
2008 Guidance, Navigation, and Control Conference, Honolulu, Hawaii, Aug 18-21, 2008

Closing the Certification Gaps in Adaptive Flight Control Software

Stephen A. Jacklin, NASA Ames Research Center

Abstract

Over the last five decades, extensive research has been performed to design and
develop adaptive control systems for aerospace systems and other applications
where the capability to change controller behavior at different operating conditions
is highly desirable. Although adaptive flight control has been partially implemented
through the use of gain-scheduled control, truly adaptive control systems using
learning algorithms and on-line system identification methods have not seen
commercial deployment. The reason is that the certification process for adaptive
flight control software for use in national air space has not yet been decided. The
purpose of this paper is to examine the gaps between the state-of-the-art
methodologies used to certify conventional (i.e., non-adaptive) flight control system
software and what will likely to be needed to satisfy FAA airworthiness
requirements. These gaps include the lack of a certification plan or process guide,
the need to develop verification and validation tools and methodologies to analyze
adaptive controller stability and convergence, as well as the development of
metrics to evaluate adaptive controller performance at off-nominal flight conditions.
This paper presents the major certification gap areas, a description of the current
state of the verification methodologies, and what further research efforts will likely
be needed to close the gaps remaining in current certification practices. It is
envisioned that closing the gap will require certain advances in simulation
methods, comprehensive methods to determine learning algorithm stability and
convergence rates, the development of performance metrics for adaptive
controllers, the application of formal software assurance methods, the application
of on-line software monitoring tools for adaptive controller health assessment, and
the development of a certification case for adaptive system safety of flight.

1.0 Introduction.

Over the last five decades, extensive research has been performed to design and develop
adaptive control systems for aerospace systems and other applications where the capability to
change controller behavior at different operating conditions is highly desirable. An adaptive
controller changes its behavior by allowing the controller forward and/or feedback gains to be
adjusted once the controller has been deployed.[1-5] Because designing such a control system
introduces many complexities, it is generally held to be good practice to use a non-adaptive or
"classical" controller design if one can be found that delivers acceptable performance. This is
because although proven techniques to evaluate the dynamic response and controller stability
exist for non-adaptive controllers (e.g., root-locus, Bode plots, Nichols charts, etc.[6, 7]),
techniques for adaptive systems are only yet in their infancy.

The most prevalent adaptive flight control system technology in use today are those that involve
the use of a technique called gain scheduling.[6] To implement this scheme, a classical non-
adaptive controller is designed first, and then a number of controller gain sets are determined and
stored for a finite number of operating conditions and aircraft configurations. The flight control
computer is programmed to select the correct gains based on the current flight condition
(airspeed, altitude, etc.) and vehicle configuration. At each specific (constant) flight condition,
the controller is a classical, non-adaptive controller. Therefore, the individual controller gain sets
can be verified and validated by simulation and flight testing at the specific flight condition for
which they were chosen. Within each flight regime, the controller performance is tuned using
many well-established techniques for non-adaptive flight control systems. Gain-scheduling

https://ntrs.nasa.gov/search.jsp?R=20090026333 2019-08-30T07:27:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10549618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

thereby offers a means of partial adaptive control capability, while avoiding many of the problems
associated with fully adaptive flight control systems. By using a fine enough grid of flight
conditions and vehicle configurations, virtually any pre-defined set of flight conditions can be
handled using the gain scheduling method. The success of the gain scheduling part depends in
large part on the degree to which the system can be rightly characterized to operate in sufficiently
few discrete regimes.

The focus of this paper does not concern the certification of gain-scheduled flight controllers, but
rather what is required to certify adaptive controllers that use system identification or some form
of on-line learning to identify optimal controller gain settings, system transfer matrices, and/or
control derivative matrices in real-time. Adaptive flight control systems are currently being
developed to help pilots recover from aerodynamic upset conditions[8,9], to regain vehicle
handling qualities and stability in the event of aircraft damage or control surface failure[10], to
automatically fly vehicles autonomously in both air and space environments[11-15], to maintain
vehicle performance during changing operating environments through use of neural networks[16-
18], and to guide munitions to their targets [19]. These types of adaptive flight control systems
have high degrees of non-linearity and non-determinism. Gain-scheduled control cannot be
effectively used for these applications because the specification of all upset flight environments,
the degree of control surface failure, or extent of aircraft or engine damage requires infinite sets
of conditions. Instead, for these applications, it is more efficient to assume the structure of the
controller and use learning algorithms or on-line system identification methods to obtain the
locally valid operating parameters. Figure 1 taken from [Ref. 20] provides a notional diagram of
an adaptive control system to illustrate two possible ways to implement adaptive control. In one
case, the learning algorithm is used to compute augmentation flight control inputs; in the other a
system identification method is used to identify controller parameters, gains, or transfer matrices.

Although the potential benefits of adaptive flight control systems are substantial, no adaptive flight
control systems have been certified by the Federal Aviation Authority (FAA) for use in the
National Air Space (NAS). The reason is that the means whereby adaptive flight control software
can be routinely verified, validated, and certified for use in national air space has not yet been
decided. As will be shown in the next section, the FAA has endorsed the use of RTCA DO-178 to
provide FAA certification standards for all flight software. Although software techniques exist to
verify and validate conventional flight control software, the means to provide sufficient assurance
of adaptive flight control software functionality, reliability, safety, and the absence of unintended
functionality remains elusive. Since by its very design the adaptive controller can make rapid and
automatic adjustments to enable self-healing in the event of vehicle damage, it also carries the
potential to make a healthy aircraft un-flyable or a safety hazard to other vehicles in the event of
software malfunction. In a military application over restricted air space, such failures may be
tolerated if not too high, but for a commercial application in civilian air space, such failures are
unacceptable. Adaptive control systems with learning software will never become part of the
future unless it can be proven that this software is highly safe and reliable.

Fig. 1 A few ways to make flight controllers adaptive.

The objective of this paper is to examine the challenge areas that need to be addressed in order
to enable the certification of adaptive flight control software for use in civilian air space. The
purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to
certify conventional (i.e., non-adaptive) control system software and what is likely to be needed to
satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or
process guide, the need to develop verification and validation tools and methodologies to analyze
adaptive controller stability and convergence, as well as the development of metrics to evaluate
adaptive controller performance at off-nominal flight conditions.

2.0 What are the Certification Gaps ?

In the United States, the authority responsible for certifying flight control software is the Federal
Aviation Administration (FAA). The FAA has stated in Advisory Circular 20-115B that all flight
critical software must be developed according the guidance provided in RTCA DO-178B [21] or
show compliance to airworthiness standards using some alternate means of compliance. Since
alternate means of compliance are undefined, the statements in DO-178B are generally viewed
as certification requirements, rather than mere guidelines. The objective of DO-178B is to help
the aviation community develop flight software that can perform its intended functions while not
negatively impacting other systems or the safety of aircraft operations. The document is
maintained by the RTCA (Radio Technical Commission for Aeronautics) which is a private
association of over 250 aeronautical organizations (established 1935).

