

June 2009

NASA/TM-2009-215758

A Self-Stabilizing Byzantine-Fault-Tolerant
Clock Synchronization Protocol

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

https://ntrs.nasa.gov/search.jsp?R=20090023143 2019-08-30T07:16:07+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10549254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

 Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 443-757-5803

• Phone the NASA STI Help Desk at

443-757-5802

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

June 2009

NASA/TM-2009-215758

A Self-Stabilizing Byzantine-Fault-Tolerant
Clock Synchronization Protocol

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Acknowledgments

This effort was conducted under the Integrated Vehicle Health Management project of NASA’s

Aviation Safety program. The author would like to thank the following for their reviews, helpful
comments, consultations and support: Ricky Butler, Victor Carreno, Eric Cooper, Jeff Maddalon, Ben
DiVito, Paul Miner, Cesar Munoz, Radu Siminiceanu, and Kristin Rozier. The author would like to
especially thank Wilfredo Torres-Pomales for his in-depth reviews. The author would also like to thank
Celeste Belcastro without whose support this work would not have been possible.

 i

Abstract

This report presents a rapid Byzantine-fault-tolerant self-

stabilizing clock synchronization protocol that is independent of

application-specific requirements. It is focused on clock

synchronization of a system in the presence of Byzantine faults

after the cause of any transient faults has dissipated. A model of

this protocol is mechanically verified using the Symbolic Model

Verifier (SMV) [SMV] where the entire state space is examined

and proven to self-stabilize in the presence of one arbitrary faulty

node. Instances of the protocol are proven to tolerate bursts of

transient failures and deterministically converge with a linear time

with respect to the synchronization period. This protocol does not

rely on assumptions about the initial state of the system, other than

the presence of sufficient number of good nodes. All timing

measures of variables are based on the node’s local clock, and no

central clock or externally generated pulse is used. The Byzantine

faulty behavior modeled here is a node with arbitrarily malicious

behavior that is allowed to influence other nodes at every clock

tick. The only constraint is that the interactions are restricted to

defined interfaces.

 ii

Table of Contents

1. INTRODUCTION ..1

2. SYSTEM OVERVIEW ..2

2.1. GAMMA (γ)..3

3. PROTOCOL DESCRIPTION...3

3.2. THE MONITOR..4
3.3. THE STATE MACHINE...4
3.4. PROTOCOL FUNCTIONS ..7
3.5. PROTOCOL ASSUMPTIONS ..8
3.6. THE SELF-STABILIZING CLOCK SYNCHRONIZATION PROBLEM ..8

4. THE CLOCK SYNCHRONIZATION PROTOCOL ...10

5. PROOF ..11

5.1. PROOF FOR F = 1..22
5.1.1. In-Phase Case ...23
5.1.2. Out-of-Phase Case ..26
5.1.3. A Realizable System ..27

5.2. PROOF FOR F = 0..29
5.3. GENERALIZATION OF THE PROTOCOL, FOR F > 1 ..31

6. PROTOCOL OVERHEAD ...32

7. POSSIBLE APPLICATIONS..33

8. CONCLUSIONS...33

REFERENCES ..35

APPENDIX A. SYMBOLS ..36

1

1. Introduction

This report presents a clock synchronization protocol and the proof of its correctness for

specific cases. For an introduction to the clock synchronization and self-stabilization problems

the reader is referred to the introductory sections in [Mal 2006A, 2006B, 2007, 2008].

A Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock

Synchronization Systems was reported in [Mal 2006A, 2006B, 2007, 2008]. Claims about the

protocol were validated via mechanical verification of a system consisting of one Byzantine

faulty node [Mal 2007, 2008]. Further analysis of the proofs revealed a potential simplification

of this protocol. Having mechanically verified the protocol, it is now possible to explore

variations of the protocol. What is presented here is a new protocol that is a direct result of this

exploration and re-verification of the protocol reported in [Mal 2006A, 2006B, 2007, 2008].

The protocol in [Mal 2006A, 2006B, 2007] requires periodic transmission of Affirm

messages to guarantee the presence and participation of all good nodes. Assuming that the good

nodes are actively participating in the self-stabilization process, periodic transmission of Affirm

messages can be inferred and, thus, periodic arrival of Affirm messages can be assumed. As a

result, transmission of the Affirm messages can be eliminated. Therefore, only one self-

stabilization message, Resync, suffices. Nevertheless, it is worth noting that periodic

transmission of the Affirm messages by the good nodes not only reduces the error detection time

but also expedites the reintegration process. In [Mal 2006A, 2006B, 2007, 2008] an accept event

counter was introduced to account for the arrival and accumulation of Affirm messages.

Assuming the presence of periodic Affirm messages, the corresponding behavior of the protocol

is now compensated by keeping track of elapsed time.

This report extends the results of the basic case [Mal 2007, 2008] to larger systems and

examines synchronization of a system of K ≥ 3F + 1 nodes in the presence of multiple Byzantine

faulty nodes. Analysis of larger systems revealed that a direct generalization of the results of the

basic case is not applicable to larger systems. Although this protocol solves the basic case, it

does not synchronize a system of K ≥ 3F + 1 nodes in the presence of F Byzantine faulty nodes

when F > 1.

The proof presented here applies to all instances and applications of this protocol and to

those reported in [Mal 2006A, 2006B, 2007, 2008]. Although this proof parallels that of [Mal

2006A, 2006B, 2007, 2008], the proof is redone and restructured to make it easier to follow,

simpler to analyze, and, thus, easier to comprehend. Elimination of the Affirm messages resulted

in a reduction of the number of parameters and, hence, the initial state space. The mechanical

verification of the protocol presented in this report is now more manageable and can be

conducted in shorter amount of time on computers with less memory. Furthermore, if more

memory and computing power were available, larger and more complex systems could be

analyzed. Also, in the absence of periodic transmission of Affirm messages, implementation of

the implicit fault model [Mal 2007] of the faulty nodes in the mechanical verification models is

now practical.

2

In this report, a rapid Byzantine self-stabilizing clock synchronization protocol is

presented. Specific cases of this protocol are demonstrated to self-stabilize from any state,

tolerate bursts of transient failures, and deterministically converge within a linear time with

respect to the synchronization period. Upon stabilization, all good clocks proceed

synchronously.

2. System Overview

The underlying topology considered here is a network of K ≥ 3F + 1 nodes that exchange

messages through a set of communication channels. A maximum of F Byzantine faulty nodes

are assumed to be present in the system, where F ≥ 0. The communication channels are assumed

to connect a set of source nodes to a set of destination nodes such that the source of a given

message is uniquely identifiable from other sources of messages. The minimum number of good

nodes in the system, G, is defined by G = K-F nodes. The nodes communicate with each other

by exchanging broadcast messages. Broadcast of a message to all other nodes is realized by

transmitting the message to all other nodes at the same time. The communication network does

not guarantee any relative order of arrival of a broadcast message at the receiving nodes, and a

consistent delivery order of a set of messages does not necessarily reflect the temporal or causal

order of the message transmissions [Kop 1997].

Each node is driven by an independent local physical oscillator with one oscillation

representing a local clock tick. The oscillators of good nodes have a known bounded drift rate,

0 ≤ ρ << 1, with respect to real time.

Each node has two primary logical time clocks, StateTimer and LocalTimer, which

locally keep track of the passage of time as indicated by the local clock tick. There is neither a

central system clock nor an externally generated global pulse.

The faulty communication channels and nodes can behave arbitrarily provided that

eventually the system adheres to the protocol assumptions (see Section 3.5).

The communication latency between the nodes is expressed in terms of the minimum

event-response delay, D, and network imprecision, d. These parameters are described with the

help of Figure 1. As depicted, a message transmitted at real time t0 is expected to arrive at all

destination good nodes, be processed, and subsequent messages generated within the time

interval of [t0 + D, t0 + D + d]. Communication between independently clocked nodes is

inherently imprecise. The network imprecision, d, is the maximum time difference among all

good receivers, Nj, of a message from good node Ni with respect to real time. The imprecision is

due to the drift of the clocks with respect to real time, jitter, discretization error, temperature

effects and differences in the lengths of the physical communication media. These two

parameters are assumed to be bounded such that D ≥ 1 and d ≥ 0 and both have values with units

of nominal clock tick.

3

D d

t0+D t0+D+dt0

Figure 1. Event-response delay, D, and network imprecision, d.

2.1. Gamma (γγγγ)

The timeline of activities of a node is partitioned into a sequence of equal duration

intervals from the time the node transitioned to a new state. The duration of these intervals,

denoted γ, is expressed in terms of D and d, constrained such that γ ≥ (D + d), and measured by

the local oscillator. Unless stated otherwise, all time-dependent parameters of this protocol are

measured locally and expressed as functions of γ. The time-driven activities of a node take place

at equal intervals measured by the local oscillator since the node entered a new state. In contrast,

event-driven activities are independent of γ and, thus, take place immediately.

3. Protocol Description

The system is in the steady state when it is stabilized. In order to achieve stabilization,

the nodes communicate by exchanging a Sync message. A Sync message is transmitted either as

a result of a resynchronization timeout, or when a node determines that sufficient number of

other nodes have engaged in the resynchronization process.

Three fundamental parameters characterize the self-stabilization protocol presented

here, namely K, D, and d. The maximum number of faulty nodes, F, the minimum number of

good nodes, G, the γ intervals, and the remaining parameters that are subsequently presented are

derived parameters based on the fundamental parameters.

3.1. Message Validity

Only one message is required for the operation of the protocol. Receiving a Sync

message is indicative of its validity in the value domain. The protocol performs as intended

when the timing requirements of the received messages from all good nodes at all other good

nodes are satisfied. The time interval between any two consecutive Sync messages from a node

is denoted ∆SS, and the shortest such interval for a good node is denoted ∆SS,min. The following

definitions apply at the receiving nodes.

• A Sync message from a given source is valid if it arrives at or after ∆SS,min of an

immediately preceding Sync message that is valid in the value domain.

• While in the Maintain state, a Sync message from a given source remains valid for the

duration of that state.

• While in the Restore state, a Sync message from a given source remains valid for the

duration of one γ.

