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Bounded Linear Stability Margin Analysis of Nonlinear Hybr id
Adaptive Control

Nhan T. Nguyen, Jovan D. Boskovic

Abstract— This paper presents a bounded linear stability the tracking error. The study shows that the hybrid adaptive
analysis for a hybrid adaptive control that blends both direct control potentia”y can offer better tracking performammj

and indirect adaptive control. Stability and convergence ©  can prevent problems with high-gain control using direct
nonlinear adaptive control are analyzed using an approximge MRAC alone

linear equivalent system. A stability margin analysis show that
a large adaptive gain can lead to a reduced phase margin. This
method can enable metrics-driven adaptive control wherebyhe e

adaptive gain is adjusted to meet stability margin requirenents. | : 9|

z K z
% Ref. Model " Kpip—L Em.| b1, Controller }—“—{ Plant }L
s

|. INTRODUCTION

Adaptive control is nonlinear and stability of adaptive
control cannot be analyzed by the traditional phase and gain
margins. These margins are used for linear control laws to
provide robustness in the presence of system uncertainties

Fig. 1 - Hybrid Adaptive Control Architecture

The lack of stability metrics for adaptive control is a major Il. HYBRID ADAPTIVE CONTROL

challenge to certifying adaptive control for safety-@ati Given a plant model as

systems. Metrics-driven adaptive control introduces @onot

that adaptation should be driven by some stability metdcs t X = Apx+ Bpu 1)

achieve robustness [1]. A bounded linear stability analysbvherex c R is a state vectoru € R" is a control vector
method is introduced for analyzing adaptive control in t&rm nxn '

: - L andAp, Bp € R™" are unknown.
of the linear stability concept by establishing an appratn The objective is to produce a controller that enables the

Imgar_equwalen_t system as afu_nctlon of persistent etoita %Iant to follow a reference model described by
This linear equivalent system is only used for analysis an

not for actual adaptation, and can provide estimates of *m = AmXm + Bmr 2
relative stability of nonlinear adaptive control for a give en ] ] n
adaptive gain. By adjusting the adaptive gain during th¥hereAm e R ) is Hurwitz and givenBm € R™" is also
adaptation to meet certain stability margin requirement§/ven, andr € R" € %, is a bounded command vector with
the adaptive law is thus made to be metrics-driven. The€ R" € Z. also bounded.
bounded linear stability analysis is studied in a framework Defining an estimator model
pf a hybrid adaptlve control_whlch blends_ both direct and %= AX+BU+OT® + Uyg 3)
indirect adaptive control to improve tracking performance
[2], as shown in Fig. 1. whereA, B € R™" are known@' = [ AA AB | e R™2,
In recent years, direct model-reference adaptive_ coRp — [ xT T ]T € R, anduyg € R" is a direct adaptive
trol (MRAC) using neural networks has been a topic Ofsignal.

great research interests [3], [4], [5]. Indirect adaptiom-c Defining the tracking error ag = xm — x, the goal is
trol achieves adaptation by means of system identificatiqy qetermine a controller that results in lims ||X]| = 0.

of plant parameters or uncertainties based on certainty- dynamic inversion controller is designed from Eq. (3)

equivalence control schemes [6], [7]. In this study, a reg, give the tracking error a second-order response with a
cursive least-squares (RLS) indirect adaptive law is used Broportional-integral feedback control as

a parameter estimation technique to reduce the modeling .
error, while a direct MRAC law achieves a reduction in U= égl ()'(m—Apx+Kp>?+ Ki/ idr—uad> (4)
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The tracking error dynamics are expressed as then it can be shown that

. - 1
= —Kp&—K; /()tidT+GT¢+uad—(Ap—A)x—(Bp—B)u RO+ S o0To= e’ (18)
(5) which results in Eq. (13). Differentiation of the identity
Lete=[ [o%dT X ]T € R?, then RR=1 also yields Eq. (14).
Proposition 1. The hybrid adaptive law can be shown to
é=Ae+b (@TCD+ Uad — e) (6) be stable and result in bounded signals.

