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NATIONAL ADVISORY COMMITTEE FOR AERONAWICS 

RESEARCH MEMORANDUM 

f o r  the  

U. S. A i r  Force 

LATERAL STABILITY AND CONTROL 

MEASUREMENl'S OF A O.0838-SCALE MODEL 

OF THE LQCKHEED XF-104 AIRPLANE 

AT TRANSONIC SPEEDS 

By Donald D. Arabian and James W. Schmeer 

SUMMARY 

An investigation of t h e  l a t e r a l  s t a b i l i t y  and control effectiveness 
of a 0.0858-scale model of the  Lockheed XF-104 airplane has been conducted 
i n  the  Langley 16-foot transonic tunnel. The model has a low aspect r a t io ,  
3 .b-percent -thick wing with negative dihedral. The horizontal t a i l  i s  
located on top of the  v e r t i c a l  t a i l .  

The investigation was made through a Mach number range of 0.80 
t o  1.06 a t  s ides l ip  angles of - 3 O  t o  5' and angles of a t tack  from o0 
t o  16'. The control effectiveness of the  aileron, rudder, and yaw dampe9  
were determined through t h e  Mach number and angle-of -attack range. 

The r e su l t s  of the investigation indicated tha t  t he  d i rec t ional  s ta -  
b i l i t y  derivative was s table  and tha t  posit ive e f fec t ive  dihedral 

existed throughout the l i f t -coef f ic ien t  range and Mach number range tested.  

The t o t a l  a i leron effectiveness, which i n  general produced favorable 
yaw with ro l l ing  moment, remained f a i r l y  constant f o r  l i f t  coefficients up 
t o  about 0.8 f o r  the  Mach number range tested.  Yawing-moment effectiveness 
of t h e  rudder changed l i t t l e  through the Mach number range. However, the  
yaw damper effectiveness decreased about 30 percent a t  the intermediate 
t e s t  Mach numbers. 
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INTRODUCTION 

Flight a t  supersonic speeds has forced the  design t rend f o r  f ighter -  
type airplanes toward t h i n  wings of low aspect r a t io .  A t  the  present 
time, there i s  l i t t l e  information on the  l a t e r a l  s t a b i l i t y  character- 
i s t i c s  of airplanes with t h i s  type wing, especially a t  t h e  transonic 
speeds. O f  general in te res t ,  therefore, a re  the r e su l t s  of an invest i -  
gation conducted i n  the  Langley &foot transonic tunnel using a 
0.0858-scale model of the  Lockheed XF-104 airplane. This model has a 
s t ra ight  wing, 3.4 percent thick, an aspect r a t i o  of 2.5, and a taper  
r a t i o  of 0.385. 

The r e su l t s  of the  investigation of t h e  s t a t i c - l a t e ra l  s t a b i l i t y  
and control character is t ics  of the  model, including the e f f ec t s  of the  
model components, a re  presented i n  t h i s  paper. The l i f t ,  drag, and 
s tat ic- longi tudinal  s t a b i l i t y  character is t ics  obtained during t h i s  same 
investigation are  reported i n  reference 1. Additional longitudinal 
experimental data f o r  the Lockheed XF-104 model a t  subsonic and super- 
sonic speeds are  available i n  references 2, 3, and 4. 

Data were obtained through a Mach number range of 0.80 t o  1.06 a t  
6 an average Reynolds number of about 3 x 10 . A t  zero angle of attack, 

t e s t s  were run through a range of s ides l ip  angle from -5O t o  5 O .  A t  0' 
and -5O of s idesl ip ,  t he  angle of a t tack  was varied from O0 t o  160. Rud- 
der and damper effectiveness was determined f o r  a range of s ides l ip  angle 
while the  ai leron effectiveness was determined f o r  a range of angle of 
a t tack.  

SYMBOLS . 

