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Abstract 

 
Over the last five decades, extensive research has been performed to design and 
develop adaptive control systems for aerospace systems and other applications 
where the capability to change controller behavior at different operating conditions 
is highly desirable.  Although adaptive flight control has been partially implemented 
through the use of gain-scheduled control, truly adaptive control systems using 
learning algorithms and on-line system identification methods have not seen 
commercial deployment. The reason is that the certification process for adaptive 
flight control software for use in national air space has not yet been decided.  The 
purpose of this paper is to examine the gaps between the state-of-the-art 
methodologies used to certify conventional (i.e., non-adaptive) flight control system 
software and what will likely to be needed to satisfy FAA airworthiness 
requirements.  These gaps include the lack of a certification plan or process guide, 
the need to develop verification and validation tools and methodologies to analyze 
adaptive controller stability and convergence, as well as the development of 
metrics to evaluate adaptive controller performance at off-nominal flight conditions.  
This paper presents the major certification gap areas, a description of the current 
state of the verification methodologies, and what further research efforts will likely 
be needed to close the gaps remaining in current certification practices.  It is 
envisioned that closing the gap will require certain advances in simulation 
methods, comprehensive methods to determine learning algorithm stability and 
convergence rates, the development of performance metrics for adaptive 
controllers, the application of formal software assurance methods, the application 
of on-line software monitoring tools for adaptive controller health assessment, and 
the development of a certification case for adaptive system safety of flight. 
 

 
1.0 Introduction.   
 
Over the last five decades, extensive research has been performed to design and develop 
adaptive control systems for aerospace systems and other applications where the capability to 
change controller behavior at different operating conditions is highly desirable.   An adaptive 
controller changes its behavior by allowing the controller forward and/or feedback gains to be 
adjusted once the controller has been deployed.[1-5]  Because designing such a control system 
introduces many complexities, it is generally held to be good practice to use a non-adaptive or 
"classical" controller design if one can be found that delivers acceptable performance.  This is 
because although proven techniques to evaluate the dynamic response and controller stability 
exist for non-adaptive controllers (e.g., root-locus, Bode plots, Nichols charts, etc.[6, 7]), 
techniques for adaptive systems are only yet in their infancy. 
 
The most prevalent adaptive flight control system technology in use today are those that involve 
the use of a technique called gain scheduling.[6]  To implement this scheme, a classical non-
adaptive controller is designed first, and then a number of controller gain sets are determined and 
stored for a finite number of operating conditions and aircraft configurations.  The flight control 
computer is programmed to select the correct gains based on the current flight condition 
(airspeed, altitude, etc.) and vehicle configuration.   At each specific (constant) flight condition, 
the controller is a classical, non-adaptive controller.  Therefore, the individual controller gain sets 
can be verified and validated by simulation and flight testing at the specific flight condition for 
which they were chosen.  Within each flight regime, the controller performance is tuned using 
many well-established techniques for non-adaptive flight control systems.  Gain-scheduling 
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thereby offers a means of partial adaptive control capability, while avoiding many of the problems 
associated with fully adaptive flight control systems.  By using a fine enough grid of flight 
conditions and vehicle configurations, virtually any pre-defined set of flight conditions can be 
handled using the gain scheduling method.  The success of the gain scheduling part depends in 
large part on the degree to which the system can be rightly characterized to operate in sufficiently 
few discrete regimes. 
 
The focus of this paper does not concern the certification of gain-scheduled flight controllers, but 
rather what is required to certify adaptive controllers that use system identification or some form 
of on-line learning to identify optimal controller gain settings, system transfer matrices, and/or 
control derivative matrices in real-time.  Adaptive flight control systems are currently being 
developed to help pilots recover from aerodynamic upset conditions[8,9], to regain vehicle 
handling qualities and stability in the event of aircraft damage or control surface failure[10], to 
automatically fly vehicles autonomously in both air and space environments[11-15], to maintain 
vehicle performance during changing operating environments through use of neural networks[16-
18], and to guide munitions to their targets [19].  These types of adaptive flight control systems 
have high degrees of non-linearity and non-determinism.  Gain-scheduled control cannot be 
effectively used for these applications because the specification of all upset flight environments, 
the degree of control surface failure, or extent of aircraft or engine damage requires infinite sets 
of conditions.  Instead, for these applications, it is more efficient to assume the structure of the 
controller and use learning algorithms or on-line system identification methods to obtain the 
locally valid operating parameters.  Figure 1 taken from [Ref. 20] provides a notional diagram of 
an adaptive control system to illustrate two possible ways to implement adaptive control.  In one 
case, the learning algorithm is used to compute augmentation flight control inputs; in the other a 
system identification method is used to identify controller parameters, gains, or transfer matrices.   
 
Although the potential benefits of adaptive flight control systems are substantial, no adaptive flight 
control systems have been certified by the Federal Aviation Authority (FAA) for use in the 
National Air Space (NAS).  The reason is that the means whereby adaptive flight control software 
can be routinely verified, validated, and certified for use in national air space has not yet been 
decided.  As will be shown in the next section, the FAA has endorsed the use of RTCA DO-178 to 
provide FAA certification standards for all flight software. Although software techniques exist to 
verify and validate conventional flight control software, the means to provide sufficient assurance 
of adaptive flight control software functionality, reliability, safety, and the absence of unintended 
functionality remains elusive.  Since by its very design the adaptive controller can make rapid and 
automatic adjustments to enable self-healing in the event of vehicle damage, it also carries the 
potential to make a healthy aircraft un-flyable or a safety hazard to other vehicles in the event of 
software malfunction.  In a military application over restricted air space, such failures may be 
tolerated if not too high, but for a commercial application in civilian air space, such failures are 
unacceptable.  Adaptive control systems with learning software will never become part of the 
future unless it can be proven that this software is highly safe and reliable. 
 