DO-178B is not a process guide to software certification, but rather a description of what high-
quality software development processes should be put in-place in order to create airborne
software that has been properly verified and validated. It levies no special requirements for
adaptive flight control software; it is meant to apply to all airborne software. If it can be
adequately demonstrated that these processes have been correctly and appropriately
implemented, then the software is in principle certifiable. This section highlights the specific
guidelines recommended by RTCA DO-178B that, in the author’s view, are potentially difficult for
adaptive flight software control to fully satisfy and represent the gaps requiring the infusion of new
verification and validation techniques and methods.

Table 1 provides a list or summary of the basic guidelines offered by DO-178B. This list has
been generated by the author and is not intended to serve as a comprehensive index to the
standard since it combines the intent of similar topics under general headings. However, it is

useful for discussion purposes. The first column provides a list of the guideline categories or
processes called for in DO-178B. The second column indicates which of these represent
potential problem areas for adaptive flight control software. So, for example, the first guideline,
“provide an overview of the system and target application software”, is marked “No” in the second
column because this task is not more difficult to perform for adaptive flight control software than
for conventional flight control software. As can be seen from the table, the majority of the
guidelines do not present special problems for adaptive software; they are equally difficult for
non-adaptive flight software. The satisfaction of these common guidelines will not be discussed
in the sequel.

The rows marked with the "YES" designation in column 2 of Table 1 are the gap areas impeding
the certification of adaptive systems. These areas are held to be in adaptive flight software
requirements definition, performance specification, and definition of verification plans and test
cases. Two additional related areas held to be problematic are software lifecycle data collection
and development of a Plan for Software Aspects of Certification (PSAC). These are problem
areas partly because of the first four and also partly because the design and test procedures for
adaptive systems are not well-established.

Some airborne software developers argue that there is no guideline in RTCA DO-178B that
cannot be satisfied using the same software assurance methods as are presently used for non-
adaptive software [22]. In truth, it is possible to create documents stating adaptive controller

Table 1: List of DO-178B Guidelines for Software Certification

DO-178B Guideline Topic
More Difficult
for Adaptive
Systems ?

Provide an overview of system and target application of software No
Provide an overview of what the software does No
Identify the software lifecycle No
Define the software performance requirements Yes

Provide a Software System Safety Assessment (SSA) Report that lists all
software failure modes and conditions and categorizes the failures according to
their severity

No (although
increased
complexity)

Provide a Software Development Plan No
Provide a Software Verification Plan Yes

Provide a Software Configuration Management Plan No
Provide a Software Quality Assurance Plan No
Define Software Requirement Standards No
Define Software Design Standards No
Define Software Code Standards No
Define Software Requirements and all Derived Requirements Yes

Software Design and Traceability Document No
Provide Tool Qualification Data (e.g., autocoders, compilers) No
Provide Source Code No
Provide Executable Object Code No
Provide Software Verification Test Cases and Procedures Yes

Provide Software Verification Results No
Provide Problem Reports No
Provide Software Configuration Management Records No
Provide Software Qualify Assurance Records No
Provide Plan for Software Aspects of Certification (PSAC) Yes

Provide Software Accomplishment Summary No
Provide Software Life Cycle Data Yes

requirements, performance requirements, and V&V methods. The problem lies in that DO-178B
does not provide metrics to assess the adequacy of these plans. This function is relegated to the
DER (Designated Engineering Representative) working out the certification process with the FAA.
It is the DER and the FAA who decide if the software documentation and procedures provided are
sufficiently detailed and accurate. Since no adaptive flight control systems have been certified for
use in the NAS, it is very difficult to judge the adequacy of these methods without references to
previous work done by industry and government to show that these methods are sufficient to
prove adaptive control system air worthiness.

The remaining sections of this paper discuss major gap areas in regards to the certification of
adaptive flight control systems. Each of these sections describes a major gap area, presents a
description of the present day state of the art in these areas, and cites what further research
efforts will likely be needed to close the gaps. It must be mentioned that although these sections
highlight many significant areas, it is not known to what degree this list is complete since no
adaptive systems have been certified for routine civilian use in the national airspace.
Nevertheless, the sections below are held to provide a very good starting point toward identifying
what needs to be done to create a valid adaptive system certification process.

3.0 Gap in Defining Adaptive Controller Requirements

A critical gap which needs to be closed to facilitate certification is to develop procedures and
methodologies to completely and correctly specify the design requirements of adaptive flight
controllers. Not only are classical controller performance requirements specified by well-known
metrics (e.g., gain margin and phase margin), the controllers are also designed to address
usually very well defined requirements. In contrast, both the requirements and the controller
performance metrics are difficult to clearly define for adaptive systems.

Most software life cycles (development through deployment) begin with an analysis to carefully
define the software requirements as shown in Fig. 2. The left side shows the steps used to
transform requirements into software code. The right side shows the steps of software integration
and testing to make sure the code ultimately satisfies the software requirements. The process of
testing the performance of the final code against the defined software requirements is called
software validation. This is the meaning of the second "V" in the often used acronym "V&V" for
verification and validation. (The word validation is also often used in connection with model
validation, but this is a very different process consisting of comparing the predicted output of a
dynamic model against measured data.) Software verification is the analysis and testing
processes used to ensure the software code does what it was designed to do.

The software requirements define as precisely as possible what the software is supposed to do.
DO-178B recommends that requirements be written in a manner that allows them to be tested
and may include such things as performance, precision, accuracy, and timing constraints. The
requirements are frequently decomposed into derived requirements to address such
considerations as computer speed, memory size, interfaces, and frequency of inputs and outputs.

The most common reason software fails validation testing is incomplete or poorly defined
requirements. Software developers may follow a verification process that proves that the
software does exactly what it was designed to do algorithmically, but then discover that it does
not meet the real software requirements because of improper specification. Such failures are
very expensive to correct because when an error is found in late stage validation, the entire
software design, verification, integration, and validation process shown in Fig. 2 must be
performed all over again. Whereas errors in requirements specification for classical controllers
usually results because some important test condition or environment was not stated,
requirement specification errors for adaptive controllers can result because they are only
notionally known, and not easily specifiable using metrics for classical controllers.

Current State of the Art: The availability of modeling and simulation programs such as
Matlab/Simulink [23] have encouraged the simulation of controller performance (both classical
and adaptive) prior to coding actual source code for the target flight control computer. Model-
based design methods tests candidate software designs for performance and conformance to
requirements by using simulation to model of the input, plant (aircraft), controller, and

Fig. 2 Software life cycle or development process.

