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Abstract 
 
This paper presents experiences of verifying 

architectural design rules of the NASA Core Flight 
Software (CFS) product line implementation. The goal 
of the verification is to check whether the 
implementation is consistent with the CFS’ architectural 
rules derived from the developer’s guide. The results 
indicate that consistency checking helps a) identifying 
architecturally significant deviations that were eluded 
during code reviews, b) clarifying the design rules to the 
team, and c) assessing the overall implementation 
quality. Furthermore, it helps connecting business goals 
to architectural principles, and to the implementation. 
This paper is the first step in the definition of a method 
for analyzing and evaluating product line 
implementations from an architecture-centric 
perspective.  
 
Keywords: business goals, architectural rules, 
implemented architecture, flight software 

1 Introduction 
It is a well-known fact that the software architecture is 
critical to the success of a software product line. This is 
reflected in the fact that organizations often spend 
significant effort on the design of the software product 
line architecture and strive to chose the most beneficial 
architectural styles, patterns, and decomposition 
strategies (e.g., [2],[3][9],[11]). These architectural 
design decisions are made to efficiently establish the 
core for a family of products, by taking advantage of 
their commonalities and carefully managing variability.  
One important factor determining the success of a 
product line is whether the “designed” variability is 
indeed present and maintained in the implementation. 
Thus, the challenge is to verify that the resulting 
implementation is consistent with the intended 
architectural design principles (e.g., [10],[12]). 

There are a number of reasons why the 
implementation might deviate from the architecture, 
including a) the architecture is an abstract entity not 
directly expressible using standard programming 
languages, b) the architecture is typically not 
documented well enough for developers to be able to 

fully comprehend and follow during the 
implementation, c) performance and other non-
functional issues, not easily detectable during 
architectural design time, have to be resolved with code-
level workarounds, d) complexity in managing source 
code level variation points. These characteristics make it 
difficult and tedious to ensure that architectural 
principles are met through traditional inspections and 
reviews. 

The Flight Software Systems Branch at NASA 
Goddard Space Flight Center (GSFC) has spent 
considerable resources over the past few years 
developing the Core Flight Software (CFS) and 
positioning it as the future flight software platform for 
NASA missions. The CFS follows a product line 
approach with the goal to support systematic reuse. The 
business goals of the CFS are the main drivers for 
creating and maintaining the product line architecture. 
Consequently, many of the architectural decisions are 
directly influenced by the business goals of the CFS. 
Thus, the CFS team needs to ensure that the business 
goals and the implementation are aligned by verifying 
that the implementation indeed follows the architectural 
principles, and the team has been doing so as part of 
rigorous code reviews. 

The CFS developer’s and deployment guide specifies 
the architecture principles in terms of structural and 
behavioral properties of the CFS product line 
architecture. Thus, it is possible to derive various types 
of architectural rules from the architecture principles 
(e.g. from the architectural principle of layering the rule 
that a lower layer cannot use an upper layer can be 
derived). The scope of this paper is the subset of rules 
that are related to the module structure (i.e. the module 
architecture [11]) of CFS and its development 
environment (i.e. the code architecture [11]), and that 
can be verified statically (i.e., without executing the 
system). The derived rules are categorized into module 
dependency-restriction rules, decomposition-restriction 
rules, redundancy-restriction rules, and miscellaneous 
rules, including visibility-restriction rules, conditional 
preprocessor directives-usage rules, and interfaces usage 
rules. These rules directly and indirectly address various 
concerns, such as run-time adaptability, portability, 
testability, and performance of the product line. 
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The analysis and verification of these architectural 
rules are conducted against the most recent source code 
version of the CFS product line, which includes the 
modules of the core framework and a set of optional 
reusable application modules. The results of the 
verification of these rules show that most of them are 
indeed followed in the implementation. Naturally, some 
deviations were detected through this process, and the 
high-priority issues are currently being addressed. 

Discussions with the CFS team revealed that the 
software is written and reviewed by experienced 
engineers who have been developing flight software for 
about 15-20 years. Nevertheless, the team believes that 
this tool-supported independent verification of 
architectural rules complements such reviews because it 
identified architectural deviations that escaped the 
manual review process. Thus, it helps to preserve and 
protect the carefully designed variability points, with the 
effect that it increases the confidence of the overall 
product line quality. Furthermore, the analysis helps in 
establishing an explicit mapping among business goals, 
architectural principles, and implementation decisions. 

