999 S4

(LINEAR) and JFC 73P?Schwassmann-Wachmann 3, however in contrast to Ci2006 ^l4

these comets showed severe depletions in most parent volatiles, including CH30H but not

HCN (Mumma et at. 2401, Villanueva et al. 2006, Kobayashi et al. 2007, Dello Russo et

al. 2007, DiSanti et al. 2007x). Enriched abundances were observed in long-period comet

02001 A2 (diver et al. 2006, Gibb et al. 2007, Magee-Sauer et al. 2008), and more

recently in JFC 17P/'Holmes during its sudden outburst in October/November 2047

(Salyk et al. 2007, Dello Russo et al. 2008, Bockel6e-Morvan 2008, Biver et al. 2008b),

suggesting a more nearly interstellar chemistry. For both relatively depleted and enriched

comets, this demonstrates that compositional similarities exist between cornets that likely

come from different dynamical reservoirs (OC for Cl 1999 S4 and Ci2001 A2, KB for

73P and 17P), and suggests distinct processing histories for depleted, organics-normal,

and enriched comets. Our results for Ct2006 M4 appear to be most closely in line with

the normal group of comets, although differences exist as discussed above.

If formation temperatures were comparable to those experienced by organics-

normal comets, and assuming 14-atom addition dominates conversion of CO (see Section

4.3), it is possible that the higher CH 30H/COratio in 012046 M4 implies a greater

availability (e.g., a higher density) of atomic hydrogen in its formation environment.

Alternatively, H-atonn addition reactions could have taken place over a longer period of

time in the case of Cl2006 M4, leading to excess methanol at the expense of CO.

5. SUMMARY

We conducted post-perihelion observations of parent volatiles in the long--period comet
62006 M4 (SWAN) on three UT dates using CSHELL at the NASA-Infrared Telescope
Facility 3-m telescope, and on seven UT dates using the Arizona Radio Observatory 12-
m telescope. Our measured abundances for C,H,, CHI , HCN, CO, CH 30H, and CS were
compared to their values in other comets, as part of our ongoing efforts to build a
taxonomy based on composition. The values for C2 H6 and CH4 were consistent with
those found in the organics-normal class of comets. After accounting for differences in
overall cometary activity between millimeter and infrared (HO) observations, HCN was
somewhat depleted compared with its abundance in most comets observed in the IR.
However, it was consistent with that measured in the majority of comets at millimeter
wavelengths, as was CS HCN based on its value measured in ten cornets. Compared with
the organics-normal group, CO was severely depleted (by a factor of four or more) while
CH-,OH was somewhat enriched (by about 50 percent), and their abundances were
consistent with those measured in the Halley-family comet SP/Tuttle. The large
abundance ratio CH 2OH/CO may indicate highly efficient H-atom addition reactions on
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pre-cometary grain surfaces, provided that CO was not subsequently lost through nebular
processing and/or locked up in more complex material such as CHON grains. Assuming
measured abundances reflect processing at very low temperature (-- .10 — 20 K), then
compared with organics--normal comets this may indicate larger hydrogen densities in the
nascent environment of C/2006 M4, or alternatively that its pre-cometary ices
experienced surface chemistry over a longer period of time.
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Table 1. Log ©fObservations of Comet C/2005 M4 (SWAN)

2006 UT Date' Rh
(AU)

d
(AU)

0-dot
(km s

V0 tint)
min(min)

Species/Band/Lines targeted

CSHELL/IRTF
Nov 7.06 1.078 1.100 +27.0 2985.0 24 CA V7 `QI ,''Q,; CH3OH

7.11 1.078 1.101 +27.1 2152.5 28 1 CO v, R 1, R2; H 20 v3_ 
V2 111-110

9.11 - 1.1031134 +30.3 2152.5 32 "
9.15 .1.104 1.135 +30.5 2844.0 8 CH30H V3 Q-branch

10.04 1.115 1.150 +31.5 3452.25 36 H2O 2v,-V, V I + V3 - V, (multiple lines)'

to. to 1.115 L152 +31.8 3041.2 24 CH, v, R1; 0I-1*
10.14 1.116 11.152 +319 2844.0 8 CH30H v3 Q-branch

ARO 12-m°
Oct 3 1. 10 0.995 1.018 ------ 8863.1.85 216 HCN J = 1 4 0
Oct 31.79 1.004 1.024 276
Nov 2.97 1,029 1.045 96
Nov 10.75 1.124 1.164 180
Nov 1.79 1.015 1.033 ------- 146969.03 312 CS J = 3 4 2
Nov 3.05 1.029 1.046 96
Nov 7.76 1.086 1.111 132
Nov 9.83 1. 112 1.147 350

Corresponds to the mid-UT decimal date. ARO results in subsequent tables pertain to the
average over all dates listed.

h CSHELL central frequencies are expressed in cm - '; ARO frequencies are in MHz.

Beam sizes of 70 and 43 arc-seconds (translating to 5.44x 10 4 and 3.29x IW km at the comet)
were used for the HCN and CS observations, respectively.