Proof: Let ©, W* be constant ideal weights, ar@l =
where £ = x— Ax—Bu is an estimation error which is o_ o \\ =w —W* be weight variations, the® = © and
assumed to be measurable and W =W. Consider the following Lyapunov candidate function

A= & V| b2 © ) V =e'Petrace(WT W+ TR 1B)  (19)
K —Kp |
The direct adaptive signal is parameterized by a linear-in- V IS évaluated as
parameter matched uncertainty as vV — e(ACTP+ PAC) e+ 26" Pb (OT¢+WTB _ e)
ot =W B (X) (8) ) 5.
. . . . _ +trace] —Z\NTBeTPb——erJ(GJTO—eT)
whereW € R™" is a weight matrix angB € R™ is a basis m?
vector with Lipschitz properties d
+0"— (RYH)O| (20
1B~ Bx0)] <Clx—xl © a(Re| @
for some constar@ > 0, which implies a bounded derivative ~ SinceR"'R= 1, then
d - d 1
4B (X g 1 -15_ 9 o hp. T heTRo
H l;)(() <L 10) g RHYR+RIR= L (RHR- 00’ R=0 (21)
fi nt >0 50 d 1
or some constarit > 0. —1 T
— (R = =—0d 22
The adaptive law is given by dt (R™) m? (22)
. Using the trace property trat&B) = BA, one then obtains
W = —rBe'Pb (11) J Property trat4e)

y T T AT
wherel >0 < R is an adaptive gain ang > 0 € R2"<2" V<-eQet+2e Pb (O ¢+A2)

solves the Lyapunov equation _ % (qué _ AI) Ty %qJTééTqa (23)
T
PAc+A.P=-Q (12) B P B Th
whereA; = sup,, |€ — ©*T®| and A, = sup,, |[W*' B — A
whereQ > 0 is a symmetric positive-definite matrix. are approximation errors.

AA andAB are estimated by an indirect adaptive law based V is bounded by

on the recursive least-squares (RLS) method } ) <
V < Anin(Q >||e|| +2Amx<P el ([[&7 ||+ 1221

- 1
Gz—WRCD(cpTe—gT) (13) H@TQ’H e IIAlHH@T@H
R= — LROOTR (14) = — [l&ll P (Q) [|€]] = 2w (P) 122
wheren? = 1+ ®'R® € R is a normalization factorR > - HéquH [% HéT‘DH —2max (P) [l — % |A1||} (24)

0 € R?™2" js a covariance matrix.
The proof of the RLS indirect adaptive law is as follows:

Proof: Consider the following cost functional to be mini- 5
mized ¥ =SecR",O®cR":|e|>r1=

J(G):%At$"6T¢—s"2dr (15)

The necessary condition is obtained as

Defining a compact set” as

2Amex (P) [| A |
Am’n(Q) ’

|67 =r- 2r1m2Am<P>+2|Al|} (25)

T _ t1 T A and a complementary compact st which containse=0
Ho = O:>/o WCD(D edr_/o qug dr (16) and © = 0, thenV increases in¥ but all trajectories of
By letting e and T ® will stay inside of.~. It follows by LaSalle’s
) t ] T extensions of the Lyapunov method tleatnd® are bounded,
R :/o WCD(D dr (17)  and so are andu.



[1l. BOUNDED LINEAR STABILITY ANALYSIS Let &1 =sup, WTB andé&; =sup ’%EEApLéTdJ

Stability of nonlinear adaptive control is usually analgze for t € (to— T,to]. These error terms come from the actual
by the Lyapunov method. The traditional linear stabilityrma adaptive laws (11) and (13) and thus act as bounded distur-
gin concept may be extended to nonlinear adaptive contrbinces. Upon integration, one gets
if it could be represented by some linear approximations. o
To obtain an equivalent LTI system, the adaptive law can Z(to) —z(to—T) < —/t b'PeB T Bdt+&T  (32)
be linearized at a certain point in time when the weights B
are at a steady state, usually long after initial transibatee 25 (to) — 22 (to — / zquTRqut 45T (33)
settled down. However, transient responses during adaptat to—
can be important and the adaptive law should be designedime mean value theorem for integration states that
a way that would prevent large initial transients which can b b
compromise system robustness. The bounded linear syabilit / FOGMt)dt=F (c)/ G(t)dt (34)
analysis seeks a piecewise linear equivalent approximatio a a
of nonlinear adaptive control in terms of a persistent excit wherec € [a,b] and dt) > 0. If G = 1, then the special case
tion (PE) over a short, moving time window during whichof the mean value theorem for integration is obtained as
the LTI concept of stability margins could be analyzed to b
provide a method for adjusting the adaptive gain for the / F(t)dt
next time window. The linear equivalent approximation is . ) .
not a replacement of an adaptive law but rather is used in APPIying the mean value theorem for integration then
conjunction with the adaptive law for the stability anatysi Yi€lds
purpose.

