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Airborne Systems North America (formally Irvin Aerospace Inc) has developed an Airbag Landing System 

for the Orion Crew Module of the Crew Exploration Vehicle. This work is in support of the NASA Langley 

Research Center Landing System Advanced Development Project. Orion is part of the Constellation Program 

to send human explorers back to the moon, and then onwards to Mars and other destinations in the Solar 

System. A component of the Vision for Space Exploration, Orion is being developed to also enable access to 

space following the retirement of the Space Shuttle in the next decade. This paper documents the 

development of a conceptual design, fabrication of prototype assemblies, component level testing and two 

generations of airbag landing system testing. The airbag system has been designed and analyzed using the 

transient dynamic finite element code LS-DYNA®. The landing system consists of six airbag assemblies; each 

assembly comprising a primary impact venting airbag and a non-venting anti-bottoming airbag. The anti-

bottoming airbag provides ground clearance following the initial impact attenuation sequence. Incorporated 

into each primary impact airbag is an active vent that allows the entrapped gas to exit the control volume. 

The size of the vent is tailored to control the flow-rate of the exiting gas. An internal shaping structure is 

utilized to control the shape of the primary or main airbags prior to ground impact; this significantly 

improves stroke efficiency and performance. 

 

Nomenclature 

σ = sigma, standard deviation 

                                                           
1
 Systems Analyst, Space and Recovery Systems, 3000 Segerstrom Ave, Santa Ana, CA 92704 and AIAA Member. 

2
 Design Engineer, Space and Recovery Systems, 3000 Segerstrom Ave, Santa Ana, CA 92704. 

3
 Design Engineer, Space and Recovery Systems, 3000 Segerstrom Ave, Santa Ana, CA 92704 and AIAA Member. 

4
 Aerospace Engineer, Orion Landing System ADP, Hampton, VA 23861 

 

https://ntrs.nasa.gov/search.jsp?R=20090019679 2019-08-30T07:00:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10548767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

American Institute of Aeronautics and Astronautics 
 

 

2 

I. Introduction 

n January of 2004, US President George W. Bush announced a new Vision for Space Exploration
1
 setting the 

long-term goals and objectives for the Nation's space exploration efforts. Among these goals and objectives was 

the development and deployment of a new spacecraft capable of transporting humans to the International Space 

Station (ISS), the Moon, and eventually Mars. The subsequent Exploration Systems Architecture Study (ESAS) [1] 

identified an exploration framework that would enable NASA to achieve this goal of extending a human presence 

throughout the Solar System. The Constellation Program encompasses NASA’s initial efforts to implement the 

framework developed during the ESAS. The Constellation Program currently consists of: a Crew Launch Vehicle 

(Ares I), and a Cargo Launch Vehicle (Ares V), the Orion Crew Exploration Vehicle (CEV), the Earth Departure 

Stage (EDS), and the Altair Lunar Lander. Figure 1 illustrates these primary components. 

 

 

Figure 1: Primary Constellation Program Components 

 

 The ESAS also recommended a primary land landing mode for the Orion Crew Module (CM) when returning to 

Earth. This recommendation was made for ease and minimal cost of recovery, post-landing safety, and reusability of 

the spacecraft. The desire for a land landing capability lead NASA to task the Langley Research Center to 

investigate potential systems under the Landing System Advanced Development Program. As part of this program 

Airborne Systems has been under contract since February 2006 to demonstrate the application of airbags to land the 

Orion CM. This paper discusses the design, development and analysis of a nominal land landing airbag landing 

system (ALS) for the Orion CM.  

 

I 
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II. Airbag Landing System Development Overview 

 The ALS has undertaken the following development path: 

 

- Concept Development to Generation 1 (Gen1) Flight System Design 

- Generation 1 Prototype Drop Testing 

- Generation 1 Prototype Inflation Testing 

- Generation 2 (Gen2) Flight System Design 

- Generation 2 Drop Testing 

 

 This section will briefly discuss the Gen 1 activities, and the following section will describe in more detail the 

Gen 2 ALS design and testing results. 

 

 The objective of the Gen 1 conceptual design and testing phase was to demonstrate the capacity of an airbag 

landing system to perform the role of landing the Orion CM safely back on Earth. In addition to establishing the 

technical credentials of an airbag landing system, it was crucial to demonstrate a capability to accurately predict and 

simulate the dynamic landing event. Clearly, not all potential landing scenarios could be tested so a high level of 

confidence would be required in the method selected to predict system performance over the entire landing 

envelope. The transient dynamic finite element code LS-DYNA
2
 was selected to simulate system performance 

throughout this program. LS-DYNA has an impressive series of features that enable both fabrics and dynamic 

impact events to be accurately modeled. 