 



 
 
 

Fig. 1  A few ways to make flight controllers adaptive. 

The objective of this paper is to examine the challenge areas that need to be addressed in order 
to enable the certification of adaptive flight control software for use in civilian air space.  The 
purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to 
certify conventional (i.e., non-adaptive) control system software and what is likely to be needed to 
satisfy FAA airworthiness requirements.  These gaps include the lack of a certification plan or 
process guide, the need to develop verification and validation tools and methodologies to analyze 
adaptive controller stability and convergence, as well as the development of metrics to evaluate 
adaptive controller performance at off-nominal flight conditions. 
 
2.0 What are the Certification Gaps ?   
 
In the United States, the authority responsible for certifying flight control software is the Federal 
Aviation Administration (FAA). The FAA has stated in Advisory Circular 20-115B that all flight 
critical software must be developed according the guidance provided in RTCA DO-178B [21] or 
show compliance to airworthiness standards using some alternate means of compliance.  Since 
alternate means of compliance are undefined, the statements in DO-178B are generally viewed 
as certification requirements, rather than mere guidelines.  The objective of DO-178B is to help 
the aviation community develop flight software that can perform its intended functions while not 
negatively impacting other systems or the safety of aircraft operations.  The document is 
maintained by the RTCA (Radio Technical Commission for Aeronautics) which is a private 
association of over 250 aeronautical organizations (established 1935).   
 
DO-178B is not a process guide to software certification, but rather a description of what high-
quality software development processes should be put in-place in order to create airborne 
software that has been properly verified and validated.  It levies no special requirements for 
adaptive flight control software; it is meant to apply to all airborne software.   If it can be 
adequately demonstrated that these processes have been correctly and appropriately 
implemented, then the software is in principle certifiable.  This section highlights the specific 
guidelines recommended by RTCA DO-178B that, in the author’s view, are potentially difficult for 
adaptive flight software control to fully satisfy and represent the gaps requiring the infusion of new 
verification and validation techniques and methods.  
 
Table 1 provides a list or summary of the basic guidelines offered by DO-178B.  This list has 
been generated by the author and is not intended to serve as a comprehensive index to the 
standard since it combines the intent of similar topics under general headings.  However, it is 



useful for discussion purposes.  The first column provides a list of the guideline categories or 
processes called for in DO-178B.  The second column indicates which of these represent 
potential problem areas for adaptive flight control software.  So, for example, the first guideline, 
“provide an overview of the system and target application software”, is marked “No” in the second 
column because this task is not more difficult to perform for adaptive flight control software than 
for conventional flight control software.  As can be seen from the table, the majority of the 
guidelines do not present special problems for adaptive software; they are equally difficult for 
non-adaptive flight software.  The satisfaction of these common guidelines will not be discussed 
in the sequel. 
 
The rows marked with the "YES" designation in column 2 of Table 1 are the gap areas impeding 
the certification of adaptive systems.  These areas are held to be in adaptive flight software 
requirements definition, performance specification, and definition of verification plans and test 
cases.  Two additional related areas held to be problematic are software lifecycle data collection 
and development of a Plan for Software Aspects of Certification (PSAC).  These are problem 
areas partly because of the first four and also partly because the design and test procedures for 
adaptive systems are not well-established. 

 
Some airborne software developers argue that there is no guideline in RTCA DO-178B that 
cannot be satisfied using the same software assurance methods as are presently used for non-
adaptive software [22].  In truth, it is possible to create documents stating adaptive controller 

Table 1: List of DO-178B Guidelines for Software Certification 
 

DO-178B Guideline Topic 
More Difficult 
for Adaptive 
Systems ? 

Provide an overview of system and target application of software No 
Provide an overview of what the software does No 
Identify the software lifecycle No 
Define the software performance requirements Yes 

Provide a Software System Safety Assessment (SSA) Report that lists all 
software failure modes and conditions and categorizes the failures according to 
their severity 

No (although 
increased 
complexity) 

Provide a Software Development Plan No 
Provide a Software Verification Plan Yes 

Provide a Software Configuration Management Plan No 
Provide a Software Quality Assurance Plan No 
Define Software Requirement Standards No 
Define Software Design Standards No 
Define Software Code Standards No 
Define Software Requirements and all Derived Requirements Yes 

Software Design and Traceability Document No 
Provide Tool Qualification Data (e.g., autocoders, compilers) No 
Provide Source Code No 
Provide Executable Object Code No 
Provide Software Verification Test Cases and Procedures Yes 

Provide Software Verification Results No 
Provide Problem Reports No 
Provide Software Configuration Management Records No 
Provide Software Qualify Assurance Records No 
Provide Plan for Software Aspects of Certification (PSAC) Yes 

Provide Software Accomplishment Summary No 
Provide Software Life Cycle Data Yes 

 



requirements, performance requirements, and V&V methods.  The problem lies in that DO-178B 
does not provide metrics to assess the adequacy of these plans.  This function is relegated to the 
DER (Designated Engineering Representative) working out the certification process with the FAA.  
It is the DER and the FAA who decide if the software documentation and procedures provided are 
sufficiently detailed and accurate.  Since no adaptive flight control systems have been certified for 
use in the NAS, it is very difficult to judge the adequacy of these methods without references to 
previous work done by industry and government to show that these methods are sufficient to 
prove adaptive control system air worthiness.   
 
