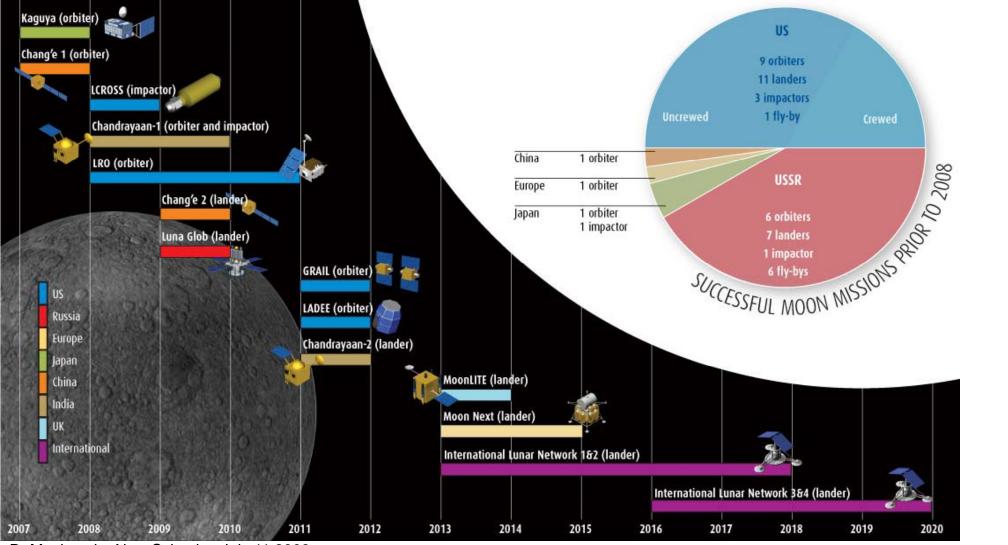


NASA Lunar Robotics for Science and Exploration

Barbara A. Cohen, Anthony R. Lavoie, Paul A. Gilbert, and John M. Horack NASA Marshall Space Flight Center Huntsville, AL 35812

> DGLR International Symposium: "To Moon and beyond" 15 - 17 September 2008

Park Hotel Bremen, Germany



Robotic lunar missions

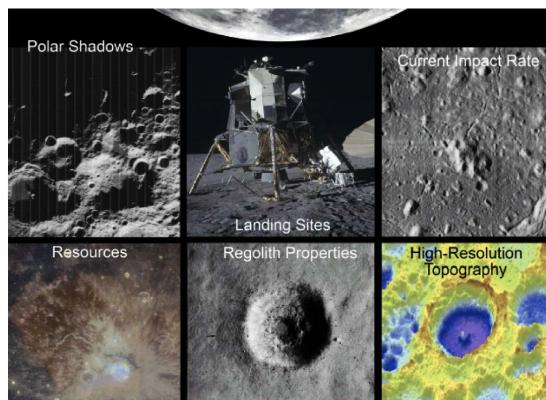
RACE TO THE MOON

What started as a contest between the US and the USSR has become the scene of international collaboration

D. Mackenzie, New Scientist, July 11 2008

Robotic lunar missions at MSFC

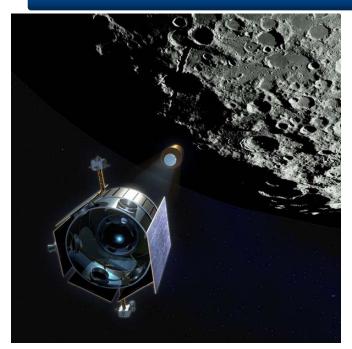
- Lunar Precursor Robotics Program (LPRP)
 - Robotic missions to gather lunar environmental data to advance U.S. exploration objectives earlier and with less cost

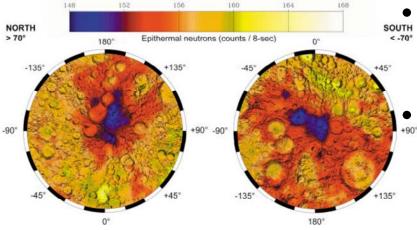

A SA

- LRO and LCROSS
- Discovery Program
 - Small PI-led science missions, competed among all science
 - M3 and GRAIL
- Lunar Science Program
 - Robotic missions to accomplish key lunar scientific objectives
 - LRO, which will transition after one year of operations to SMD for a 2year nominal science mission, LADEE, and two landed payloads as part of the International Lunar Network (ILN)

