NASA/TM-2009-214646

Updating the Finite Element Model of the Aerostructures Test Wing Using Ground Vibration Test Data

Shun-Fat Lung TYBRIN Inc. Edwards, California

Chan-Gi Pak NASA Dryden Flight Research Center Edwards, California

April 2009

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, and organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u>
- E-mail your question via the Internet to <u>help@sti.nasa.gov</u>
- Fax your question to the NASA STI Help Desk at 443-757-5803
- Phone the NASA STI Help Desk at 443-757-5802
- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320

NASA/TM-2009-214646

Updating the Finite Element Model of the Aerostructures Test Wing Using Ground Vibration Test Data

Shun-Fat Lung TYBRIN Inc. Edwards, California

Chan-Gi Pak NASA Dryden Flight Research Center Edwards, California

National Aeronautics and Space Administration

Dryden Flight Research Center Edwards, California 93523-0273

April 2009

ACKNOWLEDGEMENT

The authors would like to acknowledge the assistance of Claudia Herrara, Matt Moholt and Starr Ginn at NASA Dryden Flight Research Center in the setting and performing of the ground vibration tests.

NOTICE

Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320 (301) 621-0390

ABSTRACT

Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the aerostructures test wing (ATW), which was designed and tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.

NOMENCLATURE

AR	aspect ratio
ATW	aerostructures test wing
CG	center of gravity
DFRC	Dryden Flight Research Center
DOF	degrees of freedom
DPR	driving point residues
d	number of degrees of freedom
E	effective independent matrix
EI	effective independence
F	original objective function
FE	finite element
FIM	Fisher information matrix
G	subscript for target values (or measured quantities)
GA	genetic algorithm
GVT	ground vibration test
gi	inequality constraints
h _j	equality constraints
I _{XX}	computed x moment of inertia about the center of gravity
I _{XXG}	target x moment of inertia about the center of gravity
I _{xy}	computed xy moment of inertia about the center of gravity
I _{XYG}	target xy moment of inertia about the center of gravity
I _{YY}	computed y moment of inertia about the center of gravity
I _{YYG}	target y moment of inertia about the center of gravity
I _{YZ}	computed yz moment of inertia about the center of gravity
I _{YZG}	target yz moment of inertia about the center of gravity
I _{ZX}	computed zx moment of inertia about the center of gravity

I _{ZXG}	target zx moment of inertia about the center of gravity
I _{ZZ}	computed z moment of inertia about the center of gravity
I _{ZZG}	target z moment of inertia about the center of gravity
J_i	objective functions (optimization problem statement number $i = 1, 2,, 13$)
Κ	stiffness matrix
K	orthonormalized stiffness matrix
KE	kinetic energy
${ m KE}_{ik}$	kinetic energy associated with the <i>i</i> -th DOF in the <i>k</i> -th target mode
L	new objective function
l	number of modes
Μ	mass matrix
$\overline{\mathbf{M}}$	orthonormalized mass matrix
MAC	modal assurance criterion
MDAO	multidisciplinary design, analysis and optimization
m	number of sensors (or number of measured degrees of freedom)
n	number of modes to be matched
q	number of inequality constraints
r	number of equality constraints
SEREP	system equivalent reduction expansion process
SMI	structural mode interaction
Т	transformation matrix
W	computed total mass
W_{G}	target total mass
X	x-coordinate of computed center of gravity
Х	design variables vector
X_G	x-coordinate of target center of gravity
Y	y-coordinate of computed center of gravity
Y _G	y-coordinate of target center of gravity
Z	z-coordinate of computed center of gravity
Z_{G}	z-coordinate of target center of gravity
3	small tolerance value for inequality constraints
λ	Lagrange multiplier
Φ	computed eigen-matrix $(m \times n)$
$\mathbf{\Phi}_{\mathrm{G}}$	target eigen-matrix $(m \times n)$
$\overline{\Phi}$	Reduced modal matrix $(d \times l)$
ϕ_i	i-th mode shape $(d \times 1)$
$\Omega_{ m j}$	j-th computed frequency
$\boldsymbol{\omega}_{k}$	corresponding natural frequency

INTRODUCTION

A test article called the aerostructures test wing (ATW) was developed and flown at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California) on the McDonnell Douglas NF15B test bed aircraft as shown in figure 1 for the purpose of demonstrating and validating flutter prediction methods during flight (ref. 1). The first aerostructures test wing (ATW1), flown in 2001, was originally developed to directly address requests for better flight flutter test techniques by providing a functional flight test platform. While the first series of tests was extremely successful, the minimum amount of instrumentation (structural accelerometers and strain gages) was chosen to satisfy the scope of the program. These sensors were limited in their capability to answer questions of aeroelastic interactions, sources of nonlinearity, physical mechanisms of aeroelastic coupling, and feedback dynamics between the structure and aerodynamics.

Figure 1. Aerostructures test wing mounted on the NF15B for flight flutter testing.

A second aerostructures test wing (ATW2), as shown in figure 2, was built for the demonstration of state-of-the-art sensor technologies for simultaneous; distributed; collocated measurement of shear stress (skin friction); steady and unsteady pressures; and structural strain and accelerations for mode shapes as well as other modal properties. Like the ATW1, the ATW2 was flown on the NF15B aircraft. In order to have a successful prediction of the onset flutter, the structural dynamics finite element (FE) model has to be robust and accurate. The ground vibration test (GVT) is used as one of the validation methods for robustness of the FE model.

090061

Figure 2. Aerostructures test wing 2.

The primary objective of this study is to obtain the GVT validated structural dynamics FE model for minimizing model uncertainties in the predicted flutter boundaries. Discrepancies are common between the test data and the analytical results. However, the FE model can be fine tuned through the use of the GVT data. Accurate and reliable GVT results are important to this adjusting process. Selection of measurement locations can be critical to the success of an experimental modal survey. So, different sensor and exciter placement algorithms for pre-test evaluations were investigated to ensure the quality of the modal test.

Manual trial-and-error methods provide an inefficient approach to correlate the FE model with test data. A more efficient approach is to use a mode matching technique for the model refinement of both ground and flight-based models. A model tuning technique utilized was NASA Dryden's multidisciplinary design, analysis, and optimization (MDAO) tool (ref. 2), which was used to adjust the structural properties so that the analytical results and the measured data were matched.

SENSOR/ACTUATOR PLACEMENT METHODS

It is important to assure that an adequate number of proper sensor locations are identified for the collection of data during the GVT. There are several existing techniques that can be used for the determination of measurement locations. These algorithms start with a full or selected set of finite element degrees of freedom (DOFs) with the desired number of mode shapes as shown in equation (1):

$$\overline{\Phi} = \left[\phi_1 \phi_2 \dots \phi_l\right] \tag{1}$$

where $\overline{\Phi}$ is the reduced modal matrix ($d \times l$). Depending on the algorithm, the unwanted DOFs can be eliminated in one cycle or iteratively until the desired number of sensors is reached.

Effective Independence

The objective of the effective independence (EI) method is to select sensor locations that make the target modes linearly independent, while retaining as much information as possible. This procedure starts from a large set of candidate sensor locations in which the effective independence matrix E can be formed as shown in equation (2) (ref. 3).

$$\boldsymbol{E} = \overline{\boldsymbol{\Phi}} \left(\overline{\boldsymbol{\Phi}}^T \overline{\boldsymbol{\Phi}} \right)^1 \overline{\boldsymbol{\Phi}}^T \tag{2}$$

The DOF with the smallest value is removed and the E matrix is re-calculated for the new candidate set. The iterative process continues until the desired number of sensors is reached.

Genetic Algorithm

Selection of the sensor locations is a kind of optimization problem with discrete design variables. One of the solution methods for this optimization problem is the genetic algorithm (GA) (ref. 4). Using the determinant of the Fisher information matrix (FIM) as objective function, and sensor locations as design variables, the optimal sensor locations can be determined. The FIM is defined as shown in equation (3) (ref. 5).

$$\mathbf{FIM} \equiv \overline{\mathbf{\Phi}}^T \overline{\mathbf{\Phi}} \tag{3}$$

The sensor locations, which are based on the desired number of sensors, are randomly picked and the GA method will find the best set of locations that gives the maximum determinant value of the **FIM**. The determinant of the **FIM** indicates the amount of information in the data that is retained at the reduced set of coordinates. Maintaining a high value for this determinant is desired so that the **FIM** retains as much information as possible. The optimization problem statement can be written as:

Maximize the objective function obj = det(FIM) for any set of sensor positions with no constraint equations.

Kinetic Energy Sorting

The kinetic energy sorting technique involves an examination of each DOF's contribution of kinetic energy to each mode shape. The calculation of the kinetic energy in terms of the mode shapes can be expressed as shown in equation (4):

$$\mathrm{KE}_{ik} = \overline{\Phi}_{ik} \sum_{j} \mathrm{M}_{ij} \overline{\Phi}_{jk} \tag{4}$$

where KE_{ik} is the kinetic energy associated with the *i*-th DOF in the *k*-th target mode. The total kinetic energy for each DOF is the summation of the normalized kinetic energy of each DOF for each mode. Those DOFs having the greatest contribution or most kinetic energy can be identified and selected as sensor locations.

Guyan Reduction

The purpose of the Guyan reduction (ref. 6) is to remove the number of DOFs in a large FE model, but still maintain the characteristics of the original model at the lower frequencies. Higher frequency modes are neglected because these DOFs can be removed based on the fact that the inertia forces are

negligible compared with the elastic forces. This process involves examining the ratio of stiffness over mass for each DOF. If the ratio is small, then there are significant inertia effects associated with the DOF, and thus it should be retained. If the ratio is large, then the inertia effects are negligible and the corresponding DOF can be removed.

Iterative Guyan Reduction

Unlike the standard Guyan reduction, the iterative Guyan reduction (ref. 7) removes the DOF one at a time so that at each stage the effect of each DOF removed is redistributed to all of the remaining DOFs, resulting in greater accuracy than the non-iterative approach.

Driving Point Residues

Driving point residues (DPR) are equivalent to modal participation factors. They are proportional to the magnitude of the mode shapes. A driving point is a point in the structure where the excitation DOF and the response are equal. If the modal matrix is mass normalized, then the driving point residues for the DOF i of the mode shape k can be computed (ref. 8) as shown in equation (5):

$$DPR_{k}(i,i) = \frac{\overline{\Phi}(i) \otimes \overline{\Phi}(i)}{\omega_{k}}$$
(5)

where ω_k is the corresponding natural frequency and \otimes is the element-by-element multiplication operator. The normalized DPR can then be used to calculate the average, minimum, maximum, and weighted modal displacement of all the target modes. The optimal sensor/exciter locations are then selected based on the values of the weighted driving point residue and the number of sensors/actuators available for the test. In this study, the weighted minimum was used for the selection of the sensor locations in order to opt out of those DOFs at the nodal point of a mode. The weighted minimum DPR was obtained as shown in equation (6).

$$DPR_{weighted}(i) = \min_{j=1}^{n} \overline{DPR}_{j}(i,i) \cdot \frac{1}{n} \sum_{j=1}^{n} \overline{DPR}_{j}(i,i)$$
(6)

The weighted maximum was used for the selection of the excitation locations so that those easily excited DOFs could be identified. The weighted maximum DPR can be expressed as shown in equation (7):

$$DPR_{weighted}(i) = \max_{j=1}^{n} \overline{DPR}_{j}(i,i) \cdot \frac{1}{n} \sum_{j=1}^{n} \overline{DPR}_{j}(i,i)$$
(7)

where \overline{DPR} is the normalized DPR.

STRUCTURAL DYNAMIC MODEL TUNING PROCEDURE

Discrepancies in frequencies and mode shapes are minimized using a series of optimization procedures (refs. 9-11). There are two optimization algorithms adopted in NASA Dryden's MDAO tool: the traditional gradient-based algorithm (ref. 12) and the genetic algorithm. Gradient-based algorithms work well for continuous design variable problems, whereas GAs can handle continuous and discrete design variable problems easily. When there are multiple local minima, GAs are able to find the global

optimum results, whereas gradient-based methods may converge to a locally minimum value. In this research work, the GA was used for the solution of the optimization problem.

The GA is directly applicable only to unconstrained optimization; it is necessary to use some additional methods in order to solve the constrained optimization problem. The most popular approach is to add penalty functions in proportion to the magnitude of constraint violation to the objective function (ref. 13). The general form of the penalty function is shown in equation (8):

$$L(\overline{X}) = F(\overline{X}) + \sum_{i=1}^{q} \lambda_i g_i(\overline{X}) + \sum_{j=1}^{r} \lambda_{j+q} h_j(\overline{X})$$
(8)

where $L(\overline{X})$ indicates the new objective function to be optimized, $F(\overline{X})$ is the original objective function, $g_i(\overline{X})$ is the inequality constraint, $h_j(\overline{X})$ is the equality constraint, λ_i are the Lagrange multipliers, \overline{X} is the design variables vector, and q and r are the number of inequality and equality constraints, respectively.

