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THE ZERO-LIFT DRAG OF SEVERAL CONFIGURATIONS OF 

TAE XAAM-N-2 PILOTLESS AIRCRAFT 

TED NO. NACA DE332 

By James R. Hall and Carl A .  Sandahl 

SUMMARY 

Free-flight t e s t s  have been made t o  determine the zero- l i f t  drag 
of several configurations of the XAAM-N-2 p i lo t l e s s  a i r c r a f t .  Base- 
pressure measurements were a l s o  obtained fo r  some of the configurations. 
The r e su l t s  show tha t  increasing the wing-thickness r a t i o  from 4 t o  
6 percent increased the wing drag by about 100 percent a t  M = 1.3 and 
by about 30 percent a t  M = 1.8. Increasing the nose fineness r a t i o  
from 5.00 t o  6.25 reduced the drag coeff ic ient  of the wingless models 
a maximum of about 0.030 (10 percent) a t  M = 2.0. A corresponding 
change i n  nose shape for  the winged models decreased the drag coeffi-  
c ient  by about 0.05 i n  the Mach number rarige from 1.1 t o  1.4; a t  Mach 
numbers greater than 1.6 no measurable reduction i n  drag coeff ic ient  
was obtained. The drag of the present Sparrow fuselage is  l e s s  than 
that of a parabolic fuselage which could contain the same equipment. 

INTRODUCTION 

A t  the request of the Bureau of Aeronautics, Department of the 
Navy, an investigation of some of the aerodynamic character is t ics  of 
several configurations of the XAAM-N-2 (sparrow) i s  being conducted 
u t i l i z i n g  f ree- f l ight  techniques. The f i r s t  phase of the investigation 
was concerned with the determination of the drag a t  zero l i f t  of several 
configurations d i f fe r ing  i n  nose fineness and wing-thickness r a t io s .  
This phase of the investigation has been completed and the r e su l t s  a r e  
reported herein. Also included are  base-pressure measurements obtained 
for  some of the configurations tested.  

The f l i g h t  t e s t s  were conducted a t  the P i lo t l e s s  Aircraf t  Research 
Stat ion a t  Wallops Island, Va. 
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SYMBOLS 

drag coeff ic ient  based on maximum cross-sectional. area of 
fuselage (0.442 s q  f t )  

base-pressure coeff ic ient  (" 
base pressure 

ambient s t a t i c  pressure 

dynamic pressure 

TEST VER1CI;ES 

The t e s t  vehicles used i n  t h i s  investigation were 1.125-scale models 
of the XAAM-N-2 p i lo t l e s s  a i r c r a f t .  The models were constructed by the 
Naval Aircraf t  Factory a t  Philadelphia, Pa. The general arrangement of 
the models i s  shown i n  f igure 1. A photograph of a typical  model is  
shown in ,  f igure 2. 

The fuselages consisted of an ogival nose section, a cyl indrical  
center section, and a boat-tailed a f t e r  section and were made of 
0.064-inch-thick duralumin skin with r ing  s t i f feners .  The wings and 
f i n s  were of duralumin and the wings were bolted t o  the fuselage center 

1 section by a single trunnion leaving a --inch gap between the wings and 
32 

fuselage. Details of the wing-body intersect ion are  given i n  figure 3.  

I n  table  I are  l i s t e d  the configurations tested.  The ordinates fo r  
the two nose shapes tested a re  given i n  table  11. The over-all  length 
of the fuselages was held constant; the var iat ion i n  nose fineness 
r a t i o  was obtained by varying the point of tangency of the ogival nose 
and the center section. Model 6 was equipped with a nose telemeter 
antenna, dimensions of which are  given i n  figure 4. The nose fineness 
r a t i o  of t h i s  model i s  calculated on the bas is  of nose shape before 
being modified by ins t a l l a t ion  of the antenna. A l l  t e s t  vehicles were 
polished before launching. 

The models were propelled by an ABL Deacon rocket motor which 
provided a t o t a l  impulse of about 19,800 pounds-seconds over a burning 
period of approximately 3.5 seconds. A ?-inch HVAR booster was employed 
fo r  model 5 i n  order t o  obtain data a t  higher Mach numbers. 
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a Photographs of models without and with booster a re  shown i n  . figures 5 and 6, respectively. 
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TEST METHODS 

The t e s t  vehicles were tracked by Doppler velocimeter t o  obtain 
f l ight-path velocity and longitudinal acceleration. An SCR 584 radar 
s e t  w a s  used t o  obtain the f l i g h t  paths. By means of standard NACA 
telemetry, measurements of t o t a l  head, base pressure, and longitudinal 
and normal acceleration were obtained fo r  several of the models. 

