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8 Abstract.	 Recent studies utilizing satellite retrievals have shown a strong

9 correlation between aerosol optical depth (AOD) and cloud cover. However,

10 these retrievals from passive sensors are subject to many limitations, includ-

11 ing cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty

12 in the AOD retrieval. Some of these limitations do not exist in High Spec-

13 tral Resolution Lidar (HSRL) observations; for instance, HSRL observations

14 are not affected by cloud adjacency effects, are less prone to cloud contam-

15 ination, and offer accurate aerosol property measurements (backscatter co-

16 efficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,

17 and aerosol optical depth) at a fine spatial resolution ( < 100 m) in the vicin-

18 ity of clouds. Hence, the HSRL provides an important dataset for studying

19 aerosol and cloud interaction.

20	 In this study, we statistically analyze aircraft-based HSRL profiles accord-

21 ing to their distance from the nearest cloud, assuring that all profile com-

22 parisons are subject to the same large-scale meteorological conditions. Our

23 results indicate that AODs from HSRL are about 8-17% higher in the prox-

24 imity of clouds (-100 m) than far away from clouds (4.5 km), which is much

25 smaller than the reported cloud 3D effect on AOD retrievals. The backscat-

26 ter and extinction coefficients also systematically increase in the vicinity of

27 clouds, which can be explained by aerosol swelling in the high relative hu-

28 midity (RH) environment and/or aerosol growth through in cloud process-

29 ing (albeit not conclusively). On the other hand, we do not observe a sys-

30 tematic trend in lidar ratio; we hypothesize that this is caused by the op-
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31 posite effects of aerosol swelling and aerosol in-cloud processing on the li-

32 dar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does

33 not show a consistent trend because of the complicated relationship between

34 BAE and RH. We demonstrate that BAE should not be used as a surrogate

35 for Angstrom exponent, especially at high RH.
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1. Introduction

36	 Several satellite studies indicate that regions with increased cloud cover are accompanied

37 by increased aerosol optical depths (AODs) in the clear areas between the clouds, and that

38 this phenomenon is occurring globally [Sekiguchi et al., 2003; Ignatov et al., 2005; Loeb and

39 Manalo-Smith, 2005; Kaufman et al., 2005; Matheson et al., 2005, 2006; Loeb and Schuster,

40 2008] . Possible explanations for this observed trend include cloud contamination in the

41 aerosol retrieval, aerosol swelling in the high-humidity cloudy environments [Clarke et al.,

42 2002], increased illumination of the cloud-free columns by the nearby clouds (i.e., the

43 cloud adjacency or 3D effect) [Podgorny, 2003; Wen et al., 2006, 2007], increased particle

44 production in the vicinity of clouds [Hegg et al., 1990; Hoppel et al., 1994; Clarke et al.,

45 1998], and shift of aerosol size distribution to larger size because of cloud processing and

46 cloud evaporation in the vicinity of clouds [Lelieveld and Heintzenberg, 1992; Alkezweeny,

47 1995; Hegg et al., 2004].

48	 Wen et al. [2006, 2007] studied the 3D cloud radiative effects on MODIS aerosol re-

49 trievals over Brazil. Their Monte Carlo simulations indicate that ignoring the cloud ad-

50 jacency effect can cause an overestimation of 50 to 140% in AOD retrieval, with the over-

51 estimation more pronounced at shorter wavelengths. Larger increase of AOD at shorter

52 wavelengths is also shown in stochastic cloud model simulations [Marshak et al., 2008].

53 They argue that the enhancement in the cloud-free column radiance comes from the en-

54 hanced Rayleigh scattering.