`' Vibrational and rotational designations for H,0 lines in this setting are given in Fig. IE.
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Table 2. Production rates in C/2006 M4 SWAN from CSHELL observations

UT Date
2006

Molecule ID
r

Fline `'
M-210-19 W	 "'

g-fac `'
10-' s-1

gSC3,e e Q f

1026 molec s"'

Nov 07.06 C2H6 'Q 2.64±0.14 19.2:* 1.9 319 2.63±0.20 7.56±0.74 (1.01)

1Q0 26.7t 1.9 355 9.43 0.66 (1.08)

C,H, PQr+ rQ, 45.9:2.6 674 8.6lt0.93 (1.21)

Nov 07.11 H2O 1.97 ±0.04 631:5.2 5.20 2.20+041 1756:145 (360)

CO R I 13.1 14.8 139 13.5 ±4.98 (5.59)

R2 6.8-_*4.7 172 5.69+3.93 (4.08)

CO R1+R2 19.9t6.7 311 8.69:3.79 (413)

Nov 09.11 H2O 197±0.04 44.7:4.4 510 2.12±0.38 12801126 (265)

CO R1 3.1.3.4 139 3.29:3.64 (3.69)

R2 10.0:64 172 8.57:295 (3.33)

CO R1+R2 13.1:4.8 311 6.4712.58 (2.84)

Nov 09.15 CH30H 1.85-10.02 56.114.7 103 1.49±0.26 433:3.65 (8.45)

Nov 10.04 H70 (1)' 5.57±0.17 6.7:0.89 0.514 2.50.-0.36 1470-t195(293)

(2) ` 21.2± 1.2 1.70 1402±76.6 (222)

(3) ° 173-±-1.1 1.23 1582±100(256)

(4) ` 3.0:1.5 0.183 1854±919 (959)

H2O (Sum) 48.2:2.2 3.63 1470:58.0 (226)

Nov 10.10 CH4 R1 2.45-0.22 14.4:1.6 177 189-0.28 .	 12.0:1.36 (2.08)

OH* 4.80.89 0.537 1157±215 (263)

(2) 1.8±0.95 0.350 598:614 (324)

(3)° 4.0-x--0.95 0.153 4035+950(1088)

(4) ` 0.67±0.96 0.210 222±315(316)

OH* (Sum) 1 11.3119 1,25 880:372 (390)

LIN o v 10. 14 CH30H 1.85-_*0.02 20.4:4.8 103 4.30-0.43 46.4:109 (13.7)

Calibration faetor l 1.0' " W m'2 (cm ^)^ - (AD s"')I, based on observations of flux standard
star BS7235.

"Transmittance-corrected line flux contained within a 1 x3 arc-second nucleus-centered aperture.
Uncertainties for individual lines represent the to stochastic error (for fluxes surnmed from
multiple lines, the larger of stochastic and standard errors is listed).

Water and 011 prompt emission lines are identified in Fig. 1.

Fluorescence factor at T.,, = 80 K. For H_O on 'November 10, the measured value of 7- K
was used (see textl.
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Growth factor representing the measured ratio of terminal to nucleus-centered production
rates.

Global production rate. 'rhe first uncertainty listed is oQ, "h (for the combined Q from
multiple lines, the larger of 6Q .,,^h , OQ;rd is listed); the values in parentheses include
uncertainties in F and

Table 3. Production rags in C12006 IVM4 SWAN from ARO observations
Molecule T fTR. dv yjc S;j 1141 2 i ycol6 Q b

(K) (K krn s') (10-"D) (MHz) (10" molec cnt') (1026 molec s-')

HCN ` 60 0.0363 0.9 8.91 88632 4.34±1.33 2.58tO.264

s0 5.78±1.78 3.43±0.352

100 7.23 -2.22 4.33tO.444

CS 60 0.0385 0.7 1.65 294060 3.31.1.20 1.31+_0.159

80 LE 4.16:-1.51 1.64--0.199

100 S.n1_ 1 .83 1.99 0.242

'TR* and 
rlG are measured antenna temperature and corrected beam efficiency,

respectively. The quantity TR in Eq. 3 represents the equivalent brightness temperature
(TR= TR*frlc)-

"Errors in N,,, and Q are la, and include stochastic noise and uncertainties in T R * and
line width. In the Monte Carlo approximation, the following parent photo-
dissociation lifetimes ( s) were used: HCN, 7.7x 104 R,^ ( Huebner et al. 1992); CS,

I.Ox 105 Rh2 (Jackson et al. 1982). CS., 3.70x10 2 R 1, 2 (Huebner et al. 1992).

