
Verifying Architectural Design Rules of the Flight Software Product Line

Dharmalingam Ganesan, Mikael Lindvall, Chris Ackermann
Fraunhofer Center for Experimental Software Engineering,

Maryland
{dganesan, mlindvall, cackermann}@fc-md.umd.edu

David McComas, Maureen Bartholomew
NASA Goddard Space Flight Center,

Greenbelt, Maryland
{david.c.mccomas,

maureen.o.bartholomew}nasa.gov

Abstract

This paper presents experiences of verifying

architectural design rules of the NASA Core Flight
Software (CFS) product line implementation. The goal
of the verification is to check whether the
implementation is consistent with the CFS’ architectural
rules derived from the developer’s guide. The results
indicate that consistency checking helps a) identifying
architecturally significant deviations that were eluded
during code reviews, b) clarifying the design rules to the
team, and c) assessing the overall implementation
quality. Furthermore, it helps connecting business goals
to architectural principles, and to the implementation.
This paper is the first step in the definition of a method
for analyzing and evaluating product line
implementations from an architecture-centric
perspective.

Keywords: business goals, architectural rules,
implemented architecture, flight software

1 Introduction
It is a well-known fact that the software architecture is
critical to the success of a software product line. This is
reflected in the fact that organizations often spend
significant effort on the design of the software product
line architecture and strive to chose the most beneficial
architectural styles, patterns, and decomposition
strategies (e.g., [2],[3][9],[11]). These architectural
design decisions are made to efficiently establish the
core for a family of products, by taking advantage of
their commonalities and carefully managing variability.
One important factor determining the success of a
product line is whether the “designed” variability is
indeed present and maintained in the implementation.
Thus, the challenge is to verify that the resulting
implementation is consistent with the intended
architectural design principles (e.g., [10],[12]).

There are a number of reasons why the
implementation might deviate from the architecture,
including a) the architecture is an abstract entity not
directly expressible using standard programming
languages, b) the architecture is typically not
documented well enough for developers to be able to

fully comprehend and follow during the
implementation, c) performance and other non-
functional issues, not easily detectable during
architectural design time, have to be resolved with code-
level workarounds, d) complexity in managing source
code level variation points. These characteristics make it
difficult and tedious to ensure that architectural
principles are met through traditional inspections and
reviews.

The Flight Software Systems Branch at NASA
Goddard Space Flight Center (GSFC) has spent
considerable resources over the past few years
developing the Core Flight Software (CFS) and
positioning it as the future flight software platform for
NASA missions. The CFS follows a product line
approach with the goal to support systematic reuse. The
business goals of the CFS are the main drivers for
creating and maintaining the product line architecture.
Consequently, many of the architectural decisions are
directly influenced by the business goals of the CFS.
Thus, the CFS team needs to ensure that the business
goals and the implementation are aligned by verifying
that the implementation indeed follows the architectural
principles, and the team has been doing so as part of
rigorous code reviews.

The CFS developer’s and deployment guide specifies
the architecture principles in terms of structural and
behavioral properties of the CFS product line
architecture. Thus, it is possible to derive various types
of architectural rules from the architecture principles
(e.g. from the architectural principle of layering the rule
that a lower layer cannot use an upper layer can be
derived). The scope of this paper is the subset of rules
that are related to the module structure (i.e. the module
architecture [11]) of CFS and its development
environment (i.e. the code architecture [11]), and that
can be verified statically (i.e., without executing the
system). The derived rules are categorized into module
dependency-restriction rules, decomposition-restriction
rules, redundancy-restriction rules, and miscellaneous
rules, including visibility-restriction rules, conditional
preprocessor directives-usage rules, and interfaces usage
rules. These rules directly and indirectly address various
concerns, such as run-time adaptability, portability,
testability, and performance of the product line.

https://ntrs.nasa.gov/search.jsp?R=20090016208 2019-08-30T06:42:53+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10548369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The analysis and verification of these architectural
rules are conducted against the most recent source code
version of the CFS product line, which includes the
modules of the core framework and a set of optional
reusable application modules. The results of the
verification of these rules show that most of them are
indeed followed in the implementation. Naturally, some
deviations were detected through this process, and the
high-priority issues are currently being addressed.