55	 In this study, we examine the aerosol properties both in the vicinity of clouds and

56 far away from clouds using nadir-viewing aircraft-based High Spectral Resolution Lidar
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57 (HSRL) profiles of aerosol backscatter and extinction coefficients. The HSRL has many

58 advantages over passive satellite instruments for observing aerosol and cloud interactions,

59 including: 1.) it provides accurate measurements of aerosol properties in the vicinity

60 of clouds as opposed to the aerosol retrievals provided by satellites; 2.) it is an active

61 instrument with a narrow source, so it is not affected by cloud adjacency effects; 3.) the

62 backscatter coefficient of cloud droplets is much larger than that of aerosols, so cloud

63 boundaries are readily distinguishable; and 4.) the HSRL has a spatial resolution of <

64 100 m, which makes the clear profiles less prone to cloud contamination than the much

65 larger clear pixels (>500 m) associated with satellite instruments. But the disadvantage

66 of HSRL measurement is that it has limited spatial coverage and can only provide cloud

67 top height along the flight track.

2. Method

68	 A standard backscatter lidar measures attenuated backscatter; retrieving extinction

69 profiles from a backscatter lidar requires the assumption of extinction-to-backscatter ratio

70 (i.e., lidar ratio). Unfortunately, the actual value of lidar ratio for tropospheric aerosols

71 can vary over a wide range ( from 20 to 100 sr) depending on their optical properties

72 [Ansmann et al., 1990; Ackermann, 1998; Anderson et al., 2000; Ferrare et al., 2001;

73 Cattrall et al., 2005], which leads to large uncertainty in the retrieved aerosol extinction.

74 Unlike a standard backscatter lidar, the HSRL provides measurements of both aerosol

75 extinction and backscatter, which enables the robust computation of the lidar ratio.

76	 In this section, first we describe the NASA Langley Research Center (LaRC) airborne

77 HSRL, then we describe our statistical analysis of HSRL data. We compare each HSRL

78 clear profile to a clear profile next to clouds (i.e., reference profile); this analysis method

D R A F T	 June 11, 2008, 9:57am	 D R A F T



X - 6	 SU ET AL.: AEROSOL AND CLOUD INTERACTION FROM HSRL

79 ensures that both the clear profile and the reference profile are subject to the same large-

80 scale meteorological conditions. For a given flight, aerosol properties of all clear profiles

81 and differences between clear profiles and reference profiles are binned by clear profiles’

82 distances to the nearest clouds. For each bin, average differences are presented and possible

83 causes for the differences are analyzed.

2.1. Description of LaRC HSRL

84	 The LaRC HSRL instrument and its measurement technique is described in Hair et al.

85 [2006], which we briefly review here. The basic concept of HSRL measurements is to

86 obtain the lidar return signal with high spectral resolution ( < 75 MHz laser bandwidth),

87 which enables the separation of aerosol and cloud returns from molecular returns. This

88 separation is possible because the spectrum of the molecular backscatter is Doppler broad-

89 ened by the thermal motion of the molecules, whereas Doppler broadening of the aerosol

90 and cloud backscatter is negligible because of the much slower thermal velocities of the

91 aerosol/cloud particles. The separation of molecular from aerosol/cloud backscatter en-

92 ables the independent retrieval of aerosol/cloud backscatter and extinction profiles. An-

93 other key feature of the LaRC HSRL is the ability to calibrate the instrument internally,

94 thereby eliminating systematic errors associated with vicarious calibration in regions that

95 are assumed to have negligible aerosol loading.

96 The LaRC HSRL includes three measurement channels at the 532 nm wavelength and

97 two measurement channels at the 1064 nm wavelength; parallel and perpendicular scat-

98 tering channels are included at both wavelengths, and an additional channel for molecular

99 scattering is included at the 532 nm wavelength. The molecular channel makes it possible

100 to derive reliable aerosol backscatter (β) and extinction (σ) profiles at 532 nm, and hence
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101 the aerosol lidar ratio: S,,, = a/0. A lidar ratio is assumed to derive extinction profiles

102 for the 1064 nm wavelength (although a more sophisticated algorithm incorporating the

103 532 nm lidar ratio could be implemented in the future).

Two additional parameters can be derived from the HSRL measurements. The aerosol

depolarization ratio can be calculated from the perpendicular and parallel backscatter at

both wavelengths: δ = 01 /0 11 . We also define the backscatter Angstrom exponent (BAE,

analogous to the Angstrom exponent):

104 where the denominator represents the logarithm of the wavelength ratio. The absolute

105 uncertainties of these HSRL observed variables used in this study are listed in Table 1.