The analytical mass properties, the mass matrix orthogonality, and the natural frequencies and mode shapes are matched to the target values based on the following three tuning steps.

Step 1: Tuning Mass Properties

The difference in the analytical and target values of the total mass, the center of gravity (CG) location, and the mass moment of inertias at the CG location are minimized to have the improved rigid body dynamics as shown in equations (9) through (18).

$$J_1 = (W - W_G)^2 / W_G^2$$
(9)

$$J_2 = (X - X_G)^2 / X_G^2$$
(10)

$$J_3 = (Y - Y_G)^2 / Y_G^2$$
(11)

$$J_4 = (Z - Z_G)^2 / Z_G^2$$
(12)

$$J_{5} = (I_{XX} - I_{XXG})^{2} / I_{XXG}^{2}$$
(13)

$$J_{6} = (I_{YY} - I_{YYG})^{2} / I_{YYG}^{2}$$
(14)

$$J_7 = (I_{ZZ} - I_{ZZG})^2 / I_{ZZG}^2$$
(15)

$$J_8 = (I_{XY} - I_{XYG})^2 / I_{XYG}^2$$
(16)

$$J_9 = (I_{YZ} - I_{YZG})^2 / I_{YZG}^2$$
(17)

$$J_{10} = (I_{ZX} - I_{ZXG})^2 / I_{ZXG}^2$$
(18)

Step 2: Tuning Mass Matrix

The off-diagonal terms of the orthonormalized mass matrix are reduced to improve the mass orthogonality as shown in equation (19):

$$J_{11} = \sum_{i=1, j=1, i \neq j}^{n} \left(\overline{\mathbf{M}}_{ij} \right)^{2}$$
(19)

where *n* is the number of modes to be matched and $\overline{\mathbf{M}}$ is defined as shown in equation (20).

$$\overline{\mathbf{M}} = \boldsymbol{\Phi}_{G}^{T} \mathbf{T}^{T} \mathbf{M} \mathbf{T} \boldsymbol{\Phi}_{G}$$
(20)

In equation 20 above, the mass matrix **M** is calculated from the FE model, while the target eigenmatrix Φ_G is measured from the GVT. The eigen-matrix Φ_G remains constant during the optimization procedure. A transformation matrix **T** in the above equation is based on Guyan reduction, improved reduction system (ref. 14) or the system equivalent reduction expansion process (SEREP) (ref. 15). This reduction is required due to the limited number of available sensor locations and difficulties in measuring the rotational DOFs.

Step 3: Tuning Frequencies and Mode Shapes

Two different types of approach can be used for tuning the frequencies and mode shapes. In the first option, shown in equations (21) and (22), the objective function considered combines the normalized errors between GVT and computed frequencies with the total error associated with the off-diagonal terms of the orthonormalized stiffness matrix.

$$J_{12} = \sum_{i=1}^{n} \left(\frac{\Omega_i - \Omega_{iG}}{\Omega_i} \right)^2$$
(21)

$$J_{13} = \sum_{i=1, j=1, i \neq j}^{n} \left(\overline{\mathbf{K}}_{ij} \right)^{2}$$
(22)

The matrix $\overline{\mathbf{K}}$ is obtained from the matrix products as shown in equation (23):

$$\overline{\mathbf{K}} = \boldsymbol{\Phi}_{\mathrm{G}}^{T} \mathbf{T}^{T} \mathbf{K} \mathbf{T} \boldsymbol{\Phi}_{\mathrm{G}}$$
(23)

where the stiffness matrix, K, is calculated from the FE model.

In the second option, shown in equations (24) and (25), the error norm combines the normalized error between the GVT and computed frequencies with the total error between the GVT and computed mode shapes at given sensor points.

$$J_{12} = \sum_{i=1}^{n} \left(\frac{\Omega_i - \Omega_{iG}}{\Omega_i} \right)^2$$
(24)

$$J_{13} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\Phi_{ij} - \Phi_{ijG} \right)^2$$
(25)

In this study, the second option for tuning frequencies and mode shapes was employed since the definition of the objective function is much simpler than in the first option for this application. Any errors in both the modal frequencies and the mode shapes are minimized by including an index for each of these in the objective function. For this option, a small number of sensor locations can be used at which errors between the GVT and computed mode shapes are obtained. Any one of J_1 thru J_{13} can be used as the objective function with the others treated as constraints. This gives the flexibility to achieve the particular

optimization goal while maintaining the other properties at as close to the desired target value as possible. The optimization problem statement can be written as:

```
Minimize J_i
Such that J_k \leq \varepsilon_k, for k = 1 thru 13 and k \neq i
```

where ε_k is a small value which can be adjusted according to the tolerance of each constraint condition.

TEST ARTICLE

The ATW2 was used to demonstrate NASA Dryden's MDAO tool through the process of ground vibration testing and the model tuning technique. This test article was a small-scale airplane wing comprised of an airfoil and wing tip boom as shown in figure 3, based on the ATW1 design. This wing was formulated based on a NACA-65A004 airfoil shape with a 3.28 aspect ratio. The wing had a half span of 18 in. with root chord length of 13.2 in. and tip chord length of 8.7 in. The total area of this wing was 197 in². The wing tip boom was a 1-in. diameter hollow tube of 21.5 in. length. The total weight of the wing was 2.66 lb.

Figure 3. Dimension of the ATW2.

Since the ATW was attached to the F15B flight test fixture, the construction of the wing was limited to lightweight materials with no metal, due to safety concerns. The wing and spar were constructed from fiberglass cloth, the boom was constructed from carbon fiber composite, the wing core was constructed from rigid foam, and the components were attached by epoxy. The wing skin was made of three plies of fiberglass cloth, each about 0.01 in. thick. The internal spar located at the 30% chord line was composed of 10 plies, 0.05 in. thick of carbon at the root but decreases to 1 ply, 0.005 in. thick at the tip.

TEST SETUP

Ground vibration tests were performed to determine the dynamic modal characteristics of the ATW2. In the test set up, the ATW2 was clamped on to a circular plate, which was bolted to a mounting panel, and then installed into a small strong back called the ground test fixture in the NASA Dryden Flight Loads Laboratory. The PONTOS photogrammetry optical measuring system (Gesellschaft für Optische Messtechnik, Braunschweig, Germany), as shown in figure 4, was used to measure output displacement/acceleration at the sensor points. For the excitation method, an impact hammer with an impedance head was used to excite the ATW2's natural frequencies and mode shapes as well as to measure input forces.

Figure 4. The PONTOS photogrammetry optical measuring system.

PONTOS is a non-contact optical 3D measuring system. It analyzes, computes, and documents object deformations, rigid body movements, and the dynamic behavior of a measuring point (ref. 16). The PONTOS system provides an alternative for complex sensor technology like laser sensor, draw-wire sensors or accelerometers, which are commonly used in GVTs for measuring responses of the structure. The features of the PONTOS system include:

- Unlimited number of sensors. The sensor markers are weightless, and a large number of sensors can be used at the same time without altering the total weight or the mode shapes of the structure.
- Non-contact acquisition of the precise 3D position of any number of measuring points.
- Mobility and flexibility due to an easy and compact measuring system.
- Easy and quick adaptation to different measuring volumes and measuring tasks.

The limitations of the PONTOS system include:

- Measuring structural vibration up to 250 Hz.
- Measuring frame rate up to 500 Hz at 1280x1024 pixels.
- Measuring volume up to 1700x1360x1360 mm³.
- Applying the sensors on a plane or slightly curved surface.

SENSOR PLACEMENT DISCUSSION

Only a small number of sensors were placed on the wing for the GVT compared to the full FE model DOFs. The selection of sensor locations were based on the sensor placement algorithms previously discussed in Section II. In order to compare different sensor placement algorithms, the determinant of **FIM** was calculated for different sets of sensor locations. Results are summarized in table 1 and the corresponding sensor locations are shown in figure 5.

Table 1. Comparison of the determinant of FIM for different sensor placement algorithm.

Sensor placement algorithms	det(FIM) (30 sensors, 3 modes)
Effective independence	753.1
Genetic algorithm [*]	753.1
Kinetic energy	303.6
Iterative Guyan reduction	59.5
Non-iterative Guyan reduction	8.6
Model configuration (25 sensors)	50.0
Driving point residue	97.0

* Based on 150 populations and 500 generations

Figure 5. Sensor locations from different sensor placement algorithms.

In table 1, the EI and GA methods have the same determinant of **FIM** value. This is due to the fact that the EI method is also an optimization process. In this application, both the EI and GA methods found the globally optimal value. The sensor locations with higher determent of **FIM** value were used for the GVT response measurement locations.

For the excitation point selection, the weighted maximum driving point residue method was used to determine the excitation locations. The predicted sensor locations and excitation point based on the FE model of the ATW2 is shown in figure 6 and the corresponding coordinates are given in table 2.

At the time of this ATW2 research work, only the GVT results with the sensor placements based on the model configuration were available. Therefore, these data were used for the FE model tuning process.

The sensor locations and excitation point of this GVT are shown in figure 7, and its coordinates are listed in table 3. Figure 8 shows the typical time history and frequency response curves of the ATW2 ground vibration tests.

Figure 6. Predicted sensor/excitation locations.

Figure 7. GVT sensor/excitation locations.

Sensor	Co	ordinates (i	nch)
point	Х	Y	Z
1	20.9244	-10.80	-0.05
2	21.9750	-10.80	0
3	19.0499	-7.20	0
4	17.5875	-5.40	-0.001
5	19.8735	-10.80	0.1016
6	19.4167	-9.00	0.0537
7	18.3209	-9.00	0.1059
8	17.9092	-7.20	0.0559
9	23.4375	-12.60	0
10	22.4317	-12.60	0.0493
11	21.9750	-10.80	0
12	12.7500	-18.50	0
13	14.5000	-18.50	0
14	15.1250	-18.50	0
15	15.6250	-18.50	0
16	16.1250	-18.50	0
17	16.5000	-18.50	0
18	17.1250	-18.50	0
19	17.6250	-18.50	0
20	18.1250	-18.50	0
21	28.3250	-18.50	0
22	28.8250	-18.50	0
23	29.3250	-18.50	0
24	29.8250	-18.50	0
25	30.3250	-18.50	0
26	30.8250	-18.50	0
27	31.3250	-18.50	0
28	31.8250	-18.50	0
29	32.3250	-18.50	0
30	32.8250	-18.50	0

Table 2. Sensor locations for Figure 6.

Table 3. Sensor locations for Figure 7.

Sensor	Coo	rdinates (inc	h)
point	X	Y	Ζ
1	19.125	-18.00	0
2	27.825	-18.00	0
3	17.212	-16.20	0
4	26.362	-16.20	0
5	15.300	-14.40	0
6	24.900	-14.40	0
7	13.387	-12.56	0
8	11.475	-10.80	0
9	21.975	-10.80	0
10	9.5625	-9.00	0
11	20.5125	-9.0	0
12	7.65	-7.2	0
13	19.0499	-7.2	0
14	5.7375	-5.4	0
15	17.5875	-5.4	0
16	3.825	-3.6	0
17	16.125	-3.6	0
18	1.9125	-1.8	0
19	14.6625	-1.8	0
20	0	0	0
21	13.2	0	0
22	23.4375	-12.6	0
23	12.75	-18.5	0
24	19.125	-18.5	0
25	32.825	-18.5	0

Figure 8. Typical time history and frequency response GVT results for the ATW2.

MODEL TUNING

The frequencies and mode shapes of first bending, first torsion and second bending modes; and total mass from the GVT are listed in table 4. The measurements of table 4 were based on the time history responses data collected by the PONTOS system at each of the sensor points. The eigensystem realization algorithm routine, which was developed by Juang and Pappa (ref. 17) at NASA Langley Research Center (Hampton, Virginia), was then used to identify the frequencies and mode shapes of the system.

Sensor	Mode 1	Mode 2	Mode 3
point	(17.24 Hz)	(44.10 Hz)	(84.00 Hz)
1	0.481	-0.398	-0.325
2	0.755	0.409	-0.187
3	0.386	-0.390	-0.149
4	0.670	0.353	0.142
5	0.311	-0.408	0.088
6	0.589	0.254	0.455
7	0.214	-0.320	0.113
8	0.139	-0.252	0.157
9	0.368	0.082	0.912
10	0.085	-0.177	0.131
11	0.281	0.036	1.000
12	0.047	-0.116	0.140
13	0.196	0.021	0.917
14	0.018	-0.067	0.053
15	0.157	0.018	0.870
16	0.006	0.022	-0.012
17	0.081	0.026	0.587
18	0.008	0.007	0.006
19	0.035	0.025	0.345
20	0.010	0.008	0.017
21	0.014	0.022	0.125
22	0.451	-0.111	0.765
23	0.312	-1.000	-0.582
24	0.518	-0.432	-0.523
25	1.000	0.962	-0.196

Table 4. Measured frequencies and mode shapes (Z direction).