Theorem 1: The hybrid adaptive law and the tracking % (to) -
error dynamics can be approximated by a piecewise linear

—F(0)(b-a) (35)

7 (to—T) < —Tb'Pe(ty) N B Bdt+&T (36)

to—T

. o 1
representation as ) —2Mt—T)<—2(t1) / WGJT Rodt + &T (37)
to—T
d| © AZC . b b ¢ wheret; € (to — T, tg].
Gl a|=| ThkbP O 012 But Ry®' ® < &' R®, hence
Vi) 0 0 —a V) Ro
bA; () —2t—-T)< - 2 () x
+ [ & ] (26) 1+ Ro®(t2) " ®(ty)
.to
& X o' ddt+ 6T (38)
over a semi- open time intervak (to — T,to], wherez;, z € Jlo=T
RN a— Ro®3 >0, Ro = Amn(R), and B2, ®2 ¢ R are Applying the mean value theorem for integration once
1+Ro®j more gives
persistent exchtation values defined as
1 [t O ddt =D () P(t) T 39
pi—1 | BTpat (27) St () @) 55
0~
1 o If T is sufficiently small, theriy ~t; ~t € (to—T,tg] S0
3= = o' ddt (28) that
to—T
- o T T 1 o+ 2
Letzz=WTB eR" andz =OTd cR". Then D(ty) Pty) =P () P(t2) = T ot ® ddt = dg (40)
= —bPeB TR+ W' (29) and
. 1 1 oy _ _
2=~ —20 RO+ (£-0T0) 0 RO+ O D (30) oo L i LC D R Oy Y
me m? T
Since satisfies the Lipschitz condition axds bounded ) 2 (to) —2(to—T)
becausex and u are bounded, thei = ‘mx is therefore 2~ T S-ants (42)
bounded. Also® is bounded sincé =[x 4" |" and  The tracking error dynamics can also be written as
u can be shown to be bounded by differentiating Eq. (4) as )
e<Ace+ b(Zl + 22+A2) (43)
U=B, | Amkm+ Bmf —Apx—b'Ace Remark 1: The piecewise linear approximation of the
nonlinear adaptive laws and the tracking error dynamics
1 over a moving time window enables the adaptive control

(OTCD s) ®'RO+b'PeB TB-W'B| (31) to be analyzed in the context of an equivalent LTI system

mz from which system robustness can be assessed via the



linear stability margin concept during that time window.€Th the tracking error dynamics. On the other hand, the direct
window widthT can be adjusted to sufficiently capture initialMRAC interacts intimately with the tracking error which can
transients for analyzing system robustness. affect robustness of the direct adaptive law. For each loop,
Remark 2: The persistent excitation valugd? and ®3 the characteristic equation is
may be a more suitable choice than the standard persis- _ 2 2 B
tent excitation definition which would bet % BB  dt (s+8) (S +kpS” + kis+ T Bgpos+ T Bip12) =0 (49)
and % j;g‘LT ®d'dt, respectively. The persistent excitation For brevity, the subscript is dropped. By factorization
matrices are singular and so are not invertible. On the otheiith residue, the characteristic equation can be written as
hand, B2 and ®3 are zero only if3 =0 and ® = 0. It
can be shown that the tracking error dependsfgnand 2 [ 2 2
T . . _ r S+ (kp—T i+
the approximation error of the direct adaptive law, while (s+2)) (s+Mhoar) |5+ (kp—Tfoa) stk + M Bgpaz
CD% affects the parameter convergence of the RLS indirect
adaptive law. — T B2a (kp— rgga)] +ri=o0 (50
Proof: Eliminating z; and z, in the linearly approximate

tracking error dynamics results in wherea and the residue are defined as

3 -
(-~ Acs+Tpgob P e< b<—L°2z2+sl+ez+A2> a = (k+TGZp2) " P (51)
1+ Ro% 2 2 2 2 2
(44) r =T Byp12—Bya [ki+TBypz—TBsa (kp—TB5a)]
For Ry®3 > 1, a~ 1, the solution ofz, is (52)

For " B2p22>> ki, which corresponds to fast adaptation and
or large persistent excitation, then

a= (rﬁgpzz)fl P12 (53)