2.2. Statistical Analysis Method

106 The LaRC HSRL was deployed on the LaRC’s King Air B-200 aircraft during the

107 CATZ 1 campaign over the Eastern United States (June 26 to August 29, 2007). One of

108 the objectives of this campaign was to investigate the nature of particles in the ‘twilight

109 zone’ between clouds and aerosols [Koren et al., 2007]. The aircraft flew at an altitude

110 of 9 km, and measurements were averaged over 100 shots (0.5 sec) in the lidar electronics

111 before being transferred to a laptop computer. Within 0.5 sec, HSRL usually covers a

112 spatial resolution of 50–75 m, depending upon the flight speed of the aircraft (which varies

113 somewhat during each flight). The vertical resolution of backscatter and extinction are

114 30 m and 300 m, respectively.

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) AERONET (Aerosol Robotic Network) Twilight Zone
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115	 As our objective is to understand changes in aerosol optical properties in the vicinity

116 of boundary layer clouds, we must first determine the proximity of the lidar beam to

117 a cloud boundary. We identify cloud top altitudes for clouds located at or near the

118 top of the planetary boundary layer using background subtracted, range-square-corrected

119 profiles from the HSRL. A three point Haar wavelet covariance transform [Gamage and

120 Hagelberg, 1993] is used to detect the sharp gradients in these HSRL profiles associated

121 with cloud boundaries.

122	 Thus, the location of clouds along the flight track can be easily determined using HSRL

123 data, but the HSRL cannot provide information about clouds that are not directly under-

124 neath the aircraft. The ideal flight tracks for our aerosol and cloud interaction study are

125 those that have almost no clouds on either side of the clear portions on the tracks. We

126 visually inspected Geostationary Operational Environmental Satellites (GOES) images

127 obtained during the CATZ campaign to identify those ideal cases, and chose segments

128 of flights on August 4th, 7th, 
and 9

th for our study. Note the spatial resolution of GOES

129 visible images is 1 km; therefore subpixel clouds may still be nearby. Backscatter profiles

130 of the time periods used in this analysis for the three days are shown in Fig. 1. The

131 August 4th flight segment covers a distance of about 250 km from Maryland to Virginia

132 with AOD around 0.4, the August 7th flight segment covers a distance of about 560 km

133 off the coast of North Carolina with AOD around 0.7, and the August 9
th flight segment

134 covers a distance of about 200 km off the coast of South Carolina with AOD around 0.9.

135	 Next, we choose a reference altitude of the low clouds (H ,) for each flight segment

136 (H, = 2000 m, 500 m, and 500 m for August 4
th , 7th, and 9th , respectively), and analyze

137 all of the clear HSRL profiles at this altitude. We define a profile as being ‘clear’ if it does

D R A F T	 June 11, 2008, 9:57am	 D R A F T



SU ET AL.: AEROSOL AND CLOUD INTERACTION FROM HSRL	 X - 9

138 not have a valid cloud top height but has valid backscatter and extinction measurements

139 over the entire altitude range. We define a profile as being ‘cloudy’ if it has a valid cloud

140 top height between H, and H, + 200 m, assuming that the geometrical thickness of the

141 boundary layer clouds is about 200 m [Bennartz, 2007]. However, we also tested cloud

142 geometrical thickness of 500 m and 1000 m, which did not change the general trends of

143 our results.

144	 Then we save the aerosol optical properties (O, a, Sa , BAE) in each clear profile ( x i ),

145 and search the temporal record to identify the closest cloudy profile ( xj ) that occurs

146 before or after x i . Since xj is the nearest cloudy profile, any profile (such as xj+1 and

147 xj+2) between it and xi is clear. We are interested in how aerosol properties in the near-

148 cloud environment differ from the aerosol properties in the far-cloud environment, so we

149 also note the aerosol optical properties in a clear profile xj+2, which is — 100 m from

150 xj . Hereafter, xj+2 is referred to as reference profile. We choose xj+2 instead of xj+1

151 to reduce the possibility of cloud contamination that could occur in profiles that are too

152 close to clouds (xj+1 is about —50 m away from xj). Nonetheless, our analysis produces

153 statistically equivalent results when using xj+1 or xj+2 for the near-cloud reference profile,

154 which is a testament to the robustness of the cloud screening technique used for the HSRL

155 data.