Li f t  l i f t  coefficient,  - 
GIs 

yawing-moment coefficient,  Yawing moment 

Rolling moment 
rolling-moment coefficient,  

GI= 

Lateral  force la te ra l - f  orce coefficient , 
GIs 
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r a t e  of change of r~ l l ing~moment  coefficient with angle of 

dC2 sidesl ip ,  per deg, - 
d P 

r a t e  of change of la teral-force coefficient with angle of 
~ C Y  s idesl ip ,  per deg, - 
dB 

r a t e  of change of yawing-moment coefficient with angle of 

dCn sidesl ip ,  per deg, - 
dB 

~ C L  l i f t -curve slope, per deg, - 
da 

dCn damper effectiveness, per deg, - 
d6d 

dCn rudder effectiveness, per deg, - 
d'r 

dC 2 a i leron effectiveness, per deg, - 
d'a 

Mach number 

free-stream dynamic pressure, l b / f t  2 

wing area, f t 2  

wing span, f t  

a model angle of attack, deg (measured with respect t o  the  
fuselage reference) 

P s ides l ip  angle, deg 

r dihedral angle, deg 

' r rudder deflect ion, deg (posit ive t r a i l i n g  edge l e f t )  

' d yaw damper deflection, deg ( ~ o s i t i v e  t r a i l i n g  edge l e f t )  

'a a i leron deflection, deg ( ~ o s i t i v e  t r a i l i n g  edge down) 
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MODEL AND APPARATUS 

The t e s t s  were conducted i n  the  h n g l e y  16-foot transonic tunnel 
which i s  described i n  reference 5. The model was constructkd of aluminum 
and s t e e l  and was mounted on the  tunnel sting-support system through a 
6-component strain-gage balance designed by Lockheed t o  have low inter-  
actions.  A three-view drawing of the  X??-l& airplane i s  shown i n  f ig -  
ure 1, and principal  model dimensions a re  l i s t e d  i n  tab le  I. A modifica- 
t i o n  t o  the  fuselage permitted evaluation of the  e f fec t  of in te rna l  flow 
on the  data. This modification, termed a "modified afterbody" consisted 
of a short section attached t o  the  under par t  of the  fuselage t o  allow 
the  in te rna l  flow t o  exhaust beneath the  s t ing.  The de ta i l s  of in te rna l  
flow character is t ics  a re  given i n  reference 1. Photographs of the  model 
with and without the  modification are  presented i n  figure 2. 

CONFIGURATIONS AND TEST RANGE 

A detailed l i s t  of configurations t e s t ed  including the  range of 
angle of s ides l ip  and angle of a t tack  i s  presented i n  t ab le  11. A l l  t he  
configurations were t e s t ed  through a Mach number range of 0.80 t o  1.06 

6 6 a t  Reynolds numbers of about 2.8 x 10 t o  3.3  x 10 . 

REDUCTION OF DATA 

The force and moment data were corrected f o r  weight t a r e s  and 
adjusted f o r  free-stream s t a t i c  pressure a t  t he  model base. The ef fec ts  
of tunnel-wall ref lected disturbances and of s t ing  interference on the 
l a t e r a l  character is t ics  have not been evaluated f o r  t h i s  model i n  the 
16-foot tunnel but a re  believed t o  be small. 

The coeff ic ients  a re  referred t o  the  s t a b i l i t y  axis  system with the  
or ig in  on the  center l i n e  of the  model a t  an ax ia l  location corresponding 
t o  the  0.25 mean aerodynamic chord. (see r ig .  3 . )  Both t h e  angle of 
a t tack  and the  angle of s ides l ip  a s  presented i n  the report have been 
adjusted f o r  stream angularity and f o r  model deflection due t o  load and 
are  believed correct within f O . l O .  The estimated accuracy of the  data 
i s  a s  follows: 
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The re su l t s  of the  investigation are  presented i n  the following 
f igures  : 

Figure 
Li f t  character is t ics  . . . . . . . . . . . . . . . . . . . . . . . .  4 

Lateral  character is t ics  a t  zero l i f t :  
Effect of modified afterbody and in terna l  flow . . . . . .  5 and 6 . . . . . . . . . . . . . . . .  Variation with angle of s ides l ip  7 
Location of center of load on the  ve r t i ca l  t a i l  . . . . . . . . .  8 
Variation of C with Mach number . . . . . . . . . . . . . . . .  9 

Effect o f t i p t a n k s .  . . . . . . . . . . . . . . . . . . . . .  - 1 0  
Variation of C with Mach number . . . . . . . . . . . . . . . .  11 

2~ 

Lateral  character is t ics  a t  l i f t i n g  conditions: 
Cn, C Z ,  and Cy through the  a range, B = -5' . . . . . . . . . . .  12 