Corresponding numerical FE model frequencies and mode shapes computed using MSC/NASTRAN (MSC. Software Corporation, Santa Ana, California) (ref. 18) are shown in figure 9. The FE model in the MSC/NASTRAN format is provided in the appendix. The frequency differences between the GVT and the numerical results before model tuning (shown in table 5) were 53% in the second mode and 12% in the third mode, both of which greatly exceed the 3% limitation for the primary modes allowed by military specifications (refs. 19, 20). Therefore, the FE model needs to be updated for a more reliable flutter analysis.

Figure 9a. MSC/NASTRAN FE model.

Figure 9b. Mode 1 (1st bending): 17.7048 Hz.

090068

Figure 9c. Mode 2 (1st torsion): 20.9207 Hz.

Figure 9d. Mode 3 (2nd bending): 88.3203 Hz.

Figure 9. Finite clement model and mode snapes before tuning.	Figure 9	Finite elen	nent model	and mode	shapes	before tuning.
---	----------	-------------	------------	----------	--------	----------------

Table 5. Frequencies and total weight of the ATW2 before and after model tuning.

	GVT	Before	After		
	(Hz)	MSC/NASTRAN (Guyan/Full; Hz)	Error (%)	MSC/NASTRAN (SEREP/Full; Hz)	Error (%)
Mode 1	17.24	17.71/17.70	2.72/2.68	17.79/17.79	3.19/3.19
Mode 2	44.10	20.93/20.92	-52.5/-52.6	44.71/44.71	1.38/1.38
Mode 3	84.00	93.91/88.32	11.80/5.14	84.33/84.33	0.39/0.39
Total weight (lb)	2.66	2.77	4.13	2.72	2.25

Since Guyan reduction is a static condensation, it is only accurate for lower modes. For higher modes, the errors become too large as shown in table 5. Unlike the Guyan reduction, the SEREP process preserves the dynamic character of the original full system model for selected modes of interest. Therefore the dynamic characteristics of the reduced model were virtually the same as the full model shown in table 5. Therefore, the SEREP model reduction process was used in this ATW2 model update application.

Using frequency difference as an objective function; and mass properties, mass orthogonality, and mode shapes as constraint equations; the frequencies before and after model tuning are presented in table

5. Dramatic improvement was noted, in that after model tuning, the frequencies difference was reduced to 1.38% in the second mode and 0.39% in the third mode.

Table 6 shows the center of gravity, moment of inertia, orthonormalized mass matrix, and modal assurance criterion (MAC) values of the ATW2 before and after model tuning. The off-diagonal terms of the orthonormalized mass matrix, maximum of 37% before model tuning, were minimized in the second tuning step. The maximum off-diagonal term of 7.4% after model tuning is observed in table 6, and this off-diagonal term of the orthonormalized mass matrix satisfies the 10% limitation allowed by military specifications. Model correlation with the test data prior to model tuning was poor and unacceptable to proceed with flight. The MAC values of 0.52 and 0.73 for modes 2 and 3 before model tuning become 0.97 and 0.95, respectively. Therefore, we can conclude that excellent model correlation with the test data was achieved after model tuning, which lead to a more reliable flutter speed prediction.

Table 6. Summary of center of gravity, moment of inertia, orthonormalized mass matrix and MAC values for the ATW2 before and after model tuning.

			Before tuning			After tuning			
C.G.	(X,Y,Z)		14.22, -11.86, -0.011			13.08	13.089, -7.61, -0.0080		
	Ixx			73.44			97.52		
	Іуу			74.74			118.13		
	Izz			148.1			215.5		
	Ixy			-43.03			-85.55		
	Ixz		0.032			0.0286			
	Iyz			-0.02			0.0956		
			1	2	3	1	2	3	
Orthonormaliza	d mass matrix	1	1	25.0%	4.6%	1	4.0%	-5.7%	
Orthonormalize	u mass maurx	2	0.2467	1	37.0%	0.0395	1	-7.4%	
			0.0463	0.3681	1	-0.0565	-0.0743	1	
	Mode 1			0.90			0.99		
MAC	Mode 2			0.52			0.97		
	Mode 3			0.73			0.95		

CONCLUDING REMARKS

This paper describes the ground vibration test (GVT) and model tuning procedures for the second aerostructures test wing (ATW2), which was developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) for demonstrating flutter and advanced aeroelastic test techniques. In the sensor locations selection process, it was found that the effective independence (EI) and the genetic algorithm (GA) gave a higher determinant value of the Fisher information matrix (**FIM**) and thus, should be used for determining the sensor locations.

The finite element (FE) model tuning process was a challenging task, which depended not only on the accuracy of the experimental data, but also required a good prediction of the design variables for the optimization. After tuning the FE model, the frequency differences between GVT and the numerical results were within 3%, and the off-diagonal terms of the orthonormalized mass matrix were within 10%, both of which satisfy the military specifications. Excellent mode shape correlations were also achieved through the high modal assurance criterion (MAC) value (greater than 95%). With the updated FE model, the accuracy of flutter analysis can be improved and the flutter boundary prediction will be more reliable.

REFERENCES

- Lind, Rick, David Voracek, Roger Truax, Tim Doyle, Starr Potter, and Marty Brenner, "A Flight Test to Demonstrate Flutter and Evaluate the Flutterometer," *The Aeronautical Journal*, Vol. 107, No. 1076, pp. 577 – 588, October 2003.
- 2. Pak, Chan-gi, and Wesley Li, "Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm," *Proceedings of the 26th Congress of International Council of the Aeronautical Science*, Anchorage, 2008.
- Kammer, Daniel C., "Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures," *AIAA Journal of Guidance, Control and Dynamics*, Vol. 14, No. 2, pp. 251-259, 1991.
- 4. Charbonneau, Paul, and Barry Knapp, A User's Guide to PIKAIA 1.0, National Center for Atmospheric Research, Boulder, CO, 1995.
- 5. Friswell, M. I., and J. E. Mottershead, *Finite Element Model Updating in Structural Dynamics*, Kluwer Academic Publishers, Dordrecht, 1995.
- 6. Guyan, Robert J., "Reduction of Stiffness and Mass Matrices," *AIAA Journal*, Vol. 3, No. 2, p. 380, 1965.
- Tinker, Michael L., "Accelerometer Placement for the International Space Station Node Modal Test," AIAA-1998-2078, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 39th and AIAA/ASME/AHS Adaptive Structures Forum, Long Beach, CA, April 20-23, 1998.
- EI-Borgi, S., M. Neifar, F. Cherif, S. Choura, and H. Smaoui, "Modal Identification, Model Updating and Nonlinear Analysis of a Reinforced Concrete Bridge," *Journal of Vibration and Control*, Vol. 14, No. 4, pp. 511-530, 2008.
- 9. Pak, Chan-gi, "Finite Element Model Tuning Using Measured Mass Properties and Ground Vibration Test Data," *ASME Journal of Vibration and Acoustics*, Vol. 131, No. 1, February 2009.
- 10. Lung, Shun-fat, and Chan-gi Pak, "Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool," *Proceedings of the 26th Congress of International Council of the Aeronautical Sciences*, Anchorage, 2008.
- 11. Herrera, Claudia Y., and Chan-gi Pak, "Build-up Approach to Updating the Mock Quiet Spike Beam Model," AIAA-2007-1776, *Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference*, Honolulu, Hawaii, April 23-26, 2007.
- 12. Vanderplaats, Garret N., *Numerical Optimization Techniques for Engineering Design*, 3rd ed., Vanderplaats Research & Development, Inc. 2001.
- 13. Yeniay, Özgür, "Penalty Function Methods For Constrained Optimization Using Genetic Algorithms," *Mathematical and Computational Applications*, Vol. 10, No. 1, pp. 45-56, 2005.
- 14. O'Callahan, John C., "A New Procedure for an Improved Reduced System (IRS) Model," *Proceedings of the 7th International Modal Analysis Conference*, Vol. 1, pp. 17-21, Las Vegas, 1989.

- 15. O'Callahan, J. C., P. Avitabile, and R. Riemer, "System Equivalent Reduction Expansion Process," *Proceedings of the 7th International Modal Analysis Conference*, Vol. 1, pp. 29-37, Las Vegas, 1989.
- 16. *PONTOS User Manual Version 6.0*, Gesellschaft für Optische Messtechnik, Braunschweig, Germany, 2007.
- 17. Juang, Jer-Nan, and Richard S. Pappa, "An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction," *AIAA Journal of Guidance, Control, and Dynamics*, Vol. 8, No. 5, pp. 620-627, 1984.
- 18. MSC.Software Corporation, MSC.Nastran 2005 Quick Reference Guide: Volume 1, MSC.Software Corporation, 2005.
- 19. Test Requirements for Launch, Upper-Stage, and Space Vehicles, MIL-STD-1540C Section 6.2.10, September 15, 1994.
- 20. Norton, William J., Structures Flight Test Handbook, AFFTC-TIH-90-001, November 1990.

APPENDIX THE FE MODEL IN THE MSC/NASTRAN FORMAT

```
$ NASTRAN input file created by the MSC MSC.Nastran input file
$ translator ( MSC.Patran 13.1.116 ) on December 13, 2007 at 08:05:41.
ASSIGN OUTPUT4='atw2c maa.op4',UNIT=30,STATUS=UNKNOWN,FORM=FORMATTED
ASSIGN OUTPUT4='atw2c kaa.op4',UNIT=31,STATUS=UNKNOWN,FORM=FORMATTED
SOL 103
$ Direct Text Input for Executive Control
$ DMAP ALTER SOL 103
    COMPILE SEMODES SOUIN=MSCSOU LIST REF$
    ALTER 315$
    OUTPUT4 MAA///30/2//9$
    OUTPUT4 KAA///31/2//9$
    ENDALTER
CEND
SEALL = ALL
SUPER = ALL
TITLE = ATW2
$ECHO = SORT
$ Direct Text Input for Global Case Control Data
SUBCASE 1
$ Subcase name : ATW2C
  SUBTITLE=ATW2C
  METHOD = 1
  SPC = 2
  VECTOR (PLOT, SORT1, REAL) = ALL
Ś
  DISP=ALL
GPKE = ALL
BEGIN BULK
PARAM POST
              -1
PARAM AUTOSPC YES
PARAM WTMASS .002588
PARAM GRDPNT 0
PARAM NOCOMPS, -1
      USETPRT, 10
PARAM,
EIGRL
       1
                               10
                                     0
                                                             MAX
$ Direct Text Input for Bulk Data
$ Elements and Element Properties for region : pbar.700
                     .5
                             .1
PBAR
       700
               701
                                   .1
$ Pset: "pbar.700" will be imported as: "pbar.700"
        300
               700
                    303 308 -.061556-.998102.0018318
CBAR
CBAR
        301
                700
                       9
                              124
                                     -.061556-.998102.0018318
$ Elements and Element Properties for region : pcomp.500
$ Composite Property Record created from P3/PATRAN composite material
$ record : pcomp.500
$ Composite Material Description :
PCOMP
        500
            .01
                                              \cap
                                                     Ο.
        501
                     45.
                            YES
                                                    -45.
              .01
                                      501
                                             .01
                                                             YES
$ Pset: "pcomp.500" will be imported as: "pcomp.500"
                                          102
      500 500
                      229 240
                                      113
                                                     Ο.
COUAD4
                                                             Ο.
       501
               500
                       218
                               229
                                      102
                                              91
CQUAD4
                                                     Ο.
                                                             Ο.
```


 CQUAD4
 502
 500
 207
 218
 91
 80
 0.
 0.

 CQUAD4
 503
 500
 196
 207
 80
 69
 0.
 0.

 CQUAD4
 503
 500
 185
 196
 69
 58
 0.
 0.

 CQUAD4
 505
 500
 174
 185
 58
 47
 0.
 0.

 CQUAD4
 506
 500
 163
 174
 47
 36
 0.
 0.

 CQUAD4
 507
 500
 152
 163
 36
 25
 0.
 0.

 CQUAD4
 508
 500
 141
 152
 25
 14
 0.
 0.

 CQUAD4
 509
 500
 130
 141
 14
 3
 0.
 0.

 CQUAD4
 510
 500
 227
 104
 115
 238
 0.
 0.

 CQUAD4
 511
 500
 216
 93
 104
 227
 0.
 0.