The remaining sections of this paper discuss major gap areas in regards to the certification of 
adaptive flight control systems.   Each of these sections describes a major gap area, presents a 
description of the present day state of the art in these areas, and cites what further research 
efforts will likely be needed to close the gaps.  It must be mentioned that although these sections 
highlight many significant areas, it is not known to what degree this list is complete since no 
adaptive systems have been certified for routine civilian use in the national airspace.  
Nevertheless, the sections below are held to provide a very good starting point toward identifying 
what needs to be done to create a valid adaptive system certification process. 
 
3.0 Gap in Defining Adaptive Controller Requirements   
 
A critical gap which needs to be closed to facilitate certification is to develop procedures and 
methodologies to completely and correctly specify the design requirements of adaptive flight 
controllers.  Not only are classical controller performance requirements specified by well-known 
metrics (e.g., gain margin and phase margin), the controllers are also designed to address 
usually very well defined requirements.  In contrast, both the requirements and the controller 
performance metrics are difficult to clearly define for adaptive systems. 
 
Most software life cycles (development through deployment) begin with an analysis to carefully 
define the software requirements as shown in Fig. 2.  The left side shows the steps used to 
transform requirements into software code.  The right side shows the steps of software integration 
and testing to make sure the code ultimately satisfies the software requirements.  The process of 
testing the performance of the final code against the defined software requirements is called 
software validation.  This is the meaning of the second "V" in the often used acronym "V&V" for 
verification and validation.  (The word validation is also often used in connection with model 
validation, but this is a very different  process consisting of comparing the predicted output of a 
dynamic model against measured data.)  Software verification is the analysis and testing 
processes used to ensure the software code does what it was designed to do.  
 
The software requirements define as precisely as possible what the software is supposed to do.  
DO-178B recommends that requirements be written in a manner that allows them to be tested 
and may include such things as performance, precision, accuracy, and timing constraints.  The 
requirements are frequently decomposed into derived requirements to address such 
considerations as computer speed, memory size, interfaces, and frequency of inputs and outputs. 
 
The most common reason software fails validation testing is incomplete or poorly defined 
requirements.  Software developers may follow a verification process that proves that the 
software does exactly what it was designed to do algorithmically, but then discover that it does 
not meet the real software requirements because of improper specification.  Such failures are 
very expensive to correct because when an error is found in late stage validation, the entire 
software design, verification, integration, and validation process shown in Fig. 2 must be 
performed all over again.  Whereas errors in requirements specification for classical controllers 
usually results because some important test condition or environment was not stated, 
requirement specification errors for adaptive controllers can result because they are only 
notionally known, and not easily specifiable using metrics for classical controllers. 
 



Current State of the Art:  The availability of modeling and simulation programs such as 
Matlab/Simulink [23] have encouraged the simulation of controller performance (both classical 
and adaptive) prior to coding actual source code for the target flight control computer.  Model-
based design methods tests candidate software designs for performance and conformance to 
requirements by using simulation to model of the input, plant (aircraft), controller, and 

 

 
 

Fig. 2  Software life cycle or development process. 

 
 
Figure 3. Model-based design methods tests candidate software designs for conformance to 

requirements prior to producing code for the target computer. 

 
disturbances (Fig. 3).  The utility of this approach is that the model-based design and simulation 
programs allow the plant and controller mathematics to be represented by block diagrams rather 
than writing actual code for the target host computer.  In Fig. 3, the software requirements 
suggest a software architecture that is modeled in the simulation environment.  When executed, 
the behavior of the controller can be observed and, in theory, the performance of the controller 
can be tested to see if it meets the software requirements.  If it does not, the software architecture 
can be quickly modified in the simulation environment and the tests repeated.  Once the software 
meets the requirements, the process illustrated in Fig 2 may be followed as usual, but in this case 
the validation tests are much more likely to be satisfied. 
 
The present state of the art doesn’t stop with desktop simulation, but includes increasing level of 
simulation complexity.  Desktop simulation may be followed by sub-scale testing on small models 
of the aircraft or spacecraft.  More commonly, the simulation complexity is increased through the 
incorporation of non-linear aerodynamic and structural dynamic models.  These simulations are 
usually run on a dedicated workstation computer platform.  The next step in the simulation 



hierarchy includes using the actual target flight control computer in the simulation, as well as 
other hardware placed in the control loop such as cockpit controllers and actual sensor input.  
After this may follow motion-based simulation where by the simulation is flown by a test pilot in a 
simulated cockpit environment that receives both visual and motion feedback.  The last step is 
testing on the actual target flight vehicle.  DO-178B presently allows certification credit to be 
obtained for both high-fidelity simulation testing as well as actual flight testing. 
 
The present state of the art is to analyze adaptive system learning convergence and stability 
using simulation environments thought to provide enough fidelity to model significant nonlinear 
aerodynamics, dynamics, and other factors.  To be certain, mathematical analysis of stability has 
been done (as explained in the next section).  However, although there are analytical equations 
to calculate optimal gain selection for rapid, stable learning, it has been found that high 
adaptation gains will often lead to high frequency oscillation in the tracking errors, especially in 
poor signal to noise environments.[4, 24]  It is usually only in high-fidelity simulation that the 
compromise between rapid learning and oscillatory tracking can be found.  Simulation provides a 
fairly rapid way to 
 

• Evaluate and compare different learning algorithms, 

• Tune control gains and learning weights, 

• Determine how much learning is actually being accomplished at each step of the 
simulation, 

• Evaluate of the effect of process and measurement noises on learning convergence, 

• Determine learning stability boundaries, 

• Test algorithm execution speed on actual target flight computer, 

• Conduct piloted evaluation of the learning system in a flight simulator, or, 

• Simulate ad-hoc techniques of improving the learning process, such as adding persistent 
excitation to improve identification and convergence, or such as stopping the learning 
process after error is less than a specified error. 