Effect of l i f t  onC . . . . . . . . . . . . . . . . . .  13 
B 

. . . . .  Plan-view shadowgraphs of yawed and unyawed configurations 14 

Lateral  and direct ional  controls : 
Lateral character is t ics  with ai leron deflected . . . . . . . . .  15 
Aileron effectiveness . . . . . . . . . . . . . . . . . . . . . .  16 
Effect of rudder and y a w  damper on the  l a t e r a l  character is t ics  . 17 
Rudder and y a w  damper effectiveness . . . . . . . . . . . . . . .  18 

DISCUSSION 

Lateral  Characteristics a t  Zero Angle of Attack 

Effect of modified afterbody and in terna l  flow.- The ef fec t  of the  
modified afterbody with and without in te rna l  flow on the  l a t e r a l  charac- 
t e r i s t i c s  i s  shown f o r  the  t a i l -o f f  configuration i n  f igure 5 and fo r  the  
complete model i n  f igure 6. The addition of t h e  modified afterbody 
increased the  s t a b i l i t y  while the  mass flow tended t o  decrease the  s ta -  
b i l i t y  toward tha t  of the  unmodified model. A l l  subsequent data ,and dis- 
cussion thereof w i l l  be f o r  the  model with in te rna l  flow. In  these f ig -  
ures and several t ha t  follow, the  data points have been omitted i n  the  
in te res t  of c la r i ty ;  however, the  curves i n  each case have been f a i r ed  
through each data point. 
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Yawing moment and l a t e r a l  force'due t o  sideslip.-  The variat ion of 
yawing moment with angle of s ides l ip  i s  l inea r  through the  Mach number 
range f o r  the  wing-body configuration ( f ig .  7). With the  addition of 
the  v e r t i c a l  ta i l ,  nonl ineari t ies  appear which may be a t t r ibuted  t o  the 
e f f ec t s  on t h e  ve r t i ca l  t a i l  of t h e  nonlinear induced cross flow of the  
fuselage and the  asymmetric loading of the wing. The nonl ineari t ies  
tend t o  disappear with increase i n  Mach nwnber, especially a t  supersonic 
speeds. The addition of the  horizontal  t a i l  creates an end-plate e f fec t  
on the  v e r t i c a l  t a i l  which has a large s tab i l iz ing  ef fec t  on the yawing 
moments. This large ef fec t  is  due not only t o  the increase i n  l a t e r a l  
force on the  ve r t i ca l  t a i l  but a l so  t o  a rearward s h i f t  of the center of 
the v e r t i c a l  t a i l  load, a s  indicated i n  f igure 8. 

The variat ion of the  direct ional  s t a b i l i t y  derivative C with 
nf3 

Mach number f o r  the  ta i l -of f  configuration and f o r  the  complete model is  
shown i n  f igure 9 f o r  s ides l ip  angles between 0' t o  3'. The derivatives 
were evaluated by taking the  slope of the  f a i r ed  Cn curves a t  the  desired 
values of f3. The data f o r  the  t a i l -o f f  configuration show tha t  

Cn13 
decreases up t o  a Mach number of approximately 1.00. The ta i l -on con- 
f igurat ion shows a large increase i n  s t ab i l i t y ,  with increasing Mach num- 
ber, most of which can be a t t r ibuted  t o  an increase i n  dCy/dp of the  
v e r t i c a l  t a i l .  An increase i n  moment arm, t h a t  i s  a rearward s h i f t  of 
center of load on the  ve r t i ca l  t a i l  with increasing Mach number, a s  indi- 
cated i n  f igure 8, a l so  contributes t o  the  increased s t a b i l i t y .  

A t  subsonic Mach numbers, t he  addition of t i p  tanks had l i t t l e  e f fec t  
on the  yawing-moment coefficients of the airplane (fig.  10).  An increase 
of s t a b i l i t y  noted a t  supersonic speeds was d i r ec t ly  connected with an 
increase i n  l a t e r a l  force.  

Rolling moment due t o  s idesl ip .-  The wing-body configuration shows 
a l i nea r  var iat ion of rolling-moment coefficient with angle of s ides l ip  
a t  a l l  t e s t  Mach numbers (f ig .  7). Again, with the addition of t h e  ve r t i -  
c a l  t a i l ,  nonl ineari t ies  are  present a t  low Mach numbers and vanish a t  
supersonic speeds. 