4

3.2. The Monitor

The messages to be delivered to the destination nodes are deposited on communication

channels. A node consists of a state machine and a set of monitors. To assess the behavior of

other nodes, a node employs (K-1) monitors, with one monitor for each source of incoming

messages, as shown in Figure 2. A node neither uses nor monitors its own messages. The

distributed observation of other nodes localizes error detection of incoming messages to their

corresponding monitors, and allows for modularization and distribution of the self-stabilization

protocol process within a node. A monitor keeps track of the activities of its corresponding

source node. Specifically, a monitor reads, evaluates, time-stamps, validates, and stores the last

message it receives from that node. A monitor maintains a logical timer, MessageTimer, by

incrementing it once per local clock tick. This timer is reset upon receiving a Sync message. A

monitor also disposes retained valid messages as indicated by the protocol (Sections 4).

 Node i

State

Machine

From Nk

From Ni+1

From N1

To other nodes

Mi+1

Mk

From Ni-1
Mi-1

M1

Figure 2. The i
th

 node, Ni, with its monitors and state machine.

3.3. The State Machine

The assessment results of the monitored nodes are utilized by the node in the self-

stabilization process. The state machine has two states, Restore (R) and Maintain (M), that

reflect the current state of the node in the system as shown in Figure 3. The state machine

triggers a Sync message broadcast when it transitions from the Restore state to the Maintain

state. The state machine describes the behavior of the node, Ni, utilizing assessment results from

its monitors, M1 .. Mi-1, Mi+1 .. MK as shown in Figure 2, where Mj is the monitor for the

corresponding node Nj. In addition to the behavior of its corresponding source node, a monitor’s

internal status is influenced by the current state of the node’s state machine. When the state

machine transitions to the Restore state, the monitors update their internal status as appropriate

(Section 3.4).

5

Maintain
Sync

Restore

Figure 3. The node state machine.

The transitory conditions enable the node to migrate from the Restore state to the

Maintain state. Although during the self-stabilization process a node may transition from the

Restore state to the Maintain state upon a timeout, during steady state such a timeout is

indicative of an abnormal situation. The transitory conditions are defined with respect to the

steady state where such timeouts do not occur. The transitory delay is the length of time a node

stays in the Restore state. The minimum required duration for the transitory delay is denoted by

TDmin, and the maximum duration by TDmax. TDmin is a derived parameter and a function of F.

For the fully connected topology considered here, the transitory conditions are defined as

follows.

1. The node has remained in the Restore state for at least TDmin, where

TDmin = 2, for F = 0, or

TDmin = 2F, for F > 0, and

2. One γ has passed since the arrival of the last valid Sync message.

The maximum duration of the transitory delay, denoted TDmax, after meeting the TDmin

requirement depends on the number of additional valid Sync messages received and the drift rate

ρ. The upper bound for TDmax during steady state will be determined later in this report.

In the Restore state, the node will either meet the transitory conditions and transition to

the Maintain state, or remain in the Restore state for a predetermined maximum duration until it

times out and then transitions to the Maintain state. In the Maintain state, a node will either

transition to the Restore state when at least TR other nodes have transitioned out of the Maintain

state as indicated by the reception of at least TR valid Sync messages, or remain in the Maintain

state for a predetermined maximum duration until it times out and transitions to the Restore state.

The derived parameter TR is defined as TR = F + 1 and is used as a threshold in conjunction with

the Sync messages.

In Figure 4 the transitions of a good node to the Restore state and from the Restore state

to the Maintain state (during steady state) are depicted along a timeline of node activities. A

Sync message is transmitted as the node transitions from the Maintain state to the Restore state.

Activities of the StateTimer and LocalTimer of the node as it transitions between different states

are also depicted in this figure.

6

∆Precision/γ

time

γ γ < γ

Maintain

Restore

LocalTimer

StateTimer

Outgoing

Message

Sync Sync

Figure 4. Activities of a good node during steady state.

The clocks need to be periodically synchronized due to their inherent drift with respect to

each other. The periodic synchronization during steady state is referred to as the

resynchronization process, whereby all good nodes transition to the Restore state and then

synchronously to the Maintain state. The resynchronization process begins when the first good

node transitions to the Restore state and ends after the last good node transitions to the Maintain

state. An upper bound on the duration of the resynchronization process will be determined later

in this report.

The synchronization period during steady state, denoted P, is defined as the largest time

interval between two consecutive resets of the LocalTimer by a good node. The synchronization

period depends on the maximum duration of both states of the state machine. The maximum

duration for the Restore state is denoted by PR, and the maximum duration for the Maintain state

is denoted by PM, where PR and PM are expressed in terms of γ. The length of time that a good

node stays in the Restore state is denoted by LR. During steady state LR is always less than PR.

The length of time a good node stays in the Maintain state is denoted by LM. The

synchronization period, P, is defined by P = PR + PM and is expressed in terms of γ. The actual

synchronization period, PActual, is the time interval (during steady state) between the last two

consecutive resets of the LocalTimer of a good node, where PActual = LR + LM < P.

A node keeps track of time by incrementing its logical time clock StateTimer once every

γ. After the StateTimer reaches PR or PM, depending on the current state of the node, the node

times out, resets the StateTimer, and transitions to the other state. If the node was in the

Maintain state, it transmits a new Sync message. The current value of this timer reflects the

duration of the current state of the node.

7

This protocol is expected to be used as the fundamental mechanism to bring and maintain

a system within a known synchronization precision bound. Therefore, the protocol has to

properly filter out inherent oscillations in the StateTimer during the resynchronization process as

depicted in Figure 4. This is resolved by using the LocalTimer in the protocol. The LocalTimer

is intended to be used by higher level protocols and must be managed properly to provide the

desired monotonically increasing value between adjustments. The logical time clock LocalTimer

is incremented once every local clock tick and is reset either when it reaches its maximum

allowed value or when the node has transitioned to the Maintain state and remained in that state

for ResetLocalTimerAt local clock ticks, where ResetLocalTimerAt is constrained by the

following inequality:

∆Precision /γ ≤ ResetLocalTimerAt ≤ PM - ∆Precision /γ (1)

The synchronization precision, denoted ∆∆∆∆Precision, is the guaranteed upper bound on the maximum

separation between the LocalTimers of any two good nodes. The ResetLocalTimerAt can be

given any value in the range specified in inequality (1). However, the value must be the same at

all good nodes. In this equality, the lower bound indicates when all good nodes have transitioned

to the Maintain state and the upper bound indicates when the first node might transition out of

the Maintain state. We choose the earliest such value, ResetLocalTimerAt = ∆Precision /γ, to reset

the LocalTimer of all good nodes. Any value greater than ∆Precision /γ will prolong the

convergence time.

The LocalTimer is also used in assessing the state of the system in the resynchronization

process and is bounded by P·γ. During steady state, the value of LocalTimer is always less than

P·γ.

3.4. Protocol Functions

The functions used in the protocol are described in this section.

The function InvalidSync() is used by the monitors. This function determines whether a

received Sync message is invalid. When this function returns a true value, it indicates that an

unexpected behavior by the corresponding source node has been detected.

The function ConsumeMessage() is used by the monitors. When the host node is in the

Restore state, the monitor invalidates the stored Sync message after it has been kept for one γ.

The Retry() function determines if at least TR other nodes have transitioned out of the

Maintain state, where TR = F +1. When at least TR valid Sync messages from as many nodes have

been received, this function returns a true value indicating that at least one good node has

transitioned to the Restore state. This function is used to transition from the Maintain state to the

Restore state.

The TransitoryConditionsMet() function determines proper timing of the transition from

the Restore state to the Maintain state. This function keeps track of the passage of time by

8

monitoring the StateTimer and determines if the node has been in the Restore state for at least

TDmin. It returns a true value when the transitory conditions are met.

The TimeOutRestore() function asserts a timeout condition when the value of the

StateTimer has reached PR in the Restore state. Such timeout triggers the node to transition to

the Maintain state.

The TimeOutMaintain() function asserts a timeout condition when the value of the

StateTimer has reached PM in the Maintain state. Such timeout triggers the node to reengage in

another round of the resynchronization process.

In addition to the above functions, the state machine utilizes the TimeOutGammaTimer()

function, which is used to regulate node activities at the γ boundaries. It maintains a

GammaTimer by incrementing it once per local clock tick. Once the value of the GammaTimer

reaches γ, it is reset and the function returns a true value.

3.5. Protocol Assumptions

The protocol assumptions are as follows.

1. The cause of transient faults has dissipated.

2. At most F of the nodes remain faulty.

3. All good nodes correctly execute the protocol.

4. The source of a message is uniquely identifiable by the receivers.

5. A message sent by a good node will be received and processed by all other good nodes

within γ, where γ ≥ (D + d).

6. The initial values of the variables of a node can be set to arbitrary values within their

corresponding range. (In an implementation, it is expected that some local mechanism

exists to enforce type consistency for all variables.)

3.6. The Self-Stabilizing Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time references are

with respect to an initial real time t0, where t0 = 0 when the protocol assumptions are satisfied,

and for all t > t0 the system operates within the protocol assumptions.

We define the following symbols:

• C denotes a bound on the maximum convergence time,

• ∆LocalTimer(t), for real time t, is the maximum difference of values of the LocalTimers of

any two good nodes, and

• ∆Precision, the synchronization precision, is the guaranteed upper bound on ∆LocalTimer(t).

The maximum difference in the value of LocalTimer for all pairs of good nodes at time t,

∆LocalTimer(t), is determined by the following equation while accounting for the variations in the

values of the LocalTimeri across all good nodes.

∆LocalTimer(t) = min ((LocalTimermax(t) - LocalTimermin(t)),

(LocalTimermax(t - r) - LocalTimermin(t -r))),

9

where,

 r = ∆Precision /γ,
LocalTimermin(x) = min (LocalTimeri(x)),

LocalTimermax(x) = max (LocalTimeri(x)).

There exist C and ∆Precision such that the following self-stabilization properties hold.

1. Convergence: ∆LocalTimer(C) ≤ ∆Precision

2. Closure: ∀ t ≥ C, ∆LocalTimer(t) ≤ ∆Precision

3. Congruence: ∀ good nodes Ni and Nj, ∀ t ≥ C, LocalTimeri(t) = 0 �

 Ni and Nj are in the Maintain state.

