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ABSTRACT
An efficient and computationally robust method for synthesis of component dynamics is developed. The method

defines the interface forces/moments as feasible vectors in transformed coordinates to ensure that connectivity re-
quirements of the combined structure are met. The synthesized system is then defined in a transformed set of feasible
coordinates. The simplicity of form is exploited to effectively deal with modeling parametric and non-parametric
uncertainties at the substructure level. Uncertainty models of reasonable size and complexity are synthesized for
the combined structure from those in the substructure models. In particular, we address frequency and damping
uncertainties at the component level. The approach first considers the robustness of synthesized flexible systems.
It is then extended to deal with non-synthesized dynamic models with component-level uncertainties by project-
ing uncertainties to the system level. A numerical example is given to demonstrate the feasibility of the proposed
approach.

1 Introduction
Substructure synthesis is a well established area in modeling of flexible systems [1−6]. It is concerned with the modeling

of the dynamics of substructures (or components) and then synthesizing them to predict the combined structural response.
This synthesis is accomplished by enforcing deflection compatibility and force equilibrium at all substructure interfaces.
There are several advantages of modeling via substructure synthesis; among these, (1) It allows much independence in the
design and analysis of substructures, which is especially helpful if substructures are designed, fabricated, and even tested
by different organizations. An example is the damping synthesis for the Space Shuttle [7] and more recently the component
modules for the International Space Station, which are built by different companies in several countries. (2) It increases
the power of existing finite-element analysis and design programs by allowing analysis/design by components especially
in problems where too many finite element degrees of freedom are required to perform a dynamic analysis/design of the
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complete system. (3) It allows a direct synthesis of substructure test data. This is particularly useful for very large structural
systems (such as the International Space Station) that cannot be tested as a whole. This also means that it can be used as a
part of an experimental verification tool for substructures before deployment as a connected structure. (4) It directly connects
model accuracy and refinement tests of components to overall performance and stability robustness predictions.

Active control of flexible systems based on component mode or substructure synthesis has received some attention
in the recent past [8− 10]. Since its earliest work in ref. [1], the primary goal of substructure synthesis methods has not
changed much, i.e., to accurately predict the combined modal parameters: structural resonant frequencies and mode shapes.
Consistent with the primary goal, most attention has been given to the issue of selecting a most effective subset of component
(or assumed) modes and the related issue of modeling the substructure interfaces. Relatively little attention has been given
to issues germane to active control, particularly in the area of robustness.

In applications of robust control to flexible systems, uncertainty models have been typically assumed for the combined
(full-up) system. This approach is acceptable so long as these uncertainty models have been developed through experimental
work. However, when ground testing of the assembled structure is not possible, uncertainty models can only be validated
for the components. Consequently, methods are needed to provide for robust control design and analysis of flexible systems
with the uncertainty defined at the component levels [9].

In this paper, we re-examine the substructure synthesis method from a controls perspective. In particular, our end goal is
to develop a physically realistic and efficient way of modeling and controlling large flexible structures based on substructure
(subsystems) models. As in ref. [9], we are ultimately concerned with the issues of closed loop stability and performance
robustness due to inevitable modeling errors, configuration changes, or exogenous disturbances. In particular, we examine
the issues of modeling uncertainties for the substructures and their influence on the response of the connected structure. The
robustness of a synthesized system to uncertainties in the frequency and damping of its component modes is considered. The
synthesized plant in transformed coordinates is placed in a Linear Fractional Transformation (LFT) form for robust design
and analysis [11]. A formulation is also presented through which the uncertainties at the component level can be extended to
system level uncertainties for design or analysis. This is quite useful in situations wherein while a global model is available,
uncertainties are defined for the components only. Finally, the effects of component mode shape uncertainties as well as
unmodeled component dynamics on the synthesized system are investigated and characterized in transformed coordinates.
The proposed approach is applied to a two-dimensional flexible problem to demonstrate its feasibility.

2 Substructure Synthesis
For simplicity of presentation, consider two components, shown in Fig. 1, that have to be synthesized. These systems

may represent two components of a larger flexible system (such as spacecraft or aircraft), or they may represent two self-
sufficient systems that have joined for a specific purpose, such as two spacecraft docking. Consider the interface forces and
moments (between the two components) as input forces yet to be determined. Moreover, assume that collocated and compat-
ible with the interface forces/moments are linear/angular velocity outputs from each component. With these considerations,
the linear and time-invariant dynamics of the two components are represented as follows

component 1

M1d̈1 +D1ḋ1 +K1d1 = B̃1u+ H̃1 p1 (1)

y1 = C̃r1 ḋ1 (2)

yp1 = L̃d1d1 + L̃r1 ḋ1 + L̃a1 d̈1 (3)

