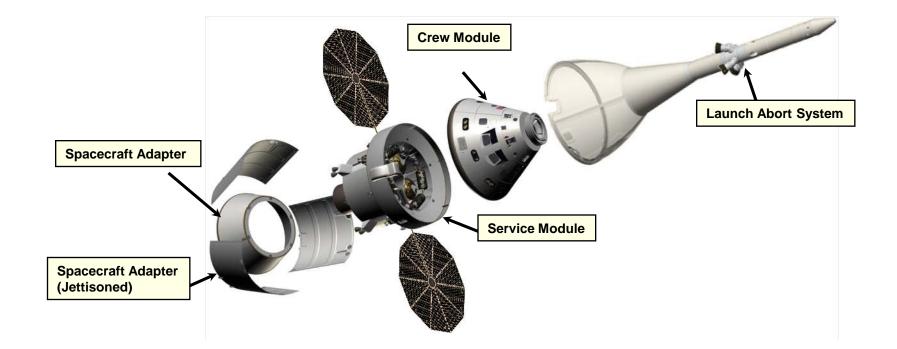
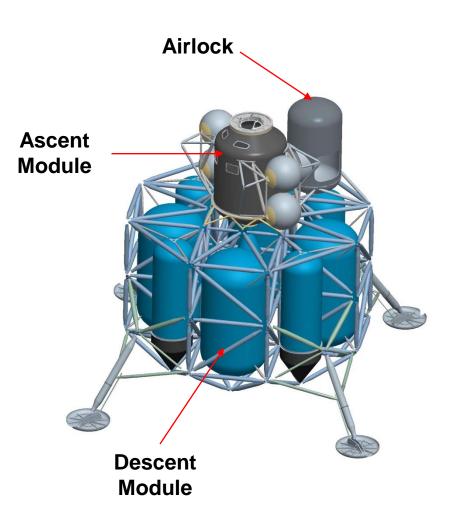

NASA Constellation Program (CxP) Key Driving Requirements and **Element Descriptions** for International Architecture Working Group (IAWG) Functional Teams **Human Transportation Cargo Transportation** CONSTELLATION