The addition of the  horizontal t a i l ,  a s  previously mentioned, 
increases the  side force on the  ve r t i ca l  t a i l  and a lso  s h i f t s  the  center 
of load upward. Furthermore, t he  horizontal t a i l  contributes t o  the  
ro l l ing  moment because of the asymmetric load on the horizontal t a i l .  
The combined ef fec ts  produced about a 75 -percent increase i n  rol l ing-  
moment coefficient over tha t  of the  ve r t i ca l  t a i l  alone. It was f o r  t h i s  
reason tha t  the  airplane was designed with i t s  wings se t  a t  a large nega- 
t i v e  dihedral, thus opposing the  strong ro l l ing  moment e f fec t  of the  
horizontal ta i l .  

SECRET 
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The ef fec t  of Mach number on the effect ive dihedral derivative C 

i s  shown i n  f igure 11 f o r  both the  wing-body configuration and the  com- 
p le te  model. The posit ive ro l l ing  moment due t o  s idesl ip  f o r  the  wing- 
body configuration increases s l igh t ly  with Mach number because the  lift- 
curve slope of the wing increases with Mach number. However, when the  
empennage i s  added, 

C z B  
becomes more negative with Mach number because 

of t h e  greater increase i n  the  l if t-curve slope of the ve r t i ca l  
t a i l  dCy/dp (as  indicated i n  f i g .  7 ) .  

The addition of wing t i p  tanks decreases the  effect ive dihedral as  
much a s  50 percent a t  the  low Mach numbers (see f i g .  11) although the 
variat ion with Mach number remained similar t o  the configuration without 
tanks . 

Lateral Characteristics a t  Lif t ing Conditions 

Yawing moments.- The basic data a re  presented i n  f igure 12 and the 
derivatives a re  presented i n  f igure 13. With an increasing l i f t  coeffi-  
c ient ,  the yawing moments of the  wing-fuselage configuration generally 
increased which resulted i n  C becoming more unstable. These r e su l t s  

are  contrary t o  reference 6 which predicts ap increase of s t a b i l i t y  f o r  
wings of aspect r a t i o  6 or higher with negative dihedral. The discrepancy 
i s  possibly because of the  f a c t  t h a t  the  e f fec t  of the  induced drag, which 
i s  destabilizing, i s  larger  than the  s tab i l iz ing  ef fec t  of the  l i f t  vector 
f o r  low-aspect-ratio wings. A t  Mach numbers of 0.80 and 0.90 a t  t he  high 
values of l i f t  coefficient,  

C " ~  
becomes more s table .  The reason f o r  

t h i s  trend could be tha t  the  center of load moves inboard on the  t r a i l i n g  
wing which reaches s t a l l  before the  leading wing. 

For the  model with the  ve r t i ca l  t a i l  or with the v e r t i c a l  and hori- 
zontal t a i l ,  the  s t a t i c  s t a b i l i t y  remained s table  f o r  a l l  Mach numbers 
and CL values. The yawing moments of the  model with ve r t i ca l  t a i l  tend 
t o  become more s table  with increase i n  CL up t o  lift coeff icients  of 0.4 
or above depending on Mach number ( f ig .  13). Since the  s ide force increases 
s teadi ly  with increasing CL, the  change i n  yawing moments a t  t he  higher 

values of l i f t  i s  apparently due t o  a forward movement of center of load 
on the  ve r t i ca l  t a i l .  Comparison of CnB 

with and without the  horizontal  

t a i l  ( f ig .  13) shows tha t  the magnitude bf the  values i s  great ly  increased 
by the  addition of the horizontal  t a i l  although the variat ion of 

C n ~  
with CL remains essent ia l ly  the  same a s  f o r  the model with ve r t i ca l  t a i l  
alone. 

Rolling moments. - The ro l l ing  moment of the  wing-fuselage conf igura- 
t i o n  a t  zero l i f t  ( f ig .  13) gave posit ive values of C or negative 

I3 
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effect ive dihedral. With increasing l i f t ,  C z g  tends t o  become more nega- 

t i v e .  A t  the  low Mach numbers, the  change i n  the C curves a t  CL of 
'8 

0.7 was due t o  wing s t a l l .  

A decrease i n  effect ive dihedral with increasing CL ( f ig .  13) i s  

due t o  the  f ac t  t h a t  the  coefficient C 2  i s  referre'd t o  the  s t a b i l i t y  

ax is  system. I n  figure 12(b),  the  rolling-moment coeff ic ients  f o r  the  
body axes system a re  plot ted a t  M = 1.06 (dashed l i n e )  and show tha t  

C 2  i s  constant through the  l i f t -coef f ic ien t  range of t h i s  t e s t .  The 

same trend would be observed at the  lower Mach numbers, and i n  f a c t  a t  
M = 0.80 and 0.90, C 2  would become more s table  a t  high CL values. 