 

 During the Gen 1 phase LaRC was also considering several alternative technologies for the CM landing system; 

a propulsive (retro-rocket) system, a deployable crushable panel system, and a deployable landing gear system were 

all potential solutions. The conceptual design resulting from the Gen 1 development and analysis cycle is depicted in 

Figure 2. The conceptual design configuration comprised six individual airbag assemblies with each assembly 

containing four core components: 

 

 A primary impact, main venting airbag 

 A non-venting, anti-bottoming airbag 

 A main venting airbag internal shaping structure, patent pending 

 A fast acting, low leak rate active vent, patent pending 

 

 

 

Figure 2: Gen 1 Conceptual ALS Design 

Internal Shaping Structure 

Anti-Bottoming Airbag 

Fast Acting Vent Main Venting 

Airbag 



 

 

American Institute of Aeronautics and Astronautics 
 

 

4 

 Gen 1 airbag system testing included a series of 8 

drop tests, and an extensive series of packing and 

inflation tests.  

 

 The Gen 1 drop testing was conducted at the 

Landing and Impact Research (LandIR) Facility at 

NASA LaRC, Figure 3. At the time of testing the 

facility was not certified to test the full-scale CM 

weight. To maintain schedule, a full-scale, half mass 

flat-bottomed Airbag Research Plate (ARP), also 

referred to as Boilerplate 3 (BP3), was used as the test 

vehicle.  

 

 The conceptual airbag design was modified to 

integrate with the test vehicle; airbags were shaped to 

conform to the flat-bottomed BP3 shape, two airbag 

assemblies were located at the front and a single 

assembly at the rear of the test vehicle, and the orifice 

in each of the venting airbags was standardized (BP3 

did not have an off-center CG, unlike the CM). 

Additionally, the airbags were fabricated from 

inventory material; polyurethane coated Kevlar. 

 

 Gen1 drop testing started in December 2006 and 

finished in June 2007. Table 1 documents the drop 

testing undertaken for Gen 1. The testing provided 

invaluable data concerning system performance for a 

broad range of landing scenarios; 3-parachute cluster 

landings in no wind and in high speed winds, 2-

parachute cluster rate of descent (simulating a parachute failure), and both toe-in and heel-in CM pitch orientation 

(simulating oscillation under the parachutes). All 8 drop tests resulted in a crew and CM survivable landing; CM 

accelerations were as expected and no roll-overs. Airbag damage was observed in several attachment locations 

during the high horizontal velocity landing scenarios, this will be discussed further in the Gen 2 section of the paper. 

 

 

 

Figure 3: NASA LaRC LandIR Facility, and ARP 

 

Drop 

Test # 

Test Article 

/ Surface 
Facility / Date 

Vertical 

Velocity 

(ft/s) 

Horizontal 

Velocity 

(ft/s) 

Pitch 

Angle 

Roll 

Angle 

Yaw 

Angle 

1 
BP3 

Soil 

LandIR 

Dec 5, 2006 
25 0 0 0 0 

2 
BP3 

Soil 

LandIR 

Dec 7, 2006 
25 20 0 0 0 

3 
BP3 

Soil 

LandIR 

Dec 12, 2006 
25 40 0 0 0 

4 
BP3 

Soil 

LandIR 

Dec 15, 2006 
25 40 0 0 0 

5 
BP3 

Soil 

LandIR 

May 24, 2007 
32 0 0 0 0 

6 
BP3 

Soil 

LandIR 

May 31, 2007 
25 0 10 Toe-in 0 0 

7 
BP3 

Soil 

LandIR 

June 7, 2007 
25 20 10 Toe-in 0 0 

8 
BP3 

Soil 

LandIR 

June 11, 2007 
25 40 10 Heel-in 0 0 

Table 1: Gen 1 Drop Testing Matrix 
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 In addition to drop testing, a series of stowage and deployment tests were conducted. The objective of these tests 

was to demonstrate the method used to pack and retain the airbag assemblies in the stowed condition, the volume 

and shape of the stowed airbag, and demonstrate functionality after deployment. During pad abort scenarios the 

airbag system could be required to deploy, inflate, and attenuate ground impact within 30 seconds. 

 

 A single airbag assembly (the 

prototype developed prior to drop testing) 

was used to demonstrate the requirements 

for this task. A simple inflation system 

was developed to replicate the system 

proposed during the conceptual design 

phase.  