The values of ∆SS,min, C, ∆Precision, and the maximum value for LocalTimer, P, are determined to

be:

∆SS,min = (TDmin·γ + 1),

C = (2PR + PM)·γ,

∆Precision = (3F - 1)·γ - D + ∆Drift,

P = PR + PM,

PM >> PR,

where the amount of drift from the initial precision is given by

∆Drift = ((1+ρ) - 1/(1+ρ)) P · γ.

Note that since P > ½PR and the LocalTimer is reset after reaching P (worst case wraparound), a

trivial solution is not possible.

10

4. The Clock Synchronization Protocol

The protocol presented in Figure 5 consists of a state machine and a set of monitors

which execute once every local oscillator tick.

Figure 5. The self-stabilization protocol.

† In [Mal 2006A, 2006B, 2007, 2008], upon TimeOutRestore(), the node transmitted a Sync

message and remained in the Restore state. The modification introduced here simplifies the

proof argument and does not change the properties of the protocol.

Monitor:

case (incoming message from the corresponding node)

{Resync:
if InvalidSync() then

Invalidate the message

else

Validate and store the message.

 Other:
Do nothing.

} // case

ConsumeMessage()

Node:

case (state of the node)

{Restore:
if TimeOutRestore() then

Reset StateTimer,

Go to Maintain state,
†

else

if TransitoryConditionsMet() then

Reset StateTimer,

Go to Maintain state,

else

Stay in Restore state.

Maintain:
if TimeOutMaintain() or Retry() then

Transmit Sync message,

Reset StateTimer,

Go to Restore state,

elseif TimeOutGammaTimer() then

if (StateTimer = ∆Precision /γ)
Reset LocalTimer.,

Stay in Maintain state,

else

Stay in Maintain state.

} // case

11

Semantics of the pseudo-code

• Indentation is used to show a block of sequential statements.

• ‘,’ is used to separate sequential statements.

• ‘.’ is used to end a statement.

• ‘.,’ is used to mark the end of a statement and at the same time to separate it from other

sequential statements.

5. Proof

The lemmas and theorems are presented in this section. The proof approach is to show

that a system of K ≥ 3F + 1 nodes asynchronously converges from any (un-stabilized) condition

to a condition where all good nodes are in the Restore state and then synchronously transition to

the Maintain state within a guaranteed initial precision (stabilized). The system is then shown to

remain within the timing bounds of the synchronization precision ∆Precision. This idea is depicted

in Figure 6.

Any

State

Restore

State

Maintain

State

Figure 6. The proof idea.

To achieve this goal, first, a good node is shown to transition from the Restore state to the

Maintain state and visa versa infinitely often. Second, the analysis consists of three possible

scenarios where none, some, or all good nodes are in the Maintain state. Third, the good nodes

are shown to transition to the Restore state after the elapse of some time and then synchronously

to the Maintain state. Finally, the system is shown to transition between these two states

infinitely often while preserving the synchronization precision.

Since the oscillator drift rate, ρ, does not play a significant role in the convergence

process, it is omitted from the expressions regarding parameters, constants, equations, and the

proofs of convergence. However, ρ does affect the closure property and is included in

expressions regarding ∆Precision. Omission of ρ does not change the behavior of the protocol or

the validity of the proofs. The effect of ρ is later visited to show that its omission in the

convergence process as well as the resynchronization process is justified.

Throughout the proofs, the protocol assumptions apply and unless stated otherwise, all

references to the Sync messages are with respect to valid Sync messages.

A node behaves properly if it correctly executes the protocol.

12

Lemma MaintainWithinPR – A good node in the Restore state transitions to the Maintain state

within at most PR.

Proof – It follows from the protocol that a node in the Restore state will transition to the

Maintain state either after meeting the transitory conditions as expressed in function

TransitoryConditionsMet(), or because of a resynchronization timeout, as expressed in function

TimeOutRestore(). Therefore, a node transitions to the Maintain state within at most PR. ♦

Lemma RestoreWithinPM – A good node in the Maintain state transitions to the Restore state

within at most PM.

Proof – It follows from the protocol that a node in the Maintain state will transition to the

Restore state either because of a resynchronization timeout, as expressed in function

TimeOutMaintain(), or when at least TR other nodes have transitioned out of the Maintain state,

as expressed in function Retry(). Since the longest such time interval is bounded by the timeout,

the node transitions to the Restore state and transmits a Sync message in at most PM. ♦

Lemma ShortestRestore – The minimum duration of the Restore state is TDmin·γ.

Proof – From the definition of the transitory conditions, a node has to remain in the Restore state

for at least TDmin·γ. It also follows that if no valid Sync messages arrive during last γ, the node

will transition to the Maintain state at the end of this time interval. Hence, the minimum

duration of the Restore state is TDmin·γ. ♦

Lemma DeltaSSmin – The minimum time interval between any two consecutive Sync messages

from a good node is ∆SS,min = TDmin·γ + 1 clock ticks.

Proof – A node transmits a Sync message when it enters the Restore state. The amount of time

the node stays in the Maintain state is defined as ∆MR and depicted in Figure 7. From Lemma

ShortestRestore the minimum duration of the Restore state is TDmin·γ. The time separation

between any two consecutive Sync messages from a good node is given by ∆SS ≥ TDmin·γ + ∆MR

clock ticks. Since the message processing time is non-zero, ∆MR ≥ 1 clock tick, and therefore,

∆SS,min = TDmin·γ + 1 clock ticks. ♦

time

γ

Maintain

Restore

∆MR
Figure 7. Shortest Maintain state.

All good nodes validate a Sync message from a good node if the time interval between

consecutive messages, i.e., ∆SS,min, is not violated. By Lemma DeltaSSmin, consecutive Sync

messages from a good node are always more than TDmin apart. Therefore, a message transmitted

by a good node after ∆SS,min clock ticks from a random start is guaranteed to be valid. If a node is

in the Restore state, from lemma MaintainWithinPR, it will transition to the Maintain state within

13

PR. For now, let PR > 6F. We will determine the minimum value for PR later in this report.

Since PR is larger than ∆SS,min, after PR from a random start, all Sync messages from a good node

are at least ∆SS,min apart and meet the timing requirements at the receiving good nodes.

Therefore, the pre-convergence conditions are defined as:

1. Time has elapsed for at least PR from a random start, i.e., t ≥ t0 +PR.

2. All Sync messages from the good nodes are valid at the receiving good nodes (Lemma

DeltaSSmin).

Thus, for the following lemmas and theorems, the state of the system is considered after

the pre-convergence conditions are met. At this point, the system is in one of the following three

states.

1. None of the good nodes are in the Maintain state

2. All good nodes are in the Maintain state

3. Some of the good nodes are in the Maintain state

The approach for the proof is depicted in Figure 8. The system is shown to converge

from any state and upon convergence maintain the closure property. The figure is partitioned via

two dashed lines into three regions. The left region depicts the pre-convergence conditions and

in conjunction with the middle region they depict the state of the system in the convergence

process. The right region depicts the system operating in steady state and maintaining the

synchronization precision. In this figure, the states All, Some, and None represent the three

possible cases from a random start when the pre-convergence conditions are met. The

propositions associated with each edge indicate that a transition from one state to another may

eventually take place.

ClosureAllMaintain,

LocalTimerWithinPrecision

Converge

None

Maintain

ConvergeSomeMaintain

ConvergeAllMaintain

ClosureConvergence

PR PM + PR PActual

Pre-Convergence

Some

All

NoneAny

State

∆Precision

Figure 8. Approach for proof.

14

Theorem ConvergeNoneMaintain – A system of K ≥ 3F + 1 nodes satisfying the pre-

convergence conditions, where none of the good nodes are in the Maintain state and for all good

nodes, StateTimer(t) < PR - 3F - 1, will always converge to within an initial precision.

Proof – Since none of the good nodes are in the Maintain state, they are in the Restore state

because they have not met the transitory conditions. We consider the system at the point of

transmission of a Sync message by the last good node in the Maintain state. After the last good

node transitions to the Restore state, transitioning of the good nodes back to the Maintain state

can further be delayed only upon receiving valid Sync messages from the faulty nodes. Since

there are up to F faulty nodes in the system and if their valid Sync messages are γ apart from

each other (worst case due to transitory condition 2), all good nodes will transition to the

Maintain state within at most TDmin + F = 3F (assuming F > 0) of the last good node’s Sync

message. Since all good nodes are in the Restore state, after receiving F valid Sync messages

from as many faulty nodes, any subsequent Sync messages from the faulty nodes will arrive

within TDmin and, thus, will be deemed invalid. As a result, for all good nodes, StateTimer(t) <

PR - 1 and they will transition to the Maintain state within the next γ without timing out.

NLM

NEM

Maintain

Restore

Maintain
Restore

D

LM

EM

γ

γ γ γ

γ

γ γ

γ

tEM

tLM

Figure 9. EM and LM for all F ≥ 0.

The earliest a good node transitions to the Maintain state (EM) is at tEM after it has

remained in the Restore state for the minimum duration of the transitory delay (transitory

condition 1) and one γ after receiving the last Sync message from the last good node that

transitioned to the Restore state (transitory condition 2). Since ∆SS > TDmin·γ, consecutive valid

Sync messages from a faulty node are more than TDmin apart. Therefore, locally there will

always be a gap of one γ interval without a valid Sync message. As a result, a good node will

meet the transitory conditions and transition to the Maintain state.

As depicted in Figure 9, since the earliest the last Sync message can arrive at NEM node is

D ticks after the transmission of the last valid Sync message, therefore, EM = D + γ. The latest a

good node transitions to the Maintain state (LM) is at tLM after remaining in the Restore state for

TDmin + F, i.e., after receiving valid Sync messages from all faulty nodes. In this case, the tEM

happens at the time the last good node transmits the Sync message, i.e., at tLM since its transition

to the Restore state. So, LM = (TDmin + F) ·γ = 3F·γ. Thus, the time difference between the NLM

and NEM is given by:

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM.

∆LMEM = LM - EM = 3F·γ - (D + γ) = (3F - 1)·γ - D.

15

Therefore, such a system always converges to within the initial precision of ∆LMEM. ♦

The synchronization precision ∆Precision is the maximum time difference between the

LocalTimer of any two good nodes when the system is synchronized. It is the guaranteed

precision of the protocol. From theorem ConvergeNoneMaintain, the initial guaranteed

precision after the resynchronization is the maximum value of ∆LMEM. After the initial synchrony

the LocalTimers of the good nodes will deviate from the initial precision due to the drift rate of

the oscillators. This phenomenon is depicted in Figure 10.