Figure 3. Model-based design methods tests candidate software designs for conformance to

requirements prior to producing code for the target computer.

disturbances (Fig. 3). The utility of this approach is that the model-based design and simulation
programs allow the plant and controller mathematics to be represented by block diagrams rather
than writing actual code for the target host computer. In Fig. 3, the software requirements
suggest a software architecture that is modeled in the simulation environment. When executed,
the behavior of the controller can be observed and, in theory, the performance of the controller
can be tested to see if it meets the software requirements. If it does not, the software architecture
can be quickly modified in the simulation environment and the tests repeated. Once the software
meets the requirements, the process illustrated in Fig 2 may be followed as usual, but in this case
the validation tests are much more likely to be satisfied.

The present state of the art doesn’t stop with desktop simulation, but includes increasing level of
simulation complexity. Desktop simulation may be followed by sub-scale testing on small models
of the aircraft or spacecraft. More commonly, the simulation complexity is increased through the
incorporation of non-linear aerodynamic and structural dynamic models. These simulations are
usually run on a dedicated workstation computer platform. The next step in the simulation

hierarchy includes using the actual target flight control computer in the simulation, as well as
other hardware placed in the control loop such as cockpit controllers and actual sensor input.
After this may follow motion-based simulation where by the simulation is flown by a test pilot in a
simulated cockpit environment that receives both visual and motion feedback. The last step is
testing on the actual target flight vehicle. DO-178B presently allows certification credit to be
obtained for both high-fidelity simulation testing as well as actual flight testing.

The present state of the art is to analyze adaptive system learning convergence and stability
using simulation environments thought to provide enough fidelity to model significant nonlinear
aerodynamics, dynamics, and other factors. To be certain, mathematical analysis of stability has
been done (as explained in the next section). However, although there are analytical equations
to calculate optimal gain selection for rapid, stable learning, it has been found that high
adaptation gains will often lead to high frequency oscillation in the tracking errors, especially in
poor signal to noise environments.[4, 24] It is usually only in high-fidelity simulation that the
compromise between rapid learning and oscillatory tracking can be found. Simulation provides a
fairly rapid way to

• Evaluate and compare different learning algorithms,

• Tune control gains and learning weights,

• Determine how much learning is actually being accomplished at each step of the
simulation,

• Evaluate of the effect of process and measurement noises on learning convergence,

• Determine learning stability boundaries,

• Test algorithm execution speed on actual target flight computer,

• Conduct piloted evaluation of the learning system in a flight simulator, or,

• Simulate ad-hoc techniques of improving the learning process, such as adding persistent
excitation to improve identification and convergence, or such as stopping the learning
process after error is less than a specified error.

Simulation is frequently used to assess the effect of process noise and measurement noise on
controller performance. It has been shown, for example, that adaptive control system learning or
system identification convergence requires persistent excitation.[2] This problem generally
occurs when the controller computes the correct optimal control before the system identification
or learning method completely converges. If the controller is able to find a control vector that
effectively nulls the error between the desired state and measured state, then updates to the
weight values based on that error signal will also tend to zero and the system does not learn until
the control error becomes higher. Further, as the optimal control vector is changed only slightly
near the optimal control point, a system identification algorithm will compute the transfer matrix
relating the very small changes in control to the measurement noises.[25] A persistent excitation
signal added to the control signal yields better learning, but at the expense of poorer steady-state
controller performance. An alternative is to disable the learning process when the control error
becomes low. References 24 and 25 provide detailed insight to this problem.

The effect of noise on learning and identification performance as well as ad hoc approaches such
as disabling learning during period of low control error are difficult to analytically verify and
validate, but relatively easy to evaluate in simulation. In addition, is has been shown that the
acceptable gains for stable learning law must be found by trial and error.[24] Even though
conventional control system robustness measures such as gain margin and phase margin cannot
be applied to an adaptive system, such quantities might be calculated (in flight) during periods of
steady-state control behavior, but can always be computed in simulation, one point at a time. It is
highly likely, therefore, that a simulation will form of the certification process for adaptive systems.

Further Research Needed: Certification of adaptive control systems will be significantly aided
by the development of more precise ways to specify requirements (metrics), by the development
of simulation benchmarks for adaptive systems, and by the development of automated analysis
tools to support verification and validation using model-based design simulation.

Since DO-178B allows certification credit for the use of high-fidelity simulations and test beds, it is
highly likely that simulation will be a key part of any adaptive control certification process. This is
because testing the controller in the target operating environment for a representative test case
may not always be possible or prudent. For example, a controller for space craft orbiting an
asteroid or a controller to help an aircraft pilot recover from severe wing damage. Simulation is
clearly a preferable and safer alternative, but the simulation fidelity must be sufficiently high so
that important nonlinear effects are not missed.

A critical aspect of obtaining certification credit for simulation is proving that the simulation fidelity
is acceptably high. If simulation is viewed as a tool, then this is very similar to the DO-178B
requirement to use certified tools in the software development program. The present lack of
common simulation models also inhibits comparison of adaptive controllers, in addition to
impeding certification.

A important consideration that will influence the development of a common simulation model is
that adaptive control systems are comprised of hybrid systems. Hybrid systems attempt to model
the full control system so that all components can be tested at once rather than in isolation. The
definition of a hybrid system can take different meanings. Reference [24] defines a hybrid
adaptive controller as a combination of direct and indirect adaptive control. Hybrid systems may
also refer to control systems comprised of finite state executive controllers coupled to a
continuous domain adaptive controller.[20, 26] A related characterization of a hybrid system is
one in which a finite state controller using a continuous learning algorithm is coupled to a discrete
model of the (normally) continuous environment.[27]

The latter characterization might seem odd, but this type of hybrid system is being studied as a
means of leveraging the power of model checking software such as SPIN, JPF2, and
NuSMV.[28-31] Model checking is a technique by which a finite state system model can be
exhaustively explored to make sure the system never reaches an unacceptable state. The
method relies on being able to express adaptive controller safety properties as temporal logic.[30]
More importantly, however, an approximation function is required to convert the continuous
variables into discrete values.

Lastly it is mentioned that a major gap area for adaptive controller certification are ways to define
the meaning of acceptable controller performance. In the next section, some proposed metrics to
assess control system robustness and other quantities as mathematical quantities will be
discussed. Here it is noted that a clear certification path must begin with a clear definition of how
a successful adaptive controller operates. Is it a requirement that the adaptive flight control
software be always active, or does it become active only when enabled by the pilot? Pilot
activation might allow certification at a lower safety category by making it a pilot aid or tool. For
example, Cirrus has introduced an autopilot with a wings-level button. This autopilot, the Garmin
G1000 autopilot that can recover the aircraft from an attitude of 75 degrees of roll and 50 degrees
of pitch.[32] This system, however, is certified as part of the autopilot (a pilot tool) and not as a
high-bandwidth, automatic adaptive controller. The purpose of this autopilot tool is to help pilots
recover aircraft attitude during upset or times of reduced spatial awareness in order to give them
time to assess the situation. Nevertheless, this is a step forward toward acquiring data that may
be used as part of a case for certification.