 

 The inflation system comprised a 

combination of an aspirator fed by 

pressurized nitrogen, and just high 

pressure nitrogen. This class of inflation 

system was shown to be the most mass 

efficient during the conceptual design 

phase. The aspirator enables ambient air 

to be used to inflate the large volume 

airbags, and reduces the mass of gas 

required onboard the CM. Aspirator 

efficiency drops rapidly at pressures 

above 2 psig, at which point the aspirator 

is isolated and high pressure nitrogen is used to top-off the airbags to the required pressure. 

 

 Figure 4 illustrates four frames from the video of a rapid inflation test. It was demonstrated that the airbag 

assembly (main and anti-bottoming airbags) could be deployed and inflated within 20 seconds. The presence of a 

safety pressure regulator in the inflation system did not allow a faster inflation time. Post-test analysis indicated the 

inflation time could have been dropped to 10 seconds if the regulator had been removed or resized.  

 

 Throughout the test electrical connectivity was monitored in a representative pyrotechnically actuated cutter 

attached to the main airbag vent. The continuous connectivity observed in the wire harness demonstrated that the 

airbag was still functional following the stowage and deployment process. 

 

 Subsequent to the rapid inflation testing conducted at the Airborne Systems facility in Santa Ana California, the 

airbag assembly and inflation system was used to demonstrate similar performance in the vertical wind tunnel at 

NASA LaRC. The wind tunnel testing validated system deployment and inflation at a freestream dynamic pressure 

representative of a single parachute failure rate of descent. 

 

 Following the successful drop testing and rapid inflation testing the airbag landing system design was progressed 

into a Gen 2 phase. 

 

 

Figure 4: Rapid Inflation Testing 
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III. Generation 2 Airbag Landing System Development 

 The Gen 2 ALS design was largely based upon the successful Gen 1 design. The 6 airbag assembly 

configuration, illustrated in Figure 5, retains the 4 core components from the Gen 1 system; a main venting airbag, a 

non-venting anti-bottoming airbag, a main airbag internal shaping structure, and the fast acting, low leak rate active 

vent.  

 

 
 

                       
 

Figure 5: Gen 2 Airbag Configuration 

 

 The primary role of the main-venting airbags is to decelerate the CM. The main airbags are sized to provide 

sufficient stroke to decelerate the CM and maximize the contact area with the CM structure. The height of the airbag 

is predominantly based upon providing sufficient stroke for the parachute failure vertical velocities and minimizing 

rebound velocity for a nominal landing scenario. Maximizing the airbag/CM contact area minimizes the pressure 

applied to the base of the CM during the primary impact stroke. These features, in combination with the vent size 

and vent trigger pressure, are tailored to ensure deceleration levels are within the specified limits. 

 

 The main airbags extend beyond the outer mold line (OML) of the CM to improve pitch and yaw stability during 

the primary landing stroke. This feature is particularly important when the CM exhibits pitch and yaw departures in 

a high crosswind landing environment. As the vehicle contacts the ground during these scenarios, the capsule begins 

to pitch/yaw and the portion of the airbag that extends beyond the CM conforms to the OML and provides a 

restoring moment. 
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 Another key feature of the main airbags is that they were designed to conform to the curved shape of the aft 

bulkhead. This attribute was incorporated into the design for two reasons- 

 

 Shaping the airbags to conform to the CM generates a more efficient deceleration stroke. Alternative airbag 

shapes must first deform to the shape of the CM before they can provide a decelerating force. By shaping 

the airbags we ensure that the entire airbag stroke is used to decelerate the CM. This approach ensures that 

the shortest possible stroke is realized. A shorter airbag stroke correlates to a smaller moment arm between 

the ground and CG during the impact sequence, which is highly beneficial during crosswind landing 

scenarios. 

 The second benefit of the shaped airbags is that they enable improved positioning of the airbag under the 

aft bulkhead. This design produces a large airbag surface area which is in close proximity to the aft 

bulkhead structure. This enables the attachment locations to be spread out over a broader area and can 

therefore provide a tight and stable connection between the airbag and bulkhead. 

 

 The role of the non-venting anti-bottoming airbags (AB airbags) is to protect the aft bulkhead from ground 

impact, and prevent the CM from rolling over. The airbag size originates from the requirement to maintain a 

minimum dynamic ground clearance of 8 in during the nominal landing scenarios. The particular cases within this 

group that drive the airbag diameter are those incorporating a 3 sigma high vertical velocity. The size was then 

marginally increased to account for the main airbag failure landing scenarios where the primary impact is taken by 

the AB airbag inside the failed main airbag. 