component 2

M2d̈2 +D2ḋ2 +K2d2 =−B̃2u+ H̃2 p2 (4)
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Fig. 1. Synthesized substructures

y2 = C̃r2 ḋ2 (5)

yp2 = L̃d2d2 + L̃r2 ḋ2 + L̃a2 d̈2 (6)

where, for component i, di denotes the displacement vector; Mi is the positive definite inertia matrix; Di is the damping
matrix; Ki is the non-negative definite stiffness matrix; B̃i is the influence matrix for the interface forces/moments; u is
the interface force/moment vector; H̃i is the influence matrix for the non-interface inputs; pi represents the non-interface
inputs which include exogenous disturbances as well as control inputs for actual feedback control; yi is the interface velocity
vector; C̃ri is the corresponding output influence matrix; ypi is the performance output vector; which could be a combination
of displacement, velocity, and acceleration outputs; and L̃di , L̃ri , and L̃ai are the corresponding influence matrices. It is
noted that the synthesis of the component dynamics may be achieved by only including velocity constraints at the interface.
However, this may result in superfluous rigid-body modes in the synthesized dynamics. These modes can be avoided by
including displacement constraints at the interface in addition to the velocity constraints. Since the order of a large flexible
space structure (LFSS) can be quite large, for design and analysis purposes the order of the system is reduced to a design
size using model reduction techniques such as modal truncation or modal cost analysis to obtain for component i, i=1,2

Mri q̈ri +Dri q̇ri +Kri qri =±Φi
T B̃iu+Φi

T H̃i pi (7)

yi = C̃riΦiq̇ri (8)

ypi = L̃di Φiqri + L̃ri Φiq̇ri + L̃aiΦiq̈ri (9)
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where qri is the vector of modal amplitudes obtained from transformation di = Φiqri ; Mri , Dri , Kri are, respectively, the
generalized inertia, damping and stiffness matrices; and Φi is a matrix whose columns are the ni open-loop eigenvectors
associated with the included modes. If the mode shapes are normalized with respect to the inertia matrix, and modal damping
is assumed, then Mri = Ini×ni , Dri = Diag{2ζ1i ω1i , . . . ,2ζnii ωnii}, and Kri = Diag{ω2

1i
, . . . ,ω2

nii
}, where ω ji and ζ ji , j =

1, . . . ,ni are the open-loop frequencies and damping ratios for the ith component. A block diagram for the combined system
is given in Fig. 2. Here, each of the component plants are represented by P1 and P2, respectively. Each component model is
assumed to have an LFT uncertainty structure representing its parametric and nonparametric uncertainties. The controller, Ks,
includes the interfaces forces/moments that synthesize the combined system, as well as the actual feedback control signals
for the combined system, which is assumed to be distributed among one or more components. For simplicity of presentation
it is assumed that no physical (real) actuation is included in the interface between components. Defining the state vector
xi = { qri q̇ri }T ; i = 1,2, the second-order dynamics of the components can be rewritten in first-order forms as follows

component 1

ẋ1 = A1x1 +B1u+H1 p1 +E1w1 (10)

y1 = C1x1 (11)

z1 = F1x1 +Γ1 p1 (12)

yp1 = L1x1 +Du1u+Dp1 p1 +DE1w1 (13)
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component 2

ẋ2 = A2x2 +B2u+H2 p2 +E2w2 (14)

y2 = C2x2 (15)

z2 = F2x2 +Γ2 p2 (16)

yp2 = L2x2 +Du2u+Dp2 p2 +DE2w2 (17)

where Ai, i = 1,2 denote the state matrices for each component. Matrices Bi, Hi, Ei, Ci, Fi, and Li, i = 1,2, represent
the influence matrices for interface inputs, non-interface inputs, uncertainty outputs, interface outputs, uncertainty inputs,
and non-interface output for each component, respectively. The matrices Du1 , Dp1 , Du2 , and Dp2 , represent feedthrough
matrices associated with noninterface outputs of each component; Γ1, Γ2, DE1 , and DE2 denote the feedthrough matrices
associated with the uncertainty; x1 and x2 denote the state vectors of the components; y1 and y2 denote the interface velocity
output vectors; yp1 and yp2 denote the noninterface output vectors’ components which include performance outputs as well
as measurement outputs for feedback control; z1 and z2 denote the uncertainty input vectors; p1 and p2 represent the non-
interface inputs which include exogenous disturbances as well as control inputs for feedback control; and w1 and w2 denote
the uncertainty output vector. The system matrices in the first-order forms are related to those in second-order forms as
follows:

Ai =
[

0 I
−Kri −Dri

]
; Bi =

[
0

±Φi
T B̃i

]
(18)

Hi =
[

0
Φi

T H̃i

]
; Cri =

[
0 C̃ri Φi

]
; (19)

Li =
[

L̃di Φi− L̃ai ΦiKri L̃ri Φi− L̃aiΦiDri

]
(20)

Dui =±L̃ai ΦiΦi
T B̃i ; Dpi = L̃aiΦiΦi

T H̃i (21)

The influence matrices Ei and Fi; i = 1,2, and the feedthrough matrices, corresponding to component uncertainties, will
be discussed later.