156	 We calculate the difference in aerosol optical properties between profile xi and reference

157 profile xj+2 (for example, δO = Oi − Oj+2 , where Oj+2 is the near-cloud reference value) and

158 the difference is binned according to the distance between x i and xj . Here we consider

159 seven bins, which are listed in Table 2, along with the total number of samples in each
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160 bin for the three days analyzed in this study. For each bin, the averaged difference

161 (60, 6a, 6Sa , 6BAE) and the standard error for each aerosol property are calculated.

3. Results

162	 Figure 2 shows the averaged differences for 532 nm backscatter coefficient (60, in unit

163 Mm-1 sr-1 ) for the three days. The averaged near-cloud reference backscatter coefficients

164 ( 0j+2 ) are also included. The error bars for each bin in Figure 2 are given by the standard

165 error of that bin, calculated as the standard deviation of the differences divided by the

166 square root of the number of samples of that bin. Figure 2 indicates systematic increases

167 in 0 as clear profiles get closer to clouds. For example, on August 4 th , 0j+2 is about 1.2

168 Mm-1sr-1 (23%) higher than the averaged backscatter coefficient in the second distance

169 bin (501–1000 m away from nearest clouds); and 0j+2 is about 1.4 Mm-1sr-1 (27%)

170 higher than the averaged backscatter coefficient in the seventh distance bin (4001–5000 m

171 away from nearest clouds). The other two days show similar increasing trends of 0 as the

172 clear profiles get closer to clouds. 0j+2 is about 30% and 26% higher than the averaged

173 backscatter coefficient in the seventh bin for August 7th and 9th.

174	 The uncertainty of the averaged difference in each bin associated with the instrumental

175 error can be calculated by dividing the instantaneous uncertainty, listed in Table 1, by

176 the square root of the total number of samples of that bin. For example, the instrumental

177 error in 60 is about 0.06 Mm- 1sr-1 for the first bin on August 4th . The 60 shown in

178 Figure 2 is much larger than the instrumental error for all the bins on the three days,

179 which indicates that the systematic trend is not affected by random instrumental error.
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180	 Depolarization ratios at 532 nm during these three days are less than 0.02 and exhibit

181 nearly no changes in the vicinity of clouds, indicating that there are very few non-spherical

182 dust particles.

183	 The extinction coefficients at 532 nm for the three days are qualitatively similar to

184 backscatter coefficients (figure not shown). For clear profiles in the second bin, the av-

185 eraged extinction coefficients are about 0.10, 0.06, and 0.10 km-1 lower than those near-

186 cloud reference values and correspond to 24%, 10%, and 13% decreases. The differences

187 are 0.17, 0.10, and 0.17 km- 1 for clear profiles in the seventh bin and correspond to 42%,

188 17%, and 23% decreases. Again, the averaged extinction differences in all bins for the

189 three days are much larger than the instrumental errors.

190	 Aerosol optical depth (AOD) can be computed by integrating the HSRL measured

191 extinction profiles between the surface and the flight altitude of 6.5 km. Differences

192 between AODs that are near and far from clouds are analyzed using the same method.

193 Figure 3 shows the averaged differences for AOD at 532 nm (6AOD ). Averaged near-

194 cloud reference AODs are also listed. AODs from profiles in the second distance bin are

195 0.03, 0.02 and 0.07 lower than those near-cloud reference values, on August 4th , 7th, and

196 9th , respectively. These correspond to 6%, 3%, and 8% decreases relative to the reference

197 AODs. AODs from profiles in the seventh distance bin are 0.04, 0.06, and 0.16 (9%, 8%,

198 and 17%) lower than the near-cloud reference AODs. The averaged AOD differences in

199 all bins for the three days are much larger than the instrumental errors.