 

 Perhaps the primary consideration in the design of the AB airbags was an efficient pressure vessel shape; the AB 

airbags have to withstand peak pressures in excess of 30 psig for the more exotic parachute failure landing cases. An 

inefficient shape would require heavier material to withstand the same fabric stresses. Another key design feature 

was integration into the main airbag, more specifically: the AB airbag had to perform without detracting from the 

performance of the main airbag. In addition, the requirement for a successful landing if a single AB airbag failed 

dictated that adjacent airbags are capable of providing sufficient redundant protection. The resulting AB airbag 

shape was a cylindrical body with hemispherical endcaps. The location of the airbags, at the perimeter of the CM, is 

driven by the requirement to protect the aft bulkhead during the landing sequence. Locating the airbags as far 

outboard as possible enables protection of the entire bulkhead during maximum pitch orientations and crosswind 

scenarios. This placement of the AB airbags also establishes a flat bottomed system with as wide and stable a base 

as possible. 

 

 The internal shaping structure is integrated into the main airbag to maximize stroke efficiency by pre-deforming 

the airbag. This design feature results in two key performance enhancements: 

 

 The reduction in airbag height also reduces the propensity for CM roll-over during high crosswind 

velocities by effectively reducing the system CG location  

 The shaping structure also enables more control over the positioning of each airbag assembly by producing 

a more stable airbag assembly shape. This results in a more repeatable airbag positioning post deployment 

and inflation.  

 

 Venting of the main airbags is achieved through an active pressure-based vent. The venting sequence is as 

follows: 

 

 Following deployment and full inflation, pressure transducers, connected to each of the main venting 

airbags, continually monitor control volume pressure. 

 When the pressure in a single main venting airbag exceeds 3.5 psig for a cumulative time of 2 ms (to 

eliminate spurious data) an electrical signal is sent to the dual pyrotechnically-actuated cutters located at 

the vent assembly of that specific airbag. 

 The two cutters (only one required for successful operation) sever the retaining loop, allowing the vent to 

open and discharge the entrapped gas. 
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 The design and analysis of 

the airbag system was a 

continual closed loop process, 

with LS-DYNA being used to 

both design and then analyze 

system performance. Fabric 

running loads and attachment 

strength requirements were 

also derived from the LS-

DYNA models. 

 

 An initial design was 

assessed and enhanced based 

upon the results of a landing 

matrix of 60 scenarios. This 

matrix included nominal 

landings, emergency entry 

landings, parachute failure, 

and airbag deployment or 

inflation failure, as shown in 

Table 2. The airbag system is 

required to operate 

successfully throughout all the 

possible landing scenarios 

without modification or prior 

knowledge of that landing 

scenario. 

 

 The Gen2 CM landing 

conditions were biased to have 

a predominantly leading CG 

location. This reflects a feet 

first landing for the astronauts 

and is achieved by utilizing 

roll control motors. This 

preferred landing orientation 

in turn lead to a small biasing 

of the main airbag design. The 

biasing is only minimal 

because the landing system is 

also required to successfully protect the CM and crew during emergency landing scenarios when directional control 

is not available. 

 

 Several options were available to the designer to bias the design of the main airbags to account for the preferred 

landing orientation: airbag shape, airbag pressure, venting pressure, and vent area. In addition, it is highly likely that 

any of these techniques would result in a stronger heavier fabric being required for the leading airbags compared to 

the trailing airbags.  

 

 It should be noted that the biasing built into the main airbag design had to fulfill two tasks- 

 

  The first being to nullify the influence of the offset CG location; this alone is the most prominent task at 

zero and low horizontal velocity landing scenarios. For such landings the influence of the preferred landing 

orientation is minimal.  

  The second task is to eliminate ground impact and rollover during high horizontal velocity landing cases. 

the leading CG location makes this more challenging. These scenarios require the leading airbags (#3 and 

 

Table 2: Gen 2 ALS Landing Scenario Matrix 
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#4) to provide an increased resistance to rollover, and the trailing airbags (#1 and #6) to impart minimal 

pro-rollover moment. 

 

 The method used to achieve these two goals 

was to have differing vent areas in the main 

airbags. This decision enabled the shape of all six 

airbags to remain the same. It also ensured that all 

six airbags utilize the same initial pressure.  The 

value of the initial pressure, 2 psig, is the result of 

an exhaustive study during Gen 1 that evaluated 

the onset rate of the ground impact as a function of 

initial airbag pressure, and also considered the 

efficiency of the aspirator class of inflation 

system. The other possible variable, venting 

pressure, was discarded due to the sensitivity of 

this variable to time delays in the venting process. 