This paper is the first step in the definition of a 
method for analyzing and evaluating product line 
implementations from an architecture-centric 
perspective. Complementary analysis of rules that are 
outside the scope of this paper (e.g. rules related to the 
behavior of the system) will be added to the method in 
the future. Contributions of this paper are: 1) a 
demonstration of how a collection of architecturally-
relevant rules can be verified and analyzed in order to 
make sure the implementation is aligned with business 
goals, 2) data and insights from a product line 
implementation contributing towards developing a 
benchmark for evaluating the implementation quality of 
product lines. 

2 The CFS Product Line 
In this section, the heritage and business goals of the 

CFS product line are briefly discussed.  In order to 
illustrate the importance of verifying the architecture 
rules against the implementation, the relationship 
between business goals and architectural rules is 
presented. 

2.1 The Heritage of the CFS 

In the past, when developing a new mission, the Flight 
Software (FSW) lead for the mission would obtain 
existing FSW and artifacts from heritage missions that 
they knew well (see figure 1). As the figure shows, the 
FSW branch at NASA GSFC has several “heritage 
architectures” to choose from. Once a fitting heritage 
mission had been selected, changes were made to the 
software artifacts in order to implement the 

requirements of the new mission. In addition, changes in 
the flight hardware or changes in the operating system 
caused changes throughout the software system. This ad 
hoc reuse implied that, for example, integration of new 
modules required extensive manual coordination. The 
conclusion was that the model based on reuse of 
selected heritage architectures was not flexible enough 
for collaboration within GSFC, with other NASA 
centers, or with outside entities. In addition, this reuse 
model forced the on-orbit FSW maintenance team to 
understand, in detail, each heritage architecture and its 
implementation because of the differences between the 
missions. Thus, cost advantages from this type of reuse 
were not visible. 

 
Figure 1 The CFS Heritage 

Prior to the year 2000, FSW was developed in 
multiple branches. A single FSW branch was 
established in the year 2000 that created the foundation 
for a new FSW product line as a response to the 
software reuse problem. A heritage analysis, among the 
past missions, as illustrated in figure 1, showed that the 
requirements for Command and Data Handling (C&DH) 
Flight Software are indeed very similar from mission to 
mission. This heritage analysis was the starting point for 
the GSFC FSW branch’s establishment of guidelines for 
the CFS product line, with the primary goal of not “re-
inventing the wheel” in each mission project. In 2003, 
the development of the flight software product line 
started. The CFS is now used by several FSW projects. 

2.2 Business Goals and Architecture of the CFS 

The CFS product line is being developed to achieve 
the following business goals: a) reduce time to deploy 
high quality flight software, b) reduce project schedule 
and cost uncertainty, c) enable collaboration across 
organizations, d) simplify sustaining engineering, e) 
establish common standards and tools across the FSW 
projects and NASA wide, f) establish the use of a single 
platform for advanced concepts and prototyping, and g) 
directly facilitate formalized software reuse. 



In order to achieve these business goals, the CFS 
team developed a software product line architecture 
based on solid software engineering principles, such as 
abstraction, information hiding, and modularity [8]. A 
layered architecture that hides the internal details of OS 
and hardware platform has been defined [6]. Core 
modules configurable for mission-specific needs were 
developed for reuse, forming the core (also called the 
“executive”) layer of the CFS. A set of optional reusable 
modules (also called application modules) were also 
developed on top of the core layer. These application 
modules are optional, meaning that they need not be 
used in all missions. Mission-specific functionalities are 
introduced by plugging-in modules into the application 
layer. A detailed API specification explaining how to 
use the core or generic modules, (shown in the 
executive layer in figure 2) was also documented. Run-
time module registration mechanisms have been created 
for integrating modules with little human effort. The 
CFS facilitates this mechanism by using a publish-and-
subscribe architectural style with a software message 
bus (see figure 2) as the middleware. 

 
Figure 2 High-level structure of the CFS product line 

In fact, there is a many-to-many mapping between the 
business goals of the CFS and the architectural 
decisions that were made (see figure 3). Thus, in order 
to meet the business goals, it is vital to verify that the 
implementation is consistent with the architecture rules, 
and resolve discrepancies, if any. 