Any plan for certification hoping to gain FAA approval will likely need to have firm answers to
these questions. Improper specification of the requirements hampers the development of suitable
verification and validation test cases needed to show certification compliance to the requirements.

4.0 Gaps in Software Verification and Validation Methods

The software verification plan provides a description of each activity in the software verification
process. Generally, software verification is comprised of software review, software analysis,
simulation, and testing. These activities may include the use of software programming checklists
and formal software analysis and testing methods. Software analysis methods can include formal
methods, static analysis, code reviews, traceability analyses, and coverage analyses[20]. The
software verification plan establishes the rational for the development of software test cases and
methods.

A critical gap in the validation and verification plans for adaptive control systems is the lack of
procedure that can reliably verify that the learning algorithm or system identification method
learns correctly and converges to the correct solution in an acceptable time. This verification will
be the key step in any verification and validation plan for an adaptive system, since other than
learning and system identification, there is no difference between adaptive and non-adaptive
controllers. Consider the neural network neuron shown in Fig. 4. A learning algorithm of the type

iii

i

wkwkw

efw

∆+=+

=∆

)()1(

)(

is typically used to update the weight values based on some error metric, e. The function f
depends on the learning algorithm used (steepest descent, Gauss-Newton, Levenberg-Marquardt
, etc.). It can be seen in Fig. 4 that if six weighted inputs are summed together to form one output,

Fig. 4. Neural network neuron.

the values of the weights offering a correct solution is not necessarily unique, nor guaranteed to
exist. System identification methods for transfer matrix determination are alike in respect to this
problem; the neuron shown in Fig. 4 is mathematically equivalent to a row-column matrix
multiplication operation. There are many excellent texts (e.g., [33]) that have analyzed the
necessary conditions for a unique solution. Since there are six inputs and one output, the
minimum requirement is that the outputs be known for at least 6 linearly independent input
vectors. Then six equations in six unknowns exist, and values of the weights can be determined.
However, if the second input is the square of the first input, and the third input is the product of
the fourth input and the first input, and so on, the inputs are not independent and convergence to
a solution may not be possible. Neural networks often employ such input combinations in an
attempt to offer superior curve fits to input data. However, sensor input measurements that are
related to each other electronically or mechanically (e.g., two accelerometers on a wing located
some distance apart but measuring the same acceleration) are other reasons for dependencies to
exist between different inputs.

Even if great care is taken to ensure a linearly independent set of input measurements, another
problem which makes learning and identification difficult is the presence of process and

measurement noise.[33] As an adaptive controller achieves a steady-state solution to the
learning problem, the input vectors from one cycle to the next may become very small as the
optimal control is reached. If process noise adds uncertainty to the value of the weight vector
from one cycle to the next and/or measurement noise is present in the measured output, the
linear independence of the input vector stream can be lost.

These factors make finding a certification test case to prove learning convergence to the correct
weight vector under all conditions very difficult to find. A certification test seeking to assess “how
far away” from the true values the weights is difficult to specify in a general way.

If convergence to one of the valid or unique weight sets is achieved, a related learning problem
occurs in the presence of measurement noise. In this case, as the system is operated in a
neighborhood of the optimal control solution, the learning algorithm or system identification
method will many times destabilize by computing weight values or transfer matrix elements to
relate small changes in the control vector to measurement noise. This produces divergent
learning behavior.

Current State of the Art: At the present time, no adaptive systems have been approved by the
FAA for use in commercial airspace apart from those based on gain-scheduled control.
Therefore there is no example of an approved verification and validation plan for an adaptive
flight controller. Even so, most parts of such a plan already exist because the best practices used
to certify non-adaptive controllers can still be used, at least in part. These best practices include
the use of software programming checklists, code reviews, traceability analyses, static analyses,
and coverage analyses.

The verification and validation plans for an adaptive flight controller, however, will require an
extension to evaluate the performance and all failure modes of the learning algorithms or system
identification methods. Therefore, the focus of the verification and validation plan for adaptive
controllers comes down to verifying that the learning algorithm or system identification method
converges to the correct system parameter values in a stable manner and at an acceptably fast
rate. This will be the crux of an acceptable certification plan. Presently, two paths are being
explored as a means to evaluate stability and convergence: 1) high-fidelity simulation, and 2)
mathematical analysis.

With regard to simulation, the current general practice is to use variations of the Monte Carlo
analysis method.[34] In this method, the range of values each parameter may take is
determined. A finite number of parameter test values is then selected. If nothing is known about
the parameter's expected value, then a uniform spacing throughout the parameter range is a
logical choice. Alternatively, if the expected value of a parameter is known, then the test values
can be more closely spaced near the expected value. Once all parameter test values have been
selected, the matrix of simulation runs is comprised of every parameter varied in combination with
all other parameter values. So, if there are three parameters that can take 5 unique values each,
the number of simulation runs is 35 or 243. Even for a non-adaptive controller, Monte Carlo
simulation can be very time consuming considering the number of possible changes in the
parameters just describing the operating condition (airspeed, altitude, weight, etc.). When
number of parameters in the state vector is included, the number of simulation cases required
can easily render the task of full Monte Carlo simulation intractable, except for very sparse
parameter variations that leave large portions on the state space unexplored. From a certification
standpoint, that would not be acceptable.

Mathematical proofs of adaptive controller stability generally seeks to show that the vehicle state
returns to a neighborhood about the undisturbed state for every defined disturbance. The most
commonly used proof is based on Lyapunov's second method.[4, 35-37] For linear time invariant
systems of the form,

Axx =
•

where x is the state vector and A is the state transition matrix, the Lyapunov method states that
the system is stable (will return to the origin) if a Lyapunov function V(x) can be found that is
always positive and that has a time derivative that is always negative or equal to zero,

()

() 0

0

≤

>

•

xV

xV

The Lyapunov function usually chosen is

() PxxxV T=

and the system is said to be stable if, and only if, given any symmetric positive-definite matrix Q,
there exists a symmetric positive-definite matrix P, which is the unique solution of the set of

QPAPAT −=+

equations.[4] Although finding a Lyapunov function has in the past been somewhat of a
cumbersome trial and error process, recent advances in semidefinite programming and
semialgebraic geometry have afforded more of an algorithmic procedure to find a valid Lyapunov
function through the use of the sum of squares (SOS) method.[38]

From a certification perspective, a weakness of the Lyapunov approach to prove stability is that
the proof requires a polynomial representation of the plant (A matrix) for all flight conditions of
interest. If the values of this representation changes, perhaps due to aircraft damage, then
nothing can be said about controller stability. More importantly, the Lyapunov analysis only
guarantees the ultimate stability of the learning algorithm; the proof does not guarantee how fast
the system returns to the origin. In adaptive controller parlance, this means that Lyapunov proofs
cannot guarantee the rate of learning convergence. This is an important point for system
performance, because if learning happens too slowly, an adaptive controller may be rendered
ineffective for the control task at hand.