 
Simulation is frequently used to assess the effect of process noise and measurement noise on 
controller performance.  It has been shown, for example, that adaptive control system learning or 
system identification convergence requires persistent excitation.[2]  This problem generally 
occurs when the controller computes the correct optimal control before the system identification 
or learning method completely converges.  If the controller is able to find a control vector that 
effectively nulls the error between the desired state and measured state, then updates to the 
weight values based on that error signal will also tend to zero and the system does not learn until 
the control error becomes higher.  Further, as the optimal control vector is changed only slightly 
near the optimal control point, a system identification algorithm will compute the transfer matrix 
relating the very small changes in control to the measurement noises.[25]  A persistent excitation 
signal added to the control signal yields better learning, but at the expense of poorer steady-state 
controller performance.  An alternative is to disable the learning process when the control error 
becomes low.  References 24 and 25 provide detailed insight to this problem.   
 
The effect of noise on learning and identification performance as well as ad hoc approaches such 
as disabling learning during period of low control error are difficult to analytically verify and 
validate, but relatively easy to evaluate in simulation.  In addition, is has been shown that the 
acceptable gains for stable learning law must be found by trial and error.[24]  Even though 
conventional control system robustness measures such as gain margin and phase margin cannot 
be applied to an adaptive system, such quantities might be calculated (in flight) during periods of 
steady-state control behavior, but can always be computed in simulation, one point at a time.  It is 
highly likely, therefore, that a simulation will form of the certification process for adaptive systems. 
 



Further Research Needed:  Certification of adaptive control systems will be significantly aided 
by the development of more precise ways to specify requirements (metrics), by the development 
of simulation benchmarks for adaptive systems,  and by the development of automated analysis 
tools to support verification and validation using model-based design simulation. 
 
Since DO-178B allows certification credit for the use of high-fidelity simulations and test beds, it is 
highly likely that simulation will be a key part of any adaptive control certification process.  This is 
because testing the controller in the target operating environment for a representative test case 
may not always be possible or prudent.  For example, a controller for space craft orbiting an 
asteroid or a controller to help an aircraft pilot recover from severe wing damage.  Simulation is 
clearly a preferable and safer alternative, but the simulation fidelity must be sufficiently high so 
that important nonlinear effects are not missed. 
 
A critical aspect of obtaining certification credit for simulation is proving that the simulation fidelity 
is acceptably high.  If simulation is viewed as a tool, then this is very similar to the DO-178B 
requirement to use certified tools in the software development program.  The present lack of 
common simulation models also inhibits comparison of adaptive controllers, in addition to 
impeding certification. 
 
A important consideration that will influence the development of a common simulation model is 
that adaptive control systems are comprised of hybrid systems.  Hybrid systems attempt to model 
the full control system so that all components can be tested at once rather than in isolation.  The 
definition of a hybrid system can take different meanings.  Reference [24] defines a hybrid 
adaptive controller as a combination of direct and indirect adaptive control.  Hybrid systems may 
also refer to control systems comprised of finite state executive controllers coupled to a 
continuous domain adaptive controller.[20, 26]  A related characterization of a hybrid system is 
one in which a finite state controller using a continuous learning algorithm is coupled to a discrete 
model of the (normally) continuous environment.[27] 
 
The latter characterization might seem odd, but this type of hybrid system is being studied as a 
means of leveraging the power of model checking software such as SPIN, JPF2, and 
NuSMV.[28-31]  Model checking is a technique by which a finite state system model can be 
exhaustively explored to make sure the system never reaches an unacceptable state.  The 
method relies on being able to express adaptive controller safety properties as temporal logic.[30]  
More importantly, however, an approximation function is required to convert the continuous 
variables into discrete values. 
 
Lastly it is mentioned that a major gap area for adaptive controller certification are ways to define 
the meaning of acceptable controller performance.  In the next section, some proposed metrics to 
assess control system robustness and other quantities as mathematical quantities will be 
discussed.  Here it is noted that a clear certification path must begin with a clear definition of how 
a successful adaptive controller operates.  Is it a requirement that the adaptive flight control 
software be always active, or does it become active only when enabled by the pilot?  Pilot 
activation might allow certification at a lower safety category by making it a pilot aid or tool.  For 
example, Cirrus has introduced an autopilot with a wings-level button.  This autopilot, the Garmin 
G1000 autopilot that can recover the aircraft from an attitude of 75 degrees of roll and 50 degrees 
of pitch.[32]  This system, however, is certified as part of the autopilot (a pilot tool) and not as a 
high-bandwidth, automatic adaptive controller.  The purpose of this autopilot tool is to help pilots 
recover aircraft attitude during upset or times of reduced spatial awareness in order to give them 
time to assess the situation.  Nevertheless, this is a step forward toward acquiring data that may 
be used as part of a case for certification.  
 
Any plan for certification hoping to gain FAA approval will likely need to have firm answers to 
these questions.  Improper specification of the requirements hampers the development of suitable 
verification and validation test cases needed to show certification compliance to the requirements.   
 



4.0 Gaps in Software Verification and Validation Methods 
 
The software verification plan provides a description of each activity in the software verification 
process.  Generally, software verification is comprised of software review, software analysis, 
simulation, and testing.  These activities may include the use of software programming checklists 
and formal software analysis and testing methods.  Software analysis methods can include formal 
methods, static analysis, code reviews, traceability analyses, and coverage analyses[20].  The 
software verification plan establishes the rational for the development of software test cases and 
methods.   
 