The interest in the CFS has been spreading fast 
within the aerospace community. For example, Lunar 
Reconnaissance Orbiter (LRO), Global Precipitation 
Measurement (GPM), Magnetospheric Multi-Scale 
(MMS) at NASA GSFC, Radiation Belt Storm Probes 
(RBSP) at Johns Hopkins University/Applied Physics 
Laboratory (JHU/APL), and Lunar Atmosphere and 
Dust Environment Explorer (LADEE) at NASA AMES, 
are all using the CFS, and many more are expected in 
the near future.  

The modularity of the architecture also supports the 
funding model. The CFS relies on project and project-

independent funding. For example, the GPM project is 
helping to fund the CFS application modules 
development. Future missions are expected to contribute 
to new capabilities development as well as to support 
CFS sustaining engineering. 

Figure 3 Business goals and architecture principles 

 

3 Verification of Architectural Rules 

3.1 General Process for Verification 

The verification process involves two teams: the CFS 
team and the Fraunhofer team. The process started in 
early 2008 and has now been ongoing for more than one 
year. In order to perform this verification, the CFS team 
sends the requirement specification, the developer’s and 
deployment guide, and the source code bundle to the 
Fraunhofer team. All core modules (also called services) 
and the application modules developed by the CFS team 
are part of the source code bundle. Figure 4 shows an 
example CFS context. The core services (in green color) 
and applications (in blue color) of figure 4 correspond 
to the core layer and the application layer of Figure 2, 
respectively. Mission-specific application modules (in 
yellow color) are not included in the verification 
process. The Fraunhofer team then performs an 
independent verification of architectural rules using 
their reverse engineering methods and tools. After the 
analysis, both teams get together for detailed discussions 
on the results of verification. These meetings often lead 
to follow-up analysis as new questions arise. After each 
meeting, the CFS team addresses the high-priority 
architectural issues, and the Fraunhofer team prepares 
answers for the additional questions raised by the CFS 



team. This process is repeated periodically based on the 
progress of the CFS development, for example, after the 
implementation of new application modules. This 
verification task is non-intrusive and non-biased, 
because on the one hand it does not affect the CFS 
team’s development process, and on the other hand the 
analysis is independently performed by an external 
organization (i.e., Fraunhofer). 

 
        Figure 4 The CFS example context 

 

3.2 Overview of the Approach 

The steps followed for verifying the architectural 
rules are depicted in figure 5. Here, these four major 
steps are briefly explained. 

Step 1 - Derive Architectural rules: The CFS 
requirement specification describes the functional 
requirements addressed by the core modules. The 
application guide describes, in detail, the APIs of the 
core modules. Furthermore, the way the core modules 
should be used by application modules are also 
described in this document. In addition, the application 
guide contains samples demonstrating how to develop 
and integrate new application modules with the core  
modules. The deployment guide explains how to deploy 
the CFS for individual missions. From these documents, 
it is possible to derive a number of architecturally-
significant rules. This manual step has to be conducted 
only once since the architectural rules do not change 
frequently as compared to, for example, source code. A 
fragment of these rules and the related quality attributes 
they address are placed in Table 1. Note that the 
association between rules and quality attributes is 
applicable for the CFS and might differ for other 
contexts. The absence of a quality attribute for a rule 
does not necessarily imply that the attribute is irrelevant. 
Only the highly relevant quality attributes are associated 
to each rule in the table. The output of this step is a 
collection of architectural rules. In the future, the CFS 
team will offer the collected architectural rules to the 
CFS team as well as to other teams that use the CFS in 
their missions. It is expected that this will create better 

awareness and a clarification of  the relationship 
between rules and quality attributes. 

 

 
Figure 5 Four Steps in architectural rules verification 

 
Rule Type Rule Scope Highly Related Quality 

Attribute 
Dependency 
rules 

1.Do generic modules 
depend on specific 
modules? 
2. Do modules bypass 
the OS and hardware 
abstraction layer? 
3. Do modules follow 
the publish-subscribe 
architectural style? 

Run-time adaptability, 
Buildability, Portability, 
Testability, Performance 

Decomposition  
rules 

1.Do modules directory 
structure adhere to the 
template structure? 
2.Do modules follow 
the decomposition 
guidelines? 