 CQUAD4
 513
 500
 194
 71
 82
 205 \$ Elements and Element Properties for region : celas2.ca6.cb6 PELAS 1 50. \$ Pset: "celas2.ca6.cb6" will be imported as: "pelas.1" CELAS1 302 1 9 6 303 6 \$ Elements and Element Properties for region : pelas.2 PELAS 2 1.+8 \$ Pset: "pelas.2" will be imported as: "pelas.2" CELAS1 4006 2 403 6 402 6 \$ Elements and Element Properties for region : celas2.ca5.cb5 PELAS 3 1.+8 \$ Pset: "celas2.ca5.cb5" will be imported as: "pelas.3" CELAS1 4005 3 403 5 402 5 \$ Elements and Element Properties for region : celas2.ca4.cb4 PELAS 4 1.+8 \$ Pset: "celas2.ca4.cb4" will be imported as: "pelas.4" CELAS1 4004 4 403 4 402 4 \$ Elements and Element Properties for region : celas2.ca3.cb3 PELAS 5 1.+6 \$ Pset: "celas2.ca3.cb3" will be imported as: "pelas.5"
CELAS1 4003 5 403 3 402 3 \$ Elements and Element Properties for region : celas2.ca2.cb2 PELAS 6 1.+6 \$ Pset: "celas2.ca2.cb2" will be imported as: "pelas.6" CELAS1 4002 6 403 2 402 2 \$ Elements and Element Properties for region : celas2.ca1.cb1 PELAS 7 1.+6 \$ Pset: "celas2.cal.cb1" will be imported as: "pelas.7" CELAS1 4001 7 403 1 402 1 \$ Elements and Element Properties for region : pshell.600 PSHELL 600 601 .03 601 601 \$ Pset: "pshell.600" will be imported as: "pshell.600" CTRIA3 600 600 241 111 112 0. 0.

 CTRIA3
 600
 600
 241
 111
 112
 0.
 0.

 CQUAD4
 601
 600
 240
 241
 112
 113
 0.

 CQUAD4
 602
 600
 239
 240
 113
 114
 0.

 CQUAD4
 603
 600
 238
 239
 114
 115
 0.

 CQUAD4
 604
 600
 237
 238
 115
 116
 0.

 CQUAD4
 605
 600
 236
 237
 116
 117
 0.

 CQUAD4
 606
 600
 235
 236
 117
 118
 0.

 CQUAD4
 607
 600
 234
 235
 118
 119
 0.

 Ο. 0. 0. Ο. Ο. Ο. Ο.

CQUAD4 CTRIA3	608 609	600 600	233 121	234 233	119 120	120 0.	0.	0.
CTRIA3	610	600	219	89	90	0.	0.	
CQUAD4	611	600	218	219	90	91	0.	0.
CQUAD4	612	600	217	218	91	92	0.	0.
CQUAD4	613	600	216	217	92	93	0.	0.
CQUAD4	614	600	215	216	93	94	0.	0.
CQUAD4	615	600	214	215	94	95	Ο.	0.
CQUAD4	616	600	213	214	95	96	Ο.	Ο.
CQUAD4	617	600	212	213	96	97	Ο.	Ο.
CQUAD4	618	600	211	212	97	98	Ο.	Ο.
CTRIA3	619	600	99	211	98	Ο.	Ο.	
CTRIA3	620	600	197	67	68	Ο.	Ο.	
CQUAD4	621	600	196	197	68	69	Ο.	Ο.
CQUAD4	622	600	195	196	69	70	Ο.	Ο.
CQUAD4	623	600	194	195	70	71	Ο.	Ο.
CQUAD4	624	600	193	194	71	72	Ο.	Ο.
CQUAD4	625	600	192	193	72	73	Ο.	Ο.
COUAD4	626	600	191	192	73	74	Ο.	Ο.
COUAD4	627	600	190	191	74	75	0.	0.
COUAD4	62.8	600	189	190	75	76	0.	0.
CTRIA3	62.9	600	77	189	76	0.	0.	•••
CTRIA3	630	600	175	4.5	46	0.	0.	
	631	600	174	175	46	47	0	0
COULA D4	632	600	173	174	40	4 9	0.	0.
COUADA	633	600	172	173	18	40	0.	0.
COUNDA	631	600	171	172	40	50	0.	0.
CQUAD4	625	600	170	171	4 J 5 O	51	0.	0.
CQUAD4	636	600	160	170	50 E 1	51	0.	0.
CQUAD4	627	600	169	160	51	52	0.	0.
CQUAD4	620	600	210	211	J2 205	306	0.	0.
CQUAD4	620	600	310	311 210	305	306	0.	0.
CIRIAS	639	600	307	22	306	0.	0.	
CTRIA3	640	600	153	23 150	24	0.	0.	0
CQUAD4	641	600	15Z	153	24	25	0.	0.
CQUAD4	642	600	151	152	25	26	0.	0.
CQUAD4	643	600	150	151	26	27	0.	0.
CQUAD4	644	600	149	150	27	28	0.	0.
CQUAD4	645	600	148	149	28	29	0.	0.
CQUAD4	646	600	147	148	29	30	0.	0.
CQUAD4	647	600	146	147	30	31	0.	0.
CQUAD4	648	600	314	308	303	313	0.	0.
CTRIA3	649	600	312	314	313	0.	0.	
CTRIA3	650	600	131	1	2	0.	0.	
CQUAD4	651	600	130	131	2	3	0.	0.
CQUAD4	652	600	129	130	3	4	0.	0.
CQUAD4	653	600	128	129	4	5	0.	0.
CQUAD4	654	600	127	128	5	6	0.	0.
CQUAD4	655	600	126	127	6	7	0.	0.
CQUAD4	656	600	125	126	7	8	0.	0.
CQUAD4	657	600	124	125	8	9	Ο.	0.
CQUAD4	658	600	123	124	9	10	Ο.	0.
CTRIA3	659	600	11	123	10	0.	0.	
CQUAD4	660	600	145	146	31	32	Ο.	0.
CTRIA3	661	600	33	145	32	0.	0.	
CQUAD4	662	600	167	168	53	54	0.	Ο.
CTRIA3	663	600	55	167	54	0.	0.	
\$ Elemen	ts and	Element	Properti	les for	region	: pshell.	608	

PSHELL	608	601	.06	601		601		
\$ Pset:	"pshell.	.608"	will be	imported	as: "pshe	ell.608"		
CQUAD4	700	608	309	311	305	304	0.	Ο.
CQUAD4	701	608	308	309	304	303	0.	Ο.
CQUAD4	702	608	31	42	157	146	0.	Ο.
CQUAD4	703	608	42	53	168	157	0.	Ο.
\$ Elemer	nts and E	Elemer	nt Proper	ties for	region :	psolid.3	00	
PSOLID	300	301	0		2	-		
\$ Pset:	"psolid.	.300"	will be	imported	as: "psol	Lid.300"		
CHEXA	200	300	13	2	3	14	142	131
	130	141						
CHEXA	201	300	14	3	4	15	141	130
	129	140						
CHEXA	202	300	24	13	14	25	153	142
	141	152						
CHEXA	203	300	15	4	5	16	140	129
	128	139						
CHEXA	204	300	25	14	15	26	152	141
	140	151						
CHEXA	205	300	35	24	25	36	164	153
	152	163						
CHEXA	206	300	16	5	6	17	139	128
	127	138						
CHEXA	207	300	26	15	16	27	151	140
	139	150						
CHEXA	208	300	36	25	26	37	163	152
	151	162						
CHEXA	209	300	46	35	36	47	175	164
	163	174						
CHEXA	210	300	17	6	7	18	138	127
	126	137						
CHEXA	211	300	27	16	17	28	150	139
	138	149						
CHEXA	212	300	37	26	27	38	162	151
~	150	161	4.5	2.6	0 -	4.0	1 - 4	1.60
CHEXA	213	300	47	36	37	48	174	163
	162	1/3		1.0	4 7	5.0	100	1
CHEXA	214	300	57	46	4 /	58	180	1/5
	1/4 015	200	1.0	7	0	1.0	1 2 7	100
CHEXA	215	300	18	/	8	19	137	ΤΖΌ
CHEVA	216	200 T20	20	17	10	20	140	1 2 0
CHEXA	210	1/9	20	1 /	ΤO	29	149	130
CUEVA	217	300	30	27	28	30	161	150
CHEXA	217	160	20	27	20	39	TOT	100
CHEVA	218	300	18	37	38	19	173	162
CIIDMA	161	172	10	57	50	-J	1/5	TOZ
CHEXA	219	300	58	47	48	59	185	174
01121111	173	184	00	1,	10	0.9	100	± / 1
CHEXA	220	300	68	57	58	69	197	186
	185	196						
CHEXA	221	300	19	8	9	20	136	125
	124	135	-	-				-
CHEXA	222	300	29	18	19	30	148	137
	136	147						
CHEXA	223	300	39	28	29	40	160	149
	148	159						

CHEXA	224 160	300 171	49	38	39	50	172	161
CHEXA	225	300	59	48	49	60	184	173
	172	183						
CHEXA	226	300	69	58	59	70	196	185
	184	195						
CHEXA	227	300	79	68	69	80	208	197
	196	207						
CHEXA	228	300	20	9	10	21	135	124
	123	134						
CHEXA	229	300	30	19	20	31	147	136
	135	146						
CHEXA	230	300	40	29	30	41	159	148
	147	158						
CHEXA	231	300	50	39	40	51	171	160
	159	170						
CHEXA	232	300	60	49	50	61	183	172
	171	182						
CHEXA	233	300	70	59	60	71	195	184
	183	194						
CHEXA	234	300	80	69	70	81	207	196
01121111	195	206	0.0	0.0	, 0	0 1	207	200
CHEXA	235	300	90	79	80	91	219	208
CHERNI	207	218	50	15	00	<u>J</u> T	219	200
CHEYA	236	300	31	20	21	30	146	135
CHEXA	13/	1/15	51	20	21	52	THO	100
CUEVA	237	300	11	30	31	12	159	1 / 7
CHEXA	237	157	4 L	30	31	42	100	14/
OUDVA	140	107	E 1	4.0	4.1	FO	170	1 5 0
CHEXA	230 150	300	51	40	41	52	170	109
011111	158	169	C 1		F 1	<u> </u>	100	1 -7 1
CHEXA	239	300	61	50	51	62	182	1/1
	1/0	181	- 1	<u> </u>	C 1	70	104	1 0 0
CHEXA	240	300	/ 1	60	6 L	12	194	183
	182	193	0.4		- 4			
CHEXA	241	300	81	70	71	82	206	195
	194	205						
CHEXA	242	300	91	80	81	92	218	207
	206	217						
CHEXA	243	300	101	90	91	102	230	219
	218	229						
CHEXA	244	300	304	303	313	300	309	308
	314	302						
CHEXA	245	300	52	41	42	53	169	158
	157	168						
CHEXA	246	300	62	51	52	63	181	170
	169	180						
CHEXA	247	300	72	61	62	73	193	182
	181	192						
CHEXA	248	300	82	71	72	83	205	194
	193	204						
CHEXA	249	300	92	81	82	93	217	206
	205	216						
CHEXA	250	300	102	91	92	103	229	218
	217	228						
CHEXA	251	300	112	101	102	113	241	230
	229	240						
CHEXA	252	300	305	304	300	306	311	309

	302	310						
CHEXA	253	300	63	52	53	64	180	169
	168	179						
CHEXA	254	300	73	62	63	74	192	181
	180	191						
CHEXA	255	300	83	72	73	84	204	193
	192	203						
CHEXA	256	300	93	82	83	94	216	205
	204	215						
CHEXA	257	300	103	92	93	104	228	217
	216	227						
CHEXA	258	300	113	102	103	114	240	229
-	228	239	-					-
CHEXA	259	300	64	53	54	6.5	179	168
	167	178	• -					
CHEXA	260	300	74	63	64	7.5	191	180
	179	190						
CHEXA	261	300	84	73	74	85	203	192
	191	202						
CHEXA	2.62	300	94	83	84	9.5	215	204
	203	214						
CHEXA	263	300	104	93	94	105	227	216
-	215	226			-			
CHEXA	264	300	114	103	104	115	239	228
	227	238						
CHEXA	265	300	75	64	65	76	190	179
	178	189						
CHEXA	266	300	85	74	75	86	202	191
	190	201						
CHEXA	267	300	95	84	85	96	214	203
	202	213						
CHEXA	268	300	105	94	95	106	226	215
	214	225						
CHEXA	269	300	115	104	105	116	238	227
	226	237						
CHEXA	270	300	86	75	76	87	201	190
	189	200						
CHEXA	271	300	96	85	86	97	213	202
	201	212						
CHEXA	272	300	106	95	96	107	225	214
	213	224						
CHEXA	273	300	116	105	106	117	237	226
	225	236						
CHEXA	274	300	97	86	87	98	212	201
	200	211						
CHEXA	275	300	107	96	97	108	224	213
	212	223						
CHEXA	276	300	117	106	107	118	236	225
	224	235						
CHEXA	277	300	108	97	98	109	223	212
	211	222						
CHEXA	278	300	118	107	108	119	235	224
	223	234						
CHEXA	279	300	119	108	109	120	234	223
	222	233						
CPENTA	280	300	2	1	131	13	12	142
CPENTA	281	300	13	12	142	24	23	153