Discussions with the CFS team revealed that the
software is written and reviewed by experienced
engineers who have been developing flight software for
about 15-20 years. Nevertheless, the team believes that
this tool-supported independent verification of
architectural rules complements such reviews because it
identified architectural deviations that escaped the
manual review process. Thus, it helps to preserve and
protect the carefully designed variability points, with the
effect that it increases the confidence of the overall
product line quality. Furthermore, the analysis helps in
establishing an explicit mapping among business goals,
architectural principles, and implementation decisions.

This paper is the first step in the definition of a
method for analyzing and evaluating product line
implementations from an architecture-centric
perspective. Complementary analysis of rules that are
outside the scope of this paper (e.g. rules related to the
behavior of the system) will be added to the method in
the future. Contributions of this paper are: 1) a
demonstration of how a collection of architecturally-
relevant rules can be verified and analyzed in order to
make sure the implementation is aligned with business
goals, 2) data and insights from a product line
implementation contributing towards developing a
benchmark for evaluating the implementation quality of
product lines.

2 The CFS Product Line
In this section, the heritage and business goals of the

CFS product line are briefly discussed. In order to
illustrate the importance of verifying the architecture
rules against the implementation, the relationship
between business goals and architectural rules is
presented.

2.1 The Heritage of the CFS

In the past, when developing a new mission, the Flight
Software (FSW) lead for the mission would obtain
existing FSW and artifacts from heritage missions that
they knew well (see figure 1). As the figure shows, the
FSW branch at NASA GSFC has several “heritage
architectures” to choose from. Once a fitting heritage
mission had been selected, changes were made to the
software artifacts in order to implement the

requirements of the new mission. In addition, changes in
the flight hardware or changes in the operating system
caused changes throughout the software system. This ad
hoc reuse implied that, for example, integration of new
modules required extensive manual coordination. The
conclusion was that the model based on reuse of
selected heritage architectures was not flexible enough
for collaboration within GSFC, with other NASA
centers, or with outside entities. In addition, this reuse
model forced the on-orbit FSW maintenance team to
understand, in detail, each heritage architecture and its
implementation because of the differences between the
missions. Thus, cost advantages from this type of reuse
were not visible.

Figure 1 The CFS Heritage

Prior to the year 2000, FSW was developed in
multiple branches. A single FSW branch was
established in the year 2000 that created the foundation
for a new FSW product line as a response to the
software reuse problem. A heritage analysis, among the
past missions, as illustrated in figure 1, showed that the
requirements for Command and Data Handling (C&DH)
Flight Software are indeed very similar from mission to
mission. This heritage analysis was the starting point for
the GSFC FSW branch’s establishment of guidelines for
the CFS product line, with the primary goal of not “re-
inventing the wheel” in each mission project. In 2003,
the development of the flight software product line
started. The CFS is now used by several FSW projects.

2.2 Business Goals and Architecture of the CFS

The CFS product line is being developed to achieve
the following business goals: a) reduce time to deploy
high quality flight software, b) reduce project schedule
and cost uncertainty, c) enable collaboration across
organizations, d) simplify sustaining engineering, e)
establish common standards and tools across the FSW
projects and NASA wide, f) establish the use of a single
platform for advanced concepts and prototyping, and g)
directly facilitate formalized software reuse.

In order to achieve these business goals, the CFS
team developed a software product line architecture
based on solid software engineering principles, such as
abstraction, information hiding, and modularity [8]. A
layered architecture that hides the internal details of OS
and hardware platform has been defined [6]. Core
modules configurable for mission-specific needs were
developed for reuse, forming the core (also called the
“executive”) layer of the CFS. A set of optional reusable
modules (also called application modules) were also
developed on top of the core layer. These application
modules are optional, meaning that they need not be
used in all missions. Mission-specific functionalities are
introduced by plugging-in modules into the application
layer. A detailed API specification explaining how to
use the core or generic modules, (shown in the
executive layer in figure 2) was also documented. Run-
time module registration mechanisms have been created
for integrating modules with little human effort. The
CFS facilitates this mechanism by using a publish-and-
subscribe architectural style with a software message
bus (see figure 2) as the middleware.

Figure 2 High-level structure of the CFS product line

In fact, there is a many-to-many mapping between the
business goals of the CFS and the architectural
decisions that were made (see figure 3). Thus, in order
to meet the business goals, it is vital to verify that the
implementation is consistent with the architecture rules,
and resolve discrepancies, if any.