Buildability, 
Comprehensionability 

Redundancy-
restriction rules 

Do modules copy-and-
paste from other 
modules? 

Maintainability 

Miscellaneous 
rules 

1.Do modules expose 
their internal details? 
2.Do modules 
implement necessary 
interfaces, for example 
the logging interface? 

Changeability 

 

Table 1 Sample Rules and related quality attributes 

Step 2 – Map Architectural Concepts to Source 
Code Concepts: The derived architectural rules are 
abstract and not necessarily explicit in the source code. 
For instance, the concept of the OS abstraction layer is 
architectural, and the corresponding source code 
concepts need to be clarified for developers to be able to 
use them. The CFS documents provide such mapping, 



for example, they describe which directory of the CFS 
implements the OS abstraction layer. 

 
Table 2 Architecture and source code concepts 

Similarly, architectural concepts, such as application 
layer, core (or executive) layer, middleware and 
software bus are also explained with a mapping to 
source code concepts, such as directories, files, and 
functions (see Table 2).  

Step 3 – Verify Architectural Rules:  In this step, 
the source code of the CFS is verified with respect to the 
architectural rules using the mapping defined in the 
previous step. Tool support is needed because a) the 
source code is too large for manual review, and b) 
whenever the source code changes, verification needs to 
be performed again. A few tools are employed for 
verification. First, the Fraunhofer SAVE tool [13] has 
the capability to easily import the source code and 
extract code relations as shown in Table 3. The tool 
offers a GUI to define the mapping and graphical editors 
for specifying the architectural rules.  Using regular 
expressions, it is possible to define a map, for example, 
that all files under cfs-apps directory are part of the 
application layer. Other tools, such as the Relation 
Partition Algebra (RPA) tool [4] [10] are used to 
complement the SAVE tool, for example to verify rules 
related to interface usages and module visibility-
restrictions. 

The Refer_Variable relation is between 
a function and a global variable 
referenced by that function

VariableFunctionRefer 
variable

The Part_of relation models the 
hierarchical decomposition.  For 
example, functions are part of files, 
whereas files are part of directories.

File, 
Directory

Function, 
Variable, 
File

Part_of

The Include relation is between a 
file and a header file

Header fileFileInclude

The Call relation is from a caller
to a callee

FunctionFunctionCall

CommentsToFromRelation 
Type

The Refer_Variable relation is between 
a function and a global variable 
referenced by that function

VariableFunctionRefer 
variable

The Part_of relation models the 
hierarchical decomposition.  For 
example, functions are part of files, 
whereas files are part of directories.

File, 
Directory

Function, 
Variable, 
File

Part_of

The Include relation is between a 
file and a header file

Header fileFileInclude

The Call relation is from a caller
to a callee

FunctionFunctionCall

CommentsToFromRelation 
Type

 
Table 3 Sample relations extracted from code 

The output of this verification step is a collection of 
inconsistencies between architectural rules and the 
source code. 

Step 4 – Analyze and Resolve: The focus of this 
step is to analyze and resolve the architectural 
deviations.  Depending on the criticality of the 
deviation, these deviations are resolved at the source 
code-level. In certain cases, the deviations are 

exceptions to architectural rules, and need not be 
resolved. This process is iterated either when new rules 
are introduced or when the source code is changed.  

3.3 Module Dependency-Restriction Rules 

This section presents a few dependency-restriction 
rules of the CFS product line. 

3.3.1  Generic to Application Modules Dependencies 

As mentioned above, the product line architecture of 
the CFS has two major layers, namely the application 
layer and the core layer where the application layer is 
supposed to use the core layer and not the other way 
around. The core layer is developed for reuse in 
different missions. Conceptually, the application 
modules in the application layer need not be present in 
all missions. Any core module that uses application 
modules not only compromises the conceptual integrity 
of generic and specifics, but also the common look-and-
feel of build rules (i.e., Makefile rules) as build targets 
have to be adjusted accordingly. Thus, it is important to 
ensure that there are no dependencies introduced from 
the core layer to the application layer. Otherwise, it 
might be difficult to build and test the core layer 
independently of any missions. As shown in Figure 6, 
the cfs-core layer is being used by the cfs-apps layer in 
the implementation. Of course, the modules within the 
application layer and the core layer are allowed to have 
self-dependencies, as depicted with a loop in figure 6. 