The drag of the models was determined from values of longitudinal 
deceleration obtained from the Doppler velocimeter during coasting f l i g h t .  
These data, i n  conjunction with SCR 584 radar f l ight-path measurements, 
Doppler velocimeter measurements of f l ight-path velocity, and radiosonde 
observations, were used i n  the calculation of the total-drag coeff ic ient  
a s  a function of Mach number. For model 6 the drag was a lso  obtained 
using telemetered values of longitudinal acceleration and t o t a l  head. 

The base-pressure coeff ic ient  - Pj w a s  calculated from (c, = q 
telemetered base-pressure measurements and ambient s t a t i c  pressure 
obtained from f l i g h t  path and radiosonde measurements. The f l ight-path 
velocity was obtained from telemetered total-head measurements and from 
Doppler velocimeter. The base-pressure pickup was located on the inside 
of the afterbody between the rocket nozzle and skin a s  shown i n  figure 7. 
The rocket nozzle and pressure pickup were insulated t o  eliminate thermal 
e f f ec t s  on the base-pressure pickup. The afterbody was sealed t o  prevent 
in te rna l  a i r  flow. 

Some typical  f l i g h t  paths, obtained with the SCR 584 radar se t ,  a r e  
shown i n  f igure 8. The variat ion of Reynolds number with Mach number f o r  
the range of a l t i t u d e  and climatic conditions encountered during the t e s t s  
i s  given i n  figure 9. 

Accuracy of Data 

Drag coefficient.-  The random er rors  i n  the determination. of CD, 
a s  indicated by the sca t t e r  of the data points i n  figure 10, a re  small. 
The systematic e r rors  i n  CD derived from Doppler velocimeter may be 
a s  large a s  f0.040 and k0.0075 a t  Mach numbers of 1.0 and 2.0, respec- 
t ively.  The systematic e r rors  i n  CD derived from telemeter measurements 
may be a s  large a s  20.080 and 20.020 a t  Mach numbers 1.0 and 2.0, 
respectively. 
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Base-pressure coeff ic ient . -  The random er rors  i n  Cn, as indicated, 

by the sca t t e r  of the data points i n  figure 11, a r e  small. A t  the 

a. 
lower Mach numbers investigated, these data a re  subject t o  rather  high 

: systematic e r ro r s  since the quantity pb - po i s  of the same order of 
* magnitude a s  the r e l i a b i l i t y  of the telemetered base-pressure measure- 

ments. The systematic e r rors  i n  Cpb may be as  large as f O . l  and 20.01 

at  Mach numbers of 1.0 and 2.0, respectively.  

RESULTS AND DISCUSSION 

Drag Measurements 

The variat ion of ze ro - l i f t  drag coefficient with &ch number fo r  the 
configurations tested i s  summarized i n  f igure 12. The condition of zero 
lift was substantiated by the normal accelerometer. The r e su l t s  f o r  the 
three wingless models agree within the accuracy of the measurements 
except a t  the highest Mach numbers investigated. The drag coeff ic ient  
was reduced 0.030 (about 10 percent) a t  Mach number 2.0 by increasing 
the nose fineness r a t i o  from 5 t o  6.25. A corresponding change i n  
nose fineness r a t i o  f o r  the models having wings of 4-percent-thickness 
r a t i o  reduced the drag coeff ic ient  by about 0.05 i n  the Mach number 
range from 1.1 t o  1.4. A t  the Mach numbers greater  than 1.6 the change 
i n  nose fineness r a t i o  had no measurable e f f ec t  on the drag of winged 
models. The increase i n  drag due t o  increasing the wing-thickness r a t i o  
from 4 t o  6 percent is  obtained from the curves fo r  models 2 and 3 i n  
figure 12. The increase i n  wing thickness increased the wing drag (taken 
as the difference between the drag of the winged models and tha t  of wing- 
l e s s  model 6) by about 100 percent a t  M = 1.3 and by about 30 percent 
a t  M = 1.8. I n  making t h i s  comparison it i s  assumed that the drag of 
the wingless model is  not affected by the presence of the nose antenna. 

Base -Pressure Measurements 

The variat ion of base-pressure coeff ic ient  ,with Mach number f o r  a 
wingless and two winged models i s  given i n  f igure 11. A t  the lower 
supersonic Mach numbers investigated, the presence of the wings tended 
t o  maintain the base-pressure coeff ic ient  a t  about -0.1. The base- 
pressure coeff ic ient  of the wingless model approackied zero a s  the Mach 
number approached one. A t  the higher Mach numbers investigated a l l  
three configurations tended t o  exhibi t  a value of base-pressure 
coeff ic ient  of -0.09. 