A critical gap in the validation and verification plans for adaptive control systems is the lack of 
procedure that can reliably verify that the learning algorithm or system identification method 
learns correctly and converges to the correct solution in an acceptable time.  This verification will 
be the key step in any verification and validation plan for an adaptive system, since other than 
learning and system identification, there is no difference between adaptive and non-adaptive 
controllers.  Consider the neural network neuron shown in Fig. 4.  A learning algorithm of the type 
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is typically used to update the weight values based on some error metric, e.  The function f 
depends on the learning algorithm used (steepest descent, Gauss-Newton, Levenberg-Marquardt 
, etc.). It can be seen in Fig. 4 that if six weighted inputs are summed together to form one output, 
 

 
 

Fig. 4.  Neural network neuron. 

 
the values of the weights offering a correct solution is not necessarily unique, nor guaranteed to 
exist.  System identification methods for transfer matrix determination are alike in respect to this 
problem; the neuron shown in Fig. 4 is mathematically equivalent to a row-column matrix 
multiplication operation.  There are many excellent texts (e.g., [33]) that have analyzed the 
necessary conditions for a unique solution.  Since there are six inputs and one output, the 
minimum requirement is that the outputs be known for at least 6 linearly independent input 
vectors.  Then six equations in six unknowns exist, and values of the weights can be determined.  
However, if the second input is the square of the first input, and the third input is the product of 
the fourth input and the first input, and so on, the inputs are not independent and convergence to 
a solution may not be possible.  Neural networks often employ such input combinations in an 
attempt to offer superior curve fits to input data.  However, sensor input measurements that are 
related to each other electronically or mechanically (e.g., two accelerometers on a wing located 
some distance apart but measuring the same acceleration) are other reasons for dependencies to 
exist between different inputs. 
 
Even if great care is taken to ensure a linearly independent set of input measurements, another 
problem which makes learning and identification difficult is the presence of process and 



measurement noise.[33]  As an adaptive controller achieves a steady-state solution to the 
learning problem, the input vectors from one cycle to the next may become very small as the 
optimal control is reached.  If process noise adds uncertainty to the value of the weight vector 
from one cycle to the next and/or measurement noise is present in the measured output, the 
linear independence of the input vector stream can be lost. 
 
These factors make finding a certification test case to prove learning convergence to the correct 
weight vector under all conditions very difficult to find.  A certification test seeking to assess “how 
far away” from the true values the weights is difficult to specify in a general way. 
 
If convergence to one of the valid or unique weight sets is achieved, a related learning problem 
occurs in the presence of measurement noise.  In this case, as the system is operated in a 
neighborhood of the optimal control solution, the learning algorithm or system identification 
method will many times destabilize by computing weight values or transfer matrix elements to 
relate small changes in the control vector to measurement noise.  This produces divergent 
learning behavior. 
 
Current State of the Art:  At the present time, no adaptive systems have been approved by the 
FAA for use in commercial airspace apart from those based on gain-scheduled control.  
Therefore there is no example of an approved verification and validation plan for an adaptive 
flight controller.  Even so, most parts of such a plan already exist because the best practices used 
to certify non-adaptive controllers can still be used, at least in part.  These best practices include 
the use of software programming checklists, code reviews, traceability analyses, static analyses, 
and coverage analyses. 
 
The verification and validation plans for an adaptive flight controller, however, will require an 
extension to evaluate the performance and all failure modes of the learning algorithms or system 
identification methods.  Therefore, the focus of the verification and validation plan for adaptive 
controllers comes down to verifying that the learning algorithm or system identification method 
converges to the correct system parameter values in a stable manner and at an acceptably fast 
rate.  This will be the crux of an acceptable certification plan.  Presently, two paths are being 
explored as a means to evaluate stability and convergence: 1) high-fidelity simulation, and 2) 
mathematical analysis. 
 
With regard to simulation, the current general practice is to use variations of the Monte Carlo 
analysis method.[34]  In this method, the range of values each parameter may take is 
determined.  A finite number of parameter test values is then selected.  If nothing is known about 
the parameter's expected value, then a uniform spacing throughout the parameter range is a 
logical choice.  Alternatively, if the expected value of a parameter is known, then the test values 
can be more closely spaced near the expected value.  Once all parameter test values have been 
selected, the matrix of simulation runs is comprised of every parameter varied in combination with 
all other parameter values.  So, if there are three parameters that can take 5 unique values each, 
the number of simulation runs is 35 or 243.  Even for a non-adaptive controller, Monte Carlo 
simulation can be very time consuming considering the number of possible changes in the 
parameters just describing the operating condition (airspeed, altitude, weight, etc.).  When 
number of parameters in the state vector is included, the number of simulation cases required 
can easily render the task of full Monte Carlo simulation intractable, except for very sparse 
parameter variations that leave large portions on the state space unexplored.  From a certification 
standpoint, that would not be acceptable. 
 
Mathematical proofs of adaptive controller stability generally seeks to show that the vehicle state 
returns to a neighborhood about the undisturbed state for every defined disturbance.  The most 
commonly used proof is based on Lyapunov's second method.[4, 35-37]   For linear time invariant 
systems of the form, 

Axx =
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where x is the state vector and A is the state transition matrix, the Lyapunov method states that 
the system is stable (will return to the origin) if a Lyapunov  function V(x) can be found that is 
always positive and that has a time derivative that is always negative or equal to zero, 
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The Lyapunov function usually chosen is 
 

( ) PxxxV T=  

 
and the system is said to be stable if, and only if, given any symmetric positive-definite matrix Q, 
there exists a symmetric positive-definite matrix P, which is the unique solution of the set of 
 

QPAPAT −=+  

 
equations.[4]   Although finding a Lyapunov function has in the past been somewhat of a 
cumbersome trial and error process, recent advances in semidefinite programming and 
semialgebraic geometry have afforded more of an algorithmic procedure to find a valid Lyapunov 
function through the use of the sum of squares (SOS) method.[38]  
 
From a certification perspective, a weakness of the Lyapunov approach to prove stability is that 
the proof requires a polynomial representation of the plant (A matrix) for all flight conditions of 
interest.  If the values of this representation changes, perhaps due to aircraft damage, then 
nothing can be said about controller stability.  More importantly, the Lyapunov analysis only 
guarantees the ultimate stability of the learning algorithm; the proof does not  guarantee how fast 
the system returns to the origin.  In adaptive controller parlance, this means that Lyapunov proofs 
cannot guarantee the rate of learning convergence.  This is an important point for system 
performance, because if learning happens too slowly, an adaptive controller may be rendered 
ineffective for the control task at hand. 
 