Further Research Needed: Although Lyapunov stability proofs have been thoroughly
investigated and analyzed for nearly five decades, one gap that still remains in regards to
certification is that these proofs are not easily understood by most engineers. Consequently, one
problem facing the certification of adaptive control systems is that there is a large gap between
the mathematicians understanding of stability and credence an designated engineering
representative (DER) or and FAA official will be willing to give it in the plan for certification. A
mathematical proof that is understood only by experts in the control field may fail to inspire
certification authorities that all due diligence has been done. Moreover, since these proofs
depend on knowledge of the “A” and “B” matrices of the control system representation,

BuAxx +=
•

 , and these may actually change with time (e.g., with aircraft damage), such that
Lyapunov proofs may well lack sufficient conditions necessary for convergence. A similar
criticism also holds for the method of attempting to prove regions of controller stability through the
use of barrier certificates. [39, 40] Like Lyapunov, this approach seeks to prove that the state
trajectories starting from a given set of initial conditions never reach an unsafe region. The
barrier certificate represents a guaranteed upper bound on the probability that the system
trajectories do not reach the unsafe set. However, application of the method also requires the
plant be expressed in polynomial form as well as the boundaries of the unsafe states.

One possible approach to this problem is to develop software algorithms to monitor the control
system health by having a means to monitor the necessary conditions for successful adaptive

controller operation. Such health monitoring could also conceivably assess when the flight
conditions or aircraft state was beyond the authority of the controller.

Another gap of Lyapunov stability analysis that will need to be addressed is the development of
metrics to quantify the robustness of the control system. Metrics that can assess how far away
the system is from instability are needed that are analogous to the gain margin and phase margin
metrics used to assess non-adaptive, linear controllers. Because adaptive controllers may
change their gains on-the-fly, these terms have no meaning because the system is never
constant.

One method being studied by NASA under the Aviation Safety Program to help close the
certification gap is to look at ways to extend the traditional Monte Carlo analysis method to
assess the robustness of adaptive control systems. At the Langley Research Center, an analysis
tool called RASCLE (for Robustness Analysis for Control Law Evaluation) has been developed to
help explore combinations of learning system parameters and operating conditions [41]. The
RASCLE simulation tool is used to interface with existing nonlinear simulations and incorporates
search algorithms to uncover regions of instability with as few runs as possible. RASCLE uses a
gradient algorithm to identify the direction in the uncertainty space along which the stability of the
system is most rapidly decreasing. RASCLE provides an intelligent simulation-based search
capability that can be used in Monte Carlo simulation evaluations [42]. At the Ames Research
Center, another approach to extend Monte Carlo analysis has been studied for analysis of large
complex aerospace systems, such as adaptive systems have a highly coupled nonlinear nature.
In this approach, an algorithm has been developed to only limit the number of combinatorial
cases required of Monte Carlo analysis, but also to explore interactions in the parameter space in
a systematic fashion. The data generated is automatically analyzed through a combination of
unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and
supervised learning of critical parameter ranges using the machine-learning tool TAR3, a
treatment learner.[43] Covariance analysis with scatter plots and likelihood contours are used to
visualize correlations between simulation parameters and simulation results.

Although the mathematical soundness of Lyapunov stability analysis theory is not in question, it is
highly possible that this method of analysis will never be able to provide the type of software
assurance necessary for certification. To close this gap, therefore, research to discover other
avenues to Lyapunov analysis should be explored. As was mentioned at the outset, the most
likely other alternative is to use high-fidelity simulations incorporating nonlinear effects, hardware-
in-the-loop, and motion-based simulations. Although it is conceivable that the creation of better
learning algorithms through analytical development could potentially improve the learning rate of
convergence, it has been shown that fast convergence in the presence of measurement noise
and un-modeled dynamics actually produces instability.[24] Hence the challenge problem for
certification is not so much the search for better learning algorithms, but more towards finding
ways to find ways to demonstrate adaptive controller performance is simulation, but at the same
time taking steps to avoid the trial and error adaptation gain selection process or system
identification tuning process. Trial and error is not a good solution because not only does it
hamper a certification test process by not having predefined test values, but it is also difficult to
later repeat the same testing on actual flight vehicles that may match or may exceed the fidelity of
the simulation.

Nearly all software verification and validation plans for airborne software are ultimately aimed at
proving that the software code fulfils its intended function, but this is very difficult to do with
learning or system identification software proposed for adaptive control systems. The problem is
that the weights in a neural network or number of parameters in a transfer matrix may not have a
solution, or if it does, the solution may not be unique as mentioned above. Consequently, it is felt
that the correct values of the network weights or transfer matrix parameters cannot be know,
making software verification an NP hard problem in this case.[44] The usual practice is to couple
the learning algorithm or system identification method to the adaptive controller and evaluate the
behavior as a unit. However, this ignores the obvious merit of being able to prove proper learning

behavior as part of a certification process. One possibility may be to separately test learning
algorithms and system identification methods in simulation using contrived aircraft models that
have a unique, known solution. The effects of measurement noise, process noise, persistent
excitation, and ad hoc means to stop learning for low control errors could then be easily
evaluated. One such attempt at doing such experimentation for helicopter adaptive vibration and
noise algorithms is presented in Reference 24. Such simulation cannot verify the learning
behavior of over-parameterized systems, yet can provide proof that the basic learning algorithm
was verified to work at least under ideal or known test conditions.

One avenue that offers a possibility to help close this certification gap is to develop, in
combination with simulation, probabilistic uncertainty models for adaptive controllers in order to
quantify their robustness. Reference [45] discusses the development of probabilistic uncertainty
models to assess the effect of parameter variations on controller stability. By making various
cross-plots using the controller parameters, the plot space can be divided into regions called the
Failure Domain and the Admissible Domain. By varying the parameters, probabilistic uncertainty
methods can define a set of plants and associate a weight (or probability) for each. This then
facilitates a search for a robust controller by being able to quantify how far away the system is
from instability or some other problem by through parameter variation (homothetic deformations).
A gap for certification purposes is that although probabilistic analysis helps prove a design using
the most robust controller design, safety of flight demands stability at the corner cases too. It
must be remembered that the certification world often wants to see failure rates less than 10**-9
for single, non-redundant systems, or the use of a collection of cascaded or redundant systems
that achieve that as a joint probability.