1 . . e .. Component Drag Coefficients * 
* ... 
e The contributions of the skin-friction, base-pressure, nose-pressure, 

e . and residual-drag coeff ic ients  t o  the t o t a l  drag coeff ic ient  measured fo r  
: wingless model 6 a re  shown i n  figure 13. The residual-drag coeff ic ient  * i s  defined here a s  the drag remaining a f t e r  the f r i c t ion ,  base-pressure, 

and nose-pressure drag coeff ic ients  have been subtracted from the t o t a l  
drag coeff ic ient  and consists of the f in ,  boa t - t a i l  pressure and f i n -  
body interference drag coefficients.  The skin-fr ic t ion drag coeff ic ient  
was calculated using the value of wetted-area skin-fr ic t ion coeff ic ient  
obtained from unpublished measurements of the boundary layer on a large- 
scale f ree- f l ight  t e s t  vehicle. The base-pressure drag coeff ic ient  was 
calculated from measured values of the base-pressure coeff ic ient  obtained 
with model 6. The nose-pressure drag coeff ic ient  was obtained by the 
method of Laitone presented i n  reference 1. 

The poss ib i l i ty  of reducing the drag by changing the present 
fuselage t o  one of parabolic shape has been considered. A parabolic 
fuselage which could contain the equipment used i n  the actual  Sparrow 
missile would have a maximum diameter of about 9 inches instead of 
8 inches located a t  the 4.0-percent fuselage s t a t ion  and would taper 
gradually from t h i s  point t o  a diameter of about 6.5 inches a t  the base. 
Such a parabolic shape would have approximately the same skin-fr ic t ion 
drag coeff ic ient  a s  the present shape but would have about 20 percent 
more nose-pressure drag. In  addition, the very shallow slope of the 
afterbody of such a parabolic fuselage, according t o  unpublished work 
on the e f f ec t  of afterbody shape on base pressure, would induce more 
base suction. On the basis  of these considerations, it may be concluded 
tha t  the fuselage tested i s  a good one from the ~ t a n d p o i n t ~ o f  both low 
drag and ease of manufacture. 

CONCLUSIONS 

The following conclusions a re  based on the t e s t s  of 1.125-scale 
models of the XAAM-N-2 p i lo t l e s s  a i r c r a f t :  

1. Increasing the wing-thickness r a t i o  from 4 t o  6 percent increased 
the wing drag by about 100 percent a t  M = 1.3 and by about 30 percent 
a t  M = 1.8. 

2. Increasing the nose fineness r a t i o  from 5.00 t o  6.25 decreased 
the'drag coeff ic ient  of the wingless models a maximum of about 0.030 
(10 percent) a t  M = 2.0. 
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0 3 .  A corresponding change i n  nose shape fo r  the winged models . decreased the drag coeff ic ient  by about 0.05 i n  the Mach number range 

0.0 
from 1.1 t o  1.4. A t  Mach numbers greater than 1.6, no measurable 

0. reduction i n  drag coefficient was obtained. 
e . 

4. The present fuselage has l e s s  drag than a parabolic fuselage 
which could contain the same equipment. 
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SUMMARY OF CONFIGURAmONS TESTED 
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Wing-thickness Nose fineness 

4 

5 

6 

5 .OO 

6.25 

6.25 

Wingle s s 

Wingless 

Wingless 

75 5 

75 5 

76.8 

69.0 

68.8 

70.3 
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NOSE COORDINATES 
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Figure 2.- A typical XAAM-N-2 model. Nose fineness ratio, 5.00; wing 
thickness ratio, 0.04. 
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Figure 5.- Unboosted XAAM-N-2 model on launcher. 
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Figure 6.- Boosted XAAM-N- 2 model on launcher. 
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Figure 7 .  - Sketch of base-pressure pickup instal lat ion.  
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Horizontal distance, ft , 

Figure 8.- Typical f l i g h t  paths obtained with SCR 584 radar se t .  
Numbers r e fe r  t o  time a f t e r  f i r ing .  

Mach number 

Figure 9.- Variation of Reynolds number with Mach number f o r  range of 
t e s t  conditions. 
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Mach number 

(a) W i e d  models, velocimeter data points. 

Model fineness 

I I 

Mach number 

(b) Wingless models, velocimeter data points. 
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Mach number 

( c )  Wwless  model 6; nose fineness ratio, 6.25. 

Figure 10.- Typical drag-coefficient-data points. 



Mach Number, M 

Figure 11.- Variation of base-pressure coefficient with Mach number. 



Mach number, M 

Figure 12.- Variation of drag coefficient with Mach number. 
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