The interest in the CFS has been spreading fast
within the aerospace community. For example, Lunar
Reconnaissance Orbiter (LRO), Global Precipitation
Measurement (GPM), Magnetospheric Multi-Scale
(MMS) at NASA GSFC, Radiation Belt Storm Probes
(RBSP) at Johns Hopkins University/Applied Physics
Laboratory (JHU/APL), and Lunar Atmosphere and
Dust Environment Explorer (LADEE) at NASA AMES,
are all using the CFS, and many more are expected in
the near future.

The modularity of the architecture also supports the
funding model. The CFS relies on project and project-

independent funding. For example, the GPM project is
helping to fund the CFS application modules
development. Future missions are expected to contribute
to new capabilities development as well as to support
CFS sustaining engineering.

Figure 3 Business goals and architecture principles

3 Verification of Architectural Rules

3.1 General Process for Verification

The verification process involves two teams: the CFS
team and the Fraunhofer team. The process started in
early 2008 and has now been ongoing for more than one
year. In order to perform this verification, the CFS team
sends the requirement specification, the developer’s and
deployment guide, and the source code bundle to the
Fraunhofer team. All core modules (also called services)
and the application modules developed by the CFS team
are part of the source code bundle. Figure 4 shows an
example CFS context. The core services (in green color)
and applications (in blue color) of figure 4 correspond
to the core layer and the application layer of Figure 2,
respectively. Mission-specific application modules (in
yellow color) are not included in the verification
process. The Fraunhofer team then performs an
independent verification of architectural rules using
their reverse engineering methods and tools. After the
analysis, both teams get together for detailed discussions
on the results of verification. These meetings often lead
to follow-up analysis as new questions arise. After each
meeting, the CFS team addresses the high-priority
architectural issues, and the Fraunhofer team prepares
answers for the additional questions raised by the CFS

team. This process is repeated periodically based on the
progress of the CFS development, for example, after the
implementation of new application modules. This
verification task is non-intrusive and non-biased,
because on the one hand it does not affect the CFS
team’s development process, and on the other hand the
analysis is independently performed by an external
organization (i.e., Fraunhofer).

 Figure 4 The CFS example context

3.2 Overview of the Approach

The steps followed for verifying the architectural
rules are depicted in figure 5. Here, these four major
steps are briefly explained.

Step 1 - Derive Architectural rules: The CFS
requirement specification describes the functional
requirements addressed by the core modules. The
application guide describes, in detail, the APIs of the
core modules. Furthermore, the way the core modules
should be used by application modules are also
described in this document. In addition, the application
guide contains samples demonstrating how to develop
and integrate new application modules with the core
modules. The deployment guide explains how to deploy
the CFS for individual missions. From these documents,
it is possible to derive a number of architecturally-
significant rules. This manual step has to be conducted
only once since the architectural rules do not change
frequently as compared to, for example, source code. A
fragment of these rules and the related quality attributes
they address are placed in Table 1. Note that the
association between rules and quality attributes is
applicable for the CFS and might differ for other
contexts. The absence of a quality attribute for a rule
does not necessarily imply that the attribute is irrelevant.
Only the highly relevant quality attributes are associated
to each rule in the table. The output of this step is a
collection of architectural rules. In the future, the CFS
team will offer the collected architectural rules to the
CFS team as well as to other teams that use the CFS in
their missions. It is expected that this will create better

awareness and a clarification of the relationship
between rules and quality attributes.

Figure 5 Four Steps in architectural rules verification

Rule Type Rule Scope Highly Related Quality

Attribute
Dependency
rules

1.Do generic modules
depend on specific
modules?
2. Do modules bypass
the OS and hardware
abstraction layer?
3. Do modules follow
the publish-subscribe
architectural style?

Run-time adaptability,
Buildability, Portability,
Testability, Performance

Decomposition
rules

1.Do modules directory
structure adhere to the
template structure?
2.Do modules follow
the decomposition
guidelines?

Buildability,
Comprehensionability

Redundancy-
restriction rules

Do modules copy-and-
paste from other
modules?

Maintainability

Miscellaneous
rules

1.Do modules expose
their internal details?
2.Do modules
implement necessary
interfaces, for example
the logging interface?

Changeability

Table 1 Sample Rules and related quality attributes

Step 2 – Map Architectural Concepts to Source
Code Concepts: The derived architectural rules are
abstract and not necessarily explicit in the source code.
For instance, the concept of the OS abstraction layer is
architectural, and the corresponding source code
concepts need to be clarified for developers to be able to
use them. The CFS documents provide such mapping,

for example, they describe which directory of the CFS
implements the OS abstraction layer.