Further Research Needed:  Although Lyapunov stability proofs have been thoroughly 
investigated and analyzed for nearly five decades, one gap that still remains in regards to 
certification is that these proofs are not easily understood by most engineers.  Consequently, one 
problem facing the certification of adaptive control systems is that there is a large gap between 
the mathematicians understanding of stability and credence an designated engineering 
representative (DER) or and FAA official will be willing to give it in the plan for certification.  A 
mathematical proof that is understood only by experts in the control field may fail to inspire 
certification authorities that all due diligence has been done.  Moreover, since these proofs 
depend on knowledge of the “A” and “B” matrices of the control system representation, 

BuAxx +=
•

 , and these may actually change with time (e.g., with aircraft damage), such that 
Lyapunov proofs may well lack sufficient conditions necessary for convergence.  A similar 
criticism also holds for the method of attempting to prove regions of controller stability through the 
use of barrier certificates. [39, 40]  Like Lyapunov, this approach seeks to prove that the state 
trajectories starting from a given set of initial conditions never reach an unsafe region.  The 
barrier certificate represents a guaranteed upper bound on the probability that the system 
trajectories do not reach the unsafe set.  However, application of the method also requires the 
plant be expressed in polynomial form as well as the boundaries of the unsafe states.   
 
One possible approach to this problem is to develop software algorithms to monitor the control 
system health by having a means to monitor the necessary conditions for successful adaptive 



controller operation.  Such health monitoring could also conceivably assess when the flight 
conditions or aircraft state was  beyond the authority of the controller. 
 
Another gap of Lyapunov stability analysis that will need to be addressed is the development of 
metrics to quantify the robustness of the control system.  Metrics that can assess how far away 
the system is from instability are needed that are analogous to the gain margin and phase margin 
metrics used to assess non-adaptive, linear controllers.  Because adaptive controllers may 
change their gains on-the-fly, these terms have no meaning because the system is never 
constant.  
 
One method being studied by NASA under the Aviation Safety Program to help close the 
certification gap is to look at ways to extend the traditional Monte Carlo analysis method to 
assess the robustness of adaptive control systems.  At the Langley Research Center, an analysis 
tool called RASCLE (for Robustness Analysis for Control Law Evaluation) has been developed to 
help explore combinations of learning system parameters and operating conditions [41].  The 
RASCLE simulation tool is used to interface with existing nonlinear simulations and incorporates 
search algorithms to uncover regions of instability with as few runs as possible.  RASCLE uses a 
gradient algorithm to identify the direction in the uncertainty space along which the stability of the 
system is most rapidly decreasing.  RASCLE provides an intelligent simulation-based search 
capability that can be used in Monte Carlo simulation evaluations [42].  At the Ames Research 
Center, another approach to extend Monte Carlo analysis has been studied for analysis of large 
complex aerospace systems, such as adaptive systems have a highly coupled nonlinear nature.  
In this approach, an algorithm has been developed to only limit the number of combinatorial 
cases required of Monte Carlo analysis, but also to explore interactions in the parameter space in 
a systematic fashion. The data generated is automatically analyzed through a combination of 
unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and 
supervised learning of critical parameter ranges using the machine-learning tool TAR3, a 
treatment learner.[43] Covariance analysis with scatter plots and likelihood contours are used to 
visualize correlations between simulation parameters and simulation results. 
 
Although the mathematical soundness of Lyapunov stability analysis theory is not in question, it is 
highly possible that this method of analysis will never be able to provide the type of software 
assurance necessary for certification.  To close this gap, therefore, research to discover other 
avenues to Lyapunov analysis should be explored.  As was mentioned at the outset, the most 
likely other alternative is to use high-fidelity simulations incorporating nonlinear effects, hardware-
in-the-loop, and motion-based simulations.  Although it is conceivable that the creation of better 
learning algorithms through analytical development could potentially improve the learning rate of 
convergence, it has been shown that fast convergence in the presence of measurement noise 
and un-modeled dynamics actually produces instability.[24]  Hence the challenge problem for 
certification is not so much the search for better learning algorithms, but more towards finding 
ways to find ways to demonstrate adaptive controller performance is simulation, but at the same 
time taking steps to avoid the trial and error adaptation gain selection process or system 
identification tuning process.  Trial and error is not a good solution because not only does it 
hamper a certification test process by not having predefined test values, but it is also difficult to 
later repeat the same testing on actual flight vehicles that may match or may exceed the fidelity of 
the simulation. 
 
Nearly all software verification and validation plans for airborne software are ultimately aimed at 
proving that the software code fulfils its intended function, but this is very difficult to do with 
learning or system identification software proposed for adaptive control systems.  The problem is 
that the weights in a neural network or number of parameters in a transfer matrix may not have a 
solution, or if it does, the solution may not be unique as mentioned above.  Consequently, it is felt 
that the correct values of the network weights or transfer matrix parameters cannot be know, 
making software verification an NP hard problem in this case.[44]  The usual practice is to couple 
the learning algorithm or system identification method to the adaptive controller and evaluate the 
behavior as a unit.  However, this ignores the obvious merit of being able to prove proper learning 



behavior as part of a certification process.  One possibility may be to separately test learning 
algorithms and system identification methods in simulation using contrived aircraft models that 
have a unique, known solution.  The effects of measurement noise, process noise, persistent 
excitation, and ad hoc means to stop learning for low control errors could then be easily 
evaluated.  One such attempt at doing such experimentation for helicopter adaptive vibration and 
noise algorithms is presented in Reference 24.  Such simulation cannot verify the learning 
behavior of over-parameterized systems, yet can provide proof that the basic learning algorithm 
was verified to work at least under ideal or known test conditions.   
 