200	 Figure 4 shows the averaged differences for the 532 nm lidar ratio ( 6S,,, ) for the three

201 days. Unlike the systematic decreases seen in β, a, and AOD as clear profiles get farther

202 away from clouds, we do not see any consistent changes in 6S,,, (except for those between
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203 2000 and 5000 m away from the nearest clouds on August 4th). Note the instrumental

204 error in δSa for some bins with small number of samples can be up to 3 sr, which could be

205 responsible for some of the variability seen in Figure 4. We also notice that the averaged

206 near-cloud reference lidar ratios are , 80 sr for the three days that we investigated.

207 Since the lidar ratio for water clouds is significantly lower ( N 18 sr) [Pinnick et al.,

208 1983; O’Connor et al., 2004], this once again shows that our results are not affected by

209 significant cloud contamination.

210	 Figure 5 shows the averaged differences for the BAE, and the averaged near-cloud

211 reference BAEs. The trends of BAE are mixed. On August 4 th , no systematic changes of

212 BAEs are observed within 1500 m of clouds. Thereafter the BAEs decrease by about 0.05

213 to 0.14 (5% to 13% relative to the near-cloud value) as the clear profiles get farther away

214 from the nearest clouds. On August 7th , BAEs exhibit systematic increases as the clear

215 profiles move farther away from clouds. BAEs increase by about 0.15 to 0.09 (12% to 8

216 %) for clear profiles that are between 2000 and 5000 m away from the nearest clouds. On

217 August 9th , there is no systematic changes in BAEs.

4. Discussion

218	 The increased backscatter and extinction coefficients observed with the HSRL in the

219 vicinity of clouds are not caused by cloud adjacency effects or cloud contamination; we

220 know this because of the advantages of HSRL measurements outlined in Section 1 (i.e.,

221 narrow field of view and high sensitiviy to differences in scattering caused by aerosols and

222 cloud drops). Other possible causes include: 1.) new particle production in the vicinity

223 of clouds; 2.) aerosol growth through in-cloud aqueous oxidation of SO2 to sulfate and
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224 collision/coalescence; and 3.) aerosol swelling as relative humidity (RH) increases near

225 clouds.

226	 New particle production in the vicinity of clouds alters the aerosol size distribution.

227 Hegg et al. [1990] noted that aerosol number size distribution in the vicinity of clouds

228 consists of more smaller particles ( r < 0 . 05µm) than the nearby clear air aerosol size

229 distribution, and suggested that this is due to homogeneous heteromolecular nucleation.

230 Hoppel et al. [1994] observed a large number of small particles ( r < 0 . 01µm) above the

231 cloud top and interpreted this as an evidence of new particle formation. Clarke et al.

232 [1998] also observed significant increase of ultra fine particles (0 . 002 < r < 0 . 005µm) at

233 the edges of clouds. However, given the very small size of these particles, they are unlikely

234 to affect the measured extinction and backscatter coefficients [Schuster et al., 2006].

235	 Aerosol growth near clouds has been observed in both in situ measurements and model

236 simulations. Alkezweeny [1995] measured a decreased aerosol number concentration for

237 optically active aerosols with radii below 0.2 µm, and an increased aerosol number concen-

238 tration for aerosol radii between 0.2 and 1.5 µm in the processed clear air. He argued that

239 the in-cloud chemical conversion of SO2 to sulfate adds new material to droplet. Since

240 every droplet generates only one aerosol particle upon evaporation [Mitra et al., 1992], the

241 new size is therefore larger. Although Alkezweeny [1995] did not measure particle sizes

242 greater than 1 . 5 µm, we note that the increase in particle number concentrations altered

243 the particle size distribution of the coarse mode ( r > 0 . 5 µm) as well as the accumulation

244 mode.

245	 Hegg et al. [2004] observed enhanced light-scattering efficiency in the vicinity of clouds,

246 and attributed the enhancement to a shift in the aerosol size distribution toward a more
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247 effective scattering size range. Feingold and Kreidenweis [2002] used a large eddy simula-

248 tion to demonstrate that aqueous chemistry increased the aerosol number concentration

249 for radii between 0.1 and 1.5 µm (no data were shown beyond 1.5 µm). Kerkweg et al.