For the two components to be connected, in a dynamical sense, one has to find an interface vector u, representing the
internal forces and moments at the interface, such that the displacements and rotations of the two components at the interface
remain identically the same. To achieve this, append the dynamics of the components, to obtain

{
ẋ1
ẋ2

}
=

[
A1 0
0 A2

]{
x1
x2

}
+

[
B1
B2

]
u+

[
H1 0
0 H2

]{
p1
p2

}
+

[
E1 0
0 E2

]{
w1
w2

}
(22)
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y≡ y1− y2 =
[

C1 −C2
]{

x1
x2

}
(23)

z≡
{

z1
z2

}
=

[
F1 0
0 F2

]{
x1
x2

}
+

[
Γ1 0
0 Γ2

]{
p1
p2

}
(24)

yp ≡
{

yp1

yp2

}
=

[
L1 0
0 L2

]{
x1
x2

}
+

[
Du1

Du2

]
u+

[
Dp1 0

0 Dp2

]{
p1
p2

}
+

[
DE1 0

0 DE2

]{
w1
w2

}
(25)

The new output vector y is the difference between the velocity of the two components at their interface. The problem is to
find u such that y is identically zero for all p1 and p2, w1 and w2, and compatible x1(0) and x2(0). From Eq. (23), for y to

remain identically zero,
{

x1
x2

}
must remain identically in the right null space of the matrix

[
C1 −C2

]
. This means that an

appropriate interface vector u must be found that would render the system identically unobservable, i.e.,
{

x1
x2

}
identically

remains in the undetectable subspace of the system given in Eqs. (22) and (23) for all p1 and p2, and w1 and w2. Let Nc
denote an orthonormal basis for the right null space of

[
C1 −C2

]
, i.e.,

[
C1 −C2

]
Nc = 0 (26)

and let Rc denote an orthonormal complement to Nc. Transform the system in Eq. (22) via an orthogonal similarity transfor-
mation, such that

{
x1
x2

}
=

[
Nc Rc

]{
α
β

}
(27)

From hereon,
{

α
β

}
will be referred to as the ”transformed coordinates”. The dynamics of the system in new coordinates

becomes

{
α̇
β̇

}
=

[
Âαα Âαβ
Âβα Âββ

]{
α
β

}
+

[
B̂α
B̂β

]
u+

[
Ĥα
Ĥβ

]
p+

[
Êα
Êβ

]
w (28)

where p =
{

p1
p2

}
, w =

{
w1
w2

}
, and

[
Âαα Âαβ
Âβα Âββ

]
=

[
Nc Rc

]T
[

A1 0
0 A2

][
Nc Rc

]
(29)

[
B̂α
B̂β

]
=

[
Nc Rc

]T
[

B1
B2

]
(30)

[
Ĥα
Ĥβ

]
=

[
Nc Rc

]T
[

H1 0
0 H2

]
(31)
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[
Êα
Êβ

]
=

[
Nc Rc

]T
[

E1 0
0 E2

]
(32)

Note that the linear and angular velocities at the interface are collocated and compatible with the forces and moments, i.e.,
C1 = BT

1 and −C2 = BT
2 , such that along with Eq. (26), one has

NT
c

[
B1
B2

]
= NT

c
[

C1 −C2
]T = 0 (33)

resulting in

B̂α = NT
c

[
B1
B2

]
= 0 (34)

From Eq. (27),
{

x1
x2

}
εIm(Nc) iff β(t) = 0;∀t. The vector u must be chosen such that β(t), which represents the coor-

dinates incompatible with the connectivity of the two components, remains identically zero for all t, p, w, with ”compatible”
initial conditions, i.e., β(0) = 0. To accomplish this, the input vector u must be chosen to render β unreachable from p and
w, that is

u =−B̂−1
β [Âβαα+ Ĥβ p+ Êβw] (35)

