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Abstract— An optimal alarm system and its approximations
may use Kalman filtering for univariate linear dynamic systems
driven by Gaussian noise to provide a layer of predictive
capability. Predicted Kalman filter future process values and
a fixed critical threshold can be used to construct a candidate
level-crossing event over a predetermined prediction window. An
optimal alarm system can be designed to elicit the fewest false
alarms for a fixed detection probability in this particular scenario.

I. I NTRODUCTION

Recent studies [11], [9] have served as a foundation for
the application of a novel idea for anomaly detection that is
derived from the collusion of decades-old theory [15],[2] with
more recent techniques [16],[17]. It was shown by Svensson
[16], [17] that an optimal alarm system can be constructed
by finding relevant alarm system metrics as a function of a
design parameter by way of an optimal alarm condition. The
optimal alarm condition is fundamentally an alarm region or
decision boundary based upon a likelihood ratio criterion via
the Neyman-Pearson lemma, as shown in [3], [8]. This allows
us to design an optimal alarm system that will elicit the fewest
possible false alarms for a fixed detection probability.

Due to the fact that the alarm regions cannot be expressed
in closed form, one of the aims of previous studies has been
to investigate approximations for the design of an optimal
alarm system. Such an alarm system uses Kalman filtering
along with temporally varying auxiliary thresholds to provide
a layer of predictive capability. The resulting metrics can
easily be compared to methods that incorporate auxiliary fixed
thresholds or redlines that may also provide a similar layer of
predictive capability, but have no provision for minimizing
false alarms.

The design of optimal alarm systems demonstrates potential
to enhance reliability and support health management for space
propulsion, civil aerospace applications, and more fundamen-
tally to aeronautics research. Due to the great costs, not to
mention potential dangers associated with a false alarm due
to evasive or extreme action taken as a result of such a false
indication, there are great opportunities for cost savings/cost
avoidance, enhancement of overall safety, and reduction of
technical risks of NASA programs and projects. Furthermore,
within NASA’s space program, a missed detection can yield a
catastrophic result of the loss of mission, crew, and/or vehicle

that may be encountered when failing to abort in the presence
of valid indicators.

Even though recent studies have been limited to application-
specific datasets, our intent is to demonstrate the utility of
the technique from a much broader perspective. In [11] level-
crossing events of the type most amenable to monitoring of
control system error were used to derive the design framework
for an optimal alarm system via the ROC curve. From the ap-
plications perspective, we assume that the control system has
already been designed, is robust to environmental disturbances,
and rejects them expediently. Therefore, when unexpected
large transients in the control system error occur, this may be
indicative of an impending fault or change in system that may
be cause for further diagnostic investigation. This error can be
compared against a threshold whose selection is based upon
the physics of the system and the margin of safety required.
The threshold may also be determined from domain experts,
experimentally, in flight tests, or by using statistical models.

Alternatively, a serial architecture can be used to preprocess
a full feature space, implicitly reducing the entire feature space
into a univariate signal while retaining salient operational
signatures [10]. This is performed by using the composite
score generated by any algorithm with favorable properties as
training data for a linear dynamic system. This is potentially a
far more effective approach than using only a small fraction of
the feature space by using the control system error alone. As
such we may potentially allow for many more anomalies to
be detected by using this paradigm. Furthermore, allowing for
this sort of preprocessing lifts the restriction of this algorithm
to the control systems domain, and addresses our objective of
demonstrating the utility of the technique from a much broader
perspective.

II. BACKGROUND

Coincidentally, the techniques investigated as part this re-
search have their origins in application to legacy NASA
platforms. Rudolf E. Kalman found a unique application of his
now very well-known Kalman filter for the Apollo program
and more broadly to aerospace applications in general, due in
part to finding support at NASA Ames Research Center in the
mid 1960’s [15].
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Although tremendously popular and ubiquitous in today’s
aerospace systems, practical applications of Kalman filtering
for aerospace have largely been relegated to state estimation
for guidance, navigation, and control purposes. The study of
auxiliary failure detection and bad data rejection algorithms
have been developed in concert with Kalman filters [15], [18],
[5], however the main purpose of those Kalman filters were for
state estimation in guidance, navigation, and control systems.