One avenue that offers a possibility to help close this certification gap is to develop, in 
combination with simulation, probabilistic uncertainty models for adaptive controllers in order to 
quantify their robustness.  Reference [45] discusses the development of probabilistic uncertainty 
models to assess the effect of parameter variations on controller stability.  By making various 
cross-plots using the controller parameters, the plot space can be divided into regions called the 
Failure Domain and the Admissible Domain.  By varying the parameters, probabilistic uncertainty 
methods can define a set of plants and associate a weight (or probability) for each.  This then 
facilitates a search for a robust controller by being able to quantify how far away the system is 
from instability or some other problem by through parameter variation (homothetic deformations). 
A gap for certification purposes is that although probabilistic analysis helps prove a design using 
the most robust controller design, safety of flight demands stability at the corner cases too.  It 
must be remembered that the certification world often wants to see failure rates less than 10**-9 
for single, non-redundant systems, or the use of a collection of cascaded or redundant systems 
that achieve that as a joint probability. 
 
Failing to prove that an adaptive flight controller has sufficient reliability at all operating conditions 
and for all failure scenarios is a certification gap that can be closed in only one of two ways.  The 
first way is to tighten the performance requirements placed on the adaptive controller.  As the 
performance specifications in this regard becomes more narrow and specific, the adaptive control 
system is required to do less, but the V&V plan is able to become more specific and well-defined.  
This is not always a bad thing, since it is good to be able to know and to design to specific 
requirements.  However, a second way is to field the adaptive controller with a set of on-line tools 
that can monitor the state of the controller  to continuously assess its performance.   
 
One example of an on-line software assurance tool is the Confidence Tool developed under the 
NASA Aviation Safety Program.[46].  This tool provides a useful metric to assess neural network 
weight convergence using a Bayesian approach.  The Confidence tool is a dynamic monitor, 
which checks the output values of the neural network and determines if the output of the neural 
network is reliable by calculating a confidence measure.  This metric is based upon a statistical 
model of the learning system originally developed for pre-trained neural networks, but recently 
extended for use with on-line learning neural networks.  The Confidence tool uses a Bayesian 
approach to dynamically calculate a confidence measure. 
 
Another example of an on-line tool to evaluate control system robustness is a tool developed at 
the NASA Dryden Flight Research center to provide a method for in-flight stability estimation of 
the X-38 crew return vehicle.[47]  This method introduced a small-amplitude to an elevator and 
rudder tailored-force excitation that was targeted to a specific frequency range.  The frequency 
response at these frequencies was then used to calculate the stability margins of the flight control 
system using a modification of the method in Reference [48].  A recursive Fourier transformation 
was used to make the method compatible with real-time calculation. The stability calculated by 
the on-line method compared well to the X-38 nonlinear simulation.  The utility of having a metric 
of stability that can be computed in flight was a great increase in test efficiency for the X-38 flight 
test.  For the certification of adaptive control systems, such methods might be extended to 
evaluate adaptive control system stability.  In this way, the gap created by the fielded software not 
being quite the same as the fielded software might be further closed through the use of tools for 
on-line controller performance monitoring. 
 



As a last thought on tool development for adaptive controller verification, it is mentioned that 
some researchers are seeking to adaptive formal methods developed primarily for finite state 
systems to the continuous domain of control. Methods such as compositional verification have 
been used to break apart large complex finite state systems into smaller parts that can be 
analyzed using the powerful and exhaustive model checking methods.  For example, Reference 
[49] describes an application of the NASA Ames Java PathFinder model checker to the control 
the guidance of a robotic vehicle.  Using compositional verification to verify that the interface logic 
between components will function properly when integrated together to make the full system 
requires only a domain change and is very feasible.  The difficult part is finding a way to 
approximate the continuous state vector and measurement domains by a set of discrete values.    
The idea is similar to rounding a decimal number to the nearest integer, only in this case, the 
truncation must be considerably coarser. With this type of hybrid model approximation, the state 
and measurement values take on finite values. This allows for the recognition of previous “states” 
in the model checking sense of the word, and hence an exploration of the continuous model 
checking space becomes possible.  Of course, this search is exhaustive only to the extent the 
approximation function is valid.  If the approximation function is too coarse, important states will 
likely be missed.   
 
 
5.0 Gaps in the Adaptive Controller Software Development Process 
 
The software development process described by DO-178B for airborne software is one in which 
the verification and validation plans are developed before any code is written.  This includes both 
the overall plan as well as the specific plans down to the level of unit testing.  A difficulty with 
even non-adaptive controller development is that the usual path is an engineer does an analysis 
of a proposed controller design and then moves immediately into desktop simulation.  
Subsequently, as problems are encountered, various fixes and modifications are tested until 
something appears to work.  At that time, a documented design may be produced, but 
documentation of the all the development problems and description of everything tried that did not 
work is typically lost.  For adaptive controllers having greater complexity, the problem is 
significantly worse.  Skipping the time it takes to document failed approaches and tuning values is 
no doubt a major time saving step, but the problem is that it also prevents collection of valuable 
lifecycle data needed for certification. 
 