LRO (2009)

- Lunar Reconnaissance Orbiter (LRO) initiated in 2004 as the first step back to the Moon in the Vision for Space Exploration
- Exploration Systems Mission Directorate (ESMD) focus is on datasets to help plan human activities
- Goddard project, managed under LPRP at MSFC
- Objectives:
- Characterization of the lunar radiation environment, biological impacts, and potential mitigation
- High resolution global topography necessary for selecting future landing sites
- Assess resources and environments of lunar polar regions
- High spatial resolution visible imagery


LRO Instruments



INSTRUMENT	Measurement	Exploration	Science
		Benefit	Benefit
CRATER (BU+MIT) Cosmic Ray Telescope for the Effects of Radiation	Tissue equivalent response to radiation	Safe, lighter weight space vehicles that protect humans	Radiation conditions that influence life beyond Earth
Diviner (UCLA)	300m scale maps of Temperature, surface ice, rocks	Determines conditions for systems operability and water-ice location	Improved understanding of volatiles in the solar system - source, history, migration and deposition
LAMP (SWRI) Lyman-Alpha Mapping Project	Maps of frosts in permanently shadowed areas, etc.	Locate potential water- ice (as frosts) on the surface	
LEND (Russia) Lunar Exploration Neutron Detector	Hydrogen content in and neutron radiation maps from upper 1m of Moon at 5km scales, Rad > 10 MeV	Locate potential water- ice in lunar soil and enhanced crew safety	
LOLA (GSFC) Lunar Orbiter Laser Altimeter	~50m scale polar topography at < 1m vertical, roughness	Safe landing site selection, and enhanced surface navigation (3D)	Geological evolution of the solar system by geodetic topography
LROC (NWU+MSSS) Lunar Recon Orbiter Camera	1000 G of 50cm/pixel images (125km²), and entire Moon at 100m in UV, Visible	Safe landing sites through hazard identification; some resource identification	Resource evaluation, impact flux and crustal evolution

LCROSS (2009)

- Lunar Crater Observation and Sensing Satellite, chosen as a secondary payload on LRO vehicle
- Ames project under LPRP management
- Objectives: to reveal the presence & nature of water ice on the Moon
- Shepherding S/C directs the Centaur into a permanently-shadowed crater
 - The S-S/C observes the ejecta cloud, and then enters the cloud using several instruments looking for water
 - Lunar-orbital and Earth-based assets will also be able to study both clouds (LRO, Chandrayaan-1, HST, etc)