Failing to prove that an adaptive flight controller has sufficient reliability at all operating conditions
and for all failure scenarios is a certification gap that can be closed in only one of two ways. The
first way is to tighten the performance requirements placed on the adaptive controller. As the
performance specifications in this regard becomes more narrow and specific, the adaptive control
system is required to do less, but the V&V plan is able to become more specific and well-defined.
This is not always a bad thing, since it is good to be able to know and to design to specific
requirements. However, a second way is to field the adaptive controller with a set of on-line tools
that can monitor the state of the controller to continuously assess its performance.

One example of an on-line software assurance tool is the Confidence Tool developed under the
NASA Aviation Safety Program.[46]. This tool provides a useful metric to assess neural network
weight convergence using a Bayesian approach. The Confidence tool is a dynamic monitor,
which checks the output values of the neural network and determines if the output of the neural
network is reliable by calculating a confidence measure. This metric is based upon a statistical
model of the learning system originally developed for pre-trained neural networks, but recently
extended for use with on-line learning neural networks. The Confidence tool uses a Bayesian
approach to dynamically calculate a confidence measure.

Another example of an on-line tool to evaluate control system robustness is a tool developed at
the NASA Dryden Flight Research center to provide a method for in-flight stability estimation of
the X-38 crew return vehicle.[47] This method introduced a small-amplitude to an elevator and
rudder tailored-force excitation that was targeted to a specific frequency range. The frequency
response at these frequencies was then used to calculate the stability margins of the flight control
system using a modification of the method in Reference [48]. A recursive Fourier transformation
was used to make the method compatible with real-time calculation. The stability calculated by
the on-line method compared well to the X-38 nonlinear simulation. The utility of having a metric
of stability that can be computed in flight was a great increase in test efficiency for the X-38 flight
test. For the certification of adaptive control systems, such methods might be extended to
evaluate adaptive control system stability. In this way, the gap created by the fielded software not
being quite the same as the fielded software might be further closed through the use of tools for
on-line controller performance monitoring.

As a last thought on tool development for adaptive controller verification, it is mentioned that
some researchers are seeking to adaptive formal methods developed primarily for finite state
systems to the continuous domain of control. Methods such as compositional verification have
been used to break apart large complex finite state systems into smaller parts that can be
analyzed using the powerful and exhaustive model checking methods. For example, Reference
[49] describes an application of the NASA Ames Java PathFinder model checker to the control
the guidance of a robotic vehicle. Using compositional verification to verify that the interface logic
between components will function properly when integrated together to make the full system
requires only a domain change and is very feasible. The difficult part is finding a way to
approximate the continuous state vector and measurement domains by a set of discrete values.
The idea is similar to rounding a decimal number to the nearest integer, only in this case, the
truncation must be considerably coarser. With this type of hybrid model approximation, the state
and measurement values take on finite values. This allows for the recognition of previous “states”
in the model checking sense of the word, and hence an exploration of the continuous model
checking space becomes possible. Of course, this search is exhaustive only to the extent the
approximation function is valid. If the approximation function is too coarse, important states will
likely be missed.

5.0 Gaps in the Adaptive Controller Software Development Process

The software development process described by DO-178B for airborne software is one in which
the verification and validation plans are developed before any code is written. This includes both
the overall plan as well as the specific plans down to the level of unit testing. A difficulty with
even non-adaptive controller development is that the usual path is an engineer does an analysis
of a proposed controller design and then moves immediately into desktop simulation.
Subsequently, as problems are encountered, various fixes and modifications are tested until
something appears to work. At that time, a documented design may be produced, but
documentation of the all the development problems and description of everything tried that did not
work is typically lost. For adaptive controllers having greater complexity, the problem is
significantly worse. Skipping the time it takes to document failed approaches and tuning values is
no doubt a major time saving step, but the problem is that it also prevents collection of valuable
lifecycle data needed for certification.

Current State of the Art: It is not possible to mention the many on-going efforts by industry and
government projects to develop adaptive flight control systems.[10, 13, 15, 16, 35, 50-53]
Although most of the industry development programs are proprietary, the Air Force VVIACS
(Verification and Validation of Intelligent and Adaptive Control Systems)[54] and NASA IRAC
(Intelligent Resilient Adaptive Control)[55] efforts represent multi-year programs with industry
partners have been initiated to define methodologies and test procedures for adaptive flight
control systems. The continuing IRAC Project is sponsored by the NASA Office of Aviation
Safety. The goal of the IRAC Program is to conduct research to advance the state of aircraft
flight control to provide onboard control resilience for ensuring safe flight in the presence of
unforeseen, adverse conditions. The objective is to advance the state-of-the-art of adaptive
controls as a design option to provide enhanced stability and maneuverability margins for safe
landing. It is anticipated that the outcome of the IRAC project research will be a set of validated,
multidisciplinary integrated aircraft control design tools and techniques for enabling safe flight in
the presence of adverse conditions such as structural damage, control surface failures, or
aerodynamic upsets. With regard to the certification of adaptive flight control systems, it is hoped
that the analysis, simulation, sub-scale and full-scale flight tests of this research program will help
form the basis for a valid Plan for Software Aspects of Certification (PSAC) for adaptive flight
control systems as part of a certification plan.

Further Research Needed: A difficulty is that performing verification and validation to enable
research to progress in a development environment is not necessarily the same as the software
assurance testing required by the Federal Aviation Authority (FAA) to certify the software for

operation. Although in the research and development environment every effort is made to ensure
that the adaptive software functions as required, the operating conditions, test hardware
configurations, and types of adaptation tasks are highly restricted in order to allow a focused
program to proceed along a well-defined path. This approach offers the ability to conduct a proof
of concept demonstration in a relatively short amount of time, but unfortunately leaves the
development of a certifiable control system to future developers.

A very practical aspect of a certifiable adaptive flight control systems is that DO-178B advises
that safety-critical software should provide a measure of software redundancy and fault tolerance.
The preferable level of redundancy is two systems doing the same thing, but using different
calculation methods to arrive at the same answer. This is referred to in DO-178B as redundancy
achieved by using dissimilar implementations. A problem with using the technique of dissimilar
implementations for adaptive flight systems is that the dissimilar implementations could take
different control trajectories to achieve the same end state and yet not be comparable along the
way. Designing in the required level of fault tolerance for adaptive flight control systems is a
major certification gap. Another gap is the usage of partitioned real-time operating systems
(RTOS) that are equipped with vehicle health management tools to ensure any failures in the
controller remain isolated, while allowing another partition to perform health management and
failure detection.