∆LMEM ∆Precision

0 P

0 P

Fast

Slow

Figure 10. The synchronization precision.

The guaranteed synchronization precision ∆Precision after an elapsed time of P is bounded

by,

∆Precision = ∆LMEM + ∆Drift,

where, the amount of drift from the initial precision is given by

∆Drift = ((1+ρ) - 1/(1+ρ)) P · γ,

where, P = PR + PM. The factors (1+ρ) and 1/(1+ρ) are bounds for the drift of the slowest and

fastest nodes in the system, respectively. Therefore,

∆Precision = (3F - 1)·γ - D + ∆Drift.

Theorem ConvergeAllMaintain – A system of K ≥ 3F + 1 nodes satisfying the pre-convergence

conditions, where all good nodes are in the Maintain state, will always converge.

Proof – Since no assumptions are made about the initial relative timing of the good nodes,

∆LocalTimer(t) > ∆Precision is possible. It follows from the protocol and lemma RestoreWithinPM that

a good node will transition to the Restore state and transmit a Sync message within PM. A good

node in the Maintain state keeps track of other nodes that have transitioned to the Restore state.

We consider the system after (TR - 1) good nodes have transitioned to the Restore state. There

are two possible scenarios. In the first scenario, the first (TR - 1) good nodes that transitioned to

the Restore state remain in the Restore state until the TR
th

 good node transitions to the Restore

state. In the second scenario, some (or all) of the first (TR - 1) good nodes that had transitioned

to the Restore state remain in the Restore state while others (or all) transition back to the

Maintain state before the TR
th

 good node transitions to the Restore state. In either case, after the

TR
th

 good node transitions to the Restore state, the remaining good nodes in the Maintain state, at

least F, receive TR valid Sync messages from as many good nodes, and transmit Sync messages

as they transition to the Restore state within the next γ.

16

At this point, for the first (TR - 1) good nodes that remained in the Restore state,

StateTimer(t) ≤ (TDmin - 1) + F + TR = 4F < PR - F - 1. The longest duration is 4F > TDmin, thus,

such a node has met the first of the transitory conditions. Those good nodes of the first (TR - 1)

good nodes that had transitioned to the Restore state and then back to the Maintain state will now

receive at least (TR + 1) Sync messages within 2γ from as many good nodes, will transmit Sync

messages, and transition to the Restore state within the next γ. These nodes are within 2γ of the

recently transitioned good nodes, in particular the TR
th

 good node, with StateTimer(t) ≤ 2 < PR -

3F - 1, and none of them has met the transitory conditions. Therefore, the system consists of all

good nodes in the Restore state with various values for their StateTimers. At one end of the

spectrum, some good nodes have not met the transitory conditions with StateTimer(t) < PR - 3F -

1. In a similar argument as in theorem ConvergeNoneMaintain, since there are up to F faulty

nodes in the system and if the valid Sync messages are γ apart from each other (worst case due

to transitory condition 2), these good nodes will transition to the Maintain state within at most

TDmin + F = 3F of the last good node’s Sync message without timing out. Therefore, LM =

(TDmin + F) ·γ = 3F·γ.

At the other end of the spectrum, some good nodes have met the first of the transitory

conditions with StateTimer(t) < PR - F - 1. Since there are up to F faulty nodes in the system and

if the valid Sync messages are γ apart from each other, these good nodes will transition to the

Maintain state within the next F of the last good node’s Sync message without timing out.

In a similar argument as in theorem ConvergeNoneMaintain, EM = D + γ, and the time

difference between the NLM and NEM is given by

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM.

∆LMEM = LM - EM = 3F·γ - (D + γ) = (3F - 1)·γ - D.

Therefore, such a system always converges to within the initial precision of ∆LMEM. ♦

The theorem ConvergeSomeMaintain does not make any assumptions about the initial

values of the StateTimers of the good nodes. Therefore, its proof encompasses the proof of

theorem ConvergeNoneMaintain. The proof is more complex and we postpone it until

subsequent sections where we first address the special cases of F = 1 and F = 0, and then discuss

the general case of F > 1. In the meantime, we continue the proof with lemmas and theorems

that apply to the general case of F > 0, 0 ≤ ρ << 1, and d ≥ 0.

Lemma PrecisionLargerThanTDmin – For F > 1, ∆Precision > TDmin·γ.

Proof –

∆Precision > TDmin·γ

(3F - 1)·γ - D + ∆Drift > 2F·γ

(F - 1)·γ + ∆Drift > D.

Since γ > D, even if ∆Drift = 0, the above inequality reduces to

(F - 1)·γ > D.

17

Thus, ∆Precision > TDmin·γ. ♦

Corollary PrecisionTDminF1 – For F = 1, ∆Precision > TDmin·γ if ∆Drift > D.

Proof –

∆Precision > TDmin·γ

(3F - 1)·γ - D + ∆Drift > 2F·γ

(F - 1)·γ + ∆Drift > D

∆Drift > D. ♦

It follows from Lemma PrecisionLargerThanTDmin and Corollary PrecisionTDminF1

that depending on the amount of drift ∆Drift, ∆Precision can potentially exceed TDmin, i.e., ∆Precision >

TDmin·γ, and this in turn can result in a disruption in the normal operation of the system. In

particular and as depicted in Figure 10, in a synchronized system of K ≥ 3F + 1 nodes with an

initial precision of ∆LMEM, after elapse of some time, the nodes can drift apart such that ∆Precision >

∆LMEM. Two such cases are depicted in Figures 11 and 12, where the corresponding activities of

the StateTimer and LocalTimer of NFast are also depicted during the resynchronization process.

In Figure 11, the fast nodes, NFast, and the slow nodes, NSlow, are less than ∆Precision apart, i.e.,

∆LocalTimer(t) < ∆Precision. In Figure 12, NFast and NSlow are ∆Precision apart from each other, i.e.,

∆LocalTimer(t) = ∆Precision.

If NFast consists of at least TR good nodes, then as these nodes transition to the Restore

state, the remaining good nodes, NSlow, will follow before timing out as depicted in Figure 11.

On the other hand, as depicted in Figure 12, if NFast consists of up to (TR - 1) good nodes, as they

transition to the Restore state, the remaining good nodes, NSlow, might not follow. In the

meantime, assuming ∆Precision > TDmin·γ and in the absence of faulty messages, the NFast nodes

will meet the transitory conditions and transition to the Maintain state. As the NSlow nodes

transition to the Restore state, the NFast nodes will follow and once again transition to the Restore

state. It follows from theorem ConvergeNoneMaintain that such a system always converges.

Since a minority of good nodes temporarily diverge but then converge with the rest of the good

nodes, this phenomenon is referred to as momentary-divergence.

During steady state and resynchronization process, in the absence of a momentary-

divergence, the StateTimer oscillates twice as depicted in Figure 11. However, in the presence of

a momentary-divergence, the StateTimer oscillates 4 times as depicted in Figure 12. Proper

resetting of the LocalTimer during steady state should guarantee that the LocalTimer remains

immune to the StateTimer oscillations.

18

NFast

NSlow

Maintain

Restore

Maintain

Restore

∆Precision ∆LMEM

LocalTimer

StateTimer

NFast

∆Precision/γ

Figure 11. Activities of NFast during the resynchronization process, ∆LocalTimer(t) < ∆Precision.

NFast

NSlow

Maintain

Restore

Maintain
Restore

∆Precision

TDmin

∆LMEM

LocalTimer

StateTimer

NFast

∆Precision/γ

Figure 12. Activities of NFast during the resynchronization process, ∆LocalTimer(t) = ∆Precision.

19

Theorem ClosureAllMaintain – A system of K ≥ 3F + 1 nodes, where all good nodes have

converged such that ∆LocalTimer(t) ≤ ∆Precision and all are in the Maintain state, shall remain within

the synchronization precision ∆Precision.

Proof – It follows from the protocol and lemma RestoreWithinPM that a good node will transition

to the Restore state within PM. Since all good nodes are in the Maintain state, as they transmit

Sync messages, their transitions to the Restore state are recorded by other good nodes. Since the

system is synchronized, the good nodes will transition to the Restore state within ∆Precision of each

other. The proof proceeds in the following two parts.

If ∆Precision < TDmin·γ, all good nodes will transition to the Restore state before any of them

transitions back to the Maintain state. In this case, for all good nodes, StateTimer(t) < PR - 3F -

1, and none of them has met the transitory conditions. It follows from theorem

ConvergeNoneMaintain that such a system always converges to within the initial precision of

∆LMEM.

On the other hand, if ∆Precision ≥ TDmin·γ, it follows from Lemma

PrecisionLargerThanTDmin that some good nodes can potentially transition to the Restore state

and then to the Maintain state before all good nodes transition to the Restore state. In other

words, the system can experience a momentary-divergence. Similar to the proof of theorem

ConvergeAllMaintain, we consider the system after (TR - 1) good nodes have transitioned to the

Restore state. There are two possible scenarios. In the first scenario, the first (TR - 1) good

nodes that transitioned to the Restore state remain in the Restore state until the TR
th

 good node

transitions to the Restore state. In the second scenario, some (or all) of the first (TR - 1) good

nodes that had transitioned to the Restore state remain in the Restore state while others (or all)

transition back to the Maintain state before the TR
th

 good node transitions to the Restore state. In

either case, after the TR
th

 good node transitions to the Restore state, the remaining good nodes in

the Maintain state, at least F, receive TR valid Sync messages from as many good nodes, and

transmit Sync messages as they transition to the Restore state within the next γ.

At this point, for the first (TR - 1) good nodes that remained in the Restore state,

StateTimer(t) ≤ (TDmin - 1) + F + TR = 4F < PR - F - 1. The longest duration is 4F > TDmin, thus,

such a node has met the first of the transitory conditions. Those good nodes of the first (TR - 1)

good nodes that had transitioned to the Restore state and then back to the Maintain state will now

receive at least (TR + 1) Sync messages within 2γ from as many good nodes, will transmit Sync

messages, and transition to the Restore state within the next γ. These nodes are within 2γ of the

recently transitioned good nodes, in particular the TR
th

 good node, with StateTimer(t) ≤ 2 < PR -

3F - 1, and none of them has met the transitory conditions. Therefore, the system consists of all

good nodes in the Restore state with various values for their StateTimers. At one end of the

spectrum, some good nodes have not met the transitory conditions with StateTimer(t) < PR - 3F -

1. In a similar argument as in theorem ConvergeNoneMaintain, since there are up to F faulty

nodes in the system and if the valid Sync messages are γ apart from each other (worst case due

to transitory condition 2), these good nodes will transition to the Maintain state within at most

TDmin + F = 3F of the last good node’s Sync message without timing out. Therefore, LM =

(TDmin + F) ·γ = 3F·γ.