I = —Pys P12 [k — Pag Prz (Kp— P2y P12)] (54)

For the ideal tracking error response wiflh = A and

b(e1+Ay) B, = B, the characteristic equation is second-order with
WY (46) a=0 andl =0 in Eq. (50). For the system to have good
I B§Amin (bb™P) ) =4

damping characteristics, the closed-loop 2poles should be a

e i vy

One should note that while increasirig3; can help complex-conjugate pair. This implieg > % in order for
reduce the trackmg. error, thg sygtem robustness may R%[—/\max(Ac)] to be largest. Then
compromised when it is examined in the context of the LTI L
stability margins. 9 1 %

To analyze the linear stability of the approximate tracking P22 P12 =kp(1+k) " <kp| 1+ (55)
error and the hybrid adaptive law, the characteristic agoat
of closed-loop system is evaluated by the Schur complementThusr is relatively small ifkp is sufficiently large and

2 (to) < [22 (to — T) — 82] e*T + &
so in the limitz, converges to

Jlim supizz| = &2 (45)
0—

Therefore, the convergence of the tracking error can be
found by

lim suple| =
to—o

formula as therefore can be neglected. Then, the approximate roots of
_ rB2bb™P the characteristic equation (50) are
det(sl — A) = det(sl + al)sdet(sl —Ac+—2 )
47) s=-a (56)
whereA is the state transition matrix in Eq. (26). s=—TBfa = —py P12 (57)
SinceKp andK; are diagonal and represent individual loop K Rk
gains for the tracking error, the determinant can be evetlat S= _Ep +j (ka - Z") (58)
as
det(sl —A_\) —(s+a)"x WhereEp andk; are the linearly approximate adaptive pro-
n portional and integral gains defined as
_ . 20 2. _
X iﬂ (S*+ kpiS*+ kiiS+ T BEpz2is+ T Bep12i)  (48) Kp = Kp— Py2p12 (59)
Kk — ki 20 n-1 -1
where p1oj = qkijl and pa2i = qkail (1+ kﬂl i=1....n, ki = ki +T By p22— Po, P12 (kp P22 p12) (60)
are diagonal elements of partitioned matri€es and P,, of Equation (58) reveals that E:ﬁg increases for fast adapta-
P, which solves Eq. (12) wittQ = 2ql, whereq > 0 is a tion and or large persistent excitation, the imaginary pért
constant. the complex-conjugate poles becomes large. Consequently,

The linear equivalent effect of the RLS indirect adaptivdast adaptation will result in high frequency oscillatioims
law is to add a pole ad= —a, but it does not interact with adaptive signals, a well-known fact in adaptive control [8]



This high frequency oscillation can result in excitation of V. SIMULATION

unmodeled dynamics that may be present in the system andrg jjjystrate the bounded linear stability analysis metted
therefore can lead to a possibility of instability. The @ppr  gimylation was performed for a damaged twin-engine generic
imate bounded linear stability method is able to capture thiyircraft with 25% of the left wing missing [2], as shown in

behavior of nonlinear adaptive control in the linear anialys Fig. 2. The hybrid adaptive control is implemented in a flight
context. This method should be able to provide a method figntrol to track a pitch doublet.

assessing linear stability margins that can be used to tadjus
the adaptive gain.

IV. METRICS-DRIVEN ADAPTIVE CONTROL

Metric-driven adaptive control is an approach that ad-
dresses stability and robustness of adaptive control mger
of quantifiable metrics. The goal of metrics-driven adaptiv
control is to achieve adaptation that satisfies a given set
of metrics. Since adaptive control is nonlinear, the notion
of metrics is not well established. Lacking of appropriate
metrics for nonlinear adaptive control, the bounded lirstar
bility analysis method can provide a framework for metrics-
driven adaptive control whereby the nonlinear adaptiveitaw
approximated by a linear equivalent system. Stability @f th
approximate LTI system can then be quantified in terms of
gain and phase margins. These margins define how close to
the verge of instability a control system is when subjected t o
disturbances. The adaptive gain can then be estimated from
the bounded linear stability analysis method to meet sgekifi
margins and then used to drive the adaptation. Based on this
approach, the system transfer function is obtained by ¢akin
the Laplace transform of the plant model as
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Fig. 3 - Pitch Rate Tracking Error

Figure 3 is a plot of the pitch rate tracking error. Without
adaptation [ = 0, R= 0), the tracking performance of the
flight control is quite poor as the tracking error is largettwi
G(s) = (5| —Ap+ Bpézfl,&;)’l % the direct MRAC aloner( =10%, R=0), the tracking error
Ki+TB2Py [ B2P becomes smaller but high frequency contents also appear.