Verification and validation plans for certifiable software would need to provide a test matrix
together with an explanation why each test point has been chosen and how together all of the test
points will provide adequate test coverage. RTCA DO-178B recommends that the report should
include a description of the conditions under which each test is to be performed and state the
pass/fail criteria. Step by step instructions for performing each test are to be provided along with
instructions with how to evaluate the test results. DO-178B stresses that it is important that these
procedures and criteria be developed prior to the actual testing. In fact, DO-178B states that the
verification and validation tests should be defined prior to writing any code. This is of course not
possible for a research program. For a commercial certification effort of an adaptive control
system, the experience to know the best test practices will hopefully come from the IRAC
program and other similar efforts.

Once a sufficient set of best practices for the verification and validation of adaptive flight control
systems becomes available, it may be possible to augment the traditional DO-178B PSAC with a
Safety Case argument. Safety cases have been created for certification of nuclear industry in
Europe and off-shore oil refineries in Australia.[56-57] A safety case is a document that identifies
all hazards and risks, describes how the risks are controlled, and describes the safety
management plan to ensure the controls and guidelines are effectively and consistently applied.
The safety case represents a collection of processes to ensure all identified risks are mitigated.
Obviously, the development of stability analysis methods for adaptive controllers, metrics for
adaptive controller performance (or learning), hybrid high-fidelity simulation methods, the usage
of formal methods, and other technologies would conceptually become part of the safety case. In
essence, the safety case argues for software certification on the basis that every best practice to
ensure safety has been followed. Whether or not this is the same thing as proving the system is
safe is a valid gap for certification using the safety case approach. In fairness, however, any
certification procedure fulfilling the spirit of the DO-178B guidelines might also end up not being
safe.

Summary

This paper has provided an examination of the gaps between current state-of-the-art
methodologies used to certify airborne software and what is likely to be needed to satisfy FAA
airworthiness requirements for the certification of adaptive flight control systems. These
controllers use system identification or some form of on-line learning algorithm to identify optimal
controller gain settings, system transfer matrices, and/or control derivative matrices in real-time.
These gaps include the lack of a certification plan or process guide, the need to develop

verification and validation tools and methodologies to analyze adaptive controller stability and
convergence, as well as the development of metrics to evaluate adaptive controller performance
at off-nominal flight conditions. This paper has provided the major certification gap areas and has
presented for each a description of the present day state of the art and what further research
efforts will likely be needed to close the gaps remaining in current certification practices. The
areas addressed include the need for advances in simulation methods, methods to determine
learning algorithm stability and convergence rates, the development of better performance
metrics for adaptive controllers, the application of formal software assurance methods, the need
for on-line software monitoring tools and health assessment, and the development of a
certification plan for adaptive systems.

References

[1] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Reading, MA: Addison-Wesley,
1995.

[2] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ: Prentice Hall, 1996.

[3] I. D. Landau, Adaptive Control: The Model Reference Approach. New York, NY: Marcel
Dekker, 1979.

[4] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Englewood Cliffs, NJ:
Prentice Hall, 1989.

[5] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness.
Englewood Cliffs, New Jersey: Prentice-Hall, 1994.

[6] Ogata, K., Modern Control Engineering, 4th Edition, Pearson Education, Nov 2001.

[7] Bryson, A. E. and Ho, Y. C., Applied Optimal Control, Taylor and Francis, 1975.

[8] Kaneshige, John, and Gundy-Burlet Karen, “Integrated neural flight and propulsion
control system,” Proceedings of the AIAA Guidance, Navigation, and Control
Conference, AIAA-2001-4386, August 2001.

[9] Williams-Hayes, P.S., “Flight Test Implementation of a Second Generation Intelligent Flight
Control System”, Technical Report NASA/TM-2005-213669, 2005.

[10] N. Nguyen, K. Krishnakumar, J. Kaneshige, and P. Nespeca. Dynamic and adaptive control
for stability recovery of damaged asymmetric aircraft. In Proc. of AIAA Guidance, Navigation and
Control Conf., Keystone, CO, Aug. 2006. AIAA 2006-6049.

[11] Kaneshige, J., Bull, J., and Totah, J., “Generic Neural Flight Control and Autopilot System,”
AIAA-2000-4281.

[12] Hall, R., Barrington, R., Kirchwey, K. and Alaniz, A., “Shuttle Stability and Control during the
Orbiter Repair Manuever, AIAA Guidance, Navigation an dControl Conference and Exhibit, 2005,
AIAA 2005-5852.

[13] E. N. Johnson and A. J. Calise, "Limited authority adaptive flight control for reusable
launch vehicles," Journal of Guidance Control and Dynamics, vol. 26, pp. 906-913, 2003.

[14] Hovakimyan, N., Kim, N., Calise, A.J., Prasad, J.V.R., and Corban, E.J., “Adaptive Output
Feedback for High-Bandwidth Control of an Unmanned Helicopter”, AIAA Guidance, Navigation
and Control Conference, AIAA-2001-4181, 2001.

[15] E. Lavretsky and K. Wise. Adaptive flight control for manned/unmanned military aircraft. In
Proc.of American Control Conference, Portland, OR, June 2005.

[16] Rysdyk, R.T. and Calise, A.J., “Fault Tolerant Flight Control via Adaptive Neural Network
Augmentation”,AIAA Guidance, Navigation, and Control Conference, AIAA-1998-4483, 1998.

[17] Johnson, E.N., Calise, A.J., El-Shirbiny, H.A., and Rysdyk, R.T., “Feedback Linearization
with Neural Network Augmentation Applied to X-33 Attitude Control”, AIAA Guidance, Navigation,
and Control Conference, AIAA-2000-4157, 2000.

[18] Calise, A. J., Lee, S., and Sharma, M., "Development of a Reconfigurable Flight Control Law
for the x-36 Tailless Fighter Aircraft," Proc. of the AIAA Guidance, Navigation, and Control
Conference, Denver, CO, Aug. 2000.

[19] Calise, A. J., Sharma, M., and Corban, J. E. "Adaptive Autopilot Design for Guided
Munitions," Journal of Guidance, Control, and Dynamics, vol. 23, pp. 837-843, 2000.

[20] Jacklin, S. A., Schumann, J., Gupta, P., Richard, M., Guenther, K., and Soares, F.,
“Development of Advanced Verification and Validation Procedures and Tools for the Certification
of Learning Systems in Aerospace Applications,” Proc. of the AIAA Infotech@Aerospace
Conference, Crystal City, VA, Sept. 2005.

[21] Software Considerations in Airborne Systems and Equipment Certification, Document No
RTCA (Requirements and Technical Concepts for Aviation) /DO-178B, December 1, 1992.

[22] Santhanam, V. “Can Adaptive Flight Control Software be Certified to DO-178B Leve A?”,
NASA and FAA Software and CEH Conference, Norfolk, VA, July 26-28, 2005.

[23] MATLAB, The MathWorks Inc. http://www.mathworks.com/products.