20

At the other end of the spectrum, some good nodes have met the first of the transitory

conditions with StateTimer(t) < PR - F - 1. Since there are up to F faulty nodes in the system and

if the valid Sync messages are γ apart from each other, these good nodes will transition to the

Maintain state within the next F of the last good node’s Sync message without timing out.

Once again, in a similar argument as in theorem ConvergeNoneMaintain, EM = D + γ,

and the time difference between the NLM and NEM is given by

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM.

∆LMEM = LM - EM = 3F·γ - (D + γ) = (3F - 1)·γ - D.

Therefore, such a system always converges to within the initial precision of ∆LMEM. ♦

Lemma StateTimerLessThanPrecision – During the resynchronization process, in steady state,

the maximum value of the StateTimer is always less than the synchronization precision ∆Precision.

Proof – From the protocol, the StateTimer is reset when the node transitions to either the Restore

state or the Maintain state. It follows from the proof of theorem ClosureAllMaintain that during

momentary-divergence some good nodes transition to the Restore state and then back to the

Maintain state before others transition to the Restore state. At time t when the last good node

has transitioned to the Restore state, the value of the StateTimer of earlier nodes that are in the

Maintain state does not exceed ∆Precision. For these good nodes, StateTimer(t)·γ = ∆Precision -

TDmin·γ + (D + d).

Since γ ≥ D + d,

StateTimer(t)·γ ≤ ∆Precision - TDmin·γ + γ,

StateTimer(t)·γ ≤ ∆Precision - (2F - 1)·γ,

and for F > 0,

StateTimer(t)·γ < ∆Precision. ♦

Theorem Congruence – For all good nodes Ni and Nj and for t ≥ C, LocalTimeri(t) = 0 implies

that Ni and Nj are in the Maintain state.

Proof – From theorem ConvergeNoneMaintain it follows that at the point of convergence when

all good nodes have just transitioned to the Maintain state, the initial precision is ∆LMEM. It

follows from Lemma StateTimerLessThanPrecision that, during the resynchronization process,

in steady state, even when the system experiences a momentary-divergence, StateTimer(t)·γ <

∆Precision for all good nodes. Therefore, in steady state, StateTimer can reach ∆Precision /γ only

when the node has transitioned and remained in the Maintain state. Thus, when StateTimerEM(t)

= ∆Precision /γ, i.e., when NEM resets its LocalTimer, NLM, and hence, all good nodes are in the

Maintain state. ♦

Lemma MaxTransitoryDelay – During steady state, the maximum time a good node stays in the

Restore state is given by TDmax = ∆Precision + (F + 2)·γ.

21

Proof – Let a good node, N1, be the first to transition to the Restore state. Let N1 remain in that

state until all other good nodes transition to the Restore state. In a synchronized system, the

maximum duration of this time is ∆Precision. After the last good node transitions to the Restore

state, N1 receives another valid Sync message and is forced to remain in the Restore state at the

next γ, according to the transitory conditions. At this point, let this node remain in the Restore

state due to receiving additional valid Sync messages from all faulty nodes, one per γ. At the

next γ, following the last valid Sync message from the last faulty node, no valid Sync messages

will be received, there will be a gap of one γ interval without a valid Sync message, and the node

will transition to the Maintain state. Therefore, during steady state, the maximum duration of the

transitory delay, TDmax, is given by TDmax = ∆Precision + γ + F·γ + γ = ∆Precision + (F + 2)·γ. ♦

This protocol is intended to be used as the fundamental mechanism in bringing and

maintaining a system within a known time synchronization precision. In particular, the

LocalTimer is intended to be used by higher level mechanisms. Therefore, proper management

of the LocalTimer is one of the guaranteed services provided by the protocol. The logical time

clock LocalTimer is incremented once every local clock tick and is reset either when it reaches

its maximum allowed value or when the node has transitioned to the Maintain state and remained

in that state for ResetLocalTimerAt local clock ticks, where ResetLocalTimerAt is constrained by

inequality (1) as described in Section 3.3. Therefore, PM and PR have to be sufficiently large to

allow time to reset the LocalTimer after the node transitions to the Maintain state. Specifically,

it follows from Figure 12 and Lemma MaxTransitoryDelay that PR > (TDmax + ∆Precision) /γ.

PR > (TDmax + ∆Precision) /γ
PR > 2 ∆Precision /γ + (F + 2)

PR > 2 (3F - 1) + 2 (∆Drift - D) /γ + (F + 2)

PR > 7F + 1 + 2 (∆Drift - D) /γ . (2)

If 0 ≤ ∆Drift < D,

PR > 7F - 1.

If ∆Drift = D,

PR > 7F + 1.

If 2D > ∆Drift > D,

PR > 7F + 3.

In general, for all F > 0 and K ≥ 3F + 1, and to prevent early timeout, PR is constrained

by (2). The maximum duration for the Maintain state, PM, is typically much larger than PR.

Thus, PM is constrained by PM ≥ PR.

Lemma MaxResyncDuration – During steady state, the maximum resynchronization duration,

MRD, is given by MRD = 6F·γ + ∆Drift - D.

Proof – It follows from the first part of theorem ClosureAllMaintain that the time interval from

when the first good node transitions to the Restore state until all good nodes transition to the

22

Maintain state is given by resynchronization duration (RD), RD = ∆Precision + transmission delay

of last message + LM, where LM = 3F·γ. So,

∆Precision + D + LM ≤ RD ≤ ∆Precision + γ + LM

((3F - 1)·γ - D + ∆Drift) + D + 3F·γ ≤ RD ≤ ((3F - 1)·γ - D + ∆Drift) + γ + 3F·γ

(6F - 1)·γ + ∆Drift ≤ RD ≤ 6F·γ + ∆Drift - D.

Therefore, the maximum value is

MRD = 6F·γ + ∆Drift - D. ♦

If the duration of the resynchronization process is small relative to the P, the oscillator

drift rate, ρ, does not play a significant role in the resynchronization process. It follows from

Lemma MaxResyncDuration that MRD < PR for all F ≥ 0 and ρ ≥ 0. Since typically PM >> PR

and MRD << P, ρ’s omission from the expressions regarding parameters, constants, and

equations in the proof of the resynchronization process is justified.

Theorem LocalTimerWithinPrecision – During steady state, in a system of K ≥ 3F + 1 nodes,

∆LocalTimer(t) ≤ ∆Precision.

Proof – It follows from Lemma StateTimerLessThanPrecision that, during the resynchronization

process, in steady state, even when the system experiences a momentary-divergence, the

StateTimer never reaches ∆Precision /γ and thus the LocalTimer will not be reset during this

process. On the other hand, it follows from theorem ClosureAllMaintain that once synchronized

the good nodes will remain within ∆Precision of each other. Thus, during steady state, ∆LocalTimer(t)

≤ ∆Precision. ♦

Lemma SyncWithinP – A good node transmits a Sync message within at most (PR + PM).

Proof – From lemma MaintainWithinPR, a node in the Restore state will time out within PR. So,

if a node transitions from the Restore state to the Maintain state before it times out, it had

remained in the Restore state for at most (PR - 1). From lemma RestoreWithinPM, the node will

time out within PM. It follows from the protocol that a good node transmits a Sync message upon

entering the Restore state. Therefore, within at most PR + PM = P a node transmits a Sync

message. ♦

The proof proceeds with the following three parts: F = 1, F = 0, and F > 1. The cases of

F = 1 and F = 0 are special cases, and the case of F > 1 is the general case.

5.1. Proof For F = 1

The remainder of the proof for the case of F = 1 is presented in this section. We first

present the proof for the ideal case where the logical timers of the good nodes are in-phase with

respect to each other and the network imprecision and the oscillator drift are zero, i.e., d = 0 and

∆Drift = 0. We then expand the proof to a realizable system in subsequent subsections.

23

5.1.1. In-Phase Case

In this scenario, the local oscillators and logical timers of all good nodes are assumed to

be in-phase with each other, and the network imprecision and the drift are zero. Since ∆Drift = 0,

local oscillators and logical timers remain in-phase with each other. This idea is depicted in

Figure 13 where γ = 2.

Oscillator

Logical

Timer 1

Logical

Timer 2

2 3

7 8

Figure 13. Ideal case, transitions of logical timers are in-phase.

Theorem ConvergeSomeMaintainF1K4 – A system of F=1 and K=3F+1=4 nodes satisfying the

pre-convergence conditions with some of the good nodes in the Maintain state will always

converge.

Proof – The good nodes in the Restore state are there because they have not met the transitory

conditions. There are three possible scenarios for the system.

Case 1 - All good nodes in the Restore state transition to the Maintain state before the nodes in

the Maintain state transition to the Restore state. It follows from theorem ConvergeAllMaintain

that such a system always converges to within ∆LMEM.

Case 2 - All good nodes in the Maintain state transition to the Restore state at least (3F - 1)·γ

before the nodes in the Restore state transition to the Maintain state. It follows from theorem

ConvergeNoneMaintain that such a system always converges.

Case 3 – Some good nodes transition in and out of the Restore state while others transition in and

out of the Maintain state. This scenario encompasses those that are not covered in case 2 above.

Since there are three good nodes, let’s consider the system where N1 transitions to the Restore

state while N2 transitions to the Maintain state. Therefore, N2 and N3 receive a valid Sync

message within the next γ. Now, let’s consider the following two sub-cases.