Kalman filtering has seen limited practical applicationded-
icated to system reliability and health management as related
to exceedance of predetermined failure thresholds in aerospace
systems. The difference in the approach that we take with
this investigation is that the Kalman filter machinery will
be implemented for the express purpose of system reliability
and health management, invoking more recently available data
mining and machine learning techniques [4], [12], [13], [10]
to develop suitable models.

Almost in parallel with Kalman’s breakthrough, a perhaps
lesser known study, [6], was conducted by Ross Leadbetter and
Harald Craḿer who are pioneers in the field of the statistics of
level crossings and extremes. This study was also funded by
NASA, and yielded interesting results on the more theoretical
aspects of level-crossing behavior of random processes. The
motivation behind the work was as a result of Gertrude Cox’s
charter to Ross Leadbetter and Harald Cramér at the time to
“make comprehensive statistical models for manned space-
flight systems.” They ended up supporting a small corner
of that effort, having to do with the reliability of guidance
systems, approaching the problem by modeling the error in
a guidance system and declaring failure if it went out of
prescribed limits in a mission period - leading to their work
on crossings and extremes [7].

All three researchers are legendary, celebrated mathemati-
cians/statisticians in their own right; however, the work was
never truly developed to its fullest potential for its intended
purpose. Over the years Leadbetter’s younger Swedish col-
leagues developed theories which ultimately yielded the idea
of optimal alarm systems [17], which is used in this study.
There are still parts of Leadbetter’s original theoretical con-
structs which have gone unused for its originally intended
target application.

As such, a future research objective is to marry the largely
uncultivated portions of Leadbetter’s theory for its intended
purpose and the results generated by his younger Swedish
colleagues, enabled by none other than the Kalman filter,
coming full circle. Therefore, with further development and
implementation across a broad spectrum of NASA aerospace
platforms, this activity also has the potential to generate new
knowledge that has evolved from the results of NASA-based
legacy programs.

III. M ETHODOLOGY

Our underlying assumption is that we can fit measured or
transformed data to a model represented by a linear dynamic
system driven by Gaussian noise. The state-space formulation

is shown in Eqns. 1-3, demonstrating propagation of both the
state and the covariance matrix with time-invariant parameters.

xk+1 = Axk + wk (1)

yk = Cxk + vk (2)

Pk+1 = APkAT + Q (3)

where

wk ∼ N (0,Q)
vk ∼ N (0, R)
x0 ∼ N (µx,P0)
µx = E[xk]
Pk = E[(xk − µx)(xk − µx)T ]

The parameters to be learned are specified below, as the
parameterθ. These parameters are also shown in Fig. 1, which
specify them in relation to the probabilistic graphical modeling
paradigm which may be used for machine learning purposes.

θ = (µx,P0,A,C,Q, R) (4)

The essence of the optimal alarm system is derived from
the use of the likelihood ratio resulting in the conditional
inequality:P (Ck|y0, . . . , yk) ≥ Pb. This basically says “give
alarm when the conditional probability of the event,Ck, ex-
ceeds the levelPb.” Here,Pb represents some optimally chosen
border or threshold probability with respect to a relevant alarm
system metric. It is necessary to find the alarm regions in
order to design the alarm system. The event,Ck, can be
chosen arbitrarily, and is usually defined with respect to a pre-
specified critical threshold,L, as well as a prediction window,
d. In this paper, the event of interest is shown in Eqn. 5, and
represents at least one exceedance outside of the threshold
envelope specified by[−L,L] of the processyk within the
specified look-ahead prediction window,d.

Ck
4
= {|yk| > L}

⋃  d⋃
j=1

[
j−1⋂
i=0

|yk+i| < L, |yk+j | > L

]
(5)

There are three different alarm systems to compare which
will all attempt to predict the level-crossing event defined by
Eqn. 5, whose probability,P (Ck), can be computed according
to formulae presented in [11]. The first alarm system attempts
to define an envelope,[−LA, LA], outside of which an alarm
will activate. In order to provide for a layer of predictive
capability,LA should be chosen such thatLA < L. An alarm
probability can likewise be computed,P (Ak) = P (|yk| >
LA) and the details of this formula are also provided in
[11]. This “redline” alarm system is termed as such in order
to indicate that a simple level is used, and often the same
terminology is used in practice. Even without the benefit of
using any predicted future process values, this alarm system
would be superior to a true redline system that uses only a



Fig. 1. Linear Dynamic System

single levelL. However, in this case two levels are used,L
as the failure threshold, andLA as the design threshold.