With the  addition of the horizontal  t a i l  ( f ig .  12 (c ) ) ,  t h e  magnitude of 
the  C 2  values i s  increased but the  trends remain the same as  f o r  the  

model with ve r t i ca l  t a i l  only. Figure 13 shows tha t  posit ive effect ive 
dihedral existed f o r  the  complete model through the l i f t  and Mach number 
range tested.  The values of C 2  increased with Mach number f o r  the 

B 
low-lift case and decreased a t  t he  high values of l i f t .  

Shock patterns associated with s ides l ip  .- A comparison of the  plan- 
view shadowgraph pictures f o r  s ides l ip  angles of 0' and 5' i s  shown f o r  
several configurations i n  f igure 14. Generally, the shock-wave posi t  ion 
was l i t t l e  affected by yawing the  model, but shock angles were skewed. 
The thickness of the  boundary layer  on the leeward side i s  indicated by 
the  diffusing of the  strong shock front  near the  fuselage ahead of the  
duct. (see f i g s .  14(b) and 14(c) . )  It appears tha t  the  boundary layer 
would be suf f ic ien t ly  th ick  t o  allow only r e l a t ive ly  low energy a i r  t o  
enter  t h i s  i n l e t  and thus there ex i s t s  the  poss ib i l i ty  of unstable in te r -  
na l  flow and reduced thrus t .  

Lateral  and Directional Controls 

Effects of a i leron on ro l l ing  and yawing moments.- The variat ion of 
C 2  and Cn with CL f o r  200, -100, and -20° l e f t  a i leron deflection 
and f o r  various Mach numbers a re  shown i n  f igure 15 f o r  the  complete model. 
The ro l l ing  moment above Mach number 0.95 generally decreases with 
increasing CL f o r  posit ive deflections. For the  lower Mach numbers the  
ro l l ing  moment increases up t o  where separation s t a r t s  on the wing. Nega- 
t i v e  deflection generally produced constant r o l l  with CL f o r  most of the  
t e s t  conditions. The ro l l ing  moments a re  similar with and without the 
horizontal t a i l ,  see figures l 5 ( c )  and l ? (d ) .  

Aileron effectiveness i s  indicated i n  figure 16 f o r  a range of Mach 
number. Control effectiveness remained nearly l inear  a t  t he  low Mach 
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numbers and zero-l i f t  coefficients.  However, a t  moderate and high lift 
coefficients,  a s  indicated i n  the  f igure a t  CL = 0.8, control effective- 
ness decreased f o r  negative deflection and increased f o r  posi t ive deflec- 
t ions  of the  a i le ron  f o r  the  low Mach numbers. A t  the  higher Mach num- 
bers, both negative and posit ive deflections produced l inea r  variations 
of C Z  f o r  a l l  l i f t  coeff ic ients .  The t o t a l  a i leron effectiveness f o r  
a l e f t  and r ight  a i leron was constant f o r  l i f t  coefficients up t o  about 
0.8 and f o r  the  Mach number range tes ted .  Above t h i s  lift coefficient 
the ai leron effectiveness decreased par t icu lar ly  a t  the  low Mach numbers. 

The yawing moments a re  negative f o r  negative deflect ions ( l e f t  
a i leron up) (f igs .  l > ( a )  and (b) )  at zero l i f t  coefficient,  and becomes 
l e s s  negative with increasing l i f t .  For posit ive deflection of t h e  l e f t  
a i leron (figs . l5 (c)  and (d) ) , yawing moments a re  posit ive a t  zero l i f t  
coefficient,  and become negative with increasing l i f t .  These character- 
i s t i c s  a re  peculiar i n  tha t  generally the  increased drag on a l e f t  wing 
due t o  ai leron deflection (posit ive or negative) causes a negative yawing 
moment. Since t h i s  wing has appreciable negative dihedral, the  s ide com- 
ponent of the  additional force normal t o  the wing surface caused by 
deflecting the  ai leron w i l l  be outward f o r  a posit ive deflection of the  
control surface and vice versa f o r  negative deflection. I n  both cases, 
favorable yaw w i l l  r esu l t  since the  center of gravity i s  suf f ic ien t ly  
forward of the  ai lerons t o  yield favorable yawing conditions. The magni- 
tude of the side force involved i s  shown i n  f igure l5(e)  f o r  *20° ai leron 
deflection. 

