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NEO Size 

Assumes political environment prefers kinetic 
interception, solar collector, and nuclear 
interception, in that order. 
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Interceptor Stack 

Kick Stage 

Cradle 

Interceptor Bullets (Solar 
Collector shown) 

Stage Fueled Mass (kg) 

Kick 45,359 

Cradle 2,005 

Bullets (6) 9,000 

Total 56,364 
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Exploration Track 
This system holds the  
promise of enabling NEO 
crewed exploration as well  
as in situ resource utilization 
for further space exploration. 
This track will be investigated 
at a later date.ANNOUNCEMENT

NASA MSFC is investigating hosting an interactive 
workshop on the issue of orbital debris. This workshop 
would entail collaboration between NASA design engineers 
and anyone with a concept for reducing the population 
or mitigating the debris that exists in low-Earth orbit. 
Participants would provide their own resources to produce 
a design that would be linked with MSFC’s launch vehicle 
and spacecraft design tools to produce an integrated 
design concept. A workshop is anticipated in the fall 2009 
timeframe for all participants to refine their concepts and 
comment on the other proposals.

For more information or to express your interest in this 
workshop, please e-mail: <robert.b.adams@nasa.gov>.

Characterization Track
If an NEO is detected to be a threat to the Earth, beyond  
a certain threshold, then the central facility will assemble  
an observer to be launched as soon as possible.

As the observer approaches the NEO, it exhausts the propellant 
in the rendezvous stage, matching orbit with the NEO if possible, 
conducting a slow �yby if not.

The observer releases a lander that 
will moor with the NEO. As the lander 
approaches the NEO, it �res several balls 
of various weight. The de�ection of the 
balls gives a measurement of the NEO’s 
gravitational �eld.

The lander moors to the NEO 
and is held in place with a cold 
gas thruster mounted topside. 
The observer releases several 
small explosives at various 
intervals that set up seismic 
waves in the NEO. The lander’s 
seismometer is able to map the 
structure of the NEO from 
these waves.

The observer continually uses 
other instruments (wide and 
narrow FOV cameras, gravity 
sensors, spectrograph, penetrat-
ing radar, and laser ranger) to 
extract as much data as possible 
from the NEO.

Alternatively, if  
the NEO scientific 
community identifies  
an NEO of particular 
scientific interest, then 
the same observer stack is 
assembled and launched at  
an optimum point to achieve  
a full scientific analysis.

The system is designed to 
thrust continuously until 
rendezvous with the target. 

The nuclear interceptors are designed to trigger a few hundred 
meters from target. The kinetic impactors make physical contact 
at the highest possible closure speed.

The bipropellant terminal intercept 
system activates 5,000 km from 
target. Signals from the cradle and 
observer satellite are combined 
with interceptor sensor data to 
triangulate the position of the 
asteroid to very high accuracy.

Each de�ection system is released from the cradle.  Each system 
independently �ies to the target. The release point is designed 
to allow impacts at 1-hr intervals.

The observer stack can be launched on a number  
of existing and proposed launch vehicles. Some  
non-U.S. vehicles may have the needed performance  
as well.
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• Made estimate of maximum impact velocity without fracture 
• Assumed inelastic collision of kinetic interceptor with NEO 
• Momentum from potential ejecta not included   

Trans-Asteroid  
Insertion Stage 

Rendezvous Stage 

Observer Satellite 

Observer Stack 

NEO Lander 

Stage Fueled Mass (kg) 

TAI 23,316 

Rendezvous 4,640 

Observer/lander 1,500 

Total 29,456 

9.4 m 

1.5 m 

3.1 m 
1.5 m 

4.5 m 

4.2 m 

Observer Stack assembled from 
components stored at facility 

Physics of Solar Collector 
• Primary collector always faces Sun 
• Estimate of performance assumes 1 AU distance from Sun 
• Secondary collector located at focus 
• Beam from secondary directed on NEO 
• Beam penetration into crust vaporizing material 
• Ejecta transmits momentum to NEO 
• Secondary collector sized to 

–  Handle aberration from nonuniformities in parabolic primary 
–  Nonpoint source for Sun 
–  Secondary not perpendicular to focus plane from primary 

• Collector ef�ciency estimated at 50% incident on primary 

Design 
• Primary Collector  
 – Made of solar sail materials
 – Folded “parachute-like” to �t in allowable bullet volume
 – In�ated using vanes along major seams, nitrogen gas 
  cures thin �lm laminate vanes after in�ation

• Secondary Collector
 – Thin �lm of gold layered on beryllium plating
 – Niobium heat pipes with potassium working �uid mounted 
  on back side of beryllium plating to radiate away heat
 – 0.5-m Sun shield mounted 0.5 m away from secondary

• Tip Vanes 
 – Solar arrays double as tip vanes for attitude control
 – Redundant communications and avionics systems at all 
  four tip vanes           

“Physics Package” 

LIDAR 
WFOV Camera 
NFOV Camera 

Divert Thrusters and 
Central Combustion 
Chamber 

N2O4 Tank 

Hydrazine Tank 
Main Engine 

5.2 m 

1.1 m 

Nuclear Interceptor Physics of Nuclear De�ection
• Explosion at optimum standoff
 distance from NEO
• Explosion to cover maximum
 surface that can be ablated
• Only x-ray interaction with NEO
 considered here
• Monte Carlo model of x-ray
 penetration and absorption
• Spectral ejection of vaporized 
 material   
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Kinetic Interceptor 
Hall Thruster (3) 
(not shown)

Solar Arrays 

Xenon Tank 

Terminal Intercept 
System 

Penetrator 

Shunt 
Radiator 

5.5 m 

1.5 m 

A facility located close to a launch site 
contains the stages and prefabricated 
characterization probes and interceptors. 

TAI (Trans Asteroidal 
Injection) Stage Bay 

Rendezvous Stage Bay 

Of ces 

Electronics Bay 

Testing Bay 

Characterization Satellite 
Interceptor Bay 
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			   Deflection Track
If an NEO is found to pose a significant threat, then a mitigation 

system will be launched. The mitigation system used can be of a 
variety of options. Three options are shown here, but others could easily 

be included.

After selecting the 
mitigation system, 
the magnitude 
of the threat will 
determine the 
method of launch. 
The Ares V system 
is capable of 
launching up to six 
mitigation systems  
simultaneously. A 

single mitigation system can be launched on an Ares I, 
Atlas V, Athena, or a Delta IV Heavy.

https://ntrs.nasa.gov/search.jsp?R=20090025983 2019-08-30T07:24:05+00:00Z