The second alarm system incorporates the use of predicted
future process values, and is called the “predictive” alarm sys-
tem. This alarm system also defines an envelope,[−LA, LA],
outside of which an alarm will sound. Similarly,LA should
be chosen such thatLA < L in order to provide for a layer
of predictive capability. However, the alarm probability is
defined in a different fashion than for the redline method,
as P (Ak) = P (|ŷk+d|k| > LA), where the predicted future
process valuêyk+d|k is found from standard Kalman filter
equations shown in Eqns. 6 - 11 by using the definitions below.

x̂k|k
4
= E[xk|y0, . . . , yk]

Pk|k
4
= E[(xk − x̂k|k)(xk − x̂k|k)T |y0, . . . , yk]

ŷk|k = Cx̂k|k (6)

x̂k+1|k = Ax̂k|k (7)

Fk+1|k
4
= Pk+1|kCT (CPk+1|kCT + R)−1 (8)

Pk+1|k = APk|kAT + Q (9)

Pk+1|k+1 = Pk+1|k − Fk+1|kCPk+1|k (10)

Eqn. 8 represents the dynamically updated Kalman gain,
and combining the two equations 9 and 10, we may obtain
the Riccati equation (Eqn. 11).

Pk+1|k = APk|k−1AT −AFk|k−1CPk|k−1AT + Q (11)

The final alarm system to be compared to the previous two
is the optimal alarm system, and has two approximations, but
only the one presented as Eqn. 12 will be used for comparison
in this paper. The alarm condition,P (Ck|y0, . . . , yk) ≥ Pb,
can be approximated to form the alarm region specified in
Eqn. 12.

Ak =
d⋃

i=0

|ŷk+i|k| ≥ L +
√

Vk+i|kΦ−1(Pb) (12)

whereΦ−1(·) represents the inverse cumulative normal stan-
dard distribution function, andVk+i|k = Var(yk+i|y0, . . . , yk).

Eqn. 12 plays a pivotal role in enabling the enforcement of
the approximation to the alarm region for an optimal alarm

system. Using this approximation allows it to outperform
the other alarm systems with respect to the minimization of
false alarms. All of the three alarm systems described will
be compared using the area under the ROC curve (AUC).
This provides a performance metric with which to assess and
compare the performance of each alarm system. The ROC
curve parametrically displays the true positive rate against
the false positive rate. The AUC has been deemed as a
theoretically valid metric for model selection and algorithmic
comparison [14].

The parameters of interest areLA for the redline and pre-
dictive methods, andPb for the approximation to the optimal
alarm system. It is possible to generate formulae for the true
and false positive rates as a function of these parameters (LA,
Pb) as well as the model parameters (θ) by appealing to Eqns.
13-14. The details for constructing these formulae are provided
in [11].

True positive rate:

P (Ck|Ak) =
P (Ck, Ak)

P (Ak)
(13)

False positive rate:

P (Ak|C
′

k) =
P (C

′

k, Ak)
P (C ′

k)
(14)

IV. RESULTS

The example to be used for the presentation of our results
has no specific application, but is generic, and the model
parameters are provided in Eqns. 15-18.

A =
[

0 1
−0.9 1.8

]
(15)

C =
[

0.5 1
]

(16)

Q
4
=

[
0 0
0 1

]
(17)

R
4
= 0.08 (18)

Unless otherwise stated, for all three cases to compare:
redline, predictive, and optimal, the threshold isL = 16, and
the prediction window isd = 5. Fig. 2 represents the optimal
alarm region decision boundary for a sample system and two
level-crossing events that span a prediction window of three
time steps. The figure shown on the right is of the same form



that we are investigating in Eqn. 12. Approximations to this
sort of alarm region are required for the most computationally
efficient generation of a ROC curve or other similar alarm
system design metrics.

Some recent results of computing the AUC as a function
of the prediction window,d, are shown on the left of Fig. 3.
We show the AUC for the three methods described thus far
to be compared. Clearly, the approximations to the optimal
alarm system outperform the redline and predictive methods,
for the entire prediction horizon. This figure can also be used
as a preliminary design step for choice of maximal prediction
window corresponding to a minimum allowable AUC as the
criterion for selection.