This effect is most evident during high horizontal 

velocity landing cases which involve large relative 

angles between the CM and ground plane. In these 

scenarios the leading or trailing airbags, depending 

on the direction of the relative angle, reach and 

then exceed the venting pressure rapidly. The 

pressure in the airbags will continue to rise during 

the venting process as the volume changes more 

quickly than the gas can escape. In these scenarios 

a small delay in venting pressure can result in 

large dynamic effects for the CM.  

 

 Figure 6 illustrates the airbag numbering 

scheme, the horizontal velocity vector for the 

nominal, parachute failure and airbag failure 

landing scenarios, and the relative location of the 

CM CG.  

 

 Table 3 details the nominal inflation pressure 

of both the main and anti-bottoming airbags, the 

main airbag venting pressures, and the vent areas 

used to achieve the biased behavior. 

 

 

 

 

Figure 6: Gen 2 Airbag Numbering and System 

Definition 

Airbag 

Location 

Main Airbag 

Inflation Pressure 

(psig) 

Anti-Bottoming 

Airbag Inflation 

Pressure (psig) 

Main Airbag 

Venting 

Pressure (psig) 

Main Airbag 

Vent Diameter 

(in) 

1 2 7 3.5 14.4 

2 2 7 3.5 13.6 

3 2 9 3.5 13.2 

4 2 9 3.5 13.2 

5 2 7 3.5 13.6 

6 2 7 3.5 14.4 

Table 3: Gen 2 Airbag Pressure and Vent Description 
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 Figure 7 details the operational sequence of the nominal land landing airbag landing systems. The CM would be 

under a cluster of 3 fully open parachutes at an altitude of 5,000 ft AMSL, at between 2,000 and 1,000 ft the 

heatshield would be jettisoned, and this function would initiate airbag system deployment and inflation. 

 

 The projected mass of the ALS has remained fairly constant throughout both the Gen 1 and Gen 2 design phases. 

The total Gen 2 system mass was projected to be 136 lbm. This mass does not include the inflation system, 

heatshield jettison device, any additional CM structure, or additional fuel needed to be carried to extend flight path 

over land. It should be noted that the Gen 2 phase did not include provisions for developing an inflation system, the 

mass of the conceptual inflation system defined under Gen 1 was projected to be 96 lbm. 

 

 

IV. Gen 2 Airbag Fabrication and Drop Test Set-up 

 

 Once the airbag landing system design had matured and stabilized the LS-DYNA model was used to generate the 

airbag patterns. This technique ensured the fabricated airbag was as close to the analyzed geometry as possible. An 

iterative step was included that took the final flat patterns and reconstructed the airbags to further ensure the 

appropriate geometry was being fabricated. Figure 8 displays a Gen2 main airbag flat pattern.  

 

 The Gen 2 airbags were fabricated from a polyurethane coated Vectran® fabric and assembled using radio-

frequency welding. 

 

 The flat patterns was used to develop the most appropriate fabric usage, minimizing the number of seams and 

welds, and ensuring the location of the seams were in the most efficient location and direction. Perhaps the most 

challenging aspect of the airbag fabrication was identifying a suitable means of testing the attachment 

configurations. An attachment is defined as either the attachment between the airbag assembly and the CM/BP or 

between the main and anti-bottoming airbags. Both of these attachments would be highly loaded during the impact 

 

Figure 7: ALS Operational Sequence 
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sequence and would be required to transfer and dissipate energy between the rigid CM and the ground. A dynamic 

means of testing these attachment techniques was not available prior to the drop testing so the design drew heavily 

from past systems and some limited static testing.  

 

 Both attachments utilized a grommet and 

lacing technique to distribute landing loads into 

the airbag fabric. Nylon cord was laced between 

grommets on fabric strips attached to the BP and 

the airbag assembly. Nylon was chosen for the 

lacing cord due to its elongation characteristics. 

Seven independent fabric strips were used to 

attach each assembly to the BP, this offered 

several layers of redundancy, and also simplified 

the test integration processes.  

 

 Prior to the commencement of the Gen 2 drop 

testing a dual pendulum control configuration was 

incorporated into the LandIR facility at NASA 

LaRC. The dual pendulum configuration 

improved the repeatability and control of the 

landing scenarios. 

 

 The drop test configuration and landing scenario of the Gen 2 ALS varied from the proposed flight system in a 

number of ways- 

 

 The airbag fabric proposed for the Gen 2 system was a polyurethane coated Vectran® whose strength and weight 

was dependent on the location of the airbag on the CM. It was also a single use fabric; its design did not include a 

factor for reuse. The material selected to fabricate all six main and AB airbags for this series of drop tests was a 

polyurethane coated Vectran® rated at 1660 pounds per linear inch (pli) in the warp direction, and 1440 pli in the 

fill direction. This fabric was selected and procured prior to the Gen 2 design process based on preliminary analysis 

and experience from Gen 1. This decision facilitated the landing system development schedule.  