250 [2003] used an air-parcel model to demonstrate that aqueous chemistry and coalescence of

251 cloud droplets enhanced the number of larger aerosol particles (r > 2 µm) in the processed

252 aerosol size distribution.

253	 Swelling of aerosols in the high RH environment can alter their optical properties and

254 possibly their size distribution depending on their composition. We investigate the ob-

255 served near- and far-cloud differences in aerosol optical properties by simulating aerosol

256 hygroscopic growth, following the method outlined in Loeb and Schuster [2008]. That

257 is, we assume that the aerosols in our study are an equilibrium mixture [Tang, 1996] of

258 ammonium sulfate and water in the fine mode and sea salt (or dust) in the coarse mode,

259 and that the size distribution is represented by the GSFC climatology of Dubovik et al.

260 [2002]. Then we use Mie theory [ Wiscombe, 1980] to compute the backscatter, extinction,

261 lidar ratio, and backscatter Angstrom exponent.

262	 The backscatter coefficient (β) and lidar ratio ( Sa) are plotted in Figures 6 and 7 at

263 four dry fine volume fractions, assuming sea salt occupies the coarse mode. The results

264 for dust in the coarse mode are qualitatively similar, except that the sensitivity of the

265 lidar ratio to dry fine volume fraction is smaller at high RH. Since the hygroscopic growth

266 factor is different for the fine and coarse modes in our simulations (owing to the different

267 composition of the two modes), the wet fine volume fraction changes along the curves in

268 Figures 6 and 7, even though the dry fine volume fraction remains the same. Hereafter,

269 all fine volume fractions in our discussion refer to dry fine volume fractions. If aerosol
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270 swelling in the vicinity of clouds is the only mechanism altering the 0 and S,,,, the aerosol

271 properties are expected to follow a single curve. However, if aerosol growth through in-

272 cloud processing alters the relative distribution of the fine and coarse modes, then 0 and

273 S,,, will move from one curve to another in Figures 6 and 7.

274	 Figure 6 shows the simulated backscatter coefficient (0) as a function of RH for four

275 dry fine volume fractions; 0 increases by a factor of two as RH increases from 55% to

276 90%, and thereafter it increases sharply. In fact, 0 at 99% RH is more than an order

277 of magnitude larger than at 55% RH. Also note that 0 is not sensitive to fine volume

278 fraction for RH less than 97%, especially for aerosols dominated by the fine mode (like

279 pollution). The relationship between extinction coefficient and RH is qualitatively similar

280 to our backscatter coefficient simulation (figure not shown); the extinction coefficient is

281 also not sensitive to the fine volume fraction when RH is less than 97%.

282	 Figure 6 clearly indicates that aerosol swelling is consistent with the unambiguous in-

283 crease of backscatter and extinction coefficients observed in the vicinity of clouds (Figure

284 2). In addition, aerosol growth through in-cloud processing (which enhances the aerosol

285 light-scattering efficiency), can also increase backscatter and extinction in the vicinity of

286 clouds.

287	 The unambiguous increase of extinction coefficients also translates to the increase of

288 column aerosol optical depths at 532 nm in the vicinity of clouds. AODs increase by about

289 8% to 17% in the vicinity of clouds than far away from clouds (4.5 km). Koren et al.

290 [2007] found that AOD at 440 nm decreased by about 13%::L2% on average from the first

291 sample measured near a cloud to the second sample (less than 15 minutes later). In their

292 study, multiple years of data from 15 AERONET stations were used, and the boundary
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293 layer wind speed data were not always available at these stations to translate the time

294 interval between these two samples to geometrical distance. However, if we assume a

295 boundary layer wind speed of 4.96 m s-1 [the globally averaged daytime 80-m wind speed

296 from Archer and Jacobson, 2005], we can approximate the distance between these two

297 samples to be N 4.5 km. Although the wind speed we use here is a crude approximation,

298 it nonetheless shows that AOD increases in the vicinity of clouds at nearly the same

299 magnitude for both the Koren et al. [2007] study and our study. The AOD increase in

300 the vicinity of clouds from these two studies (which are not affected by cloud adjacency

301 effects) is much smaller than the cloud adjacency effects on AOD retrieval (50 to 140%

302 overestimation) [ Wen et al., 2006, 2007].