CPENTA CPENTA CPENTA CPENTA	282 283 284 285	300 300 300 300	24 35 46 57	23 34 45 56	153 164 175 186	35 46 57 68	34 45 56 67	164 175 186 197
CPENTA	286	300	68	67	197	79	78	208
CPENTA	287	300	79	78	208	90	89	219
CPENTA	288	300	90	89	219	101	100	230
CPENTA	289	300	21	22	134	10	11	123
CPENTA	290	300	101	100	230	112	111	241
CPENTA	291	300	32	33	145	21	22	134
CPENTA	292	300	300	301	302	313	312	314
CPENTA	293	300	306	307	310	300	301	302
CPENTA	294	300	65	66	178	54	55	167
CPENTA	295	300	76	.,.,	189	65	66	178
CPENTA	296	300	8 /	88	200	/6	//	189
CPENTA	297	300	98	99	211	8 /	88	200
CPENTA	298	300	109	110	222	98	99	211
CPENTA C Element	299 	300	IZU Durana utian	121	233 	109	110	ZZZ
S Element	IS and El	Lement	Properties	S IOT TE	gion : c	conm2	0	
CONMZ	400	500	0	0.4/5	0.	0.	0.	
CONMO	0.	U. 510	0.	0.	0.	0.	0	
CONMZ	401	0	0	0.	0.	0.	0.	
CONMO	0.	U. 500	0.	0.075	0.	0.	0	
CONMZ	402	529	0	0.075	0.	0.	0.	
CONMO	U. 406	U. 60	0.	0.02	0.	0.	0	
CONMZ	406	00	0	0.03	0.	0.	0.	
CONMO	0.	U. 57	0.	0.02	0.	0.	0	
CONMZ	407	0	0	0.03	0.	0.	0.	
CONMO	409	0. 46	0.	0.03	0.	0.	0	
CONMZ	408	40	0	0.03	0.	0.	0.	
CONM2	409	U. 35	0.	0.03	0.	0.	0	
COMMZ	405	0	0	0.05	0.	0.	0.	
CONM2	410	24	0	0.03	0	0	0	
CONHZ	0	0	0	0.05	0	0	0.	
CONM2	412	91	0	0 0638	0	0	0	
001112	0.	0.	0.	0.	0.	0.	•••	
CONM2	41.3	97	0	0.0638	0.	0.	0.	
001112	0.	0.	0.	0.	0.	0.	•••	
CONM2	414	103	0	0.0638	0.	0.	0.	
	0.	0.	0.	0.	0.	0.		
CONM2	415	109	0	0.0638	0.	0.	0.	
	0.	0.	0.	0.	0.	0.		
CONM2	416	212	0	0.0638	0.	Ο.	0.	
	0.	0.	0.	0.	0.	0.		
CONM2	417	218	0	0.0638	0.	Ο.	0.	
	0.	0.	0.	0.	0.	Ο.		
CONM2	418	228	0	0.0638	0.	Ο.	0.	
	0.	0.	0.	0.	0.	Ο.		
CONM2	419	222	0	0.0638	0.	Ο.	0.	
	0.	0.	0.	0.	0.	Ο.		
\$ Element	ts and El	Lement	Properties	s for re	gion : p	bar.39		
PBAR	39	901	.097314	.011411	.011411	.022821		
	.5			. 5	5		-	5
\$ Pset: '	'pbar.39'	' will	be importe	ed as: "	pbar.39'	T		
CBAR	800	39	501	500	0.	-1.	0.	
CBAR	801	39	502	501	0.	-1.	0.	

CBAR	802	39	503	502	0.	-1.	Ο.	
CBAR	803	39	504	503	0.	-1.	Ο.	
CBAR	804	39	505	504	Ο.	-1.	Ο.	
CBAR	805	39	506	505	0.	-1.	0.	
CBAR	806	39	507	506	Ο.	-1.	Ο.	
CBAR	807	39	508	507	0.	-1.	0.	
CBAR	808	39	509	508	0.	-1.	0.	
CBAR	809	39	510	509	0	-1	0	
CBAR	810	39	512	511	0	±• 1	0	
CBAR	811	39	513	512	0.	1 1	0.	
CBAR	011 912	30	517	513	0.	⊥• 1	0.	
CBAR	012	29	515	517	0.	⊥• _1	0.	
CDAR	013	29	515	515	0.	-1.	0.	
CBAR	814	39	516	515	0.	-1.	0.	
CBAR	815	39	517	516	0.	-1.	0.	
CBAR	816	39	518	517	0.	1.	0.	
CBAR	817	39	519	518	0.	-1.	0.	
CBAR	818	39	520	519	0.	-1.	0.	
CBAR	819	39	521	520	0.	-1.	0.	
CBAR	820	39	522	521	0.	-1.	0.	
CBAR	821	39	523	522	0.	-1.	0.	
CBAR	822	39	524	523	0.	-1.	0.	
CBAR	823	39	525	524	0.	-1.	Ο.	
CBAR	824	39	526	525	0.	-1.	Ο.	
CBAR	825	39	527	526	0.	-1.	0.	
CBAR	826	39	528	527	Ο.	-1.	Ο.	
CBAR	827	39	529	528	0.	-1.	0.	
CBAR	828	39	530	510	0.	-1.	0.	
CBAR	829	39	511	530	0.	1.	0.	
					• •	- •	•••	
\$ Element	s and E	lement P	ropertie	s for rea	rion : 1	pcomp.41		
\$ Element	ts and E	lement P	ropertie ord crea	s for rea ted from	gion : j p3/pami	pcomp.41 RAN compo	osite mate	erial
<pre>\$ Element \$ Composi \$ record</pre>	ts and E te Prop	lement P erty Rec	ropertie ord crea	s for red ted from	gion : j P3/PATI	pcomp.41 RAN compo	osite mate	erial
<pre>\$ Element \$ Composit \$ record \$ Composit</pre>	ts and E te Prop : pcomp	lement P. erty Rec .10 rial Des	ropertie ord crea	s for reated from	gion : j P3/PATI	pcomp.41 RAN compo	osite mate	erial
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP</pre>	ts and E ite Prop : pcomp ite Mate	lement P. erty Rec .10 rial Des - 13	ropertie ord crea cription	s for reated from	gion : j P3/PAT	pcomp.41 RAN compo	osite mate	erial
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP</pre>	ts and E ite Prop : pcomp ite Mate 41	lement P. erty Rec. .10 rial Des. 13	ropertie ord crea cription	s for rea ted from : 8000.	gion : p P3/PAT HOFF	pcomp.41 RAN compo 0.	0.	erial
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP</pre>	ts and E ite Prop : pcomp ite Mate 41 201	lement P. erty Rec. .10 rial Des 13 .11	ropertie ord crea cription 0.	s for red ted from : 8000. YES	gion : p P3/PAT HOFF 202	pcomp.41 RAN compo 0. .02	osite mato 0. 45.	erial YES
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: '</pre>	ts and E ite Prop : pcomp ite Mate 41 201 'pcomp.4	lement P erty Rec .10 rial Des 13 .11 1" will 1	ropertie ord crea cription 0. be impor	s for red ted from : 8000. YES ted as:	gion : j P3/PATI HOFF 202 "pcomp	pcomp.41 RAN compo 0. .02 41"	0. 45.	erial YES
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4</pre>	ts and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002	lement P erty Rec .10 rial Des 13 .11 1" will 1 41	ropertie ord crea cription 0. be impor 228	s for red ted from : 8000. YES ted as: 239	gion : p P3/PATH HOFF 202 "pcomp. 240	pcomp.41 RAN compo 0. .02 41" 229	0. 45.	erial YES 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4</pre>	ts and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003	lement P erty Rec .10 rial Des 13 .11 1" will 1 41 41	ropertie ord crea cription 0. be impor 228 227	s for red ted from : 8000. YES ted as: 239 238	gion :) P3/PATH HOFF 202 "pcomp. 240 239	0. 0. 02 41" 229 228	0. 45. 4	erial YES O. O.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4</pre>	ts and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012	lement P. erty Rec. .10 rial Des 13 .11 1" will P 41 41 41	ropertie ord crea cription 0. be impor 228 227 217	s for red ted from : 8000. YES ted as: 239 238 228	gion :) P3/PAT HOFF 202 "pcomp. 240 239 229	0. 02 02 02 02 02 02 02 02 02 02 02 02 02	0. 45. 4 4	erial YES 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	ts and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013	lement P. erty Rec. .10 rial Des 13 .11 1" will 1 41 41 41 41	ropertie ord crea cription 0. be impor 228 227 217 216	s for red ted from : 8000. YES ted as: 239 238 228 227	gion :) P3/PAT HOFF 202 "pcomp 240 239 229 228	0. 02 41" 229 228 218 217	0. 45. 4 4 4 4	erial YES 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>its and E ite Prop pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202</pre>	lement P. erty Rec. .10 rial Des 13 .11 1" will P 41 41 41 41 41	ropertie ord crea cription 0. be impor 228 227 217 216 102	s for red ted from : 8000. YES ted as: 239 238 228 227 113	gion :) P3/PAT HOFF 202 "pcomp. 240 239 229 228 114	0. 02 41" 229 228 218 217 103	0. 45. 4 4 4 4 4 4 4 4	erial YES 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203</pre>	lement P. erty Rec. .10 rial Des 13 .11 1" will 1 41 41 41 41 41 41	ropertie ord crea cription 0. be impor 228 227 217 216 102 103	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115	0. 02 41" 229 228 218 217 103 104	0. 45. 4 4 4 4 4 4 4 4 4 4 4	erial YES 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212</pre>	lement P. erty Rec. .10 rial Des. 13 .11 1" will 1 41 41 41 41 41 41 41	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102	gion : p P3/PAT HOFF 202 "pcomp 240 239 229 228 114 115 103	0. 02 41" 229 228 218 217 103 104 92	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4	erial YES 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213</pre>	lement P. erty Rec. .10 rial Des. 13 .11 1" will 1 41 41 41 41 41 41 41 41 41	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103	gion : p P3/PAT HOFF 202 "pcomp 240 239 229 228 114 115 103 104	0. 02 41" 229 228 218 217 103 104 92 93	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4 4 4	YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E</pre>	<pre>lement P. erty Rec10 rial Des13 .11 1" will 1 41 41 41 41 41 41 41 41 41 41 41 41 41</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red	gion : p P3/PAT HOFF 202 "pcomp 240 239 229 228 114 115 103 104 gion : p	0. 02 41" 229 228 218 217 103 104 92 93 pcomp.42	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4 4	YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop</pre>	lement P erty Rec .10 rial Des 13 .11 1" will 1 41 41 41 41 41 41 41 41 ement P erty Rec	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT	0. 0. 02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo	0. 45. 4 4 4 4 4 4 4 4 4 4 5 5 1 5 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	erial YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp</pre>	<pre>lement P. erty Rec10 rial Des13 .11 1" will 1 41 41 41 41 41 41 41 lement P. erty Rec20</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT	0. 0. 02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo	0. 45. 4 4 4 4 4 4 4 4 4 4 5 5 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	erial YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi</pre>	ts and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 ts and E ite Prop : pcomp	lement P. erty Rec. .10 rial Dese 13 .11 1" will 1 41 41 41 41 41 41 41 41 ement P. erty Rec. .20 rial Dese	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from :	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT	pcomp.41 RAN compo 0. .02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo	0. 45. 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	erial YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi PCOMP</pre>	ts and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 ts and E ite Prop : pcomp ite Mate 42	<pre>lement P. erty Rec10 rial Des13 .11 1" will 1 41 41 41 41 41 41 41 erty Rec20 rial Des09</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000.	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT	pcomp.41 RAN compo 0. .02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo	0. 45. 4 4 4 4 4 4 4 4 4 5 5 5 1 6 0.	erial YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi PCOMP</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201</pre>	<pre>lement P. erty Rec10 rial Des13 .11 1" will 1 41 41 41 41 41 41 41 41 41 ement P. erty Rec20 rial Des09 .075</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0.	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202	pcomp.41 RAN compo 0. .02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. .015	0. 45. 4 4 4 4 4 4 4 4 4 5. 0. 45.	erial YES 0. 0. 0. 0. 0. 0. 0. 0. erial
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset. '</pre>	s and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1003 1012 1203 1212 1213 ts and E ite Prop : pcomp ite Mate 42 201	<pre>lement P. erty Rec10 rial Des13 .11 " will 1 41 41 41 41 41 41 41 41 41 erty Rec20 rial Des09 .075 2" will 1</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202	pcomp.41 RAN compo 0. .02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. .015 42"	0. 45. 4 4 4 4 4 4 4 4 4 5. 0. 45.	erial YES 0. 0. 0. 0. 0. 0. 0. erial
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' COUAD4</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201 'pcomp.4 1022</pre>	<pre>lement P. erty Rec10 rial Des13 .11 " will 1 41 41 41 41 41 41 41 41 41 erty Rec20 rial Des09 .075 2" will 1 42</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor 206	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES ted as: 217	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202 "pcomp. 218	pcomp.41 RAN compo 0. .02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. .015 42" 207	0. 45. 4 4 4 4 4 4 4 4 4 4 5. 0. 45. 4	erial YES 0. 0. 0. 0. 0. 0. 0. 0. erial YES
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi \$ record \$ Composi \$ Composi CQUAD4</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201 'pcomp.4 1022 1023</pre>	<pre>lement P. erty Rec10 rial Des13 .11 " will 1 41 41 41 41 41 41 41 41 41 41 41 erty Rec20 rial Des09 .075 2" will 1 42 42</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor 206 205	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES ted as: 217 216	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202 "pcomp. 218 217	pcomp.41 RAN compo 0. .02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. .015 42" 206	0. 45. 4 4 4 4 4 4 4 4 4 4 4 5. 0. 45. 4 4	erial YES 0. 0. 0. 0. 0. 0. 0. erial YES 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi \$ record \$ Composi \$ Composi CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201 'pcomp.4 1022 1023 1023 1023</pre>	<pre>lement P. erty Rec10 rial Des13 .11 " will P 41 41 41 41 41 41 41 41 41 41 41 erty Rec20 rial Des09 .075 2" will P 42 42 42 42 42 42 42 42 42 42 42 42 42</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor 206 205	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES ted as: 217 216 206	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202 "pcomp. 218 217 207	pcomp.41 RAN compo 0. .02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. .015 42" 206 106	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4 5. 0. 45. 4 4 4	erial YES 0. 0. 0. 0. 0. 0. 0. erial YES 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201 'pcomp.4 1022 1023 1032 1032 1032</pre>	<pre>lement P: erty Rec .10 rial Des 13 .11 " will P 41 41 41 41 41 41 41 41 41 41 41 41 41</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor 206 205 195	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES ted as: 217 216 206	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202 "pcomp. 218 217 207 206	0. 0. 02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. 015 42" 206 196 105	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5. 0. 45. 4 4 4	erial YES 0. 0. 0. 0. 0. 0. 0. erial YES 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201 'pcomp.4 1022 1023 1032 1033 1032</pre>	<pre>lement P: erty Rec .10 rial Des 13 .11 " will P 41 41 41 41 41 41 41 41 41 41 41 41 41</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor 206 205 195 194	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES ted as: 217 216 206 205	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202 "pcomp. 218 217 207 206	0. 0. 02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. 015 42" 206 196 195 226	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4 5. 0. 45. 4 4 4 4 4	erial YES 0. 0. 0. 0. 0. 0. 0. erial YES 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201 'pcomp.4 1022 1023 1032 1033 1222 1033 1222 1033</pre>	<pre>lement P: erty Rec .10 rial Des 13 .11 " will P 41 41 41 41 41 41 41 41 41 41 41 41 41</pre>	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor 206 205 195 194 80	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES ted as: 217 216 206 205 91	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202 "pcomp. 218 217 207 206 92	0. 0. 02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. 015 42" 206 196 195 81	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5. 4 5. 4 4 4 4	erial YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<pre>\$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 \$ Element \$ Composi \$ record \$ Composi PCOMP \$ Pset: ' CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4</pre>	<pre>cs and E ite Prop : pcomp ite Mate 41 201 'pcomp.4 1002 1003 1012 1013 1202 1203 1212 1213 cs and E ite Prop : pcomp ite Mate 42 201 'pcomp.4 1022 1023 1032 1033 1222 1223</pre>	lement P erty Rec .10 rial Des 13 .11 " will P 41 41 41 41 41 41 41 41 41 41 41 41 41	ropertie ord crea cription 0. be impor 228 227 217 216 102 103 91 92 ropertie ord crea cription 0. be impor 206 205 195 194 80 81	s for red ted from : 8000. YES ted as: 239 238 228 227 113 114 102 103 s for red ted from : 8000. YES ted as: 217 216 206 205 91 92	gion : p P3/PAT HOFF 202 "pcomp. 240 239 229 228 114 115 103 104 gion : p P3/PAT HOFF 202 "pcomp. 218 217 207 206 92 93	0. 0. 02 41" 229 228 218 217 103 104 92 93 pcomp.42 RAN compo 0. 015 42" 206 196 195 81 82	0. 45. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5. 4 5. 4 4 4 4	erial YES 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