Table 2 Architecture and source code concepts

Similarly, architectural concepts, such as application
layer, core (or executive) layer, middleware and
software bus are also explained with a mapping to
source code concepts, such as directories, files, and
functions (see Table 2).

Step 3 – Verify Architectural Rules: In this step,
the source code of the CFS is verified with respect to the
architectural rules using the mapping defined in the
previous step. Tool support is needed because a) the
source code is too large for manual review, and b)
whenever the source code changes, verification needs to
be performed again. A few tools are employed for
verification. First, the Fraunhofer SAVE tool [13] has
the capability to easily import the source code and
extract code relations as shown in Table 3. The tool
offers a GUI to define the mapping and graphical editors
for specifying the architectural rules. Using regular
expressions, it is possible to define a map, for example,
that all files under cfs-apps directory are part of the
application layer. Other tools, such as the Relation
Partition Algebra (RPA) tool [4] [10] are used to
complement the SAVE tool, for example to verify rules
related to interface usages and module visibility-
restrictions.

The Refer_Variable relation is between
a function and a global variable
referenced by that function

VariableFunctionRefer
variable

The Part_of relation models the
hierarchical decomposition. For
example, functions are part of files,
whereas files are part of directories.

File,
Directory

Function,
Variable,
File

Part_of

The Include relation is between a
file and a header file

Header fileFileInclude

The Call relation is from a caller
to a callee

FunctionFunctionCall

CommentsToFromRelation
Type

The Refer_Variable relation is between
a function and a global variable
referenced by that function

VariableFunctionRefer
variable

The Part_of relation models the
hierarchical decomposition. For
example, functions are part of files,
whereas files are part of directories.

File,
Directory

Function,
Variable,
File

Part_of

The Include relation is between a
file and a header file

Header fileFileInclude

The Call relation is from a caller
to a callee

FunctionFunctionCall

CommentsToFromRelation
Type

Table 3 Sample relations extracted from code

The output of this verification step is a collection of
inconsistencies between architectural rules and the
source code.

Step 4 – Analyze and Resolve: The focus of this
step is to analyze and resolve the architectural
deviations. Depending on the criticality of the
deviation, these deviations are resolved at the source
code-level. In certain cases, the deviations are

exceptions to architectural rules, and need not be
resolved. This process is iterated either when new rules
are introduced or when the source code is changed.

3.3 Module Dependency-Restriction Rules

This section presents a few dependency-restriction
rules of the CFS product line.

3.3.1 Generic to Application Modules Dependencies

As mentioned above, the product line architecture of
the CFS has two major layers, namely the application
layer and the core layer where the application layer is
supposed to use the core layer and not the other way
around. The core layer is developed for reuse in
different missions. Conceptually, the application
modules in the application layer need not be present in
all missions. Any core module that uses application
modules not only compromises the conceptual integrity
of generic and specifics, but also the common look-and-
feel of build rules (i.e., Makefile rules) as build targets
have to be adjusted accordingly. Thus, it is important to
ensure that there are no dependencies introduced from
the core layer to the application layer. Otherwise, it
might be difficult to build and test the core layer
independently of any missions. As shown in Figure 6,
the cfs-core layer is being used by the cfs-apps layer in
the implementation. Of course, the modules within the
application layer and the core layer are allowed to have
self-dependencies, as depicted with a loop in figure 6.

Figure 6 Implemented dependencies from the

application layer to the core layer

3.3.2 Application to Application Modules Dependencies

The CFS has been architected to allow run-time plug-
in of modules, even after the launch of a mission. In
order to support this capability, the CFS team used the
publisher-subscriber architectural style. In the
implementation of this style, it is imperative that the
modules in the application layer do not depend on each
other directly at compile time. In other words, if two
modules need to interact, they should use the services of
the software bus module, defined in the core layer.
Apart from the run-time adaptation capability, the CFS
build process defines uniform build rules for compiling
each module of the application layer into an executable.

Also, the modules are designed so that they can be
tested independently of other modules. Currently, the
CFS team has developed around 10 applications within
the application layer. As shown in figure 7, no two
application modules are communicating directly in the
implementation, with an exception of a utility module
(cfs_lib) which is correctly being used directly.

Figure 7 Dependencies among application modules

As shown in figure 8, the applications indeed
communicate using the software bus only. All modules
register to the software bus and exchange messages by
publishing and subscribing to appropriate messages.
Thus, the static structure of the publish-subscribe
architecture style is in place, enabling the run-adaptation
of individual (e.g., new patches or updates) modules
without restarting the whole CFS.