Assuming 1 t o  1 d i f fe ren t i a l  ailerons,  favorable yawing moments w i l l  
be produced f o r  most Mach numbers through a CL of a t  l eas t  1.00. The 

t o t a l  yawing-moment coefficient due t o  ai leron deflection w i l l  decrease 
with increasing l i f t  coefficient.  

Rudder and.yaw damper effectiveness." Lateral  character is t ics  through 
the s ides l ip  range with the  rudder deflected a r e  shown i n  f i m e  17(a) . . .  . 
In general,-the r e su l t s  indicate t h a t  the  slopes of the  curves changed 
s l igh t ly  with rudder deflection. Similar tendencies a re  shown f o r  the  yaw 
damper deflected -20' i n  figure 17(b). Rudder and yaw damper effective- 
ness C 

I%- 
and 

Cqd with Mach number i s  best  shown i n  f igure 18 f o r  

three s ides l ip  angles. Although the  rudder effectiveness parameter C nsF 
-C 

remained f a i r l y  constant through the  tes ted  Mach number range, the  
required rudder effectiveness increased with Mach number f o r  constant 
control response due t o  the  increase of 

C n ~  
with Mach number. For 

example, a study of figures 9 and 18 shows t h a t  2' of rudder deflection 
produced about lo of s ides l ip  f o r  small angles of s idesl ip  and low Mach 
numbers, while a t  a Mach number- of 1.00, 2O of rudder deflect ion pro- 

lo duced about - of s idesl ip .  For s ides l ip  angles of *5O, t he  effectiveness 
2 

SECm 
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of the  rudder increases and decreases, respectively, from the  ef'fective- 
ness a t  0' of s idesl ip .  

The damper effectiveness drops off a s  much as  50 percent a t  about 
0 . 9  Mach number. The y a w  damper effectiveness parameter C 

%d 
which 

was -0.0005 a t  0.80 Mach number decreased about 50 percent a t  a Mach 
number of 0.95. 

CONCLUSIONS 

The re su l t s  of t h i s  investigation of the  l a t e r a l  s t a b i l i t y  and con- 
t r o l  effectiveness of a 0.0858-scale model of the  Lockheed XF-104 a i r -  
plane a t  Mach numbers of 0.80 t o  1.6 indicated the following conclusions: 

1. The s t a t i c  s t a b i l i t y  derivative 
Cnf3 

was posit ive f o r  the  l i f t  

coefficient and Mach number range tested,  ahd increased up t e ,  a Mach num- 
ber of 1.03. 

2. Posit ive effect ive dihedral was indicated f o r  the  complete model 
throvgh the  Mach number and CL range tes ted .  The values of C 2  P 
increased with Mach number f o r  the  low-lift  case, and decreased a t  the 
high values of l i f t .  

3 .  The yawing moment due t o  a i le ron  deflection was favorable f o r  
a l l  Mach numbers t e s t ed  through most of the  CL range. The t o t a l  a i leron 
effectiveness f o r  a l e f t  and r ight  a i leron was f a i r l y  constant f o r  l i f t  
coeff ic ients  up t o  about 0.8 and f o r  the Mach number range tes ted .  Above 
l i f t  coefficient of 0.8 the  ai leron effectiveness decreased part icular ly 
a t  t he  low Mach numbers. 

4, Yawing-moment effectiveness of the  rudder changed l i t t l e  through 
the  Mach number range. However, the  s ides l ip  due t o  rudder deflection 
decreased about 50 percent a s  a resu l t  of the  increase of with 

increasing Mach numbers from 0.80 t o  1.06. 
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5. The yaw damper effectiveness parameter C decreased by a6out 
nzd 

50 percent with an increase i n  Mach number from 0.80 t o  0.95. 

Langle y Aeronaut i c a l  Laboratory , 
National Advisory Committee f o r  Aeronautics , 

Langley Field,  Va., May 18, 1 9 5 .  

- - 
Donald D. Arabian 

Aeronautical Research Scient is t  

1 James W. Schmeer 
Aeronautical Research Scient is t  

SECRET 



NACA RM SL55FC8 

REFERENCES 

1. Hieser, Gerald, and Reid, Charles F,, Jr.: A Transonic Wind-Tunnel 
,Investigation of the Longitudinal Aerodynamic Characteristics of a 
Model of the Lockheed XF-1& Airplane. NACA RM SL54Klga, U. S. 
A i r  Force, 1954. 