Although, any u in the form of u = −B̂−1
β [Âβαα + Ĥβ p + Êβw]+ Rβ, with R as a non-destabilizing arbitrary matrix, would

also be feasible, the condition for synthesizing the dynamics of the combined system necessitates that β = 0 for all t, thereby
reducing the expression for the interface forces and torques to that given in Eq. (35). It should be noted that the input (or
controller) provided in Eq. (35) is not a concrete input (controller), but rather it is just a constraint to ensure compatibility of
the components at their interface, which must be satisfied, no matter if uncertainties are present or not. The matrix inversion
in Eq. (35) is guaranteed, as long as both influence matrices B1 and B2 are full rank, which they are since the interface forces

are distinct. Therefore, since B1 and B2 are full rank, so is
[

B1
B2

]
, and so is B̂β, since B̂β = RT

C

[
B1
B2

]
, and Rc is an orthonormal

basis for the column space of
[

B1
B2

]
. Using the vector u of Eq. (35) in Eq. (28), with the aid of Eq. (34) simplifies to

{
α̇
β̇

}
=

[
Âαα Âαβ

0 Âββ

]{
α
β

}
+

[
Ĥα
0

]
p+

[
Êα
0

]
w (36)

It is obvious from this equation that since the initial conditions must be compatible for a combined system, such that β(0) = 0,
then β remains identically zero for all p, w, and t, which means that, in the physical coordinates, y1 = y2 for all p, w, and
t. Therefore, compatibility conditions between the two components would be satisfied for all p and t. The synthesized
dynamics of the combined system can be written in a reduced-order form in the transformed coordinates, or in the original
component-based coordinates. In the transformed coordinates, these dynamics are given as follows

α̇ = Âααα+ Ĥα p+ Êαw (37)

z≡
{

z1
z2

}
= F̂αα+ Γ̂α p (38)
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yp ≡
{

yp1

yp2

}
= L̂αα+ D̂pα p+ D̂Eα w (39)

where

F̂α =
[

F1 0
0 F2

]
Nc (40)

Γ̂α =
[

Γ1 0
0 Γ2

]
(41)

L̂α =
[

L1 0
0 L2

]
Nc (42)

D̂pα =
[

Dp1 0
0 Dp2

]
(43)

D̂Eα =
[

DE1 0
0 DE2

]
(44)

The dynamics of the combined system may also be presented in the original coordinates by writing the interface inputs
(Eq. (35)) in terms of the original coordinates, and then using them in Eqs. (22)-(25).

3 Component Model Uncertainty
In this section, issues of parametric and nonparametric uncertainties in the component models and the way they affect

the synthesized dynamics of the system will be considered. Parametric uncertainties include uncertainties in modal fre-
quencies, damping ratios, and mode shapes of the components. The nonparametric uncertainties considered here are the
unmodeled dynamics of the components. If modal models are used to represent the component dynamics, nonparametric
uncertainties will include the truncated modes of the components. The development in this section uses the representation
of the synthesized dynamics of the system in the transformed coordinates, as given in Eq. (37). This would make the treat-
ment of parametric and nonparametric uncertainties easier. In this paper, parametric uncertainties in the component models
in the form of frequency and damping uncertainties are fully treated. Moreover, the effects of parametric uncertainties in
the component mode shapes as well as nonparametric uncertainties, in the form of unmodeled component dynamics, are
discussed.

3.1 Uncertainty in Frequency and Damping
The synthesized dynamics of the combined system is illustrated in Fig. 3. Here, the plant P, representing the system

dynamics, is given as





α̇
yp
z



 =




Âαα Ĥα Êα
L̂α D̂pα D̂Eα
F̂α 0 0








α
p
w



 (45)
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Fig. 3. Block Diagram of the Synthesized System

where w = ∆z. The uncertainty block, ∆ includes uncertainties from both components, i.e.,

∆ =
[

∆1 0
0 ∆2

]
(46)

The uncertainties represented by ∆ may include parametric and nonparametric uncertainties in each of the components.
Moreover, the uncertainties can include structured or unstructured uncertainties in each component. Parametric uncertainties
include uncertainties in modal frequencies, damping ratios, and mode shapes of the components. The nonparametric uncer-
tainties considered here are the unmodeled dynamics of the components. Nonparametric uncertainties would typically be
due to the truncated modes of the components.

If, as typically done, modal models of the components are used to describe their dynamics, then uncertainties in modal
frequency and damping are embedded in the elements of the component state matrices A1 and A2. One can represent these
uncertainties via blocks ∆A1 and ∆A2, such that the true state matrices are given by

A1 → A1 +∆A1 (47)

A2 → A2 +∆A2 (48)

The parametric uncertainties given in Eqs. (47)-(48) may easily be put in a state space linear fractional representation form
for robust control design and analysis [11], given by Eq. (45).