Current State of the Art:  It is not possible to mention the many on-going efforts by industry and 
government projects to develop adaptive flight control systems.[10, 13, 15, 16, 35, 50-53]  
Although most of the industry development programs are proprietary, the Air Force VVIACS 
(Verification and Validation of Intelligent and Adaptive Control Systems)[54] and NASA IRAC 
(Intelligent Resilient Adaptive Control)[55] efforts represent multi-year programs with industry 
partners have been initiated to define methodologies and test procedures for adaptive flight 
control systems.  The continuing IRAC Project is sponsored by the NASA Office of Aviation 
Safety.   The goal of the IRAC Program is to conduct research to advance the state of aircraft 
flight control to provide onboard control resilience for ensuring safe flight in the presence of 
unforeseen, adverse conditions. The objective is to advance the state-of-the-art of adaptive 
controls as a design option to provide enhanced stability and maneuverability margins for safe 
landing.  It is anticipated that the outcome of the IRAC project research will be a set of validated, 
multidisciplinary integrated aircraft control design tools and techniques for enabling safe flight in 
the presence of adverse conditions such as structural damage, control surface failures, or 
aerodynamic upsets.  With regard to the certification of adaptive flight control systems, it is hoped 
that the analysis, simulation, sub-scale and full-scale flight tests of this research program will help 
form the basis for a valid Plan for Software Aspects of Certification (PSAC) for adaptive flight 
control systems as part of a certification plan. 
 
Further Research Needed: A difficulty is that performing verification and validation to enable 
research to progress in a development environment is not necessarily the same as the software 
assurance testing required by the Federal Aviation Authority (FAA) to certify the software for 



operation.  Although in the research and development environment every effort is made to ensure 
that the adaptive software functions as required, the operating conditions, test hardware 
configurations, and types of adaptation tasks are highly restricted in order to allow a focused 
program to proceed along a well-defined path.  This approach offers the ability to conduct a proof 
of concept demonstration in a relatively short amount of time, but unfortunately leaves the 
development of a certifiable control system to future developers. 
 
A very practical aspect of a certifiable adaptive flight control systems is that DO-178B advises 
that safety-critical software should provide a measure of software redundancy and fault tolerance.  
The preferable level of redundancy is two systems doing the same thing, but using different 
calculation methods to arrive at the same answer.  This is referred to in DO-178B as redundancy 
achieved by using dissimilar implementations.  A problem with using the technique of dissimilar 
implementations for adaptive flight systems is that the dissimilar implementations could take 
different control trajectories to achieve the same end state and yet not be comparable along the 
way.  Designing in the required level of fault tolerance for adaptive flight control systems is a 
major certification gap.  Another gap is the usage of partitioned real-time operating systems 
(RTOS) that are equipped with vehicle health management tools to ensure any failures in the 
controller remain isolated, while allowing another partition to perform health management and 
failure detection. 
 
Verification and validation plans for certifiable software would need to provide a test matrix 
together with an explanation why each test point has been chosen and how together all of the test 
points will provide adequate test coverage.  RTCA DO-178B recommends that the report should 
include a description of the conditions under which each test is to be performed and state the 
pass/fail criteria.  Step by step instructions for performing each test are to be provided along with 
instructions with how to evaluate the test results.  DO-178B stresses that it is important that these 
procedures and criteria be developed prior to the actual testing.  In fact, DO-178B states that the 
verification and validation tests should be defined prior to writing any code.  This is of course not 
possible for a research program.  For a commercial certification effort of an adaptive control 
system, the experience to know the best test practices will hopefully come from the IRAC 
program and other similar efforts. 
 
Once a sufficient set of best practices for the verification and validation of adaptive flight control 
systems becomes available, it may be possible to augment the traditional DO-178B PSAC with a 
Safety Case argument.  Safety cases have been created for certification of nuclear industry in 
Europe and off-shore oil refineries in Australia.[56-57]  A safety case is a document that identifies 
all hazards and risks, describes how the risks are controlled, and describes the safety 
management plan to ensure the controls and guidelines are effectively and consistently applied.  
The safety case represents a collection of processes to ensure all identified risks are mitigated.  
Obviously, the development of stability analysis methods for adaptive controllers, metrics for 
adaptive controller performance (or learning), hybrid high-fidelity simulation methods, the usage 
of formal methods, and other technologies would conceptually become part of the safety case.  In 
essence, the safety case argues for software certification on the basis that every best practice to 
ensure safety has been followed.  Whether or not this is the same thing as proving the system is 
safe is a valid gap for certification using the safety case approach.  In fairness, however, any 
certification procedure fulfilling the spirit of the DO-178B guidelines might also end up not being 
safe. 
 
Summary 
 
This paper has provided an examination of the gaps between current state-of-the-art 
methodologies used to certify airborne software and what is likely to be needed to satisfy FAA 
airworthiness requirements for the certification of adaptive flight control systems.  These 
controllers use system identification or some form of on-line learning algorithm to identify optimal 
controller gain settings, system transfer matrices, and/or control derivative matrices in real-time.  
These gaps include the lack of a certification plan or process guide, the need to develop 



verification and validation tools and methodologies to analyze adaptive controller stability and 
convergence, as well as the development of metrics to evaluate adaptive controller performance 
at off-nominal flight conditions.  This paper has provided the major certification gap areas and has 
presented for each a description of the present day state of the art and what further research 
efforts will likely be needed to close the gaps remaining in current certification practices.  The 
areas addressed include the need for advances in simulation methods, methods to determine 
learning algorithm stability and convergence rates, the development of better performance 
metrics for adaptive controllers, the application of formal software assurance methods, the need 
for on-line software monitoring tools and health assessment, and the development of a 
certification plan for adaptive systems. 
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