01-05 June 2009 Roland M. Martinez

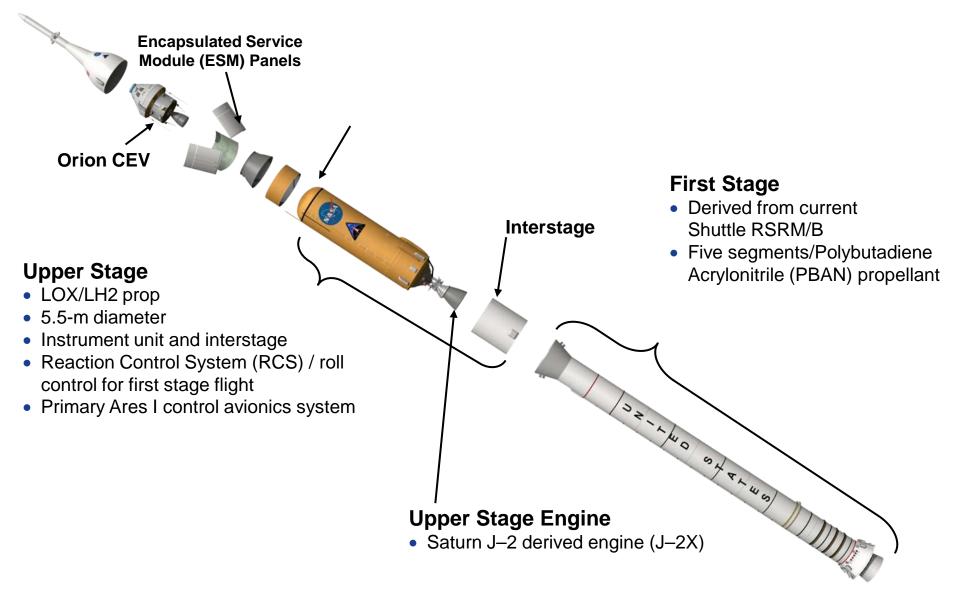

NASA Constellation Crew Mission Concept

CONSTELLATION



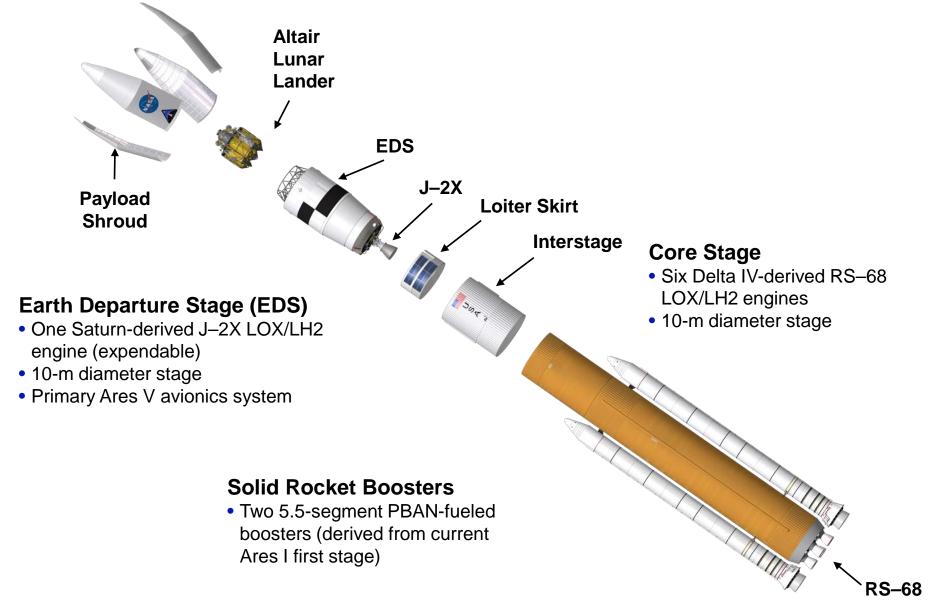
Key Performance Parameters

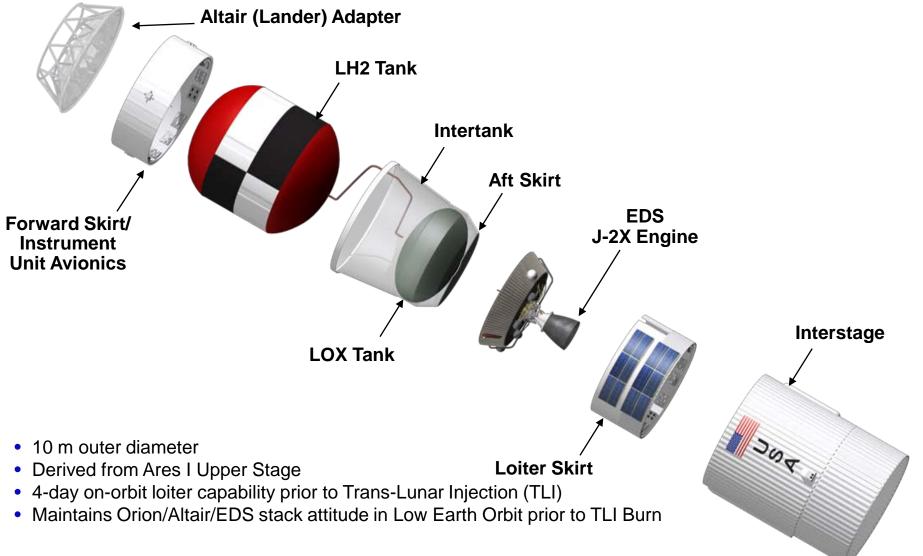
SM Tank Sizing ΔV : 1,560 m/s TLI Control Mass: 20.2 t



Three Primary Elements

- Descent Module
 - Provides propulsion for TCMs, LOI, and powered descent
 - Provides power during lunar transit, descent, and surface operations
 - Serves as platform for lunar landing and liftoff of ascent module
- Ascent Module
 - Provides propulsion for ascent from lunar surface after surface mission
 - Provides habitable volume for four during descent, surface, and ascent operations
 - Contains cockpit and majority of avionics
- Airlock
 - Accommodates two crew per ingress / egress cycle
 - Connected to ascent module via short tunnel
 - Remains with descent module on lunar surface after ascent module liftoff