Consider the first component, and assume that there are n1 distinct uncertainties associated with the A1. Then, one may
write

A1 → A1 +
n1

∑
i=1

Qiδi (49)

where matrix Qi represents the influence matrix for the δi uncertainty. Now, the influence matrices E1 and F1 (see Eqs. (10)
and (12)) may be obtained from decomposition of matrices Qi, i = 1, . . . ,n1. Factor each matrix as

Qi = E1iF1i (50)

where E1i ∈Rn×ri , F1i ∈Rri×n, and ri denotes the rank of Qi. Singular Value Decomposition (SVD) is a good way of performing
this factorization. Then, the influence matrices E1 and F1 may be written as

E1 =
[

E11 E12 . . . E1n1

]
(51)
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F1 =




F11
F12

...
F1n1


 (52)

Matrices E2 and F2 of the second component may be obtained similarly. With matrices E1, E2, F1, and F2 defined, the
synthesized system represented by Eq. (45) is in suitable form for robustness analysis or control design.

3.2 Component Frequency and Damping Uncertainty at System Level
In some applications, a model of the combined structure is available either from full-up structural analysis or system

identification, i.e., no component synthesis is required to generate the model. However, the model uncertainty is defined
at the component level, where substantially more effort is typically spent for modeling, testing, and verification. In order
to perform robustness analysis or robust control design, the uncertainty formulation has to be redefined at the system level.
Assume, without any loss of generality, that the overall model at the system level is in a real modal form. Then, the model
of the system may be written as





ẋs
yp
z



 =




As Hs Es
Ls Ds DE s
Fs 0 0








xs
p
w



 (53)

Here, As has the following form

As =




As1 0 . . . 0

0
. . . . . . 0

...
. . .

...
0 . . . 0 Asm




(54)

with

Asi =
[

λiR −λiI
λiI λiR

]
(55)

where λiR and λiI denote the real and imaginary part of the ith eigenvalue pair of the system. Here, we assume that the
eigenvalues are ordered from smallest to the largest. From component synthesis, we know that the first m eigenvalues of
matrix Âαα should closely match the eigenvalues of the As. m is typically chosen to be smaller than the number of system
modes that are within half the bandwidth of the component dynamics. Let matrix χ denote a real similarity transformation
through which matrix Âαα is put in real modal form, with eigenvalue blocks in increasing order, and let Ψ = χ−1. Such
a transformation may be obtained from the complex eigenvectors of Âαα by collecting the real and imaginary parts of the
eigenvectors corresponding to complex conjugate pairs of eigenvalues. Applying this similarity transformation to the system
in Eq. (45) gives





γ̇
yp
z



 =




ΨÂααχ ΨĤα ΨÊα
L̂αχ D̂α DE α
F̂αχ 0 0








γ
p
w



 (56)

Comparing the system in Eq. (56) with that given by Eq. (53), and keeping in mind that the first m eigenvalues of the two
systems should match, it is observed that the uncertainties at the component level can not be put exactly in the same structure
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at the system level, mainly due to the additional dynamics in the synthesized model that is neglected. However, a reasonable
approximation may be made by choosing Es and Fs as

Es = Ψ1Êα ; Fs = F̂αχ1 (57)

where Ψ1 and χ1 denote partitions formed from the first 2×m rows and 2×m columns of Ψ and χ, respectively. With
Es and Fs defined, the global system is prepared for robust design and analysis. It should be noted that if more than one
rigid-body mode are present in the system (e.g., space applications), then it would be unlikely that the rigid-body mode in
Âαα would have an exact corresponding mode in As. This is because the eigenvectors corresponding to rigid-body modes
(with repeated eigenvalues at zero) are not unique. One way to handle this is to replace the partition in matrices As, Hs, and
Ns, corresponding to the rigid-body modes, with those of ΨÂααχ, ΨĤα, ΨÊα, and L̂αχ, respectively. This note also applies
to repeated flexible modes, except in many of such cases that have unique eigenvectors.

3.3 Uncertainty in Mode Shapes
In this section, the effects of uncertainty in the component mode shapes are considered. For simplicity of presentation, it

is assumed that the performance output does not have feedthrough terms (Dp1 , and Dp2 are omitted). Moreover, it is assumed
that the component models do not have any uncertainties in LFT form (Ei,Fi,Γi, and DEi , i = 1,2 are neglected). With a
modal component model, the parametric uncertainties in the mode shape data affect the elements of the input and output
influence matrices, which include matrices Ci,Hi, and Li, i = 1,2. This means that there would be uncertainty associated
with the elements of the basis vectors Nc, as seen from Eq. (26). Here we assume that the uncertainty in the mode shapes,
whether structured or unstructured, can be translated into an uncertainty representation for Nc. With this assumption, the
actual basis vectors Nc may be represented in various representations of uncertainty, such as additive, multiplicative, etc. Let
Nc be represented as follows