CQUAD4 1233 42 70 81 82 71 4 0. \$ Elements and Element Properties for region : pcomp.43 \$ Composite Property Record created from P3/PATRAN composite material \$ record : pcomp.30 \$ Composite Material Description : 43 -.073 PCOMP 8000. HOFF Ο. Ο. 201 .058 Ο. YES 202 .015 45. YES \$ Pset: "pcomp.43" will be imported as: "pcomp.43" CQUAD4 1042 43 184 195 196 185 4 Ο. 1043 CQUAD4 43 183 194 195 184 4 0. 1052 COUAD4 43 173 184 185 174 4 0. 173 184 4 0. CQUAD4 1053 43 172 183 CQUAD4 1242 43 58 69 70 59 4 0. COUAD4 1243 43 59 70 71 60 4 0. CQUAD4 1252 43 47 58 59 48 4 Ο. 1253 43 48 CQUAD4 59 60 49 4 Ο. \$ Elements and Element Properties for region : pcomp.44 \$ Composite Property Record created from P3/PATRAN composite material \$ record : pcomp.40 \$ Composite Material Description : PCOMP 44 -.038 8000. HOFF Ο. Ο. 201 .023 Ο. YES 202 .015 45. YES \$ Pset: "pcomp.44" will be imported as: "pcomp.44" 1062 44 COUAD4 162 173 174 163 4 Ο. 1063 161 172 173 162 COUAD4 44 4 0. CQUAD4 1072 151 163 152 4 44 162 Ο. Ο. CQUAD4 1073 44 150 161 162 151 4 COUAD4 1262 44 36 47 48 37 4 Ο. Ο. CQUAD4 1263 44 37 48 49 38 4 36 37 26 CQUAD4 1272 44 25 4 Ο. 26 44 37 38 CQUAD4 1273 27 4 0. \$ Elements and Element Properties for region : pcomp.45 \$ Composite Property Record created from P3/PATRAN composite material \$ record : pcomp.50 \$ Composite Material Description : 45 -.03 8000. HOFF Ο. Ο. PCOMP 201 .015 Ο. YES 202 .015 45. YES \$ Pset: "pcomp.45" will be imported as: "pcomp.45" CQUAD4 1082 45 140 151 152 141 4 Ο. 1083 139 140 4 CQUAD4 45 150 151 Ο. CQUAD4 1092 45 129 140 141 130 4 Ο. COUAD4 1093 45 128 139 140 129 4 0. CQUAD4 1282 45 14 25 26 15 4 0. 16 15 27 1283 26 45 4 Ο. CQUAD4 1292 COUAD4 45 3 14 15 4 4 Ο. 4 15 Ο. CQUAD4 1293 45 16 5 4 \$ Elements and Element Properties for region : pcomp.46 \$ Composite Property Record created from P3/PATRAN composite material \$ record : pcomp.200 \$ Composite Material Description : PCOMP 46 -.0165 8000. HOFF Ο. Ο. 202 .0033 45. YES 202 .0033 -45. YES .0033 45. 202 YES 202 .0033 -45. YES 202 .0033 45. YES \$ Pset: "pcomp.46" will be imported as: "pcomp.46" Ο. COUAD4 1000 46 230 241 111 100 4 1001 229 240 241 230 Ο. CQUAD4 46 4

COUAD4	1004	46	226	237	238	227	4	0.
COUAD4	1005	46	225	236	237	226	4	0.
COUAD4	1006	46	224	235	236	225	4	0.
COUAD4	1007	46	223	2.34	235	224	4	0.
COUAD4	1008	46	222	233	234	223	4	0
COLLAD4	1009	46	110	121	233	223	4	0
	1010	46	219	230	100	89	4	0.
COUADA	1010	46	219	229	230	219	1	0.
COUNDA	1011	40	210	225	200	216	1	0.
CQUAD4	1014	40	213	220	227	210	4	0.
CQUAD4	1015	40	214	223	220	213	4	0.
CQUAD4	1010	40	213	224	223	214	4	0.
CQUAD4	1010	40	212	223	224	213	4	0.
CQUAD4	1010	40	211	110	223	212	4	0.
CQUAD4	1019	40	99	110	222	211	4	0.
CQUAD4	1020	46	208	219	89	/8	4	0.
CQUAD4	1021	46	207	218	219	208	4	0.
CQUAD4	1024	46	204	215	216	205	4	0.
CQUAD4	1025	46	203	214	215	204	4	0.
CQUAD4	1026	46	202	213	214	203	4	0.
CQUAD4	1027	46	201	212	213	202	4	0.
CQUAD4	1028	46	200	211	212	201	4	0.
CQUAD4	1029	46	88	99	211	200	4	0.
CQUAD4	1030	46	197	208	78	67	4	0.
CQUAD4	1031	46	196	207	208	197	4	0.
CQUAD4	1034	46	193	204	205	194	4	0.
CQUAD4	1035	46	192	203	204	193	4	0.
CQUAD4	1036	46	191	202	203	192	4	Ο.
CQUAD4	1037	46	190	201	202	191	4	Ο.
CQUAD4	1038	46	189	200	201	190	4	Ο.
CQUAD4	1039	46	77	88	200	189	4	Ο.
CQUAD4	1040	46	186	197	67	56	4	Ο.
CQUAD4	1041	46	185	196	197	186	4	Ο.
CQUAD4	1044	46	182	193	194	183	4	Ο.
CQUAD4	1045	46	181	192	193	182	4	Ο.
CQUAD4	1046	46	180	191	192	181	4	Ο.
COUAD4	1047	46	179	190	191	180	4	Ο.
COUAD4	1048	46	178	189	190	179	4	Ο.
COUAD4	1049	46	66	77	189	178	4	0.
COUAD4	1050	46	175	186	56	45	4	0.
COUAD4	1051	46	174	185	186	175	4	0.
COUAD4	1054	46	171	182	183	172	4	0.
COUAD4	1055	46	170	181	182	171	4	0.
COUAD4	1056	46	169	180	181	170	4	0.
COLLAD4	1057	46	168	179	180	169	4	0
COLLAD4	1058	46	167	178	179	168	4	0.
	1059	46	55	£70 66	178	167	4	0.
COULD 4	1060	46	164	175	45	34	- Д	0.
COUADA	1061	46	163	174	175	164	1	0.
COUNDA	1061	40	160	171	172	161	-	0.
COUNDA	1065	40	159	170	172	160	4	0.
CQUAD4	1065	40	150	160	170	150	4	0.
COUAD4	1067	40	157	160	160	150	4	0.
COUAD4	1070	40	150 150	167	3 V T U A	7.70 T.70	4	0.
CQUAD4	1071	40	150	104	1C4	20 150	4	0.
CQUAD4		40	1 4 O	103	104	153 150	4	0.
CQUAD4	1075	40	149	1 E O	101	LOU 140	4	υ.
CQUAD4	1076	40	148	159	1 E O	149	4	υ.
CQUAD4	TU/6	46	14 /	T 2 Q	TDA	148 148	4	υ.

COUAD4	1077	46	146	157	158	147	4	Ο.
COUAD4	1080	46	142	153	23	12	4	0.
COUAD4	1081	46	141	152	153	142	4	0.
COUAD4	1084	46	1.38	149	1.50	1.39	4	0.
COUAD4	1085	46	1.37	148	149	1.38	4	0.
COUAD4	1086	46	136	147	148	137	4	0
COLLAD4	1087	46	135	146	147	136	4	0
	1088	46	134	145	146	135	Δ	0.
COUADA	1089	16	22	33	145	134	1	0.
COUNDA	1000	16	131	142	12	1	7	0.
COUNDA	1090	40	130	142	142	⊥ 131	4	0.
CQUAD4	1001	40	127	120	120	120	4	0.
CQUAD4	1005	40	127	127	120	120	4	0.
CQUAD4	1095	40	120	120	1 2 7	127	4	0.
CQUAD4	1096	40	123	136	137	126	4	0.
CQUAD4	1097	40	124	135	136	125	4	0.
CQUAD4	1098	40	123	134	135	124	4	0.
CQUAD4	1099	46		22	134	123	4	0.
CQUAD4	1200	46	100		112	101	4	0.
CQUAD4	1201	46	101	112	113	102	4	0.
CQUAD4	1204	46	104	115	116	105	4	0.
CQUAD4	1205	46	105	116	117	106	4	0.
CQUAD4	1206	46	106	117	118	107	4	0.
CQUAD4	1207	46	107	118	119	108	4	0.
CQUAD4	1208	46	108	119	120	109	4	0.
CQUAD4	1209	46	109	120	121	110	4	0.
CQUAD4	1210	46	89	100	101	90	4	0.
CQUAD4	1211	46	90	101	102	91	4	Ο.
CQUAD4	1214	46	93	104	105	94	4	Ο.
CQUAD4	1215	46	94	105	106	95	4	Ο.
CQUAD4	1216	46	95	106	107	96	4	Ο.
CQUAD4	1217	46	96	107	108	97	4	Ο.
CQUAD4	1218	46	97	108	109	98	4	Ο.
CQUAD4	1219	46	98	109	110	99	4	Ο.
CQUAD4	1220	46	78	89	90	79	4	Ο.
CQUAD4	1221	46	79	90	91	80	4	Ο.
CQUAD4	1224	46	82	93	94	83	4	0.
CQUAD4	1225	46	83	94	95	84	4	0.
COUAD4	1226	46	84	95	96	85	4	Ο.
COUAD4	1227	46	85	96	97	86	4	0.
COUAD4	1228	46	86	97	98	87	4	0.
COUAD4	1229	46	87	98	99	88	4	0.
COUAD4	1230	46	67	78	79	68	4	0.
COUAD4	1231	46	68	79	80	69	4	0.
COUAD4	1234	46	71	82	83	72	4	0
COUAD4	1235	46	72	83	84	73	4	0
COLLAD4	1236	46	73	84	85	74	4	0
COUAD4	1237	46	74	85	86	75	4	0
	1238	46	75	86	87	76	4	0.
COUADA	1230	16	76	87	88	70	-т Л	0.
COUNDA	1240	16	56	67	68	57	7	0.
CQUAD4	1240	40	57	69	60	50	4	0.
COUNDA	тсчт 1 2 л л	10	57	00 71	50 70	50 61	ч Л	0.
COUNDA	1244 1275	40	61	/ ± 7 0	/ ム マ つ	60 0 T	4	0.
CQUAD4	1240	40	C L	1 Z 7 C	13	62	4	0.
CQUAD4	1240	40	©∠ € 2	13	/4 7 E	03	4	υ.
CQUAD4	1247	40	03	/4	10	04 CE	4	υ.
CQUAD4	1248	46	64	10	/ 0	00	4	υ.
CQUAD4	1249	40	CO	10	11	00	4	υ.