Case 3.1 – N3 is in the Maintain state. After either N2 or N3 transitions to the Restore state, the

other node receives a total of TR valid Sync messages and transitions to the Restore state. Recall

that receiving a valid Sync message prevents a node from transitioning to the Maintain state

(transitory condition 2). In the mean time, if N1 had remained in the Restore state due to not

meeting the transitory conditions, then for all good nodes, StateTimer(t) < PR - 3F - 1, and it

follows from theorem ConvergeNoneMaintain that such a system always converges. If N1 had

transitioned to the Maintain state before the Sync message from N2 and N3 arrive, N1 receives TR

valid Sync messages and returns to the Restore state. Note that the transitory conditions prevent

24

N1 from transitioning to the Maintain state while N2 and N3 transition to the Restore state. Once

again, at this point and for all good nodes, StateTimer(t) < PR - 3F - 1, and it follows from

theorem ConvergeNoneMaintain that such a system always converges.

Table 1. Activities of a system of K = 4 nodes and F = 1.

Time Node 1 Node 2 Node 3

t0+PR -2
 ?

????
 � 0

, Restore

 ?

 � 0

, Maintain (PR - 2)

????

t0+PR -1 1

 1
x---

 (PR - 1)
x---

t0+PR
 2

---x
 2

x--x
 � 0

, Restore PR

 � 0

, Restore

 Due to TimeOutRestore()

t0+PR+1
 3

-x--
 1

 1

-x-x
 � 0

, Restore

t0+PR+2
 4

--x-
 2

--x-

 1

t0+PR+3
 5

---x
 3

 � 0

, Maintain 2

---x

t0+PR+4
 6

� 0

, Maintain

 1

 3

 � 0

, Maintain

t0+PR+5
 1

---x
 2

 1

Case 3.2 – N3 is in the Restore state. For this scenario, the system is analyzed at about PR from t0

on the time axis (see pre-convergence conditions) when N3 is about to time out. The node

activities are described with the help of the above table.

Table 1 is an execution trace of a system with parameters K = 4, F = 1, with no clock

drift, ∆Drift = 0. Nodes 1, 2, and 3 are good nodes, and node 4 is the faulty one. The table has

four columns, one for time reference and one for each good node. A row depicts activities of all

good nodes at the corresponding time. Cell contents for the node columns consist of a number

(corresponding to the value of its StateTimer) representing the internal status of a node with the

stored messages as superscripts, and a description of the possible action by the node. Symbol ‘x’

represents a received valid Sync message and symbol ‘–’ represents no valid Sync message

received from the corresponding node. The position of superscripts, 1 thru 4, corresponds to the

source of the message.

At (t0+PR -2) in the table, N1 transitions to the Restore state while N2 transitions to the

Maintain state and N3 is in the Restore state. There are two possible cases regarding N3. If N3

times out within the next γ it will transition to the Maintain state and receive and retain the Sync

message from N1. It follows from Case 3.1 above that this system always converges. This is a

trivial case and not shown in the above table.

If N3 times out after consuming the Sync message from N1, i.e., at (t0+PR) as listed in the

above table, in order to keep N1 in the Restore state and prevent the system from synchronizing,

N1 has to receive a new valid Sync message. If N1 receives a valid Sync message from another

good node, it will have to be from N3 and it follows from Case 3.1 above that this system always

converges. So, let N1 receive a valid Sync message from the faulty node. At the next γ, i.e., at

(t0+PR+1), N1 must receive a message from another good node. Let that message come from N2,

i.e., N2 transitions to the Restore state due to receiving a message from the faulty node at (t0+PR).

Therefore, at (t0+PR+1), N3 and N1 will have received one new valid Sync message and N1 will

have to stay in the Restore state for the next γ. To keep N1 in the Restore state and prevent the

25

system from synchronizing, N1 has to receive a new valid Sync message every γ. To meet the

∆SS,min timing requirement, the next message has to be from a good node, thus at (t0+PR+1), N3

has to transition to the Restore state. In this case all good nodes will be in the Restore state with

StateTimer at two extremes; StateTimer(t) ≤ 3 < (PR - 1) and N1 and N2 have met the first of

transitory conditions, and StateTimer(t) = 0 < (PR - 3F - 1) and N3 has not met the first of the

transitory conditions. In a similar argument as in the proof of theorems ConvergeNoneMaintain

and ConvergeAllMaintain these nodes will not time out and such a system always converges to

within the initial precision of ∆LMEM. Otherwise, at (t0+PR+1), N1 and N2 will transition to the

Maintain state and the system consists of TR good nodes in the Maintain state. It follows from

Case 3.1 above that this system always converges. ♦

Theorem ConvergeSomeMaintainF1KGT4 – A system of F=1 and K >3F+1 nodes, satisfying

the pre-convergence conditions with some good nodes in the Maintain state, will always

converge.

This case is a generalization of theorem ConvergeSomeMaintainF1K4 for F > K. In a

similar argument, such a system always converges. We do not provide the details of the proof of

this theorem here but would like to point out that the system consists of three sets of good nodes,

S1, S2, and S3, where Ki = | Si |, i = 1, 2, 3. Since K > 3F + 1, G > 2F + 1 and at least one set, S1,

has K1 ≥ TR. In other words, the presence of the additional good nodes expedites the

convergence process.

Theorem ConvergeSomeMaintainF1 – A system of F=1 and K ≥ 3F+1 nodes, satisfying the

pre-convergence conditions with some good nodes in the Maintain state will always converge.

Proof – It follows from theorems ConvergeSomeMaintainF1K4 and

ConvergeSomeMaintainF1KGT4 that such a system always converges. ♦

Theorem StabilizeF1 – A system of F = 1 and K ≥ 3F + 1 nodes self-stabilizes from any

random state after a finite amount of time.

Proof – The proof of this theorem consists of proving the convergence, closure, and congruence

properties as defined in section 3.6. The approach for the proof is to show that a system of K ≥

3F + 1 nodes converges from any condition to a state where all good nodes are in the Restore

state and then synchronously transition to the Maintain state within a guaranteed initial precision.

The system is then shown to remain within the timing bounds of the synchronization precision of

∆Precision. This idea is depicted in Figure 6.

The approach for the proof is depicted in Figure 8. The system is shown to converge

from any state and upon convergence maintain the closure property.

Convergence Property – ∆LocalTimer(C) ≤ ∆Precision.

The proof is done in the following three cases.

Case 1 – None of the good nodes are in the Maintain state.

26

For all good nodes, if StateTimer(t) < PR - 3F - 1, it follows from theorem

ConvergeNoneMaintain that such system always converges. Otherwise, it follows from

theorem ConvergeSomeMaintainF1 that such system always converges.

Case 2 – All good nodes are in the Maintain state.

It follows from theorem ConvergeAllMaintain that such system always converges.

Case 3 – Some of the good nodes are in the Maintain state.

It follows from theorem ConvergeSomeMaintainF1 that such system always converges.

Closure Property – ∀ t ≥ C, ∆LocalTimer(t) ≤ ∆Precision.

It follows from theorems ClosureAllMaintain and LocalTimerWithinPrecision that upon

convergence, such system always remains stabilized and ∆LocalTimer(t) ≤ ∆Precision for t ≥ C.

Congruence Property – ∀ good nodes Ni and Nj, ∀ t ≥ C, LocalTimeri(t) = 0 � Ni and Nj in the

Maintain state.

It follows from theorem Congruence that upon convergence, this property is satisfied.

Therefore, such system always self-stabilizes. ♦

Since this protocol self-stabilizes from any state, initialization and/or reintegration are not

treated as special cases. Therefore, a reintegrating node will always be admitted to participate in

the self-stabilization process as soon as it becomes active.

Theorem ConvergeTime – A system of K ≥ 3F + 1 nodes and F ≤ 1 converges from any random

state to a stabilized state within C = (2PR + PM)·γ.

Proof – In order for the system to stabilize, all good nodes must undergo the resynchronization

process. It follows from Lemma SyncWithinP that a good node initiates this process by

transmitting a Sync message within at most P. It follows from theorem StabilizeF1 that the

system always converges. Also, it follows from that theorem and Lemma MaxResyncDuration

that the system converges and all good nodes will transition to the Maintain state at the end of

the resynchronization process and within the next PR. Therefore, the system converges within at

most ((PR + PM) + PR)·γ and C = (2PR + PM)·γ. ♦

Since PActual < P and typically PM >> PR, the maximum convergence time, C, can be

approximated to C ≅ P. Therefore, C is a linear function of P and, similarly, of PM.

5.1.2. Out-of-Phase Case

The out-of-phase scenario is defined as a system where the logical timers of the good

nodes are out of phase with each other, but the local oscillators are in-phase, and the network

imprecision and the oscillator drift are also zero, i.e., d = 0 and ∆Drift = 0. In this scenario, since

∆Drift = 0, the local oscillators of all good nodes remain in-phase with each other. This idea is

depicted in the following figure where γ = 2.

27

Oscillator

Logical

Timer 1

Logical

Timer 2

2 3

7 8

Figure 14. Ideal case, transition of logical timers are out-of-phase.

In this scenario, d = 0 and ∆Drift = 0, therefore, γ = D. We do not provide a paper-and-

pencil proof of the out-of-phase scenario here. The proof follows the same line of reasoning as

above.

A system of K = 4 nodes for γ = 1, 2, 3, and 4 were model checked and proven to self-

stabilize in the presence of one arbitrary faulty node as expected. Details of the model checking

effort for this scenario will be the subject of a subsequent report.

5.1.3. A Realizable System

A realizable system is defined as a system where the logical timers and the local

oscillators of the good nodes have unconstrained relative phases, and the network imprecision

and the oscillator drift are not constrained to be zero, i.e., d ≥ 0 and ∆Drift ≥ 0. In this scenario, no

assumptions are made about the relative phase difference of local oscillators and logical timers of

the good nodes. The local oscillators and logical timers of all good nodes may drift apart with

respect to each other. Here, we constrain a realizable system such that 0 ≤ d ≤ 1. For such a

system we also constrain D ≥ 1. Therefore, γ ≥ 2. A paper-and-pencil proof for this scenario is

more complex and is left for future work.

Nevertheless, we focus our attention here on the model checking results and report on the

issues associated with mapping this protocol to a real system. Since for model checking

purposes d is treated as an integer [Mal 2007, 2008], its value is randomly selected to be either 0

or 1 for a given transmission of a Sync message. Several such systems with d = {0, 1}, D = 1, 2,

or 3, and γ = 2, 3, or 4, respectively, were model checked and proven to self-stabilize in the

presence of one arbitrary faulty node. Details of the model checking of this scenario will be the

subject of a subsequent report. The results reveal that for such a realizable system to self-

stabilize two additional good nodes are needed. As shown in the following counterexample, a

system of K = 4, d = {0, 1}, D = 1, and γ = 2 does not self-stabilize.