303	 The simulated lidar ratio ( Sa ) also increases as dry fine volume fraction and RH increase,

304 as shown in Figure 7. If aerosol swelling is the only mechanism affecting our HSRL

305 measurements in the vicinity of clouds, then Sa should increase near clouds, which is

306 not consistent with our observations; two out of three days shown in Figure 4 do not

307 exhibit any systematic trend in Sa . One possible explanation is aerosol growth caused by

308 oxidation of SO2 and collision/coalescence increases the relative fraction of coarse mode

309 aerosols in the vicinity of clouds. Since Sa is smaller for coarse mode aerosols than for

310 fine mode aerosols, this counteracts the enhancement in Sa caused by aerosol swelling;

311 hence, the non-systematic trend in Figure 4. Unfortunately, we do not have simultaneous

312 aerosol size and RH measurements to verify this hypothesis.

313	 The simulated BAE increases as fine volume fraction at a given RH (as expected), but

314 the relationship between RH and BAE is not monotonic (figure not shown). BAE first

315 decreases as RH increases, until a certain RH (96% and 90%, respectively, for fine volume
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316 fraction of 0.3 and 1), then BAE increases. Therefore, depending on the RH values next

317 to clouds and away from clouds, and the aerosol properties along the flight tracks, the

318 BAE differences shown in Figure 5 can be explained by aerosol swelling and growth. This

319 once again stresses the importance of concurrent RH and aerosol property measurements.

320	 To investigate if BAE could be used as a surrogate for Angstrom exponent (AE), we

321 present BAE as a function of AE for four dry fine volume fractions as RH increases

322 from 55% to 99% in Figure 8, using sea salt for the coarse mode. The AE is defined for

323 wavelengths 553 and 855 nm, which are the same wavelengths used for one of the MODIS’

324 AEs over the ocean [Reiner et al., 2005]. For RH less than —85%, BAE and AE are linearly

325 correlated for aerosol size distributions dominated by the fine mode (BAE decreases as

326 AE decreases). As aerosols continue to swell, however, the BAE increases while the AE

327 decreases. Also, the BAE and AE are anti-correlated for coarse mode dominated aerosols

328 over the RH range considered here. Therefore, the humidification trends of BAE and AE

329 are not similar, and BAE should not be used as a surrogate for Angstrom exponent. Also,

330 the information content about the aerosol size distribution in the BAE is very limited, as

331 also shown by Feingold and Grund [1994].

5. Summary

332	 We used aircraft HSRL measurements to study aerosol and cloud interaction during the

333 CATZ campaign. Unlike satellite retrievals, HSRL observations are not affected by cloud

334 adjacency effects, and offer accurate measurements of aerosol properties in the vicinity of

335 clouds. (The aerosol properties investigated in this study include aerosol backscatter and

336 extinction coefficients, lidar ratios, backscatter Angstrom exponents, and column aerosol

337 optical depths.) The HSRL also provides robust cloud screening, and we used GOES
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338 images to select observational periods with very few low clouds on both sides of the flight

339 tracks, thereby minimizing the effects of clouds that do not appear in the lidar beam.