[24] Nguyen, N., and Jacklin, S. A., “Neural Net Adaptive Flight Control Stability, Verification and
Validation Challenges, and Future Research,” IJCNN Conference, Orland Florida, 2007.

[25] Jacklin, S. A., “Comparison of Five System Identification Algorithms for Rotorcraft Higher
Harmonic Control,” NASA TP 1998-207687, May 1998.

[26] C. Tomlin, and Greenstreet, M. R., editors. Hybrid Systems: Computation and Control, 5th
InternationalWorkshop, HSCC 2002, Proceedings, volume 2289 of Lecture Notes in Computer
Science. Springer, 2002.

[27] Clarke, E. M., Fehnker, A., Han, Z., Krogh, B. H., Stursberg, O., and Theobald, M., "
Verification of Hybrid Systems based on Counterexample-Guided Abstraction Refinement," in
Tools and Algorithms for the Construction and Analysis of Systems, 9th Intl. Conf., TACAS 2003,
pages 192–207. Springer, 2003.

[28] Holzmann, G. J., The Spin Model Checker Primer and Reference Manual, Addison-Wesley,
Boston, MA, 2004.

[29] McMillan, K., Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA, 2003.

[30] Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F., “Model Checking Programs”,
Kluwer Academic Publisher, 2002.

[31] Havelund, K., “Using Runtime Analysis to Guide Model Checking of Java Programs,” SPIN
Model Checking and Software Verification, Vol. 1885 of Lecture Notes in Computer Science. pp.
245–264, Springer, 2000.

[32] Haines, T. B., "Cirrus Gets a New Perspective by Garmin,", AOPA Pilot Reporting Points,
May 20, 2008. Available at http://blog.aopa.org/blog/?p=248

[33] Kailath, T., Linear Systems, Prentice-Hall Information and System Sciences Series, 1979.

[34] Belcastro, Christine, and Belcastro, Celeste, "On the Validation of Safety Critical Aircraft
Systems, Part I: Analytical & Simulation Methods", Proceedings of AIAA Guidance Navigation
and Control Conference, Austin TX, August 2003.

[35] Wise, K. A., Lavretsky, E., and Hovakimyan, N., Robust and Adaptive Control Workshop,
American Control Conference, Seattle, WA, June 11-13, 2008.

[36] Khalil, H. K., Nonlinear Systems, Prentice Hall, 3rd Edition, 2001.

[37] J-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, New Jersey, 1991.

[38] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOSTOOLS: A general
purpose sum of squares programming solver,” in Proceedings IEEE Conference on Decision and
Control, 2002, available at http://www.cds.caltech.edu/sostools.

[39] Prajna, S., Jadbabaie, A., and Pappas, G. J., “Stochastic Safety Verification Using Barrier
Certificates,” Proceedings of 43rd IEEE Conference on Decision and Control, Atlantis, Paradise
Island, Bahamas, December 2004.

[40] S. Prajna and A. Jadbabaie, “Safety Verification of Hybrid Systems Using Barrier
Certificates,” in Hybrid Systems: Computation and Control. Heidelberg: Springer-Verlag, 2004.

[41] Bird, R.: RASCLE Version 2.0: Design Specification, Programmer’s Guide, and User’s Guide.
Baron Associates, Inc., February, 2002.

[42] Belcastro, Christine, and Belcastro, Celeste, "On the Validation of Safety Critical Aircraft
Systems, Part I: Analytical & Simulation Methods", Proceedings of AIAA Guidance Navigation
and Control Conference, Austin TX, August 2003.

[43] Schumann, J., Burlet, Pasareanu, C., K. G., Menziers, T., and Barrett, T., “Tool Support for
Parametric Analysis of Large Software Simulation Systems,” submitted to Automated Software
Engineering Conference, L'Aquila, Italy, Sept. 2008.

[44] Garey, M. R., and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, 1979.

[45] L. G. Crespo and S. P .Kenny, “Robust Control Design for Systems with Probabilistic
Uncertainty,” NASA/TP–2005–213531, March 2005.

[46] Jacklin, S. A., Schumann, J., Bosworth, J, Williams, P., and Larson, D., " Test Results of a
Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight
Research Aircraft,” 7th World Congress on Computational Mechanics, Los Angeles, CA, July
2006.

[47] Bosworth, J. T., and Stachowiak, S. J., "Real-Time Stability Margin Measurements
for X-38 Robustness Analysis," NASA/TP-2005-212856, Feb 2005.

[48] Bosworth, J. T. and Burken, J. J., "Tailored Excitation for Multivariable Stability-Margin
Measurement Applied to the X-31A Nonlinear Simulation, NASA TM-113085, 1997.

[49] Scherer, S., Lerda, F., Clarke, E., “Model Checking of Robotic Control Systems,”
Proceedings of ISAIRAS 2005 Conference, Munich, Germany, Sept. 5-8, 2005
Refs on adaptive flight control applications

[50] C. Cao and N. Hovakimyan. Design and analysis of a novel L1 adaptive control architecture,
Part I: Control signal and asymptotic stability. In Proc. of American Control Conference, pages
3397–3402, Minneapolis, MN, June 2006.

[51] Krishnakumar, K., Limes, G., Gundy-Burlet, K., and Bryant, D., ”An Adaptive Critic Approach
to Reference Model Adaptation”, AIAA Guidance, Navigation, and Control Conference, AIAA-
2003-5790, 2003.

[52] Tao, G., Chen, S. H., Fei, J. T., and Joshi, S. M., “An Adaptive Actuator Failure
Compensation Scheme for Controlling a Morphing Aircraft Model,” Proceedings of the 42nd IEEE
Conference on Decision and Control, Maui, Hawaii, 2003.

[53] Liu, Y., Tang, X. D., Tao, G., and Joshi, S. M., “Adaptive Failure Compensation for Aircraft
Tracking Control Using Engine Differential Model,” Proceedings of the 2006 American Control
Conference, Minneapolis, MN, June 2006.

[54] Buffington, J. M., Crum, V., Krogh, B., Plaisted, C., and Prasanth, R., "Verification and
Validation of Intelligent and Adaptive Control Systems," 2nd AIAA Unmanned Unlimited Systems
Conference, San Diego, CA, Sept. 2003.

[55] J. Totah, K. Krishnakumar, and S. Viken. Stability, maneuverability, and safe landing in the
presence of adverse conditions. Report of NASA Integrated Resilient Aircraft Control Project,
April 13 2007.

[56] Williams, D.K. and Neilan, P.J., “The Role of Safety Cases in Risk Management,” European
Convention on Security and Detection, Brighton, UK, May 1995.

[57] Handbook, Preparation and Evaluation of Safety Cases, Bentham Technical Training
Course, published by Balogh International, Inc., May 1994.