CQUAD4	1250	46	45	56	57	46	4	Ο.
CQUAD4	1251	46	46	57	58	47	4	Ο.
COUAD4	1254	46	49	60	61	50	4	Ο.
COUAD4	1255	46	50	61	62	51	4	0
COUAD4	1256	46	51	62	63	52	4	0
	1257	46	52	63	64	53	4	0
COUNDA	1257	46	53	64	65	50	4	0.
CQUAD4	1250	40	55	65	66	54	4	0.
CQUAD4	1259	40	54	65	66	55	4	0.
CQUAD4	1260	46	34	45	46	35	4	0.
CQUAD4	1261	46	35	46	47	36	4	0.
CQUAD4	1264	46	38	49	50	39	4	0.
CQUAD4	1265	46	39	50	51	40	4	0.
CQUAD4	1266	46	40	51	52	41	4	0.
CQUAD4	1267	46	41	52	53	42	4	Ο.
CQUAD4	1270	46	23	34	35	24	4	Ο.
CQUAD4	1271	46	24	35	36	25	4	Ο.
COUAD4	1274	46	27	38	39	28	4	0.
COUAD4	1275	46	28	39	40	29	4	0.
	1276	46	29	40	4 1	30	<u>_</u>	0
COUADA	1277	16	30	10	12	31	1	0.
COUNDA	1200	40	10	72	24	12	4	0.
CQUAD4	1200	40	12	23	24	14	4	0.
CQUAD4	1201	40	15	24	20	17	4	0.
CQUAD4	1284	46	16	27	28	1/	4	0.
CQUAD4	1285	46	1/	28	29	18	4	0.
CQUAD4	1286	46	18	29	30	19	4	0.
CQUAD4	1287	46	19	30	31	20	4	0.
CQUAD4	1288	46	20	31	32	21	4	0.
CQUAD4	1289	46	21	32	33	22	4	Ο.
CQUAD4	1290	46	1	12	13	2	4	Ο.
CQUAD4	1291	46	2	13	14	3	4	Ο.
CQUAD4	1294	46	5	16	17	6	4	Ο.
COUAD4	1295	46	6	17	18	7	4	0.
COUAD4	1296	46	7	18	19	8	4	0.
COUAD4	1297	46	8	19	20	9	4	0.
COUAD4	1298	46	9	20	21	10	4	0
	1299	46	10	21	22	11	4	0
Ś Elemer	te and	Flomont	Properti	es for r	agion ·	nebell .	17	0.
POUEII	103 and 17	601	02	601	egion .	601	- /	
¢ Doot•	"ncholl	47"	.02 11 bo imr	100	. "nahal	1 47"		
S FSEL.	1069	.4/ W1	TT DE TUR	210	• psner	200	Л	0
CQUAD4	1060	4 /	302	207	311	309	4	0.
CQUAD4	1069	4 /	301	307	310	302	4	0.
CQUAD4	1078	4 /	314	302	309	308	4	0.
CQUAD4	1079	47	312	301	302	314	4	0.
CQUAD4	1268	47	304	305	306	300	4	0.
CQUAD4	1269	47	300	306	307	301	4	0.
CQUAD4	1278	47	303	304	300	313	4	0.
CQUAD4	1279	47	313	300	301	312	4	Ο.
\$ Refere	enced Ma	terial i	Records					
\$ Materi	al Reco	rd : ma	t1.301					
\$ Descri	ption o	f Mater	ial :					
MAT1	301	13100.		.499	.0027			
\$ Materi	al Reco	rd : ma	t1.601					
\$ Descri	ption o	f Mater	ial :					
MATT1	601	2 67+6		483333	068			
Ś Matowi	al Poco	2.070	⊢1 7∩1	0	.000			
\$ Deceri	ntion o	f Mator						
	-PCIUII 0 701	2 17	tat .	3				
THHT	101	∠.⊤/		.)				

\$ Materi	al Reco	ord : mati	1.901					
\$ Descri	ption c	of Materia	al :					
MAT1	901	2.+7		.3	.058			
\$ Materi	al Reco	ord : mat	8.201					
\$ Descri	.ption c	f Materia	al :					
MAT8	201	1.58+7	1.5+6	.28	1.+6			.058
				218000.	247000.	5850.	35700.	10000.
\$ Materi	al Reco	ord : mat	3.202					
\$ Descri	ption c	f Materia	al :					
MAT8	202	2 67+6	2 67+6		500000			068
	202	2.0,00	2.07.0	43000	45000	43000	45000	10000
\$ Materi	al Reco	ord · mat	3 501	10000.	10000.	10000.	10000.	10000.
\$ Descri	ntion c	f Materia	al •					
т <u>200011</u> матя	501	2 67+6	2 67+6	З	500000			068
Ś Multir	oint Co	nstraint	s of Grou	n · lef	t wing			.000
PRF2	303	304	123	12	c_wing			
RDD2 PBF2	304	303	123	31				
NDEZ DDE?	101 121	403	123456	112	113	11/	115	116
RDEZ	421 117	110	110	224	225	226	227	720
	11/ 11/	240	241	234	235	230	237	230
	239	240 E10	241 100450	0	1.0	100	104	
RBEZ	4429	518 E11	123456	9	10 121	123	124	
RBEZ	4430	511	123456	2	131			
RBEZ	4431	512	123456	3	130			
RBEZ	4432	513	123456	4	129			
RBEZ	4433	514	123456	5	128			
RBE2	4434	305	123	53				
RBE2	5000	307	123456	55				
RBE2	5001	312	123456	33				
RBE2	5002	167	123456	310				
RBE2	5003	54	123456	306				
RBE2	5004	145	123456	314				
RBE2	5005	32	123456	313				
RBE2	5006	146	123456	308				
RBE2	5007	168	123456	311				
\$ Nodes	of Grou	p : left	_wing					
GRID	1		19.125	-18.	1.57-6			
GRID	2		19.9853	-18.	10498	93		
GRID	3		20.8561	-18.	14282	4 3		
GRID	4		21.7274	-18.	16447	1 3		
GRID	5		22.5989	-18.	17371	63		
GRID	6		23.4706	-18.	17005	2		
GRID	7		24.3419	-18.	15172	6		
GRID	8		25.2129	-18.	12204	9		
GRID	9		26.084	-18.	08417	15		
GRID	10		26.9545	-18.	04264	73		
GRID	11		27.825	-18.	-7.81-4			
GRID	12		17.2125	-16.2	1.41-6			
GRID	13		18.1175	-16.2	11042	3		
GRID	14		19.0331	-16.2	15021	4		
GRID	15		19.9494	-16.2	17297	9		
GRID	16		20.8661	-16.2	18270	2		
GRID	17		21.7829	-16.2	17884	7		
GRID	18		22.6993	-16.2	15957	3		
GRID	19		23.6154	-16.2	12836	2		
GRID	20		24.5315	-16.2	08852	5		
GRID	21		25.447	-16.2	04485	4		
GRID	22		26.3624	-16.2	-8.22-4			

GRID	23	15.3	-14.4	1.25-6	
GRID	24	16.2495	-14.4	115857	
GRID	25	17.2103	-14.4	157603	
GRID	26	18.1717	-14.4	181487	
GRID	27	19.1334	-14.4	191687	
GRID	28	20.0952	-14.4	187643	
GRID	29	21.0566	-14.4	167421	
GRID	30	22.0177	-14.4	134674	
GRID	31	22.9789	-14.4	09288	3
GRID	32	23.9395	-14.4	047061	
GRID	33	24.9	-14.4	-8.62-4	
GRID	34	13.3875	-12.5999	91.1-6	
GRID	35	14.3816	-12.5999	9121291	
GRID	36	15.3874	-12.5999	9164993	
GRID	37	16.3939	-12.5999	9189996	
GRID	38	17.4006	-12.5999	9200673	
GRID	39	18.4074	-12.5999	9196439	
GRID	40	19.414	-12.5999	9175268	
GRID	41	20.4203	-12.5999	9140986	
GRID	42	21.4263	-12.5999	9097234	3
GRID	45	11.475	-10.8	9.44-7	
GRID	46	12.5137	-10.8	126726	
GRID	47	13.5645	-10.8	172384	
GRID	48	14.616	-10.8	198504	
GRID	49	15.6679	-10.8	209659	
GRID	50	16.7199	-10.8	205234	
GRID	51	17.7714	-10.8	183115	
GRID	52	18.8227	-10.8	14/29/	~
GRID	53	19.8/38	-10.7999	9101589	3
GRID	54	20.9244	-10.7999	90514/5	
GRID	55	21.975	-10.7999	9-9.44-4	
GRID	20 57	9.3623	-9.	122161	
GRID	57	11 7416	-9.	132101	
GRID	50	12 0202	-9.	- 207012	
GRID	59	13 9351	-9.	- 218645	
GRID	61	15 0322	-9.	- 21/03	
GRID	62	16 1287	-9	- 190961	
GRID	63	17 2251	-9	- 153609	
GRID	64	18 3211	-9	- 105944	
GRID	65	19.4169	-9.	053681	
GRID	66	20.5125	-9.	-9.84-4	
GRID	67	7.65	-7.2	6.29-7	
GRID	68	8.77792	-7.2	137596	
GRID	69	9.91882	-7.2	187164	
GRID	70	11.0604	-7.2	215522	
GRID	71	12.2024	-7.2	227631	
GRID	72	13.3445	-7.2	222825	
GRID	73	14.4862	-7.2	198808	
GRID	74	15.6276	-7.2	159921	
GRID	75	16.7687	-7.2	110298	
GRID	76	17.9093	-7.2	055889	
GRID	77	19.0499	-7.2	001025	
GRID	78	5.7375	-5.4	4.72-7	
GRID	79	6.91001	-5.4	143032	
GRID	80	8.09596	-5.4	194555	
GRID	81	9.28267	-5.4	224031	

GRID	82	10.4697	-5.4236616	
GRID	83	11.6568	-5.4231621	
GRID	84	12.8436	-5.4206655	
GRID	85	14.03	-5.4166233	
GRID	86	15.2161	-5.4114653	
GRID	87	16.4018	-5.4058096	
GRID	88	17.5875	-5.4001066	
GRID	89	3.825	-3.6 3.14-7	
GRID	90	5 04211	-3.6 - 148468	
GRID	91	6 27309	-3.6 - 201946	
GRID	92	7 50487	-3.6 - 23254	
GRID	93	8 73697	-3.6 - 245602	
GRID	94	9 96917	-3 59999- 240416	
GRID	95	11 201	-3 59999- 214501	
CRID	96	12 /32/	-3 59999 172544	
GRID	97	13 6635	-3 59999- 119008	
CRID	98	1/ 20/3	-3 59999- 060303	
CRID	90	16 125	-3.59999000505	
GRID	100	1 01240	1 700001 57 7	
GRID	100	1.91249	-1.799991.57-7	
GRID	101	3.1/421	-1.79999103904	
GRID	102	4.43024	-1.79999209557	
GRID	103	5.72708	-1.79999241049	
GRID	104	7.00424	-1./9999254588	
GRID	105	8.28149	-1.8249212	
GRID	106	9.55843	-1.8222348	
GRID	107	10.8349	-1.81/8856	
GRID	108	12.1109	-1.8123363	
GRID	109	13.386/	-1.806251	
GRID	110	14.6625	-1.800114/	
GRID		0.	0. 0.	~
GRID	112	1.30632	-1.39-8159341	3
GRID	113	2.62739	-1.89-8216728	3
GRID	114	3.94929	-2.18-8249558	3
GRID	115	5.27152	-2.3-8263574	3
GRID	116	6.59382	-2.25-8258007	3
GRID	117	7.91583	-2.01-8230194	3
GRID	118	9.23737	-1.61-8185167	3
GRID	119	10.5584	-1.11-8127718	3
GRID	120	11.8792	-5.65-9064717	
GRID	121	13.2	-1.03-10001188	
GRID	123	26.9543	-18042659	3
GRID	124	26.0837	-18084186	3
GRID	125	25.2129	-18122052	
GRID	126	24.3419	-18151729	
GRID	127	23.4705	-18170056	
GRID	128	22.5989	-18173719	3
GRID	129	21.7274	-18164474	3
GRID	130	20.8561	-18142827	3
GRID	131	19.9853	-18104987	3
GRID	134	25.4468	-16.1999.044865	
GRID	135	24.5312	-16.1999.08854	
GRID	136	23.6154	-16.1999.128364	
GRID	137	22.6993	-16.1999.159576	
GRID	138	21.7828	-16.1999.178852	
GRID	139	20.8661	-16.1999.182705	
GRID	140	19.9494	-16.1999.172982	
GRID	141	19.0331	-16.1999.150216	