 

 The attachment hardware fabricated for testing was based upon the design that successfully completed Gen 1 

testing, Figure 9. In addition to this test heritage, the design was chosen for the following reasons- 

 

 Integration with the test fixture 

 Cost and schedule 

 Ease of assembly and disassembly during test series 

 

 The attachment hardware was not indicative of attachment hardware used for a flight system. Flight system 

attachment hardware will depend heavily on the structure of the interface between the airbags and the CM. This 

interface was not sufficiently defined during the airbag design phase to identify flight system capable attachment 

hardware. 

 

Figure 8: Gen 2 Airbag Flat Pattern 

 

 

Figure 9: Drop Test Specific Attachment Hardware 
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 During operational performance the CM would be returning to Earth under at least two main parachutes. These 

parachutes would ensure that the entire system had reached a steady descent rate prior to impacting the ground. The 

drop testing conditions did not permit the use of a parachute or equivalent structure to generate a steady descent rate 

prior to impact. All drop tests were therefore conducted with the CM accelerating into the ground. The initial 

conditions were specified so that the velocities at impact matched those expected during operational performance. It 

should also be noted that for those drops incorporating a horizontal velocity the vertical acceleration of the CM was 

less than 1g due to the action of the pendulum cables. 

 

 The flight system was developed and designed based on landing on a rigid landing surface. At the time, many 

options were still available for the landing site and no material models had been developed to described the nature of 

the landing media. Following the ALS design phase, NASA defined a series of LS-DYNA MAT5 material models 

for a variety of potential landing surfaces. Subsequently, ASNA conducted LS-DYNA simulations to assess the 

performance of the proposed flight system for those potential landing surfaces. However, the ALS design fabricated 

for testing was developed based on a rigid landing surface. 

 

 

V. Gen 2 Airbag Landing System Drop Testing 

 Gen 2 ALS drop testing was conducted at the LandIR Facility between February and October of 2008. Table 4 

details the 7 tests conducted. BP4 was used throughout this test series. The mass of BP4 with instrumentation and 

airbags was 15,990 lbm, this represented the full-scale mass of the CM at ground impact. A single airbag ship set 

was used for Drop Tests 1 through 6, and a second set was used for Drop Test #7. Instrumentation, control systems 

and attachment hardware were reused for each test. Prior to each drop test system checks were performed to verify 

electrical connectivity and data synchronization, and to monitor airbag leak rates. 

 

 Gen 2 drop testing generated copious volumes of test data; pressure transducers recorded airbag pressures, tri-

axial accelerometers were placed in several locations throughout the BP, rate sensors were positioned at the CG to 

monitor rotational velocities, and 5 high speed video cameras were used for photogrammetry purposes. This data 

provided a wealth of knowledge and enabled the airbag system performance to be investigated on numerous levels.  

 

 Figure 10 provides the airbag numbering sequence, coordinate system definition, and horizontal velocity 

direction.  

 

Drop 

Test # 

Test Article / 

Surface 
Facility / Date 

Vertical 

Velocity 

(ft/s) 

Horizontal 

Velocity 

(ft/s) 

Pitch 

Angle 

Roll 

Angle 

Yaw 

Angle 

1 
BP4 

Soil 

LandIR 

Feb 7, 2008 
25 0 0 0 0 

2 
BP4 

Soil 

LandIR 

Feb 29, 2008 
25 0 10 Toe-in 0 0 

3 
BP4 

Soil 

LandIR 

Apr 18, 2008 
25 20 0 0 0 

4 
BP4 

Soil 

LandIR 

May 6, 2008 
25 20 0 0 0 

5 
BP4 

Soil 

LandIR 

May 15, 2008 
25 20 0 0 0 

6 
BP4 

Soil 

LandIR 

June 4, 2008 
25 40 0 0 0 

7 
BP4 

Soil 

LandIR 

Oct 15, 2008 
22 35 0 0 0 

Table 4: Gen 2 Drop Testing Matrix 
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 This paper is intended as a top level 

summary of the overall program, and as 

such will not go into detail for every test. 

However, an example of the analysis 

undertaken for each test, and 

comparisons of model prediction and 

test data have been included.  