340	 We examined the aerosol properties of HSRL profiles in the vicinity of clouds according

341 to the distance from the nearest clouds, observing differences between clear profiles that

342 are adjacent to clouds (-100 m from clouds) and clear profiles that are up to 5000 m away

343 from clouds. The short distance between these profiles (<5000 m) assures the same large-

344 scale meteorological condition for both profiles, which is important for studying aerosol

345 and cloud interactions [Loeb and Manalo-Smith, 2005; Mauger and Norris, 2007; Loeb and

346 Schuster, 2008].

347	 Results from three observations in August 2007 reveal unambiguous increases of

348 backscatter coefficients, extinction coefficients, and aerosol optical depths in the vicin-

349 ity of clouds. These increases are possibly caused by aerosol swelling and aerosol growth

350 in the vicinity of clouds. However, we do not observe any systematic lidar ratio changes in

351 the vicinity of clouds. We hypothesize that changes in Sa are neutralized by the opposite

352 effects of aerosol swelling associated with a high relative humidity environment (which

353 increases Sa), and aerosol growth associated with cloud processing (which decreases Sa

354 if the aerosol size distribution shifts to the coarse mode). We do not observe systematic

355 changes of BAE in the vicinity of clouds, either. Theoretical simulations reveal that the

356 relationship between BAE and RH is rather complicated, and that it would be rather diffi-

357 cult to infer changes in the aerosol size distribution from BAE. Furthermore, BAE should

358 not be used as a surrogate for Angstrom exponent, especially at high relative humidity.
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Table 1. Estimated instantaneous uncertainties for HSRL observed variables at 532 nm:

backscatter (O), extinction (a), lidar ratio (S,,,), depolarization ( 6), backscatter Angstrom Expo-

nent (BAE), and aerosol optical depth (AOD).

Variable Uncertainty
O (Mm-1sr-1 ) 0.36
a (km- 1 ) 0.055
S" (sr- 1 ) 14
6 0.009
BAE 0.007
AOD 0.05

Table 2. Distances of the seven bins from the nearest clouds, and total number of samples of

each bin for the three days.

Bin number	 1	 2	 3	 4	 5	 6	 7
Distance (m) 1–500 501–1000 1001–1500 1501–2000 2001–3000 3001–4000 4001-5000

• (08/04)	 37	 29	 24	 20	 26	 27	 25
• (08/07)	 362	 200	 108	 60	 90	 70	 62
• (08/09)	 246	 120	 75	 52	 55	 25	 24
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Figure 1. Backscatter coefficient profiles at 532 nm for the periods used in this analysis on

August 4th , 7th, and 9th , 2007.
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Figure 2. Average 532 nm backscatter differences ( δβ) as a function of distance to nearest

clouds on Aug. 41h , 71h, and 91h , 2007. Error bar for each bin is the standard error of that bin,

calculated as the standard deviation of the difference divided by the square root of the number

of samples of that bin. Averaged near-cloud reference backscatter coefficients are also included

in the figure. Negative differences indicate that far-cloud values are less than near-cloud values.

;Distance from tfie ;nearest; iclouds'(O'

Figure 3. Average aerosol optical depth differences (δAOD) as a function of distance to

nearest cloud on Aug. 41h , 71h , and 91h , 2007. Error bar stands for the standard error. Average

near-cloud reference AODs are also included in the figure. Negative differences indicate that

far-cloud values are less than near-cloud values.
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Figure 4. Average 532 nm lidar ratio differences ( δSa) as a function of distance to nearest cloud

on Aug. 4th , 7th, and 9th , 2007. Error bar stands for the standard error. Average neaer-cloud

reference lidar ratios are also included in the figure. Negative differences indicate that far-cloud

values are less than near-cloud values.

Figure 5. Average backscatter Angstrom exponent differences ( δBAE) as a function of

distance to nearest cloud on Aug. 4
th , 7th, and 9th , 2007. Error bar stands for the standard error.

Average near-cloud reference BAEs are also included in the figure. Negative differences indicate

that far-cloud values are less than near-cloud values.
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Figure 6. Backscatter coefficient as a function of relative humidity calculated using Mie theory

based on GSFC climatology for four dry fine mode volume fractions. (Note that the wet fine

volume fractions change along these curves.)
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Figure 7. Lidar ratio as a function of relative humidity calculated using Mie theory based on

GSFC climatology for four dry fine mode volume fractions.
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Figure 8. Relationship between backscatter Angstrom exponent for wavelength 532 nm and

1064 nm and Angstrom exponent for 553nm and 855 nm for four dry fine volume fractions as

RH increases from 55% to 99%.
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