Values for HCN are based on the brightest component only (F= 2 ---> l; see Fig. 2A),
considering, it comprises Sig of the total (3-component) line intensity.
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s Values are based on H2O = 100. Uncertainties represent Ic y , and upper limits represent acs.
Heavy (shaded red) and light (pink) solid boxes indicate respectively severely and slightly
enriched abundances, and heavy (green) and light (yellow) dashed boxes indicate severely and
slightly depleted abundances compared with abundances measured for the majority of Oort cloud
comets (see §4.4). Unless otherwise noted, abundances are taken from DiSanti and Mumma
(2008) and Mumma et al. (2003), and the original papers referenced therein should be cited.
Values for CO pertain to release solely from the nucleus (i.e., the native source).
Vacuum sublimation/condensation temperatures (Yamamoto 1985; Crovisier 2007).

a This work. Values represent mean mixing ratios for all dates measured. Uncertainties include
those in r and q,,,,, (Table 2), except when co-measured with H2O, as are CO in the 2152 cm-'
setting and CH,, in the 3041 cm" setting (co-measured with OH*-; Fig. 1D1. Values for CH,, and
CH2OH from November 10 incorporate the mean Q(HO) as calculated from H 2O in the 3452
cm' setting and from OH* in the 3041 cm - ' setting.

This work. These entries use the contemporaneous value for Q(H 20) estimated from the activity
curve of Fig. 4. For our "most probable" abundance for HCN. we take Tit,, = 80 K for H MO and
60 K for HCN, resulting in a mixing ratio of 0.126 percent as shown (see text).
Refers to the mean of values for four OC cornets (Cl"'1996 132 Hyakut.ake, Cr'1995 Of Hale-Bopp,
C"'1999 H I Lee, and 153P lkcya-Zhang) having similar abundances for C,H , C_Hz, HCN, and
CH-,OH (for abundances in individual comets, see Mumma et al. 2003). A range of values is
listed for CO and CH I because the mean dispersion in their abundances among these comets (i.e..
their standard distribution about the mean. or the standard error) is more than twice the error in
the mean associated with their individual uncertainties of each value (the stochastic error). For
GH, C,H- H(:N, and CH-,OH, the mean and the larger of stochastic and standard errors are
listed.

1 I3olinhardt et al. (2(308):" INIcan of abundances fr-orrr f3cfhnhardt et al. i 2008) and p ont y et C-rl.

2008W Bonev et al. (2008).
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Figure 1. Molecular emissions in excess of the continuum (black traces) in C12006 M4,
indicating targeted molecules (and vibrational band, unless otherwise noted) in each
panel. Modeled line intensities at the specified Trot (colored traces) are also shown.
Vertical ticks indicate positions of lines used in our analysis, except in panel B, which
shows the frequency interval over which the Q-branch of CH 30H is integrated. Also
indicated are ±Ic3 stochastic noise (lavender traces) and the spectral extent (micrometers,
in parentheses) encompassed. The H2O line near 2151 cm - ' has vibrational band
designation v3- v, and rotational designation 1.-1 (,. Designations for prompt OH lines
numbered in panel C: (1) v,, P125 1'; (2) v,, P12.5 F; (3) vz- v,, P8.5 2}; (4) v,- v,, P8.5
2- . Designations for water lines numbered in panel E: (1) v,+ v3_ V 1, 2„ -2,0 ; (2) blend of
2v,- v„ 1, t,-2z 1 and v a t v, v,, 2.2-3,,; (3) 2v,- v.,, 110- 1 11 ; (4) v,+ v3 v,, 5,4-625 . Inset to
panel E: Boltzmann excitation diagram., showing global production rate (with :L-ICY error

bars) versus rotational energy (cm- ') for the four lines. Line-by-line Qs agree (within
error) at the optimal rotational temperature (77 K, see text).

Figure 2. Spectra of Cl2006 N44 obtained with the ARO 12-m telescope. (A) HCN, with
positions marked for the three nitrogen hyperfine components (labeled `F') of the J = I --
0 line. The spectral resolution is 100 kHz. (B) The CS J = 3 — 2 line with a spectral
resolution of 250 kHz. Both spectra are plotted in the cometocentric velocity frame.

Figure 3. Global water production rates in Cl2006 M4 at 80 K. Points I and 2 are based
on the H..O line near 2151 cm - ' (Fig. IA). Point 3 is based on the lines in Fig. IE. Point
4 is based on the OH prompt emission lines in Fig. ID. (For line vibrational and
rotational designations, see Fig. 1.) The weighted mean Q(H 20) (dashed line) and its ±10
uncertainty (dotted lines) are also indicated. Mean water production rates (from all
relevant CSHELL observations) for 60, 80, and 100 K are (in units of 10 29 molecules s')
1.25^?-0.11, t.39+0.15, and 1.53±0.16, respectively.

Figure 4. Overall activity light curve for 012006 114 (SWAN), expressed in terms of
estimated water production rate as described in Section 4.2. In addition to our H,0
production rates (from Fig. 3), we show UT times for the ARO observations of HCN and
their weighted mean UT elate (marked by the arrow). The estimated 1-1,0 production rate
at this time (2.05 x 10"' molecules s"') is indicated by the horizontal dashed line. The
weighted mean UT date for the CS observations is also shown.
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