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∗RIACS/USRA, NASA Ames, Moffett Field, CA 94035, Email: Johann.M.Schumann@nasa.gov

†NASA Ames, Moffett Field, CA 94035, Email: Karen.Gundy-Burlet@nasa.gov
‡QSS Inc, NASA Ames, Moffett Field, CA 94035, Email: Corina.S.Pasareanu@nasa.gov

§Lane CS & EE, West Virginia University, Email: tim@menzies.us
¶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, Email: barrett@jpl.nasa.gov

Abstract—The analysis of large and complex parameterized
software systems, e.g., systems simulation in aerospace, is very
complicated and time-consuming due to the large parameter
space, and the complex, highly coupled nonlinear nature of the
different system components. Thus, such systems are generally
validated only in regions local to anticipated operating points
rather than through characterization of the entire feasible oper-
ational envelope of the system. We have addressed the factors
deterring such an analysis with a tool to support envelope
assessment: we utilize a combination of advanced Monte Carlo
generation with n-factor combinatorial parameter variations to
limit the number of cases, but still explore important interactions
in the parameter space in a systematic fashion. Additional test-
cases, automatically generated from models (e.g., UML, Simulink,
Stateflow) improve the coverage.

The distributed test runs of the software system produce vast
amounts of data, making manual analysis impossible. Our tool
automatically analyzes the generated data through a combina-
tion of unsupervised Bayesian clustering techniques (AutoBayes)
and supervised learning of critical parameter ranges using the
treatment learner TAR3. The tool has been developed around the
Trick simulation environment, which is widely used within NASA.
We will present this tool with a GN&C (Guidance, Navigation
and Control) simulation of a small satellite system.

I. TOOL ARCHITECTURE

The tool is designed to integrate with the Trick simulation
environment [1] but also integrates with simulations built up
in other environments (e.g. Simulink) . The user sets up the
specifications of the desired parameter variations and their
statistical properties and provides high level models (e.g.,
UML statecharts). Once the test-suite is generated, simulations
are being executed by Trick, and the resulting data saved. Data
analysis and visualization is controlled via a Matlab graphical
user interface.

A. The Trick Simulation Environment
The Trick simulation development toolkit [1] has been

developed for building dynamic, high fidelity robotics and

space vehicle simulations at NASA. Trick uses an object
oriented approach and automatic code generation to facilitate
the construction of large and complex simulation systems,
which can contain physical models (e.g., atmosphere or cap-
sule aerodynamics), models of the hardware, and software
systems. In order to achieve high performance, Trick can run
on networked clusters of workstations or supercomputers.

B. Generating the Simulation and Test Cases

Large and complex simulation models have a multitude
(often more than a hundred) of tunable parameters that need to
be explored. A simple systematic exploration of all parameter
values results in an exponentially large number of possible
configurations. Worse yet, when dealing with simulations of
physical systems, many parameters are real valued, thus mak-
ing the configuration space unlimited. Even with appropriate
discretization, guaranteeing coverage of the option space is
a non-trivial problem. Our tool covers the parameter space
using a combination of Monte Carlo generation, a n-factor
combinatorial technique, and model-based automatic testcase
generation. The Monte Carlo approach generates parameters
for a simulation run by randomly selecting from user defined
probability distributions, such as Gaussian or Uniform. The
main drawback is a lack of any coverage guarantee, resulting
in a need to run a large number of simulation runs to attain a
given level of user confidence.

The n-factor combinatorial method makes a reasonable cov-
erage guarantee while attempting to perform a minimal num-
ber of simulations runs [2], [3]. The underlying premise behind
the combinatorial approach can be captured in the following
three statements: (1) the simplest bugs are triggered by a single
input parameter, (2) the next simplest bugs are triggered by an
interaction of two input parameters, and (3) progressively more
obscure (and rare) bugs involve interactions between more
parameters. So errors can be grouped into families depending
on how many parameters need specific settings to exercise the
error. The n-factor combinatorial approach guarantees that all
errors involving the specific setting of n or fewer parameters
will be exercised by at least one test. Even for a large number
of parameters v and parameter values d (continuous parameters
are discretized), reasonable test cases can be generated very
efficiently within a few seconds.
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Problem dv #Tests (trivial) #Tests (2-factor)
34 102 9

313 106 19
41 × 339 × 235 1029 29

1020 1020 216
31000 10477 48

Pure combinatorial or statistical testing yields poor coverage
in software components, which contain mode logic or state
machines. Here, our tool uses a combination of model check-
ing and symbolic execution techniques integrated into Java
Pathfinder [4] to automatically generate specific test suites that
guarantee a given code coverage (branch and path coverage).
This tool can generate test cases from UML statecharts and
Simulink/Stateflow models.

This combination of generation procedures allows the de-
signer/engineer to easily and effectively carry out parametric
evaluations of large simulation systems. The tool aims at a
maximal reduction in the number of test cases while still
retaining sufficient code coverage, in particular in highly
structured code segments like mode logic or state machines.

C. Analysis and Visualization of Simulation Data

Each simulation run generates large sets of data (e.g.,
position, velocity, forces) for each point in time. Analysis
of such high-dimensional data (often d > 100 and more
than 10,000 runs) cannot be performed manually. Our tool
provides support (a) to find structure in the data, and (b) to
see, which parameters (or parameter ranges) caused a specific
system behavior (root-cause analysis). We use AUTOBAYES
[5] to automatically generate customized clustering algorithms
from statistical specifications. Clustering is a well-known
unsupervised learning method to find structure in large sets of
data. Depending on the statistical properties of the simulation
data (not all variables are Gaussian distributed), AUTOBAYES
generates customized C/C++ code for the Matlab environment
(mex-function), which estimates class parameters and class
membership.

Root-cause analysis can be effectively done by the treat-
ment learner TAR3, a weighted-class minimal contrast-set
association rule learner. TAR3 [6] first splits the data into
a ”good”/”bad” category according to user-given criteria (e.g.,
distance from desired landing spot). Then, the treatment
learner returns a set of treatments, which are conjunctions of
linear constraints on the input variables. For inputs adhering
to the constraints of the treatment, their effect with respect to
the given criteria is calculated.

In general, the visualization of a high-dimensional data set
is very difficult. Our tool uses the results of the clustering and
treatment learning to guide the user toward ”interesting” and
”promising” ranges and envelope boundaries in the parameter
space. Using the capabilities of Matlab, our tool provides a
set of predefined, visualizing methods including scatter plots,
likelihood plots, and histograms. The figure shows the ex-
pected variation in trajectory relative to these input parameters
(tank pressure, center of gravity, moments of inertia, etc).

This example is based on a computational model of the earth-
based small-satellite simulator Hover Test Vehicle (HTV). The
clusters in the figure were ranked according to their landing
velocity and position, with colors ranging from Blue (best
outcomes) to Red (worst outcomes).

II. CONCLUSIONS

This tool has been successfully used at NASA for the
analysis of the GN&C system for reentry scenarios for the
Orion capsule [7]. Although the tool has been developed
around the NASA trick simulation environment, it can be
easily adapted for other simulation or software execution
environments.
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