Figure 8 Dependencies on the software bus

3.3.3 Dependencies on OS and Hardware Variants

One of the goals of the CFS is to support many
different operating systems (e.g., Vxworks, Unix) and
hardware variants (e.g., X86, PowerPC) because they
are expected to be needed by various missions. To
address this need, an abstraction layer that encapsulates
the underlying OS and hardware variants has been
introduced. A common API for all these variants is
documented in detail [6]. This API contains interfaces
for using the file system, memory, and network. All the

applications and core modules should be agnostic to the
underlying OS and hardware. Thus, the architectural
rule states that none of the modules should use the C
libraries directly for accessing OS and hardware
resources, and instead should go through the modules in
the abstraction layer, for portability reasons. Thus, the
developer must use the corresponding OSAL functions
to ensure that the hardware characteristics associated
with each memory address are properly taken care of.
For example, attempting to write to EEPROM using the
standard C function memcpy will fail. Using
OS_MemCpy will succeed because the EEPROM will
be configured for writing before the copy is performed.
However, this rule is compromised by the core layer as
it bypasses the OS abstraction layer (OSAL) and uses
the C library directly (see figure 9). The SAVE tool
detected that the memset and the memcpy functions are
used instead of OS_Memset and OS_Memcpy defined
in the OSAL layer.

Figure 9 Bypassing the OS abstraction layer

3.4 Module Redundancy-Restriction Rules

One of the goals of the CFS product line is to
minimize redundancy in the source code. The CFS team
believes that implementing a product line using clones
(copy-and-paste) is, in general, not a sound strategy.
Clones introduce problems related to bug-fixes and
maintenance. Furthermore, the source code of the CFS
is also offered to some of its customers, and the
presence of clones does not give a positive impression
of the overall product line quality. The presence of
clones also indicates that there are potential architectural
design problems with respect to variability management.
Implementing a product line using clones is not a good
strategy, because after a few variants it is extremely
hard to keep track of multiple code versions and their
evolutions. In general, a product line made of clones
will not be cost of effective [1] [5]. Thus, the CFS
product line was verified with respect to the presence of
code clones.

CloneFinder [7] , a commercial clone finder tool, is
being used to locate clones. The collected clone data is
at the file level. The clone finder tool outputs the
detected clones as clone-groups. Each clone group
contains a list of files together with line numbers of the
clone. In order to analyze the collected clone data in a
systematic way from an architecture perspective, the
data is overlaid on the structural view of the CFS using
the SAVE tool1

The OS abstraction layer (OSAL) also contains
clones. This layer implements the common API

. This visualization helps analyzing
clones hierarchically. That is, starting from the layer-
level to module-level. The analysis shows that there are
no clones between the application layer and the core
layer, even though both the layers are developed by the
same team. The analysis of clones within the application
layer showed that one function is cloned in four
application modules. Similarly, one function within the
core layer is cloned in two core modules. These routines
could be easily moved to utility modules. Intra-module
clones were also analyzed. The analysis showed that
there are clones inside the memory management (MM)
module of the application layer. Analysis of these clones
revealed that there are only small differences between
the implementations of eight, sixteen, and thirty two bit
memory addresses that could be abstracted.

[6] and
consists of 150 functions for different operating
systems, namely Vxworks, Rtems, Mac osx, and Linux.
The clone analysis showed that 14 functions are copied
in all four OS variants. Another 13 functions are copied
among three OS variants. In addition, there is an overall
high similarity between the Mac osX and Linux
implementations of the API, supported by the evidence
that around 25 functions are copied-and-pasted between
these two OS variants. The Vxworks implementations
differ from other OS variants primarily because the
others use pthread libraries whereas Vxworks uses
semaphores for multi-tasking.

Table 4 summarizes the clone measurement data.
False-positives are reported as clones, but are not really
clones. For example, functions for read and write
operations on a file would look the same if “read” is
replaced by “write”. However, automatic clone finder
tools have no domain knowledge and falsely report such
functions as clones. Moreover, the architecture of the
CFS has been designed to have a common look-and-feel
among modules, and the source code is manually
developed based on a template. Due to this reason, there
are many false-positives reported by the clone finder
tool. After manual analysis of the clone data, such false-
positives were filtered out, resulting in a remaining set
of true-positives. There are just a few true clones in the
application and the core layer, and most of them are

1 http://www.thesavetool.com

intra-module clones. A high number of true-positive
clones are present in the OSAL. It appears that the
OSAL could benefit from moving the common OS
functions into a single location.