Nc → Nc +RN∆N (58)

where RN is a chosen basis for uncertainty influence, and ∆N represent the uncertainty, which can be structured or unstruc-
tured. The effects of mode shape uncertainty in the influence matrices Hi, and Li, i = 1,2, can be characterized in the same
way, i.e.,

H → H +RH∆H (59)

L→ L+RL∆L (60)

Using Eqs. (58)-(60) in Eq. (37), and assuming that there are no uncertainties in the frequency and damping data or
nonparametric uncertainties present, one obtains

α̇ = (Âαα +∆Âαα)α+(Ĥα +∆Hα)p (61)

yp = (L̂α +∆L̂α)α (62)

where

∆Âαα = ∆N
T RT

NARN∆N +∆N
T RT

NANc +NT
c ARN∆N (63)
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∆Ĥα = ∆N
T RT

NRH∆H +∆N
T RT

NH +NT
c RH∆H (64)

∆L̂α = RL∆LRN∆N +RL∆LNc +LRN∆N (65)

A =
[

A1 0
0 A2

]
; H =

[
H1 0
0 H2

]
; L =

[
L1 0
0 L2

]
(66)

From these equations, it is observed that the input and output parametric uncertainties in the dynamics of the components,
in the original coordinates, diffuse into input, output, and state parametric uncertainties in the transformed coordinates
representation of the synthesized system dynamics. Moreover, the state parametric uncertainties involve a quadratic form of
the uncertainty ∆, which can be presented efficiently as an LFT. [12, 13]

3.4 Unmodeled Dynamics
The traditional approach in substructure synthesis has been to use higher bandwidth in the dynamics of the components to

be synthesized, roughly twice the bandwidth of interest for the combined structure. This approach has worked successfully in
many applications. However, it is somewhat ad hoc, with some potential shortcomings. First, it does not provide guaranteed
levels of accuracy for the predicted system parameters, such as frequencies, damping ratios, etc. Second, it may suffer from
the finite element method’s potential loss of numerical accuracy for higher frequency modes in addition to a loss of correlation
with measured frequencies. As mentioned earlier, control design requires accurate assessment of model parameters or
potential uncertainties. Traditionally, unmodeled dynamics, which typically include the higher frequency modes not included
in the design model, have been treated via additive uncertainties in the plant model, which forces the control system to roll
off to avoid potentially destablizing spillover problems. Unfortunately, unmodeled (truncated) dynamics at the component
level generally do not correspond to the same in the synthesized (combined) system. Consequently, it is imperative that the
effects of unmodeled dynamics in the components be characterized at the system level for proper dynamics and controls
design and analysis.

The approach taken here is similar to the treatment for parametric uncertainty, which essentially considered the effects
of uncertainty in the transformed coordinates. Rewrite the dynamics of the components, including the unmodeled dynamics,
in a first-order form.

component i= 1 or 2

{
ẋi
ẋi

}
=

[
Ai 0
0 Ai

]{
xi
xi

}
+

[
Bi
Bi

]
u+

[
Hi
H i

]
pi (67)

yi =
[

Ci Ci
]{

xi
xi

}
(68)

ypi =
[

Li Li
]{

xi
xi

}
(69)

The overbars indicate terms associated with the unmodeled dynamics. It should be noted that in most applications an accurate
knowledge of the parameters associated with the unmodeled dynamics is not available, thus they are typically characterized
in the form of uncertainty. Also, note that, similar to the previous treatments, the feedthrough terms in the noninterface
outputs have been omitted. Following the synthesis procedure outlined previously, the component dynamics, as given in
Eqs. (67)-(69), are appended to obtain a system similar to the one given by Eqs. (22)-(25), except that the order of the states
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are rearranged such that the modeled dynamics’ states appear first, followed by the unmodeled dynamics’ states, i.e., the
state vector is given by

[
xT

1 xT
2 xT

1 xT
2

]T . Then, the space of feasible states (in the connectivity and compatibility sense) are
characterized by an equation similar to Eq. (26), but for the expanded system, as follows

[
C1 −C2 C1 −C2

]
Nc = 0 (70)

Following the coordinate transformation (similar to Eq. (27)) and deriving the interface vector u to guarantee the compati-
bility of the components’ displacements and rotations at the interface, results in the synthesized dynamics of the combined
system, which in transformed coordinates takes the form

α̇ = Âααα+ Ĥα p (71)

yp = L̂αα (72)

where

Âαα = NT
c




A1 0 0 0
0 A2 0 0
0 0 A1 0
0 0 0 A2


Nc (73)

Ĥα = NT
c




H1 0
0 H2

H1 0
0 H2


 (74)

