A Closer Look at Solar Wind Sputtering of Lunar Surface Materials

Interactions of the solar-wind ions with

lunar regolith

 Protons and multiply charged ions striking amorphous surfaces at 1 keV/amu
Surface atoms (in addition to ions, electrons, and photons) are ejected as the solar-wind ions gets neutralized in the surface
The penetration depth of these ions is ~ 10s nm, i.e., comparable

to the thickness of the

rim found on regolith soil grains

80% of ejected (or sputtered) species are neutral atoms with rather wide energy and angular distributions

Kinetic vs. potential sputtering

Kinetic sputtering is an inelastic microscopic process with	
kinetic	energy transfer to a small number of
surface atoms via binary	collisions
It is the dominant sputtering	ng mechanism for metals and
semiconductors, where an rapidly accommodated	ny induced electronic excitation can be
Insulator surfaces have reduced electron mobility, hence fast	
electron removal from the	e target leads to structural
modifications	(defects) that cannot be restored
This is enhanced for highl	y charged ions since they 'carry' a
large	amount of 'potential energy' (given
by the sum of the ionization	potentials of the ion). This energy is
dissipated rapidly through excitation processes	electron transfer and Auger de-
For many surfaces potenti	al sputtering is significantly more
effective in removing targ	get material than kinetic sputtering
For insulators, potential sputtering is the dominant	
mechanism by which surface atoms are lost in impacts	
of slow ions!	

potential sputtering Proton yield from potential sputtering have been shown to depend sensitively --- r₀ = 0.008 109 - r_o = 0.05 10 4.8 keV Ar^Q 10* 500 eV #4 10-9 109 101 Dependence of the proton sputter yield from a hydrocarbon surface on the charge state of the impacting ion. [From Burgdorfer and Yamazaki (1996).] Potential-sputtering yield from some surfaces has also been shown to depend on dose Xe¹⁴⁺ (1keV) → AI_O in from 5 ML ALO. 0xypen from 0.3 ML ALO. Dependence of the total sputter yield on dose for 1 keV Xe¹⁴⁺ ions striking an Al₂O₃ surface. [From Hayderer et al. (2001).] Potential sputtering, in addition to significantly enhanced sputter yield, has some exceptional sensitivities!

Some observed characteristics of

Poster No. P31B-1402

CONTEXT: Solar-wind induced potential sputtering of the lunar surface may be a more efficient erosive mechanism than the "standard" kinetic (or physical) sputtering. This is partly based on new but limited laboratory measurements which show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides.

Lunar surface sputtering yields are important as they affect, estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere.

GOALS: The enhancements seen in the laboratory can be orders of magnitude for some surfaces and highly charged incident ions, but seem to depend very sensitively on the properties of the impacted surface in addition to the fluence, energy and charge of the impacting ion. For oxides, potential sputtering yields are markedly enhanced and sputtered species, especially hydrogen and light ions, show marked dependence on both charge and dose.

Potential puttering data for lunar regolith analogs are nonexistent. Limited data and the rudimentary nature of our understanding of the underlying processes, however, keep the question of the relative importance of potential sputtering an open one.

APPROACH: To help answer this question, we plan to (1) measure some relevant sputter yields at Oak Ridge National Laboratory's Multicharged Ion Research Facility (MIRF) using lunar simulant materials, (2) develop a kinetic model to quantify the degree and temporal behavior of the contribution of potential sputtering to solar-wind sputtering of lunar surface materials.

Demonstrated effects on lunar regolit

Changes in the elemental abundances of a KREEP soil exposed to solar wind ions (p-Fe) as a function of time assuming kinetic sputtering only:

Advantages of this Formulation:

Response function of the system

Sensitivity to structure variables

Optimized (+controlled) measures

Can objective adherence to ALARA be quantified?