28

Table 2. Counterexample for a system of K = 4 nodes and F = 1.

Time Node 1 Node 2 Node 3
t + 0

 1

--xx
 � 0

--xx
, Restore

 4

--x-
 1

t + 1

 0
--xx

 4

 � 0

, Maintain 1

t + 2

 1

 0
x---

 2
x---

t + 3

 1

 1
x---

 2
x---

t + 4

 2

� 0

, Maintain

 1
x--x

� 0
x--x

, Restore

 3
---x

t + 5

 0
-x--

 0
x--x

 3
-x-x

t + 6

 1
-x-x

 � 0
-x-x

, Restore

 1

 4
-x--

t + 7

 0
-x-x

 1

 4

� 0

, Maintain

t + 8

 1

 2
x---

 0
x---

t + 9 1

 2
x--x

 1
x---

t + 10 2

� 0

, Maintain

 3
---x

 1
x--x

� 0
x--x

, Restore

t + 11 0
--x-

 3
--x-

 0
x--x

t + 12 1
--xx

 � 0
--xx

, Restore

 4
--x-

 1

There are two solutions for the above system: either the Byzantine-faulty node is

restricted to influence the nodes at greater intervals, or additional good nodes are added to the

system.

We define three types of Byzantine faulty behaviors here. Recall that ∆SS,min = TDmin·γ +

1 clock ticks and for F = 1, ∆SS,min = 2γ + 1.

• A type-A Byzantine faulty node transmits Sync messages arbitrarily but at intervals

greater than or equal to ∆SS,min, measured separately at each receiving good node. Note

that this type is a redefinition of the Byzantine faulty node behaving arbitrarily at every

clock tick but is tailored for this protocol.

• A type-B Byzantine faulty node transmits Sync messages arbitrarily but at intervals

greater than or equal to 3γ + 1, measured separately at each receiving good node.

• A type-C Byzantine faulty node transmits Sync messages arbitrarily but at intervals

greater than or equal to 4γ + 1, measured separately at each receiving good node.

Model checking results indicate that the system of K = 4 nodes described above self-

stabilizes in the presence of a type-C Byzantine faulty node. Alternatively, after the addition of

another good node, a system of K = 5 nodes self-stabilizes in the presence of a type-B Byzantine

faulty node. The following table is a counterexample for a system of K = 5 nodes and in the

presence of a type-A Byzantine faulty node.

29

Table 3. Counterexample for a system of K = 5 nodes and F = 1.

Time Node 1 Node 2 Node 3 Node 4
t + 0

 1

---xx
�0

---xx
, Restore

 4

�0

, Maintain 3

----x
 1

t + 1

 0
---xx

 0
x----

 3
x---x

 2
x----

t + 2

 1

 1
x---

 4
x----

 2
x----

t + 3

 1

 1
x---x

�0
x---x

, Restore

 4

�0

, Maintain 3
----x

t + 4

 2
-x---

 0
x---x

 0
-x---

 3
-x--x

t + 5

 2
-x---

 1

 1
-x---

 4
-x---

t + 6

 3
----x

 1

 1
-x--x

�0
-x--x

, Restore

 4

�0

, Maintain

t + 7

 3
--x-x

 2
--x--

 0
-x---x

 0
--x--

t + 8

 4
--x--

 2
--x--

 1

 1
--x--

t + 9 4

�0

, Maintain 3
----x

 1

 1
--x-x

�0
--x-x

, Restore

t + 10 0
---x-

 3
---xx

 2
---x-

 0
--x-x

t + 11 1
---x-

 4
---x-

 2
---x-

 1

t + 12 1
---xx

�0
---xx

, Restore

 4

�0

, Maintain 3
----x

 1

After addition of another good node, a system of K = 6 nodes self-stabilizes in the

presence of a type-A Byzantine faulty node. The following table is a summary of the conditions

that a system in this scenario requires to self-stabilize in the presence of a Byzantine-faulty node.

Table 4. A realizable system with 0 ≤ d ≤ 1 and F = 1.

K Byzantine Node ∆∆∆∆SS,min Intervals
4

4γ + 1

5

3γ + 1

6

2γ + 1

5.2. Proof For F = 0

The proof for the case of F = 1 readily applies to the special case of F = 0 and K ≥ 2. We

present the proof of this special case separately.

Theorem ConvergeNoneMaintainF0 – A system of K ≥ 2 nodes satisfying the pre-convergence

conditions with none of the good nodes in the Maintain state and for all good nodes,

StateTimer(t) < PR - 2, will always converge to within an initial precision.

Proof – The proof is similar to the proof of the general case as presented in theorem

ConvergeNoneMaintain. Since none of the good nodes are in the Maintain state, they are in the

Restore state because they have not met the transitory conditions. We consider the system at the

point of transmission of a Sync message by the last good node in the Maintain state, where for all

nodes StateTimer(t) < PR - 2. The nodes will receive one last valid Sync message, will remain in

the Restore state for another γ, and since there are no faulty nodes present, all nodes will

transition to the Maintain state within the following γ. Thus, they will not time out while in the

Restore state.

30

Similar to the argument in the proof of theorem ConvergeNoneMaintain, the earliest a

good node transitions to the Maintain state is at tEM where EM = D + γ. The latest a good node

transitions to the Maintain state is at tLM and after remaining in the Restore state for TDmin = 2,

i.e., LM = 2γ. So, the time difference between the NLM and NEM is given by

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM.

∆LMEM = LM - EM = 2γ - (D + γ) = γ - D = d.

Therefore, such a system always converges to within the initial precision of ∆LMEM. ♦

Theorem ConvergeF0 – A system of F = 0 and K ≥ 2 good nodes will always converge.

Proof – The proof follows in the following three cases.

Case 1 – All nodes are in the Maintain state. Since there are no faulty nodes present, TR = 1.

Therefore, as soon as one of the nodes transitions to the Restore state, all others will follow

within the next γ. All good nodes will transition to the Restore state within γ of each other. At

this point, for all good nodes, StateTimer(t) < 2 << PR - 2 and none of them has met the

transitory conditions. Since there are no faulty nodes present, the nodes will transition to the

Maintain state within the next γ and thus will not time out while in the Restore state. It follows

from theorem ConvergeNoneMaintainF0 that such a system always converges to within ∆LMEM.

Case 2 – All nodes are in the Restore state. Since in this case no other assumptions are made,

some nodes transition to the Maintain state due to timeouts while others by meeting the

transitory conditions. Nevertheless, all nodes will transition to the Maintain state within TDmin·γ

of each other. As a result the initial precision is TDmin·γ. It follows from case 1 that this system

will be within the initial precision of ∆LMEM within the next synchronization round.

Case 3 – Some nodes are in the Maintain state while others are in the Restore state. If the nodes

in the Restore state transition to the Maintain state before the nodes in the Maintain state time

out, then the system will consist of all nodes in the Maintain state. It follows from case 1 that

such system always converges. Conversely, if the nodes in the Maintain state transition to the

Restore state before the nodes in the Restore state time out, then the system will consist of all

nodes in the Restore state. It follows from case 2 that such system always converges. If some

nodes transition to the Maintain state due to time out, while at least one other node transitions to

the Restore state, then since TR = 1, all nodes that have transitioned to the Maintain state will

transition back to the Restore state within the next γ. It follows from case 2 that such system

always converges. Therefore, a system of F = 0 and K ≥ 2 good nodes will always converge to

within ∆LMEM.

From theorem ConvergeNoneMaintainF0 the initial guaranteed precision after the

resynchronization is the maximum value of ∆LMEM. For this case, since F = 0, TDmin = 2 and

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM.

∆LMEM = LM - EM = (TDmin + F)·γ - (D + γ) = 2γ - (D + γ) = γ - D = d.

31

Therefore, the system converges to within at most (γ - D) = d of each other. ♦

The guaranteed synchronization precision ∆Precision after elapsed time of P is bounded by,

∆Precision = ∆LMEM + ∆Drift.

For F = 0,

∆Precision = ∆LMEM + ∆Drift = d + ∆Drift.

Corollary PrecisionTDminF0 – For F = 0, ∆Precision > TDmin·γ if ∆Drift > D + γ.

Proof –

∆Precision > TDmin·γ

(γ - D) + ∆Drift > 2γ

∆Drift > D + γ ♦

Theorem ClosureAllMaintainF0 – A system of F = 0 and K ≥ 2 good nodes, where all nodes

have converged such that all nodes are in the Maintain state and ∆LocalTimer(t) ≤ ∆Precision, shall

remain within the synchronization precision ∆Precision.

Proof – Since all good nodes are in the Maintain state, it follows from lemma RestoreWithinPM

that upon timeout, the nodes will transmit Sync messages and transition to the Restore state

within PM. As they transmit Sync messages, their transitions to the Restore state are recorded by

other good nodes that are in the Maintain state. Furthermore, since TR = 1, as soon as one node

transitions to the Restore state, the other nodes will transition to the Restore state within the next

γ. At this point, for all good nodes, StateTimer(t) < 2 << PR - 2 and none of them has met the

transitory conditions. Since there are no faulty nodes present, the nodes will transition to the

Maintain state within the next γ and, thus, will not time out while in the Restore state. It follows

from theorem ConvergeNoneMaintainF0 that such a system always converges to within ∆LMEM.♦

Theorem StabilizeF0 – A system of F = 0 and K ≥ 2 nodes self-stabilizes from any random state

after a finite amount of time.

Proof – It follows from theorem ConvergeF0 that the nodes converge and upon convergence

transition to the Maintain state within ∆LMEM of each other. It follows from theorem

ClosureAllMaintainF0 that such system of F = 0 and K ≥ 2 nodes always remains within the

∆Precision bounds. Thus, ∆LocalTimer(t) ≤ ∆Precision. It follows from theorem Congruence that upon

convergence, this property is satisfied. Therefore, such system always self-stabilizes. ♦

5.3. Generalization Of The Protocol, For F > 1

It follows from theorems StabilizeF0, ConvergeNoneMaintain, ConvergeAllMaintain,

and ClosureAllMaintain, and their corresponding assumptions that a system under their

associated conditions always self-stabilizes for all F ≥ 0 and 0 ≤ ρ << 1. It can readily be shown

that in the absence of faulty nodes, this protocol always converges from any arbitrary state.