L̂α =
[

L1 0 L1 0
0 L2 0 L2

]
Nc (75)

It is reasonable to expect that both
[

C1 −C2
]

and
[

C1 −C2 C1 −C2
]

are full rank. Define the null space of the matrix[
C1 −C2

]
by the matrix Ncm , whose columns are orthogonal. Then, it can easily be shown that the columns of matrix[

Ncm

0

]
are included in the null space of

[
C1 −C2 C1 −C2

]
, represented by the matrix Nc, from Eq. (70). Now, choose and

partition Nc, such that

Nc =
[

Ncm Ncm

0 Ncu

]
(76)

Here, the first column partition corresponds to the states of the modeled dynamics, and the second partition to the states of
the unmodeled dynamics. Moreover, the first partition corresponds to the null space of matrix

[
C1 −C2

]
. Using Eq. (76) in

Eqs. (71) and (72), and separating the states, gives

α̇m = Ãmmαm + Ãmuαu + H̃m p (77)
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α̇u = Ãumαm + Ãuuαu + H̃u p (78)

with

yp = L̃mαm + L̃uαu (79)

where

[
Ãmm Ãmu
Ãum Ãuu

]
=

[
Ncm Ncm

0 Ncu

]T




A1 0 0 0
0 A2 0 0
0 0 A1 0
0 0 0 A2




[
Ncm Ncm

0 Ncu

]
(80)

[
H̃m
H̃u

]
=

[
Ncm Ncm

0 Ncu

]T




H1 0
0 H2

H1 0
0 H2


 (81)

[
Ñm Ñu

]
=

[
L1 0 L1 0
0 L2 0 L2

][
Ncm Ncm

0 Ncu

]
(82)

Note from Eq. (77) that Ãmm is the same as Âαα of the reduced dynamics for the baseline combined model (see Eq. (37)),
so that if no unmodeled dynamics were present, Eq. (77) would represent the synthesized structure. Furthermore, the state
equations for αm and αu are coupled. One way of looking at this is to imagine that there are two systems, one attributed to
the modeled dynamics (αm states) and the other to the unmodeled dynamics (αu states), which are in feedback connection.
In other words, the uncertainties associated with unmodeled dynamics in the components, which are typically represented
by additive uncertainty to the component models, takes the form of an uncertainty in a feedback loop with the nominal
combined structure, when the synthesized dynamics are considered.

4 Numerical Results
The proposed approach for synthesis and control design of flexible systems with component-level uncertainties is applied

to a two-component planar problem shown in Figure 4. Here, a docking scenario involving two flexible space systems is
considered. The two systems are modeled as planar free-free Euler-Bernoulli beams. The material and geometric properties
of the system were chosen to provide considerable modal content in the low-mid frequency range to make the synthesis and
control design task more challenging, and are provided in Table 1. It is assumed that in the docked configuration component
no. 1 would provide attitude and position control for the combined system.

Table 1. Geometric and Structural Properties

Property Comp. 1 Comp. 2 Whole
Length 15 5 20

Mass/Length 6.775 6.775 6.775
Rigidity, EI 36458.3 36458.3 36458.3

No. of modes 20 20 20
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Fig. 4. Components of the Free-Free Problem

4.1 Control Design

The control design for component no. 1 is briefly described. As shown in Fig. 4, there are two control inputs available
for this component. There is a torque wheel at the third of the length (x=5m) and there is a thruster at the middle of the beam
(x=7.5m) to provide attitude and position control. Collocated with these actuators are attitude and position sensors, providing
measurement for the feedback loop. Here, sensor and actuator dynamics are not considered. The control design was based
on the H∞ synthesis. [11,14] The performance requirements were defined in terms of the weighted output sensitivity transfer
function from disturbances to the measurement sensors with assumed unstructured plant model uncertainty. Weighting
functions were assigned to the performance outputs, as well as the inputs from the uncertainty block. The weighting function
for the performance output was chosen as Wp = 0.002(s+100)

(s+0.0001)(s+10) for each channel to provide good disturbance rejection
at low to mid frequencies, as well as to provide integral action to minimize steady-state errors. An unstructured, input-
multiplicative, form was used to represent the uncertainty in the system model. The weighting function, used to scale or
distribute the uncertainty, was chosen as Wu = (s+50)

(s+500) to emphasize model uncertainty in the mid-high frequency range. A
10th-order model of the beam, which included the first three flexible modes, was used in the control design. The controller
was synthesized using the ”hinfsyn” routine of the µ-Analysis and Synthesis Toolbox [14]. The H∞ controller is designed in
some sense to minimize the H∞ norm of the transfer function from disturbances to the performance outputs, while ensuring
the closed-loop system remains stable for all allowed uncertainties. The H∞ design converged at a γ value of 0.942 (note a
γ < 1 indicates that all the design requirements are met), and resulted in a 16th-order controller. Figure 5 provides a Bode
plot of the controller. This controller was later used in robustness analysis of the system in the docked configuration.