Table 4 Summary of clone measurement

To sum up, the CFS implementation has very few
clones in the application and the core layers, and the
ones that do exist are under investigation by the CFS
team.

3.5 Module Decomposition-Restriction Rules

As mentioned above, the CFS source code is
delivered to missions, who instantiate variation points
by configuring the build process and macros defined in
the header files of the CFS. In order to facilitate the
configuration process, the developer’s guide offers rules
related to decomposition of modules in the directory
structure (i.e. the code architecture [11]). For example,
the guide specifies in which folder the mission-specific
header files and module documents have to be present,
including their naming conventions.

From the CFS development team point of view, if all
modules share a uniform look-and-feel, it not only helps
program comprehension and evolution, but also enables
developers to easily get familiar with their colleagues’
implementations. Furthermore, test-suites and build
scripts should also be organized in a similar way. The
developer’s guide provides guidelines and templates
related to the structure of modules and sub-modules in
the application layer. Thus, the goal of our verification
is to check whether the modules of the application layer
are consistent with the CFS template.

Here, a few examples of verification results are
presented. The CFS template specifies that all
application modules should have the directory structure
as follows: The application name should be the same as
the name of the sub-directory. Each application should
contain a directory with the name fsw, which in turn
contains the src directory, the mission_inc directory for
configuring mission parameters, and the platform_inc
directory for configuring platform parameters. All the
application modules were verified with respect to this
directory structure decomposition. The results indicate
that all but one application module followed this rule
(see figure 10). This deviation is marked with a red
cross, meaning that the mission_inc directory is not
present in the sc application module.

Figure 10 Directory structure decomposition - a

violation: the folder mission_inc is missing

Similarly, the template explains the pattern to be
followed for externally visible interfaces of each
application module. It also explains how the external
interface should be implemented and decomposed
internally using a pseudo application module called QQ.
It is expected that each module follow the structure
shown in figure 11 (left), where QQ_AppMain is the
only entry point to the module, and it calls QQ_AppInit,
and so on as shown in figure 11.

Figure 11 Left: Template. Right: Violation

All modules were verified against the QQ template, and
some violations were detected (see figure 11 right). The
red crosses show that the LC application module misses
two routines, namely LC_VerifyCmdLength and
LC_HouseKeepingCmd. Code analysis shows that the
actual functionality of these routines is in fact
implemented but with different routine names.
Refactoring to maintain the common look-and-feel is
being considered by the team.

3.6 Miscellaneous Rules and Analysis

This section summarizes the rules related to the
visibility of the internals of individual modules, unused
interfaces of core modules, and the usage of
#ifdef/#ifndef/#if preprocessor symbols for the source
code level variability management.

3.6.1 Module Internals Visibility-Restriction Rules

Since the CFS team offers the source code of the
application and core modules to missions, it is very
important to restrict the visibility of the internal details
of individual modules. Otherwise, mission-developers
might use the internals of such modules directly without
using appropriate interfaces, and thus it might be
difficult to later replace changed and updated CFS
modules, without impacting mission-specific modules.
Since the C language does not offer the concept of
private and protected (as in Java), the CFS developer’s
guide offers coding rules. For example, one of the rules
states that intra-module interfaces that are not to be used
directly by mission specific applications should be
declared in a header file with its name having the suffix
“_priv”. Moreover, no publicly visible header file
should include a private header file; otherwise the
private details are still visible indirectly to other
modules for use. Similarly, none of the higher-level
layer interface should expose its lower-level interface.
Using the RPA and the grep tools, the include relations
of the CFS source code were verified. The analysis
showed that one of the core modules private header file
was indirectly visible to external modules because a
public header includes it. The CFS team is addressing
this issue.

3.6.2 Core Modules Interface-Usage Analysis

The interfaces of the core modules of the CFS were
developed after the commonality and variability analysis
among the requirements of past missions. Thus, it is
logical to expect that either all the public interfaces of
the core modules are used by the application modules or
the unwanted interfaces are conditionally removed (e.g.,
using preprocessor directives). The interface-usage
analysis of the CFS core modules showed that some of
the interfaces are neither used by the existing 10
application modules nor used by other core modules
(see Table 5). The analysis showed that these unused
core interfaces cannot be automatically removed, that is,
there are no variation points to delete this unwanted
functionality. The analysis also pointed out some
redundancies in the interfaces of modules, implying that
the service offered by an interface can also be obtained
by using a combination of other interfaces. Such
redundant interfaces could be easily removed to keep
module interfaces minimal.