Also, if the faults are transient such that the time interval between the consecutive manifestations

32

of the transient faults is greater than the convergence time C, the system always self-stabilizes

for all F ≥ 0. Nevertheless, since theorem ConvergeSomeMaintainF1 cannot be generalized, this

protocol does not seem to solve the general case of clock synchronization for F > 1. Table 5 is a

trace of a counterexample for a system with K = 8 nodes, where F = 2 and G = 6.

Let’s consider the system where some good nodes transition in and out of the Restore

state while others transition in and out of the Maintain state. Also, let the system consist of three

sets of good nodes, S1, S2, and S3, where Ki = | Si |, i = 1, 2, 3. For simplicity, let’s assume that all

good nodes in a set Si are in synchrony with each other such that they all transition from one state

to another at the same time. Now let’s consider K1 = K2 = K3 = F < TR. The following table

depicts a scenario that repeats indefinitely and reveals that such a system will not always

converge.

Table 5. Activities of a system of K ≤ 4F nodes, F > 1.

Time S1 S2 S3

t + 0

 2
---x

 2
x---

 5

 � 0

, Maintain

t + 1

 3
---x

 3
x--x

 � 0
x--x

, Restore 1

t + 2

 4
-x--

 1
-x--

 2
-x--

t + 3

 5

� 0

, Maintain

 2
---x

 3
-x-x

 � 0
-x-x

, Restore

t + 4

 1
--x-

 3
--x-

 1
--x-

t + 5

 2
--x-

 4
---x

 2
---x

t + 6

 3
--xx

� 0
--xx

, Restore

 5

 � 0

, Maintain 3
---x

t + 7

 1
x---

 1
x---

 4
x---

t + 8

 2
---x

 2
x---

 5

 � 0

, Maintain

The scenario that repeats consists of a set transitioning to the Restore state at the same time

another set transitions to the Maintain state while the third set is in the Restore state. For

instance, at t+6, S1 transitions to the Restore state, S2 transitions to the Maintain state and S3

remains in the Restore state. Therefore, during the next γ all sets receive up to F valid Sync

messages. The set S3 is forced to remain in the Restore state while S2 has up to F valid Sync

messages.

Although this protocol does not solve the general case of this problem, it provides

mathematically proven and mechanically verified [Mal 2007, 2008] partial solutions for specific

cases of F = 0 and F = 1. We intend to use these specific cases as the building blocks for larger

and more complex systems.

6. Protocol Overhead

Since only one message, namely Sync, is required for the operation of this protocol, the

protocol overhead during steady state is at most (depending on the amount of ∆Drift) two

messages per P. Also, since only one message is needed, a single binary value is sufficient to

represent it.

33

7. Possible Applications

The proposed self-stabilizing protocol is expected to have many practical applications as

well as many theoretical implications. Embedded systems, distributed process control,

synchronization, fault tolerance with Byzantine agreement, computer networks, the Internet,

Internet applications, security, safety, automotive, aircraft, wired and wireless

telecommunications, graph theoretic problems, leader election, time division multiple access

(TDMA), and the SPIDER
1
 architecture [Tor 2005A, 2005B] at NASA-LaRC are a few

examples. These are some of the many areas of distributed systems that can use self-stabilization

in order to design more robust distributed systems.

8. Conclusions

The self-stabilization problem has two facets. It is inherently event-driven and it is also

time-driven. Most attempts at solving the self-stabilization problems have focused only on the

event-driven aspect of this problem. Additionally, all efforts toward solving this problem must

recognize that the system undergoes two distinct phases, un-stabilized and stabilized, and that

once stabilized, the system state needs to be preserved. The protocol presented here properly

merges the time and event driven aspects of this problem in order to self-stabilize the system in a

timely manner. Initialization and/or reintegration are not treated as special cases. These

scenarios are regarded as inherent part of this self-stabilizing protocol.

In this report, a rapid Byzantine-fault-tolerant self-stabilizing clock synchronization

protocol is presented. The protocol presented here is independent of specific application-

dependent requirements and is focused only on clock synchronization of a system in the presence

of Byzantine faults and after the cause of transient faults has dissipated. The protocol utilizes a

single message, Sync, and during steady state imposes an overhead of at most two messages per

synchronization period. A model of this protocol has been mechanically verified using SMV

[SMV] where the entire state space has been examined and proven to self-stabilize in the

presence of one arbitrary faulty node. Instances of the protocol have been proven to tolerate

bursts of transient failures and deterministically converge with a linear time with respect to the

synchronization period as predicted. This protocol does not rely on any assumptions about the

initial state of the system except for the presence of sufficient number of good nodes, and no

assumptions are made about the internal status of the nodes, the monitors, and the

communication channels, thus making the weakest assumptions and producing the strongest

results. All timing measures of variables are based on the node’s local clock and thus no central

clock or externally generated pulse is used. The Byzantine faulty behavior modeled here is a

node with arbitrarily malicious behavior. The Byzantine faulty node is allowed to influence

other nodes at every clock tick. The only constraint is that the interactions are restricted to

defined interfaces.

Proofs of specific instances of this protocol are presented in this report. This protocol has

been the subject of a rigorous verification effort. A system tolerating one Byzantine faulty node

1
 Scalable Processor-Independent Design for Enhanced Reliability (SPIDER).

34

has been model checked for the in-phase, out-of-phase, and realizable systems. The SMV model

checking results verified the correctness of the claims of this self-stabilizing protocol.

Although this protocol does not solve the general case of the problem, it provides proven

and verified solutions for specific cases. The paper-and-pencil proofs presented here, in

conjunction with the model checking results, indicate that the protocol is applicable to realizable

practical systems. We intend to leverage the specific cases as building blocks for larger and

more complex systems.

This protocol is intended to be the fundamental mechanism for bringing and maintaining

a system within bounded synchrony. Formalization and verification of the integration process of

other protocols with this protocol in order to achieve tighter precision are underway.

Nevertheless, proper means are embedded in this protocol to accommodate the integration

process. Implementation of this protocol in hardware and its characterization in a representative

adverse environment are being planned.

35

References

[Kop 1997] Kopetz, H: Real-Time Systems, Design Principles for Distributed Embedded

Applications, Kluwar Academic Publishers, ISBN 0-7923-9894-7, 1997.

[Mal 2006A] Malekpour, M.R.: A Byzantine-Fault Tolerant Self-Stabilizing Protocol for

Distributed Clock Synchronization Systems, NASA/TM-2006-214322, pp. 37,

August 2006.

[Mal 2006B] Malekpour, M.R.: A Byzantine-Fault Tolerant Self-Stabilizing Protocol for

Distributed Clock Synchronization Systems. Eighth International Symposium on

Stabilization, Safety, and Security of Distributed Systems (SSS06), pp. 17,

November 2006.

[Mal 2006C] Malekpour, M.R.; Siminiceanu, R.: Comments on the “Byzantine Self-Stabilizing

Pulse Synchronization” Protocol: Counterexamples. NASA/TM-2006-213951, pp.

12, February 2006.

[Mal 2007] Malekpour, M.R.: Model Checking a Byzantine-Fault-Tolerant Self-Stabilizing

Protocol for Distributed Clock Synchronization Systems. NASA/TM-2007-

215083, pp. 36, November 2007.

[Mal 2008] Malekpour, M.R.: Verification of a Byzantine-Fault-Tolerant Self-Stabilizing

Protocol for Clock Synchronization. IEEE Aerospace Conference, pp. 13, March

2008.

[SMV] http://www-2.cs.cmu.edu/~modelcheck/smv.html

[Tor 2005A] Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: ROBUS-2: A fault-tolerant

broadcast communication system. NASA/TM-2005-213540, pp. 201, March

2005.

[Tor 2005B] Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: Design of the Protocol

Processor for the ROBUS-2 Communication System. NASA/TM-2005-213934,

pp. 252, November 2005.

36

Appendix A. Symbols

This appendix the symbols used in the protocol.

Symbols Descriptions

ρ bounded drift rate with respect to real time

d network imprecision

D event-response delay

F maximum number of faulty nodes

G minimum number of good nodes

K sum of all nodes

Sync self-stabilization message

S abbreviation for Sync message

∆SS time difference between the last consecutive Sync messages

TR threshold for Retry() function

Restore self-stabilization state

Maintain self-stabilization state

R abbreviation for Restore state

M abbreviation for Maintain state

PR maximum duration while in the Restore state

PR,min minimum value of PR

PM maximum duration while in the Maintain state

PActual actual synchronization period

P synchronization period

γ equally spaced time intervals for time-driven activities

C maximum convergence time

∆LocalTimer(t) maximum time difference of LocalTimers of any two good nodes at real time t

LM Latest Maintain

EM Earliest Maintain

∆LMEM difference of LM and EM, a.k.a. initial synchronization precision

∆Precision maximum synchronization precision

∆Drift maximum deviation from the initial synchrony

Ni the i
th

 node

Mi the i
th

 monitor of a node

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization
Protocol

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Malekpour, Mahyar R.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19568

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This report presents a rapid Byzantine-fault-tolerant self-stabilizing clock synchronization protocol that is independent of
application-specific requirements. It is focused on clock synchronization of a system in the presence of Byzantine faults after the cause of
any transient faults has dissipated. A model of this protocol is mechanically verified using the Symbolic Model Verifier (SMV) [SMV]
where the entire state space is examined and proven to self-stabilize in the presence of one arbitrary faulty node. Instances of the protocol are
proven to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the
synchronization period. This protocol does not rely on assumptions about the initial state of the system other than the presence of sufficient
number of good nodes. All timing measures of variables are based on the node’s local clock, and no central clock or externally generated
pulse is used. The Byzantine faulty behavior modeled here is a node with arbitrarily malicious behavior that is allowed to influence other
nodes at every clock tick. The only constraint is that the interactions are restricted to defined interfaces.

15. SUBJECT TERMS
Byzantine-Fault-Tolerant; Clock Synchronization; Formal Verification; Model Checking; Protocol; Self-Stabilization

18. NUMBER
 OF
 PAGES

43
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

645846.02.07.07.15.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2009-215758

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
06 - 200901-