2. Anon.: High-Speed Subsonic Wind Tunnel Tests of a o.Wj8-Scale Model 
of the  XF-104 Airplane a t  t he  CWT. Lockheed Aircraft  Corp., Aerod. 
Lab., June 22, 1953. 

3. Smith, Willard G. : Wind-Tunnel Investigation a t  Subsonic and Super- 
sonic Speeds of a Fighter Model Employing a Low-Aspect-Ratio Unswept 
Wing and a Horizontal T a i l  Mounted Well Above the Wing Plane - 
Longitudinal S tab i l i t y  and Control. NACA RM ~ ~ 5 4 ~ 0 5 ,  U. S. A i r  Force, 
1954 

4. Kehlet, Alan B. : Flight Results From a l/10-scale Rocket Model of the  
Lockheed XF-104 Airplane a t  Transonic Mach Numbers. NACA RM S ~ 5 4 ~ 1 4 ,  
1954 

5.  Ward, Vernon G., Whitcomb, Charles F., and Pearson, Merwin D.: A i r -  
flow and Power Characteristics of the  Langley 16-~oo t  Transonic 
Tunnel With Slotted Test Section. NACA RM L52EOl, 1952. 

6. Pearson, Henry A., and Jones, Robert T.: Theoretical S t a b i l i t y  and 
Control Characteristics of Wings With Various Amounts of Taper and 
Twist. ' NACA Rep. 635, 1938. 



NACA RM SL55F08 

TABLE I 

DIMENSIONS OF THE MODEL 

Wing Geometry: . . . . . . . . .  Root and t i p  a i r f o i l  section Modified biconvex 3.4 percent 
th ick  (forward 50 percent 
e l l i p t i ca l .  a f t  50 percent 
c i rcu lar  a rc)  

Area. sq  f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.406 
Span. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22.65 
Mean aerodynamic chord. i n  . . . . . . . . . . . . . . . . . . . . . .  9.59 
Root chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.00 
Tip chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.00 . Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T a p e r r a t i o  0.385 
Sweep a t  25 percent chord. deg . . . . . . . . . . . . . . . . . . . .  18.5 
Incidence. deg . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Dihedral. deg . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -10 . . . .  Leading-edge droop (about 14.75-percent l oca l  wing chord). deg 3 

Ailerons : 
Area (each) sq  f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  0.0351 
Mean aerodynamic chord. i n  . . . . . . . . . . . . . . . . . . . . . .  2.36 

Horizontal Tail:  
A i d o i l  sections . . . . . . . . . . . . . . . . . . . . .  Modifiedbiconvex 
Area. s q  ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.3575 
Mean aerodynamic chord. i n  . . . . . . . . . . . . . . . . . . . . . .  4.63 
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 . 9 9  . . .  T a i l  length. 0.25 wing M.A.C. t o  0.25 horizontal t a i l  M.A.C.. i n  17.181 

Vert ical  Tai l :  
A i r fo i l  section . . . . . . . . . . . . . . . . . . . . .  Modified biconvex 
Area. s q  fti . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.2231 . . . . . . . . .  Span. i n  . measured fram fuselage intersect ion t o  t i p  5.66 
Mean aerodynamic chord. i n  . . . . . . . . . . . . . . . . . . . . . .  7.37 
Aspec t r a t io  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.9971 . . . .  Tai l  length. 0.25 wing M.A.C. t o  0.25 verticaltai1M.A.C.. i n  13.30 

Yaw Damper: 
Area. s q  ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.0078 
Mean aerodynamic chord. i n  . . . . . . . . . . . . . . . . . . . . . .  1.22 

Rudder : 
Area. sq  f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.02947 
Mean aerodynamic chord. i n  . . . . . . . . . . . . . . . . . . . . . .  1.49 

Fuselage : 
Length. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47.619 
Maximwn projected f ron ta l  area. s q  f t  . . . . . . . . . . . . . . . .  0.1814 
Fineness r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  g.@ 