 
Figure 6 Implemented dependencies from the 

application layer to the core layer 

3.3.2  Application to Application Modules Dependencies 

The CFS has been architected to allow run-time plug-
in of modules, even after the launch of a mission.  In 
order to support this capability, the CFS team used the 
publisher-subscriber architectural style. In the 
implementation of this style, it is imperative that the 
modules in the application layer do not depend on each 
other directly at compile time. In other words, if two 
modules need to interact, they should use the services of 
the software bus module, defined in the core layer. 
Apart from the run-time adaptation capability, the CFS 
build process defines uniform build rules for compiling 
each module of the application layer into an executable. 



Also, the modules are designed so that they can be 
tested independently of other modules. Currently, the 
CFS team has developed around 10 applications within 
the application layer. As shown in figure 7, no two 
application modules are communicating directly in the 
implementation, with an exception of a utility module 
(cfs_lib) which is correctly being used directly. 

 
Figure 7 Dependencies among application modules 

As shown in figure 8, the applications indeed 
communicate using the software bus only. All modules 
register to the software bus and exchange messages by 
publishing and subscribing to appropriate messages. 
Thus, the static structure of the publish-subscribe 
architecture style is in place, enabling the run-adaptation 
of individual (e.g., new patches or updates) modules 
without restarting the whole CFS. 

 
Figure 8 Dependencies on the software bus 

3.3.3  Dependencies on OS and Hardware Variants 

One of the goals of the CFS is to support many 
different operating systems (e.g., Vxworks, Unix) and 
hardware variants (e.g., X86, PowerPC) because they 
are expected to be needed by various missions. To 
address this need, an abstraction layer that encapsulates 
the underlying OS and hardware variants has been 
introduced. A common API for all these variants is 
documented in detail [6].  This API contains interfaces 
for using the file system, memory, and network. All the 

applications and core modules should be agnostic to the 
underlying OS and hardware. Thus, the architectural 
rule states that none of the modules should use the C 
libraries directly for accessing OS and hardware 
resources, and instead should go through the modules in 
the abstraction layer, for portability reasons. Thus, the 
developer must use the corresponding OSAL functions 
to ensure that the hardware characteristics associated 
with each memory address are properly taken care of.  
For example, attempting to write to EEPROM using the 
standard C function memcpy will fail.  Using 
OS_MemCpy will succeed because the EEPROM will 
be configured for writing before the copy is performed. 
However, this rule is compromised by the core layer as 
it bypasses the OS abstraction layer (OSAL) and uses 
the C library directly (see figure 9). The SAVE tool 
detected that the memset and the memcpy functions are 
used instead of OS_Memset and OS_Memcpy defined 
in the OSAL layer. 

 
Figure 9 Bypassing the OS abstraction layer 

3.4 Module Redundancy-Restriction Rules 

One of the goals of the CFS product line is to 
minimize redundancy in the source code. The CFS team 
believes that implementing a product line using clones 
(copy-and-paste) is, in general, not a sound strategy. 
Clones introduce problems related to bug-fixes and 
maintenance. Furthermore, the source code of the CFS 
is also offered to some of its customers, and the 
presence of clones does not give a positive impression 
of the overall product line quality. The presence of 
clones also indicates that there are potential architectural 
design problems with respect to variability management. 
Implementing a product line using clones is not a good 
strategy, because after a few variants it is extremely 
hard to keep track of multiple code versions and their 
evolutions. In general, a product line made of clones 
will not be cost of effective [1] [5]. Thus, the CFS 
product line was verified with respect to the presence of 
code clones. 



CloneFinder [7] , a commercial clone finder tool, is 
being used to locate clones. The collected clone data is 
at the file level. The clone finder tool outputs the 
detected clones as clone-groups. Each clone group 
contains a list of files together with line numbers of the 
clone. In order to analyze the collected clone data in a 
systematic way from an architecture perspective, the 
data is overlaid on the structural view of the CFS using 
the SAVE tool1

The OS abstraction layer (OSAL) also contains 
clones. This layer implements the common API 

. This visualization helps analyzing 
clones hierarchically. That is, starting from the layer-
level to module-level. The analysis shows that there are 
no clones between the application layer and the core 
layer, even though both the layers are developed by the 
same team. The analysis of clones within the application 
layer showed that one function is cloned in four 
application modules. Similarly, one function within the 
core layer is cloned in two core modules. These routines 
could be easily moved to utility modules. Intra-module 
clones were also analyzed. The analysis showed that 
there are clones inside the memory management (MM) 
module of the application layer. Analysis of these clones 
revealed that there are only small differences between 
the implementations of eight, sixteen, and thirty two bit 
memory addresses that could be abstracted. 