Table 5 Analysis of unused interfaces

Essentially, unused interfaces and their
implementations would remain as dead code, which is
considered risky in the flight software domain. In future
analysis, mission-specific modules will be also included,
and based on the feedback the CFS team will investigate
ways to introduce variation points at the interface-level
for deleting unwanted interfaces and implementations, if
desired.

3.6.3 #Ifdef/Ifndef/If/elsif Complexity Analysis

The purpose of this analysis is to check how complex
the implementation is with respect to the usage of
conditional preprocessor directives (#ifdef, #ifndef, #if,
and #elif statements) for implementing variation points.
A variation point could be a binary value (e.g., Log is
on or off), a numeric value, or a string value. Custom
scripts were developed to measure the number of
variation points per module. The measurement shows
that there are around 150 variation points within the
core layer and 125 in the application layer. The usage of
variation points in conditional preprocessor directives
were also measured using the ifnames tool, which emits
the list of files where a preprocessor symbol is used.
The histogram (see figure 12) shows that 80% of the
CFS source files do not have any conditional
preprocessor statements at all, excluding the guards for
header files for avoiding multiple inclusions. A notable
exception is one file that refers 79 variation points in a
sequence of #if statements. Further analysis showed that
the file validates the legal range of all variation points
within a module. Overall, the use of conditional
preprocessor statements has been very well under
control in the CFS implementation which consists of
170 KLOC. The collected data was also used to measure
cross-module interferences of variation points, which
makes the source code very complex to test,
comprehend, and evolve. The analysis showed that only
20 variation points out of 150 in the core layer where
referred in the application layer, suggesting that the
source code of application modules is using only a
fraction of variation points of core modules.

Figure 12 Conditional preprocessor directives

Also, as expected by the architectural design of the
CFS application layer, there are no interference of
variation points from one application module to another,
and the variation points of the application layer are not
referred in the core layer. This measurement indicates
that there is a clear separation of concerns in the
implementation.

This analysis showed that variability is implemented
in the CFS using several different strategies depending
on the type of variability needed. The C preprocessor is
used only for configuring mission-specific parameters
and removing unwanted functionalities implemented in
the core and optional modules. One common API [6]
and multiple implementations are developed to handle
the operating system and hardware variants. The build
process is designed to choose and compile the right
implementation files for various operating system and
hardware variants. Missions could also build and
distribute the CFS modules on different CPU’s; the
build process can be easily configured to select the
mission-specific header files, and modules are not aware
of their peer modules CPU’s, as all communications go
through the middleware (i.e., the Software Bus module).

4 Brief Summary of Results and Lessons Learned

Table 6 presents some statistics on the number of
rules checked and detected violations. The first row, for
example, shows 12 different dependency-restriction
rules were checked and out of that 3 rules were violated.
Overall, 45 rules were checked and 14 violations were
detected. Examples of detected issues were by-passing
the OS abstraction layer, unexpected dependencies
among modules, inter-module clones, exposing internal
details of modules, redundant definitions of
configuration parameters (i.e. those mentioned in
#define statements) in multiple files, and a few
inconsistent interface naming conventions. In addition,
verification identified a module that does not use a
particular interface to release memory table resources,
could result in subtle performance problems.

Table 6 list the set of tools used in this process. In
order to support an architecture-centric analysis, the

data collected using different tools are imported to the
SAVE tool and visualized using hierarchical structural
views. For example, the clone data collected from the
CloneFinder tool is imported to SAVE for visualizing
and analyzing clones, among from layers, modules, and
sub-modules. Configuration parameters and their usage
collected by the ifnames tool are imported to SAVE for
visualizing and analyzing the location of variation
points across layers, modules, and sub-modules.
Rule Type # of Rules

Verified
of Rules
 Violated

Tools

Dependency 12 3 SAVE, RPA
Redundancy 6 3 Clonefinder, SAVE
Decomposition 5 3 RPA, SAVE
Visibility of secrets 5 1 RPA, SAVE
Variation-point Interference 3 1 ifnames, SAVE
Interface Naming Conventions 15 3 RPA

Table 6 Statistics of Rules and Violations

4.1 Lessons Learned

L1) Verifying the architectural rules helps connecting
business goals, to architectural principles, and to the
implementation. In this process, the teams that develop
software for reuse and the teams that use the reusable
software are made aware of how to develop the product
line for reuse and how to reuse it in the right way.