4.2 Robustness Analysis

The two components were assumed to be in a docked configuration. Each of the components was modeled using the
first 20 modes (including two rigid-body modes and 18 flexible modes), resulting in a 40th-order state space model for each
of the substructures. The 20 modes used were deemed sufficient to provide a basis for describing the first 20 modes of the
combined structure. The combined structure was also modeled globally (without synthesis) as a 20-m long beam using its
first 20 modes, resulting in a 40th-order state space model. This model was used for validation of the synthesis approach and
is referred to as the truth model. Using the procedure outlined in Eqs. (37)-(39), the dynamics of the two components were
synthesized. Table 2 compares the natural frequencies of the synthesized model vs. those of the validation (truth) model.
Comparison of the frequencies indicates a good match between the two models.
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Fig. 5. Bode Plot for the H∞ Controller for Component No. 1

Table 2. Natural Frequencies

Mode No. True Synthesized
1 0 0
2 0 0
3 0.0410 0.0414
4 0.1131 0.1158
5 0.2217 0.2264
6 0.3665 0.3676
7 0.5475 0.5500
8 0.7647 0.7809
9 1.0181 1.0389
10 1.3077 1.3108
11 1.6335 1.6437
12 1.9955 2.0425
13 2.3938 2.4466
14 2.8282 2.8344
15 3.2988 3.3251
16 3.8056 3.9045
17 4.3488 4.4533
18 4.9278 4.9389
19 5.5432 5.6002
20 6.1948 6.3764
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Fig. 6. Robust Stability µ Plot for the Synthesized System

Now, both the synthesized model as well as the truth model were assessed against uncertainties in the frequencies and
damping of the two components. Specifically, it was assumed that there is a five percent uncertainty associated with the
frequency of the first mode in each component. Furthermore, it was assumed that there is a 15 percent uncertainty associated
with the damping of the first mode in each component. The inherent structural damping ratio used for each of the component
was chosen at 0.5 percent. The damping ratio used for the truth model was based on the values obtained from the synthesized
model.

First, robust stability of the synthesized model was assessed. Following Eq. (49), the coefficients Qi for the four
uncertainty terms in the state matrices of the components, corresponding to frequency and damping in their first mode, were
defined and factored according to Eq. (50). Note that the uncertainties were assumed to be distinct, real scalars. Using
the system defined in Eq. (45) (with appropriate input/output matrices for the uncertainties) together with the H∞ controller
designed for component no. 1, a robust stability analysis was performed with aid of the ”mu” routine of µ-Analysis and
Synthesis Toolbox [14]. A Mu plot of the closed-loop system is provided in Fig. 6, where it is observed that the structured
singular value µ is less than one for all frequencies. Therefore, the synthesized system with the H∞ controller is robustly
stable.

Next, robust stability of the truth model against the same uncertainties in the component models was assessed. The
first task was to approximately translate the uncertainties from the component level to the system level. This was performed
by transforming the state matrix of the synthesized system to real modal form, with eigenvalues in increasing order on the
diagonal. Then, Eq. (57) was used to determine the influence matrices at the system level, and the truth model given by
Eq. (52) was used in robust stability analysis. Again, the H∞ controller designed for component no. 1 was the controller
used in the robustness analysis of the closed-loop truth model. A Mu plot of the closed-loop system is provided in Fig.
7, where it is observed that the structured singular value µ is less than one for all frequencies. Comparing Figs. 6 and
7, it is observed the Mu plots for the synthesized and truth systems match each other reasonably well. This validates the
approximate characterization of the uncertainty at the system level from component level definitions.

5 Concluding Remarks
A novel method for synthesizing the dynamics of substructures has been developed which views the interface forces

and moments as input vectors. The synthesized structure can be realized in certain transformed coordinates, which has the
advantage of being more amenable to uncertainty and robustness analysis and design, as well as being smaller in order. An
approach for formulating robustness of flexible systems in the presence of frequency and damping uncertainties at the com-
ponent level was presented. The effects of component mode shape uncertainties as well as unmodeled component dynamics
on the dynamics and robustness of the synthesized system were investigated, and characterized in transformed coordinates.
The robustness of non-synthesized dynamic models with component-level uncertainties was considered by approximately
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Fig. 7. Robust Stability µ Plot for the Truth System

projecting uncertainties from component levels to system level. A numerical example involving a two-dimensional simulated
docking problem demonstrated the feasibility of the proposed approach.
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