[6] and 
consists of 150 functions for different operating 
systems, namely Vxworks, Rtems, Mac osx, and Linux. 
The clone analysis showed that 14 functions are copied 
in all four OS variants.  Another 13 functions are copied 
among three OS variants. In addition, there is an overall 
high similarity between the Mac osX and Linux 
implementations of the API, supported by the evidence 
that around 25 functions are copied-and-pasted between 
these two OS variants. The Vxworks implementations 
differ from other OS variants primarily because the 
others use pthread libraries whereas Vxworks uses 
semaphores for multi-tasking. 

Table 4 summarizes the clone measurement data. 
False-positives are reported as clones, but are not really 
clones. For example, functions for read and write 
operations on a file would look the same if “read” is 
replaced by “write”. However, automatic clone finder 
tools have no domain knowledge and falsely report such 
functions as clones. Moreover, the architecture of the 
CFS has been designed to have a common look-and-feel 
among modules, and the source code is manually 
developed based on a template. Due to this reason, there 
are many false-positives reported by the clone finder 
tool. After manual analysis of the clone data, such false-
positives were filtered out, resulting in a remaining set 
of true-positives. There are just a few true clones in the 
application and the core layer, and most of them are 
                                                 
1 http://www.thesavetool.com 

intra-module clones. A high number of true-positive 
clones are present in the OSAL. It appears that the 
OSAL could benefit from moving the common OS 
functions into a single location. 

 
Table 4 Summary of clone measurement 

To sum up, the CFS implementation has very few 
clones in the application and the core layers, and the 
ones that do exist are under investigation by the CFS 
team. 

3.5 Module Decomposition-Restriction Rules 

As mentioned above, the CFS source code is 
delivered to missions, who instantiate variation points 
by configuring the build process and macros defined in 
the header files of the CFS. In order to facilitate the 
configuration process, the developer’s guide offers rules 
related to decomposition of modules in the directory 
structure (i.e. the code architecture [11]). For example, 
the guide specifies in which folder the mission-specific 
header files and module documents have to be present, 
including their naming conventions. 

From the CFS development team point of view, if all 
modules share a uniform look-and-feel, it not only helps 
program comprehension and evolution, but also enables 
developers to easily get familiar with their colleagues’ 
implementations. Furthermore, test-suites and build 
scripts should also be organized in a similar way. The 
developer’s guide provides guidelines and templates 
related to the structure of modules and sub-modules in 
the application layer. Thus, the goal of our verification 
is to check whether the modules of the application layer 
are consistent with the CFS template. 

Here, a few examples of verification results are 
presented. The CFS template specifies that all 
application modules should have the directory structure 
as follows: The application name should be the same as 
the name of the sub-directory. Each application should 
contain a directory with the name fsw, which in turn 
contains the src directory, the mission_inc directory for 
configuring mission parameters, and the platform_inc 
directory for configuring platform parameters. All the 
application modules were verified with respect to this 
directory structure decomposition. The results indicate 
that all but one application module followed this rule 
(see figure 10). This deviation is marked with a red 
cross, meaning that the mission_inc directory is not 
present in the sc application module. 



 
Figure 10 Directory structure decomposition - a 

violation: the folder mission_inc is missing 

Similarly, the template explains the pattern to be 
followed for externally visible interfaces of each 
application module. It also explains how the external 
interface should be implemented and decomposed 
internally using a pseudo application module called QQ. 
It is expected that each module follow the structure 
shown in figure 11 (left), where QQ_AppMain is the 
only entry point to the module, and it calls QQ_AppInit, 
and so on as shown in figure 11. 