 

 Figure 11 presents the BP 

accelerations recorded at the CG for 

Drop Test #1. The key events are 

annotated in the figure. Maximum 

acceleration was in the CM x-axis, as 

expected, and reached a peak of almost 

8.0 g. This was also the maximum 

acceleration recorded in any single direction throughout the entire drop test series. 

 

 Raw accelerations were filtered using an SAE J211 filter at 30 Hz. The filtering frequency was selected 

following a Fast Fourier Transform (FFT) analysis of the raw accelerations. The pyrotechnic process used to release 

the BP from the pendulum cables induced significant noise into the system, as seen in Figure 11.  

 

 

 Figure 12 presents the airbag pressure time history data for both the main and anti-bottoming airbags for Drop 

Test #1. As discussed above, no parachute force was present in the drop testing set-up, this caused the BP to 

accelerate into the ground during the drop test sequence. This represented a departure from operational use as the 

parachutes would remain attached to the CM during the impact sequence until they are jettisoned post-landing. 

 

 It was therefore expected that the main airbags would not dissipate all the kinetic energy during the drop tests, 

and that the BP would retain some energy when impacting the anti-bottoming airbags. This characteristic can be 

seen in the pressure traces shown in Figure 12. 

 

Figure 11: Drop Test #1, BP CG Translational Accelerations 

 

 

Figure 10: Gen 2 Test Configuration Definition 
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 Figure 13 displays the LS-DYNA model of the boilerplate 

and ALS. This model was used in conjunction with a MAT5 

LS-DYNA soil material model, developed by NASA to 

simulate the soil conditions at the LandIR Facility, to provide 

simulation predictions of the drop test scenarios. 

 

 Figure 14 presents a comparison of CG x-axis 

acceleration from the test and the LS-DYNA model. The data 

compares well in both the magnitude and period of the 

acceleration. 

 

Figure 13: Drop Test #1, Airbag Pressures 

 

Figure 14: Drop Test #1, Test Data and LS-DYNA Model Correlation 

 

 

Figure 12: LS-DYNA Drop Test Model 



 

 

American Institute of Aeronautics and Astronautics 
 

 

15 

 Figure 15 depicts 3 frames from the high speed video during Drop Test #2. This test simulated a relative impact 

angle of 10 degrees. The figure highlights the independent timing of the venting of each airbag as the BP pitches 

backwards during the impact sequence. 

 

 

 Figure 16 presents 

the x-axis acceleration 

data correlation between 

the drop test and the LS-

DYNA model.  

 

 Drop Tests #1 and #2 

were the least 

challenging of the 

landing scenarios and 

involved only vertical 

velocities. 

 

 Drop Test #3 was the 

first test to utilize the 

new dual pendulum 

configuration at the test 

facility. During this test 

the pyrotechnic cutter arming lanyard did not successfully activate the cutters attached to the vents on each main 

airbag. This caused the secondary vent initiation technique to become the means of venting. The strength of the vent 

closure cord was purposely selected to be the weak link in the airbag structure, this ensured that if problems 

occurred with the test specific electrical system the airbags would vent without compromising the structural integrity 

of the airbag assemblies. 

 

 Drop Test #4 was a repeat of Drop Test #3. Premature venting of main airbag #1 during Drop Test #4 caused the 

20 ft/s landing scenario to be repeated again for Drop Test #5. The cause of the premature venting was later 

identified (following Drop Test #6) as a loose optocoupler in the vent sequencing computer, which lost connection 

during the impact event. Drop Test #5 was completed without any problems and the ALS produced another safe 

landing. 

 

 Drop Test #6 replicated prevailing wind conditions of 40 ft/s; the most challenging landing scenario. This 

landing scenario develops extrememly high loads in the airbag attachment fixtures. The airbag assemblies 

effectively shear out from underneath the BP, being squeezed between the ground and the test vehicle, with only the 

attachments to distribute this load. 

 

 Drop Test #6 produced another crew and CM survivable landing but some damage did occur to the airbag 

system. Main airbag #6 failed to vent at the appropriate pressure, this generated a moment that pitched the BP 

further forward than designed. This in turn caused the attachments on the leading edge that connect the front of 

airbag assemblies #3 and #4 to the BP to become overloaded. As the load in these atachments exceeded their rated 

 

Figure 15: Drop Test #2, Landing Sequence 

 

 

Figure 16: Drop Test #2, Test Data and LS-DYNA Model Correlation 
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strength the leading airbag assemblies were able to roll under the BP. This eventually pulled the airbag hosing out of 

the anti-bottoming airbags, which caused them to lose pressure. Figure 17 displays main airbag pressure, anti-

bottoming airbag pressure and CG accelerations as a function of time, combined with a frame from the high speed 

video taken at 7.25 seconds. 