External f u e l  tanks : 
Fineness r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12.1 
Maximum diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . .  1.716 
Maximum f ron ta l  area. each. sq f t  . . . . . . . . . . . . . . . . .  0.001605 
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C O M F I G ~ I O N S  AND TEST RANGE 
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a Configurations are designated by use of the following symbols: 

wing w i t h  droop leading edge plus fuselage 

vertical t a i l  

horizontal t a i l  

t i p  tanks 

modified afterbody with inlets faired (on) 

modified afterbody with maximum mass f l o w  (on, unfaired inlets)  

rudder (subscript indicates deflections i n  deg) 

yaw damper (subscript indicates deflections i n  deg) 

ailerons ( subscript indicates deflections in  deg ) 

Configuration 
(a> 

W 
WE 

WE2 

WE2 
WVE2 
m2 

m2 
WVHE2 
WVHTE2 
WVHE 
WVH 

WVHE2r-l~ 

m2d-20 

WVRE2a-20 
m2a-10 

m2a+20 
WVE2a+20 

SECRET 

a, 
deg 

0 
0 
0 

-2 t o  16 
-2 t o  16 
-2 t o  16 

0 

0 

O 

0 
0 
O 

0 

-2O t o  16O 
-2' t o  16' 
-2O t o  160 
-20 t o  160 

P, 
deg 

-5, -3, -1.5, 0, 1.5, 3, 5 
-5, -3, -1.5, 0, 1.5, 3, 5 
-5, -3, -1.5, 0, 1.5, 3, 5 

0, -5 
0, -5 
0, -5 

-5, -37 -1.5) 0, 1, 1.5, 3, 5 
-5, -3, -1.5, 0, 1, 1.5, 3, 5 

-5, -3, -1.5, 0, 1, 1.57 3, 5 
-5, -3, -1.5, 0, 1, 1-59 3, 5 
-5, -3, -1.5, 0, 1, 1.5, 3, 5 
-5, -3, -1.5, 0, 1, 1.5, 3, 5 
-5, -3, -1.5, 0, 1, 1.5, 3, 5 
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Complete configuration wifh t ip tanks and internal f low ducting. 

Faired inlet configuration without horizontal tail. 

L-893 58 
Figure 2. - Typical configurations of the Lockheed a-104 model, 
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Model angle of at tack,a ,deg 

Figure 4. - Lift characteristics for the complete configuration, WVHE2- 
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Figure 9.- Variation with Mach number of the yawing moment due t o  side- 
s l i p ,  a = 0'. 
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(c )  WVHE2T. 

Figure 11.- Variation with Mach number of the ro l l ing  moment due t o  side- 
s l i p  f o r  several configurations, a = 0'. 
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Figure 12.- Lateral characteristics of lifting conditions for j3 = -5'. 
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Figure 12. - Continued. 
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Figure- 12. - Concluded. 



CL 

Figure 13. - Effect of l i f t  on the  s t a t i c  derivatives. = -5'. 
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( a )  M = 0.95. 

Figure 14.- Plan-view shadowgraphs of severa l  model configurations.  P i s  
0' f o r  t h e  upper photographs and 5' f o r  t h e  lower photographs. 
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WVHE *T WVHE2 

(b) M = 1.00. L-893 60 

Figure 14 .- Continued, 
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WVHE2T WVHE2 

( c )  M = 1.06. L-89361 

Figure 14 ,- Continued. 
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W V H  W 

( d )  M = 0.95. L-893 62 

Figure 14. - Continued. 
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W V H  W 

( e )  M = 0.975. L-893 63 

Figure 14. - Continued, 
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W V H  W 

(f) M = 1.00. L-893 64 

Figure 14.- Continued. 

SECRET 



NACA RM SL5fS~08  SECRET 

W VH W 

( g )  M = 1.06. L-8936 

Figure 14.-..concluded. 
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(a )  aL-207 
complete model. 

Figure 15.- Variation with l i f t  coefficient of the  l a t e r a l  character is t ics  
f o r  several a i leron deflections. 
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LL 

(b) " ~ - 1 ~ 9  
complete model. 

Figure 15. - Continued. 
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( c )  ahPo, complete model. 

Figure 15. - Continued . 
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(d) horizontal  tail off .  

Figure 15. - Continued . 
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(e)  Cy against CL. 

Figure 15.- Concluded. 
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Figure 16. - Variation of rolling-moment coefficient with lert aileron 
deflection. Complete model. 
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.05 

.04 

.03 

.02 

M 

.O 1 1.06 

0 1.03 

0 1.00 

0 .9 5 

0 .90 

0 .80 

0 

-.01 

- 02 

Angle of sidesl~p , , deg 

(b) Yaw damper. 

Figure 17. - Concluded. 
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