 
Figure 11 Left: Template. Right: Violation 

All modules were verified against the QQ template, and 
some violations were detected (see figure 11 right). The 
red crosses show that the LC application module misses 
two routines, namely LC_VerifyCmdLength and 
LC_HouseKeepingCmd. Code analysis shows that the 
actual functionality of these routines is in fact 
implemented but with different routine names. 
Refactoring to maintain the common look-and-feel is 
being considered by the team. 

3.6 Miscellaneous Rules and Analysis 

This section summarizes the rules related to the 
visibility of the internals of individual modules, unused 
interfaces of core modules, and the usage of 
#ifdef/#ifndef/#if preprocessor symbols for the source 
code level variability management. 

3.6.1  Module Internals Visibility-Restriction Rules 

Since the CFS team offers the source code of the 
application and core modules to missions, it is very 
important to restrict the visibility of the internal details 
of individual modules. Otherwise, mission-developers 
might use the internals of such modules directly without 
using appropriate interfaces, and thus it might be 
difficult to later replace changed and updated CFS 
modules, without impacting mission-specific modules.  
Since the C language does not offer the concept of 
private and protected (as in Java), the CFS developer’s 
guide offers coding rules. For example, one of the rules 
states that intra-module interfaces that are not to be used 
directly by mission specific applications should be 
declared in a header file with its name having the suffix 
“_priv”. Moreover, no publicly visible header file 
should include a private header file; otherwise the 
private details are still visible indirectly to other 
modules for use. Similarly, none of the higher-level 
layer interface should expose its lower-level interface. 
Using the RPA and the grep tools, the include relations 
of the CFS source code were verified. The analysis 
showed that one of the core modules private header file 
was indirectly visible to external modules because a 
public header includes it. The CFS team is addressing 
this issue. 

3.6.2  Core Modules Interface-Usage Analysis 

The interfaces of the core modules of the CFS were 
developed after the commonality and variability analysis 
among the requirements of past missions. Thus, it is 
logical to expect that either all the public interfaces of 
the core modules are used by the application modules or 
the unwanted interfaces are conditionally removed (e.g., 
using preprocessor directives). The interface-usage 
analysis of the CFS core modules showed that some of 
the interfaces are neither used by the existing 10 
application modules nor used by other core modules 
(see Table 5). The analysis showed that these unused 
core interfaces cannot be automatically removed, that is, 
there are no variation points to delete this unwanted 
functionality. The analysis also pointed out some 
redundancies in the interfaces of modules, implying that 
the service offered by an interface can also be obtained 
by using a combination of other interfaces. Such 
redundant interfaces could be easily removed to keep 
module interfaces minimal. 



 
Table 5 Analysis of unused interfaces 

Essentially, unused interfaces and their 
implementations would remain as dead code, which is 
considered risky in the flight software domain. In future 
analysis, mission-specific modules will be also included, 
and based on the feedback the CFS team will investigate 
ways to introduce variation points at the interface-level 
for deleting unwanted interfaces and implementations, if 
desired.  

3.6.3  #Ifdef/Ifndef/If/elsif Complexity Analysis 

The purpose of this analysis is to check how complex 
the implementation is with respect to the usage of 
conditional preprocessor directives (#ifdef, #ifndef, #if, 
and #elif statements) for implementing variation points. 
A variation point could be a binary value (e.g., Log is 
on or off), a numeric value, or a string value. Custom 
scripts were developed to measure the number of 
variation points per module. The measurement shows 
that there are around 150 variation points within the 
core layer and 125 in the application layer. The usage of 
variation points in conditional preprocessor directives 
were also measured using the ifnames tool, which emits 
the list of files where a preprocessor symbol is used. 
The histogram (see figure 12) shows that 80% of the 
CFS source files do not have any conditional 
preprocessor statements at all, excluding the guards for 
header files for avoiding multiple inclusions. A notable 
exception is one file that refers 79 variation points in a 
sequence of #if statements. Further analysis showed that 
the file validates the legal range of all variation points 
within a module. Overall, the use of conditional 
preprocessor statements has been very well under 
control in the CFS implementation which consists of 
170 KLOC. The collected data was also used to measure 
cross-module interferences of variation points, which 
makes the source code very complex to test, 
comprehend, and evolve. The analysis showed that only 
20 variation points out of 150 in the core layer where 
referred in the application layer, suggesting that the 
source code of application modules is using only a 
fraction of variation points of core modules. 