 

 

 Modifications were made to the attachments on the second airbag ship set to mitigate similar damage for the 

final drop test. The second ship set had already been manufactured and delivered to LaRC so only non-intrusive 

modifications could be made to the airbag assemblies. Cost and schedule, as well as technical requirements did not 

justify a more complete modification.  

 

 Impact velocities for Drop Test #7 were reduced to account for the absence of the parachute force. Once again 

the ALS produced another crew and CM survivable landing with translational and rotational accelerations well 

within the requirements. However, more damage was observed in the main airbags. This damage was focused 

around the vents on main airbags #3 and #4 and was likely caused by a combination of the landing scenario and an 

artifact of using the new airbag ship set.  

 

 During the swing sequence and the post cable release event 

the BP attained significant  pitch, yaw, and roll rotational 

velocities. The BP impacted the ground with a pitched up 

orientation and over 5 degree roll and yaw angles. This 

generated a landing event that was not expected and for which 

the ALS test configuration had not been designed. 

 

 In addition, the second ship set had not previously been 

used, this meant that the main airbag orifice had not been 

reinforced (through several orifice assembly applications) like 

the previous ship set. A consequence of the BP landing 

orientation was that the leading main airbags became overloaded 

around the orifice, which initiated a tear across the front the 

airbag.  

 

Figure 17: Drop Test #6, Data Synchronization 

 

Figure 18: Drop Test #7, BP Impact 

Orientation 
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VI. Conclusions 

 This paper has summarized the successful development and testing of the Airborne Systems Airbag Landing 

System for the Orion Crew Module. Two series of drop tests comprising a total of 15 tests were conducted at NASA 

LaRC between December 2006 and October 2008. 

 

 All drop tests demonstrated a safe and survivable landing for both the crew and the Crew Module structure. The 

testing highlighted the robustness of the airbag technology to electrical malfunctions, test set-up issues, airbag 

damage, and soil conditions. 

 

 The drop tests reinforced the airbag landing system primary design driver as being the airbag to Crew Module 

attachment interface. The baseline attachment configuration was demonstrated to be sufficient for the majority of 

landings, however it was susceptible to point loading when subjected to the more extreme horizontal velocities 

(40 ft/s). This point loading resulted in structural damage to the leading edge airbag assemblies during the drop tests, 

although it did not influence the primary impact attenuation purpose of the airbag. This interface was modified 

between the penultimate and last drop tests, resulting in an improved load transfer technique between the airbags 

and the Crew Module. The modifications eliminated the airbag attachment structural damage observed in the 

penultimate drop test. 

 

 The drop test series also identified several areas that did, or could, impact system performance that had 

previously not been considered as primary design parameters: 

 

 The attachment of the anti-bottoming airbag to the main airbag. 

This attachment was considered to be an important component within the overall design although no detailed LS-

DYNA analysis was performed to accurately assess the loading environment prior to the drop tests. Knowledge 

gained from past programs was utilized for the design of this component. It also became apparent that the 

attachment technique permitted the AB airbag to rotate within the main airbag. This can lead to the location of the 

AB relative to the main airbag being subject to the pre-impact dynamics of the Crew Module. 

 

 Main airbag vent blockage caused by the internal AB airbag 

This issue was considered to be a concern during the initial design process, in part because no analysis technique 

was available to accurately capture the influence of this blockage on system performance. As a result, the design of 

the system was purposely guided to minimize the propensity of this blockage to occur. In general the airbag, system 

performed as expected in this manner and the only blockage of this fashion was observed during Drop Test #7. The 

boilerplate was subjected to considerable post release rotational velocities during Drop Test #7 causing one AB 

airbag to rotate outboard and generate significant vent blockage. 

 

 In addition to demonstrating a successful landing system for the Orion Crew Module this drop test series 

generated a wealth of data for model validation purposes. Throughout the design, fabrication, and analysis phases of 

this program the LS-DYNA models have proven invaluable. In the majority of cases the results and predictions 

generated by the models have been validated with test data and in some cases have identified inaccuracies or 

inconsistencies in the test data itself.  

 

 The progression of the credibility of the model results and the resulting confidence in the predictions has been 

almost immeasurable. The evolution in the perception of the modeling results from uncertainty at the beginning of 

the program to almost taken for granted at the conclusion has been a valuable accomplishment. The modeling 

techniques conceived, developed, and validated throughout this program will prove beneficial for follow-on work as 

well as other programs where inflatable impact attenuation systems are applicable. 
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