L2) When measuring redundancy using automated
clone detectors, it is worth spending effort in reviewing
the detected clones. Clone detectors have no domain
knowledge, thus they often falsely report similar code
patterns as clones. It is easy to upset the development
team with wrong clone data.

L3) Overlaying the collected source code level data,
such as clones and number of variation points, onto the
structural view facilitates architecture-centric analysis
by showing the “big-picture” first and then details.

5 Conclusion and Future Work
This paper analyzed the CFS product line

architecture by verifying that architectural rules related
to the module architecture and the code architecture
were indeed met in the implementation. Overall, 45
rules were checked and 14 violations were detected. It is
worth noting that the CFS, as a safety-critical software
product line, undergoes extensive code reviews.
Nevertheless, some of the detected violations escaped
the manual review process. Thus, this tool-supported
verification of architecturally-significant rules
complements traditional inspections by finding
additional issues. The overall goal of this work is to
define a method for analyzing and evaluating product
line implementations from an architecture-centric
perspective. This paper is the first step in that direction
and the draft method will be applied to several product

line implementations in the near future and will be
improved based on the lessons learned. In addition,
complementary analysis of rules that are outside the
scope of this paper will be included. For example, rules
that deal with the behavior of the system, such as task
scheduling, inter-task communication, and ordering of
run-time events.

References
[1] G. Böckle, P. Clements, J. D. McGregor, D. Muthig, and

K. Schmid: Calculating ROI for Software Product Lines.
IEEE Software 21(3): 23-31, 2004.

[2] J. Bosch. Design and use of Software architectures:
adopting and evolving a product-line approach. Addison-
Wesley, 2000.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, J. Stafford. Documenting Software
Architectures: Views and Beyond. SEI Series.

[4] L. Feijs, R. Krikhaar, and R. Van Ommering. A
Relational Approach to Support Software Architecture
Analysis. Software Practice and Experience, 28(4):371-
400, 1998.

[5] D. Ganesan, D. Muthig, and K. Yoshimura. Predicting
Return-on-investment for Product Line Generations. In
SPLC, pages 13-22, 2006.

[6] http://opensource.gsfc.nasa.gov – The open source API
for the OS and hardware abstraction layer.

[7] http://www.studio501.com/CloneFinder - The Clone
finder tool.

[8] D. L. Parnas. Designing software for extension and
contraction. IEEE TSE 5(2), 128-138, 1979.

[9] A. Postma and P. America. Measuring Architecting
Effort. In WICSA, 2005.

[10] A. Postma. A method for module verification and its
application on a large component-based system. In IST
journal, 45, 171-194, 2003.

[11] D. Soni, R. L. Nord, and C. Hofmeister. Software
Architecture in Industrial Applications. In ICSE, pages
196-207, 1995.

[12] C. Stoermer, L. O’ Brien, and C. Verhoef. Practice
Patterns for Architecture Reconstruction. In WCRE,
pages 151-160, 2002.

[13] W. C. Stratton, D. E. Sibol, M. Lindvall, and P. Costa.
The SAVE Tool and Process Applied at JHU/APL. In
SEW, 187-193, 2007.

Acknowledgements
This work is supported by the NASA SARP program. The
authors thank Charles Wildermann (head of NASA FSW
Branch), and all members of the CFS team including
Kequan Lu for their comments and discussions, and Sally
Godrey for great support. Thanks to Dirk Muthig, Jens
Knodel, Lyly Yonkwa and the SAVE team for successful
collaboration in the development of the SAVE tool. Rene
Krikhaar kindly provided us the RPA toolkit.

http://opensource.gsfc.nasa.gov/�
http://www.studio501.com/CloneFinder�

	1 Introduction
	2 The CFS Product Line
	2.1 The Heritage of the CFS
	2.2 Business Goals and Architecture of the CFS

	3 Verification of Architectural Rules
	3.1 General Process for Verification
	3.2 Overview of the Approach
	3.3 Module Dependency-Restriction Rules
	3.4 Module Redundancy-Restriction Rules
	3.5 Module Decomposition-Restriction Rules
	3.6 Miscellaneous Rules and Analysis

	4 Brief Summary of Results and Lessons Learned
	4.1 Lessons Learned

	5 Conclusion and Future Work