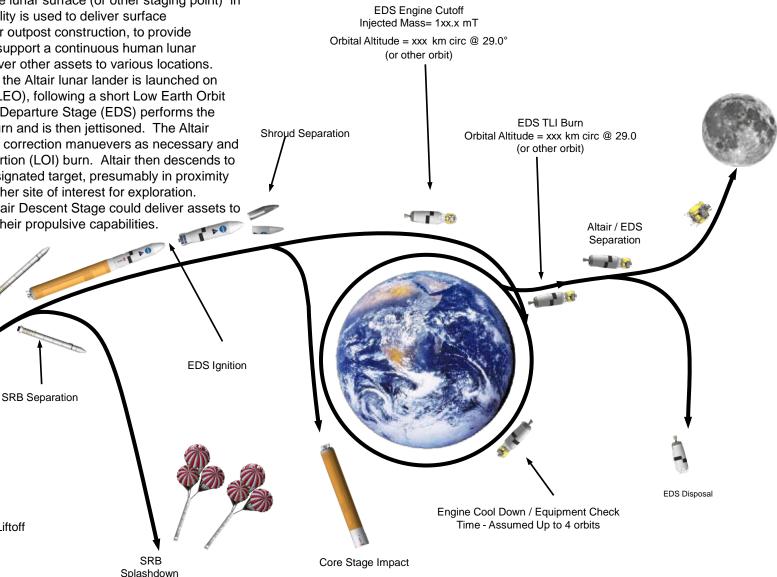

Ares V Elements

Crew Mission Parameters

Reference human transpor	NASA		
Number of crew to lunar surfa	4		
Number of crew to lunar orbit	4		
Access	Global		
Duration at lunar surface	7		
Major assumption			
Timeframe to be started	2020		
Human launcher	Capability (t)	Ares-I (22-24t)	
	Orbit (km)	-20km x 185 km at 29 deg	
Cargo launcher	Capabilityn (t)	Ares-V (65-70t)	
	Orbit (km)	241km circular	
Injection orbit type	LEO->LTO		
Launch site		KSC	
Concept key parameters			
Number of launch per missio	2		
Number of mission per year	2		
Crew Vehicle	Weight (t)	20.2 t at TLI	
	Hab Volume (m3)	10	
	Propellant	MMH/NTO	
	Payload (kg)	100kg return	
	Cabin Pressure (atm)	65.4-103 kPA	
	Type of docking	LIDS	
	Type of communication	In Trade	
Human Lander Orbit Transfer Vehicle	Weight (t)	45 t at TLI	
	Hab Volume (m3)	10	
	Propellant	LO2/LH2	
	Payload (kg)(to surface)	500	
	Payload (kg) (from surface)	100	
	Cabin Pressure (atm)	TBD LIDS	
	Type of docking		
	Type of communication Weight (t)	In Trade 280	
	Propellant	LO2/LH2	
	Thrust (kN)	858-1058	
	Type of docking	None	
	Type of communication	In Trade	
Earth Landing location	Type of communication	Western U.S. Coast/Pacifi	
		Inspace Comm satellites in	
In Space Support System	trade. TDRSS GPS		
Ground Support System	KSC/Eastern Range MCC-Houston Comm and Tracking Recovery system		

NASA Constellation Cargo Mission Concept

CONSTELLATION



NASA Constellation Cargo Mission

The NASA Constellation uncrewed cargo mission delivers cargo to any designated location on the lunar surface (or other staging point) in a single mission. This capability is used to deliver surface infrastructure needed for lunar outpost construction, to provide periodic logistics resupply to support a continuous human lunar presence, and potentially deliver other assets to various locations. In the nominal mission mode, the Altair lunar lander is launched on Ares V into Low Earth Orbit (LEO), following a short Low Earth Orbit (LEO) loiter period, the Earth Departure Stage (EDS) performs the Trans Lunar Injection (TLI) burn and is then jettisoned. The Altair performs translunar trajectory correction manuevers as necessary and performs the Lunar Orbit Insertion (LOI) burn. Altair then descends to the surface to land near a designated target, presumably in proximity to an Outpost location or another site of interest for exploration. Alternatively, the EDS and Altair Descent Stage could deliver assets to various staging points within their propulsive capabilities.

Liftoff

Launch

Reference cargo mission				
Class		Very Large	Very Large	Very Large
Final destination		LEO	LLO	Surface
		Not in Baseline	Not in Baseline	Baseline Element
Agency		NASA	NASA	NASA
Launch info				
Nb launch per mission		1	1	1
Nb dissimilar launch vehicle		1	1	1
Launch vehicle a		Ares-V	Ares-V	Ares-V
Launch vehicle b				
Injection orbit type		LEO Circular	LEO Circular	LEO Circular
injection orbit inclination (deg)		29	29	29
injection orbit apogee altitude (km)		185-241 km	185-241 km	185-241 km
injection orbit perigee altitude (km)		185-241 km	185-241 km	185-241 km
Perfo (kg)		TBS	TBS	50000-55000
Staging location		LEO	LEO	LEO
Concept key parameters				
Cargo Performance (kg)		TBS	TBS	10000-15000
Available cargo volume (m)		TBD	TBD	860 m^3
Flight frequency (per year)		2	2	2
Availability (date)		2020	2020	2020
Global access		Yes	Yes	Yes
Reliability (loss of mission)		1/TBD	1/TBD	1/TBD
Heigth of payload deck above surface (m)		N/A	N/A	6-7
Precision landing (m) unaided		N/A	N/A	100-500
Mission duration from launch (days)		N/A	N/A	5-20
Surface stay (day)		TBD	TBD	TBD
Services Provided	Off-loading	No	No	No
	Power	Possible	Possible	Possible