For example, if AUCmin = 0.95 is set as the minimum
allowable AUC, the maximal prediction window is obtained
by using the optimal alarm system, and corresponds tod = 5.
The final design step will involve choosing the ROC curve
corresponding to this maximal prediction window. Using this
ROC curve, a value ofPb can be selected based upon the
desired tradeoff between true and false positive rates.

For contrast, shown on the right on Fig. 3 is a plot of
the prediction variance,Vk+d|k, and the bounded uncertainty.
Vk+d|k is a function of model parameters as shown in Eqn.
19. Takinglimd→∞ Vk+d|k = CPkCT +R provides the finite
bound on uncertainty for an infinite prediction horizon, and as
such represents the maximum uncertainty for predicted future
process values. The finiteness of the bound is guaranteed only
if ρ(A) < 1, whereρ(·) is the spectral radius operator.

Vk+d|k = C
[
Ad(Pk|k −Pk)(Ad)T + Pk

]
CT + R (19)

Due to the assumption of time-invariance for our model pa-
rameters, we require the necessary and sufficient conditions of
controllability or stabilizability of(A,

√
Q) and observability

or detectability of(A,C) in order to obtain a well-defined
steady-state Kalman filter. The observability condition can
easily be proven by takinglimk→∞E[(xk − x̂k)(xk − x̂k)T ],
where x̂k is the estimate of a generic observer. Our time-
invariance assumption also allows for the optimal alarm system
to designed off-line, rather than computingPk|k andPk and
re-designing the alarm system at each time step.

As such, we can the use solution to the discrete algebraic
Riccati equation,̂PR

ss, in place ofPk|k for Eqn. 19.P̂R
ss is the

aposteriori steady state covariance, and is a quadratic function
of the apriori steady state covariance matrix,PR

ss. PR
ss is the

algebraic counterpart of Eqn. 11. Similarly,Pss, the solution
to the discrete algebraic Lyapunov equation, can be used in
place of its counterpartPk from Eqn. 3.

Vk+d|k therefore requires the solution to the both steady-
state Riccati and Lyapunov equations, and its bound is de-
pendent only on the Lyapunov equation, as indicated on the
legend on the right of Fig. 3. The Riccati solution is inherently
a conditional covariance matrix by definition ofPk|k, and the
Lyapunov solution is inherently an unconditional covariance
matrix by definition ofPk.

The graph on the right of Fig. 3 allows for us to obtain
an estimate of the margin to maximum uncertainty forŷk+d|k
when using the chosen maximal prediction window,d = 5.
This estimate serves only as a relative indicator of uncertainty
for ŷk+d|k. It also serves to contrast the optimal alarm to
the predictive alarm system, the latter of which does not use
uncertainty as part of its construction. This is apparent in the
qualitative oscillations that evolve with increased prediction
window for both the predictive alarm system on the left of
Fig. 3, and the prediction variance on the right of Fig. 3.

V. FUTURE WORK

Because algorithms based upon the optimal alarm system
concept appeal to data mining and machine learning tech-
niques, they are clearly viable candidates for extension to
techniques such as particle filtering. Performing this extension
will enable event distributions and model parameters to be
adaptively updated as in [1] rather than making convenient
Gaussian and stationary assumptions. However with particle
filtering, the formulation of the problem can involve non-
Gaussian noise, as well as non-linearities which were not
covered in [1].

Furthermore, we want to investigate improved approxima-
tions that would provide a tighter bound on the alarm regions
shown in Fig. 2. We will also investigate and compare the
discrepancy between the error accumulated due to techniques
studied here, and those due to improved approximations.
Future development will involve more rigorous testing and
validation of the alarm systems discussed by using standard
machine learning techniques and consideration of more com-
plex, yet practically meaningful critical level-crossing events.

Finally, a more detailed investigation of model fidelity with
respect to available data and metrics has been conducted
[10]. As such, future work on modeling will involve the
investigation of necessary improvements in initialization tech-
niques and data transformations for a more feasible fit to
the assumed model structure. Additionally, we will explore
the integration of physics-based and data-driven methods in a
Bayesian context, by using a more informative prior.
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