GRID	142	18.1173	-16.1999.11042
GRID	145	23.9393	-14.3999.047071
GRID	146	22.9786	-14.3999.092893
GRID	147	22.0177	-14.3999.134676
GRID	148	21.0566	-14.3999.167423
GRID	149	20.0951	-14.3999.187647
GRID	150	19.1334	-14.3999.19169
GRID	151	18.1717	-14.3999.18149
GRID	152	17 2103	-14 3999 157606
GRID	153	16 2493	-14 3999 115854
GRID	157	21 4261	-12 5999 097247
GRID	158	20 4202	-125999.097217
GRID	159	19 414	-12 5999 17527
CRID	160	18 1071	-12 5000 106//2
GRID	161	17 4006	-12.5999.190442
GRID	162	16 2020	-12.5999.200070
GRID	162	15 2074	12 5000 164005
GRID	103	14 2015	-12.5999.104995
GRID	164	14.3013	-12.5999.121200
GRID	167	20.9242	-10.7999.051483
GRID	168	19.8/35	-10./999.1016
GRID	169	18.8227	-10./999.14/299
GRID	170	17.7714	-10.7999.183116
GRID	171	16.7197	-10.7999.205237
GRID	172	15.6679	-10.7999.209661
GRID	173	14.616	-10.7999.198507
GRID	174	13.5645	-10.7999.172385
GRID	175	12.5136	-10.7999.126723
GRID	178	19.4167	-8.99993.053689
GRID	179	18.3209	-8.99993.105953
GRID	180	17.2251	-8.99994.153611
GRID	181	16.1287	-8.99995.190963
GRID	182	15.032	-8.99996.214033
GRID	183	13.9351	-8.99996.218647
GRID	184	12.8382	-8.99997.207015
GRID	185	11.7416	-8.99998.179775
GRID	186	10.6457	-8.99999.132158
GRID	189	17.9092	-7.19992.055895
GRID	190	16.7684	-7.19993.110306
GRID	191	15.6275	-7.19994.159922
GRID	192	14.4861	-7.19995.19881
GRID	193	13.3444	-7.19996.222828
GRID	194	12.2024	-7.19996.227632
GRID	195	11.0604	-7.19997.215523
GRID	196	9.91878	-7.19998.187165
GRID	197	8.77783	-7.19999.137593
GRID	200	16.4016	-5.39992.0581
GRID	201	15.2159	-5.39993.11466
GRID	202	14.0299	-5.39994.166234
GRID	203	12 8435	-5 39995 206656
GRID	204	11.6567	-5.39995.231623
GRID	205	10.4696	-5.39996 236618
GRID	206	9 28263	-5 39997 224032
GRID	207	2.20203 8 N959	-5 39998 194555
CRID	208	6 90992	
GRID	200	1/ 20/1	-3 50002 060306
GRID	212 212	13 6631	-3 50003 110012
GRID	212 213	10 10034	_3 50000 1705/5
GKID	2 I J	⊥∠.4JZ4	-3.39993.1/2043

GRID	214	11.2009	-3.59994.214503	
GRID	215	9.96907	-3.59995.240418	
GRID	216	8.73691	-3.59996.245603	
GRID	217	7.50482	-3.59997.23254	
GRID	218	6.27304	-3.59998.201945	
GRID	219	5.04203	-3.59999.148464	
GRID	222	13.3866	-1.79991.062512	
GRID	223	12.1108	-1.79992.123366	
GRID	223	10 8348	-1 79993 178857	
GRID	225	9 55836	-1 79994 222349	
GRID	225	8 2814	-1 79995 249213	
GRID	220	7 00/18	-1 79996 25/589	
CRID	227	5 72702	-1 79997 241049	
CRID	220	J. 12/02	-1.79997.241049	
GRID	229	4.43017 2.17414	-1.79990.209550	
GRID	230	J.1 0702	-1.79999.133901	
GRID	233	10 5504	5.65-9 .064/1/ 1 11 0 107710	2
GRID	234	10.5584	1.11-8 .12//19	3
GRID	235	9.23/35	1.61-8 .185168	3
GRID	236	7.9158	2.01-8 .230195	3
GRID	237	6.59378	2.25-8 .258007	3
GRID	238	5.27148	2.3-8 .263574	3
GRID	239	3.94924	2.18-8 .249557	3
GRID	240	2.62734	1.89-8 .216727	3
GRID	241	1.30626	1.39-8 .159337	3
GRID	300	22.4319	-12.5999049268	
GRID	301	23.4375	-12.5999-9.03-4	
GRID	302	22.4317	-12.5999.049277	
GRID	303	22.9789	-14.409288	5
GRID	304	21.4263	-12.5999097234	5
GRID	305	19.8738	-10.7999101589	5
GRID	306	20.9244	-10.7999051475	
GRID	307	21.975	-10.7999-9.44-4	
GRID	308	22.9786	-14.3999.092893	
GRID	309	21.4261	-12.5999.097247	
GRID	310	20.9242	-10.7999.051483	
GRID	311	19.8735	-10.7999.1016	
GRID	312	24.9	-14.4 -8.62-4	
GRID	313	23,9395	-14.4047061	
GRID	314	23 9393	-14 3999 047071	
GRID	402	3 94929	0 0	З
GRID	403	3 94929		3
GRID	500	12 75	-18 5 0	Ũ
GRID	501	14 50	-18 5 1 57-7	
GRID	502	15 125	-18 5 3 14-7	
GRID	502	15 625	-18 5 / 71-7	
GRID	504	16 125	-18 5 6 28-7	
CRID	505	16 50		
GRID	506	17 125	-185 $0.00 = 7$	
GUID	507	17 695	_10.J 9.42-7	
GRID	500	エノ・ロイン 10 105	-10.J 1.U9-0	
GKID	500	10.123	-10.5 $1.25-6$	
GKID	509	10.025	-10.5 1.41-6	
GKID	DIU 511	19.125	-18.5 1.5/-6	~
GRID	510	20.0569	-18.5 1.46-6	3
GRID	512	20.9888	-18.5 1.35-6	3
GRID	513	21.9207	-18.5 1.24-6	3
GRID	514	22.8526	-18.5 1.14-6	3
GRID	515	23.7845	-18.5 1.03-6	

GRID	516		24.7164	-18.5	9.29-7				
GRID	517		25.6483	-18.5	8.22-7				
GRID	518		26.7366	-18.5	6.97-7	3			
GRID	519		27.825	-18.5	5.72-7				
GRID	520		28.325	-18.5	5.15-7				
GRID	521		28.825	-18.5	4.58-7				
GRID	522		29.325	-18.5	4.01-7				
GRID	523		29.825	-18.5	3.43-7				
GRID	524		30.325	-18.5	2.86-7				
GRID	525		30.825	-18.5	2.29-7				
GRID	526		31.325	-18.5	1.71-7				
GRID	527		31.825	-18.5	1.14-7				
GRID	528		32.325	-18.5	5.72-8				
GRID	529		32.825	-18.5	Ο.				
GRID	530		19.5909	-18.5	1.51-6				
\$ Loads	for Load	Case :							
SPCADD	2	100							
\$ Displa	acement Co	onstrair	nts of Lo	bad Set	: spc1.10	0 0			
SPC1	100	123456	402						
\$ Refere	enced Coor	rdinate	Frames						
CORD2R	3		0.	0.	0.	0.	Ο.	1.	
	-1.	0.	0.						
CORD2R	4		0.	0.	0.	70710	77071	07-3.07	9-8
	707107	.707107	3.079-8						
CORD2R	5		19.8738	-10.799	9101589	934.647	-27.92	79060	154
	2.77994 -	-25.547	-1.49394	4					
\$									
\$ASET1	3	12	22	23	34	45	56		
\$ASET1	3	66	67	77	78	88	89		
\$ASET1	3	99	100	110	111	121	500		
\$ASET1	3	510	529						
ENDDATA	b46081d2								

	REP		IENTATION PAGE			Form Approved OMB No. 0704-0188
The public reportin data sources, gath any other aspect of Directorate for Infi that notwithstandi currently valid ON PLEASE DO NOT	ng burden for this c nering and maintain of this collection of i prmation Operation ng any other provis B control number.	ollection of informat ing the data needed nformation, includin s and Reports (070- ion of law, no perso	ion is estimated to average 1 d, and completing and reviewing g suggestions for reducing th 4-0188), 1215 Jefferson Davis n shall be subject to any pena DVE ADDRESS.	hour per respons ng the collection o is burden, to Depa Highway, Suite 2 alty for failing to co	e, including of informatic artment of E 1204, Arling omply with a	the time for reviewing instructions, searching existing on. Send comments regarding this burden estimate or Defense, Washington Headquarters Services, ton, VA 22202-4302. Respondents should be aware a collection of information if it does not display a
1. REPORT DA	TE (<i>DD-MM-YY</i>) -04-2009	(Y) 2. REPC Technic	DRT TYPE al Memorandum			3. DATES COVERED (From - To)
4. TITLE AND Updating the Fi	SUBTITLE nite Element Mo	odel of the Aeros	structures Test Wing Usin	ng Ground	5a. CON	TRACT NUMBER
Vibration Test	Data				5b. GRA	NT NUMBER
					5c. PRO	GRAM ELEMENT NUMBER
6. AUTHOR(S Lung, Shun-F) at and Pak. Ch	an-Gi			5d. PROJECT NUMBER	
					5e. TAS	KNUMBER
					5f. WOR	K UNIT NUMBER
7. PERFORMI NASA Dryden	NG ORGANIZAT n Flight Resear	TION NAME(S) A rch Center	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
Edwards, Cali	fornia 93523-0	0273				Н-2942
9. SPONSORI	NG/MONITORIN	G AGENCY NAM	IE(S) AND ADDRESS(E	S)		10. SPONSORING/MONITOR'S ACRONYM(S)
National Aero Washington, I	nautics and Sp DC 20546-000	ace Administra l	ation			NASA
						11. SPONSORING/MONITORING
						NASA/TM-2009-214646
12. DISTRIBUT	ION/AVAILABIL	ITY STATEMEN	Г			
Subject Categ	ory 01		Availability: NASA C	ASI (301) 62	1-0390	Distribution: Standard
13. SUPPLEME Lung, TYBRI http://ntrs.nasa	NTARY NOTES N, Inc.; Pak, N a.gov/search.js	ASA Dryden I p	Flight Research Center	. An Electron	ic versio	n can be found at http://dtrs.dfrc.nasa.gov or
14. ABSTRACT Improved and/or a have uncertainties the area of structu of the mass and st utilizing the multi natural frequencie model uncertaintie Administration Di finite element mod	accelerated decision associated with m ral dynamics. The iffness properties c disciplinary design s, and the mode sh es for the structural ryden Flight Resea del have excellent	n making is a cruci odel validity. Tuni model tuning proce of the structures. M t, analysis, and opti apes can be matche dynamics model of rch Center (Edward agreement with cor	al step during flutter certifica ng the finite element model u ess requires not only satisfact inimizing the difference betv mization (MDAO) tool in or ed to the target data to retain of the aerostructures test wing ds, California). This study ha responding measured data.	ation processes. Using measured d tory correlations ween analytical and der to optimize the the mass matrix of g (ATW), which s shown that natu	Unfortunate ata to minir between an nd experim he objective orthogonali was designe iral frequen	ly, most finite element structural dynamics models mize the model uncertainties is a challenging task in alytical and experimental results, but also the retention ental results is a type of optimization problem. By e function and constraints; the mass properties, the ity. This approach has been applied to minimize the ed and tested at the National Aeronautics and Space ncies and corresponding mode shapes from the updated
15. SUBJECT T Aerostructures	ERMS s test wing, Gr	ound vibration	test, Multidisciplinary	design, anal	ysis, and	l optimization, Structural dynamic model
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19b. NAME OF RE				ME OF RESPONSIBLE PERSON		
a. REPORT	b. ABSTRACT	c. THIS PAGE		PAGES	STI Hel	lp Desk (email:help@sti.nasa.gov)
U	U	U	UU	43		(301) 621-0390

(201) (21) (21) (200