 
Figure 12 Conditional preprocessor directives 

Also, as expected by the architectural design of the 
CFS application layer, there are no interference of 
variation points from one application module to another, 
and the variation points of the application layer are not 
referred in the core layer. This measurement indicates 
that there is a clear separation of concerns in the 
implementation. 

This analysis showed that variability is implemented 
in the CFS using several different strategies depending 
on the type of variability needed. The C preprocessor is 
used only for configuring mission-specific parameters 
and removing unwanted functionalities implemented in 
the core and optional modules. One common API [6] 
and multiple implementations are developed to handle 
the operating system and hardware variants. The build 
process is designed to choose and compile the right 
implementation files for various operating system and 
hardware variants. Missions could also build and 
distribute the CFS modules on different CPU’s; the 
build process can be easily configured to select the 
mission-specific header files, and modules are not aware 
of their peer modules CPU’s, as all communications go 
through the middleware (i.e., the Software Bus module). 

4 Brief Summary of Results and Lessons Learned 

Table 6 presents some statistics on the number of 
rules checked and detected violations. The first row, for 
example, shows 12 different dependency-restriction 
rules were checked and out of that 3 rules were violated. 
Overall, 45 rules were checked and 14 violations were 
detected. Examples of detected issues were by-passing 
the OS abstraction layer, unexpected dependencies 
among modules, inter-module clones, exposing internal 
details of modules, redundant definitions of 
configuration parameters (i.e. those mentioned in 
#define statements) in multiple files, and a few 
inconsistent interface naming conventions. In addition, 
verification identified a module that does not use a 
particular interface to release memory table resources, 
could result in subtle performance problems. 

Table 6 list the set of tools used in this process. In 
order to support an architecture-centric analysis, the 



data collected using different tools are imported to the 
SAVE tool and visualized using hierarchical structural 
views. For example, the clone data collected from the 
CloneFinder tool is imported to SAVE for visualizing 
and analyzing clones, among from layers, modules, and 
sub-modules. Configuration parameters and their usage 
collected by the ifnames tool are imported to SAVE for 
visualizing and analyzing the location of variation 
points across layers, modules, and sub-modules. 
Rule Type # of Rules

Verified
# of Rules
 Violated

Tools

Dependency 12 3 SAVE, RPA
Redundancy 6 3 Clonefinder, SAVE
Decomposition 5 3 RPA, SAVE
Visibility of secrets 5 1 RPA, SAVE
Variation-point Interference 3 1 ifnames, SAVE
Interface Naming Conventions 15 3 RPA  

Table 6 Statistics of Rules and Violations 

4.1  Lessons Learned 

L1) Verifying the architectural rules helps connecting 
business goals, to architectural principles, and to the 
implementation.  In this process, the teams that develop 
software for reuse and the teams that use the reusable 
software are made aware of how to develop the product 
line for reuse and how to reuse it in the right way.  

L2) When measuring redundancy using automated 
clone detectors, it is worth spending effort in reviewing 
the detected clones. Clone detectors have no domain 
knowledge, thus they often falsely report similar code 
patterns as clones. It is easy to upset the development 
team with wrong clone data. 

L3) Overlaying the collected source code level data, 
such as clones and number of variation points, onto the 
structural view facilitates architecture-centric analysis 
by showing the “big-picture” first and then details. 

5 Conclusion and Future Work 
This paper analyzed the CFS product line 

architecture by verifying that architectural rules related 
to the module architecture and the code architecture 
were indeed met in the implementation. Overall, 45 
rules were checked and 14 violations were detected. It is 
worth noting that the CFS, as a safety-critical software 
product line, undergoes extensive code reviews. 
Nevertheless, some of the detected violations escaped 
the manual review process. Thus, this tool-supported 
verification of architecturally-significant rules 
complements traditional inspections by finding 
additional issues. The overall goal of this work is to 
define a method for analyzing and evaluating product 
line implementations from an architecture-centric 
perspective. This paper is the first step in that direction 
and the draft method will be applied to several product 

line implementations in the near future and will be 
improved based on the lessons learned. In addition, 
complementary analysis of rules that are outside the 
scope of this paper will be included. For example, rules 
that deal with the behavior of the system, such as task 
scheduling, inter-task communication, and ordering of 
run-time events. 
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