' 0722 2212> (62) This is consistent with the closed-loop pole analysis. With
o _ _ the hybrid adaptive control'(= 10, R= 10), the tracking

. The RLS indirect adaptive law results in convergence Qdyror s significantly reduced along with the high frequency
Ap — Ap andB, — By if a— 1. Then, the transfer function contents. Thus, the hybrid adaptive control appears to be

s
The open-loop transfer function betwermnd X'is

+ Bé*{;l (sxm—W*TB _ M) (61)

X Bpé?,71 (Kp +

becomes 2 , , more effective than the direct MRAC alone
K Ki + T B5P22) s+ B5P:
G (g~ P + (Ki + [3803 22) S+ B5P12 (63) )
G*(s) can be broken into individual SISO transfer func- ‘
tions from which stability margins can be computed. Stapbili e ° //‘

margins of G(s) can be evaluated by structured singular

Imaginary Axis

values, or by one loop at a time and then the worst- .

case stability margins could be estimated using multi-loop . \\\ Increasing T

stability margin definitions [9]. The stability margins are ‘\

generally functions of Bg. The persistent excitatioﬁo2 can 10, 7‘15 — — - J
be computed from Eq. (27) within a given time window. Real Axis

Using this value, the adaptive gaihcan be calculated and

used for adaptation for the next time window. This process
is repeated until" should reach a steady state value when Figure 4 is the root locus plot of the characteristic equmatio
the weights no longer vary. for a= 1 when ROGJ(Z, > 1. The root locus plot agrees well

Fig. 4 - Root Locus for Pitch Loop



with the closed-loop pole analysis. The imaginary part of Figure 7 is a plot of the pitch rate doublet tracking and
the complex-conjugate poles increases with increasing thell and yaw rate responses to meet a phase margin of 45
adaptive gairi'. This gives rise to high frequency oscillationswith an adaptive gail = I'ax. The hybrid adaptive control

in the adaptive signals whenis large. (I = Imax, R=10%) clearly performs better than the direct
MRAC alone ( = IN'max, R=0) , which suffers large initial
transients, although high frequency contents no longeeaipp
Increasing I ——r=10', PM=64.1 in the Signals.

——r=10% PM=53.3
——T=10°, PM=24.6
—r=10* PM=8.12

VI. CONCLUSIONS

100 This paper has presented a bounded linear stability analy-
— sis method for analyzing approximate linear stability nirasg

of a nonlinear hybrid adaptive control that blends bothdatire

Increasing ™ and recursive least-squares indirect adaptive laws. Aepiec

Amplitude (dB)
1
o
o

Phase (deg)
A
o]
o

70 wise, approximate linear equivalent system is formulated
w0 Frequleonlv (radisec) 0 10 over a short, moving time windows within which the stability
margins are analyzed. The analysis relates the convergénce
Fig. 5 - Bode Plot ofG* (s) of Pitch Loop the tracking error with the persistent excitation for theedt

Figure 5 is the Bode plot of the transfer functiogs(s) ~2daptive law, and the parameter convergence of the plant
evaluated for the first 5 seconds. The Bode plot shows that Fde! with the persistent excitation for the indirect adapt
I" increases, the phase margin deteriorates. This is a typié%‘fv' The closed-loop po_Ies of the apprOX|m§te Ilne_ar equiva
behavior of a high-gain controller. Thus, while increasing Ie_nt system shows Fhat_ Increasing the a_dapt_lve gain re_sults
leads to a better tracking performance, the relative stabil Nigh-frequency oscillations in the adaptive signals. Agiar

of the system is compromised, as high frequency signals Cgﬂalysis shqws that increasing the adapti_ve gain causes the
excite unmodeled dynamics and lead to instability [7]. phase margin to decrease. Thus, there exists an upper bound
for an adaptive gain that satisfies a specified phase margin.

70 : : : : : This adaptive gain is used to limit the direct adaptatiorhin t
hybrid adaptive control to provide robustness. The sinmuat
shows that the metrics-driven hybrid adaptive control has a
better tracking performance than the direct adaptive obntr
alone.
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