LCROSS Instruments

1 Visible Context Camera:

4 color, 6 degree FOV, <0.5 km resolution at T-10 min to S-S/C impact

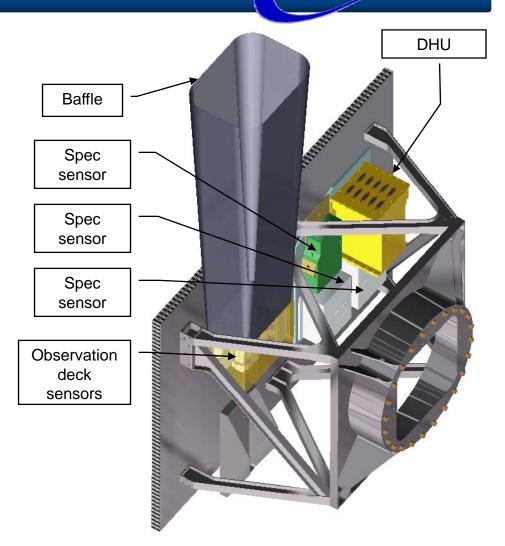
2 NIR Cameras

1.4 μm water ice band depth maps 1 km resolution at T-10 min

2 mid-IR Cameras

7 and 12.3 μm < 0.5 km resolution

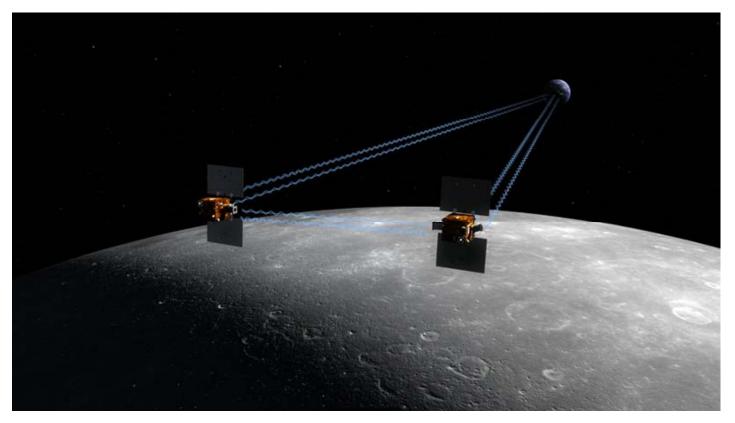
1 Visible Spectrometer


0.25 to 0.8 $\mu m,$ ~0.002 μm resolution

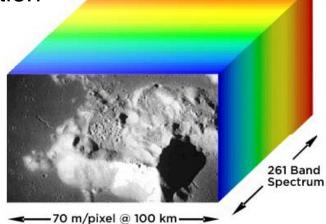
2 NIR Spectrometers

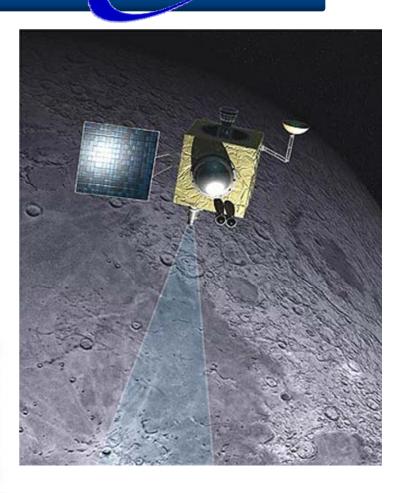
1.35 to 2.45 $\mu m,$ 0.012 μm resolution

1 Total Visible Luminance Photometer


Broadband from 0.6 – 1.2 $\mu m,$ sample rate >1000 Hz, < nW NEP @ 1000 Hz

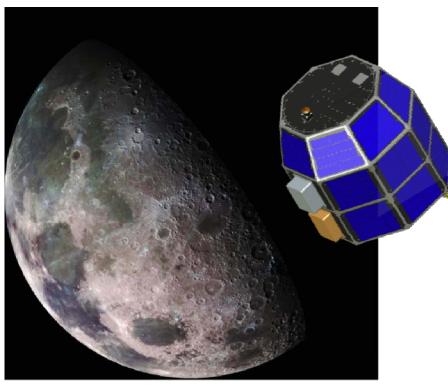
GRAIL (2011)




- Gravity Recovery and Interior Laboratory, an SMD PI-led mission by Dr. Maria Zuber at MIT, managed by Discovery program
- Based on GRACE on the Earth twin spacecraft with mutual microwave ranging to very precisely map the moon's gravity field

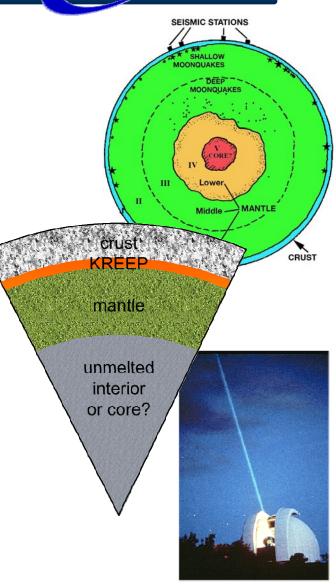
Moon Mineralogy Mapper (2008)

- Discovery PI-led instrument by Carle Pieters at Brown University on Chandrayaan-1
- Imaging spectrometer (VIS-NIR) to map the lunar surface at high spatial and spectral resolution
- Objectives: characterize and map the mineral composition of the lunar surface to gain information about the Moon's geologic evolution



LADEE (2011)

- Lunar Atmosphere, Dust and Environment Explorer, Ames/GSFC project, managed by Lunar Science Program at MSFC
- Instruments: Neutral Mass Spectrometer, UV/VIS spectrometer, Dust counter


Goals:

- Determine the global density, composition, and time variability of the fragile lunar atmosphere before it is perturbed by further human activity
- Determine if the Apollo astronaut sightings of diffuse emission at 10s of km above the surface were Na glow or dust
- Document the dust impactor environment (size-frequency) to help guide design engineering for the outpost and also future robotic missions

ILN (2014)

- International Lunar Network
 – a
 geophysical network to accomplish high
 priority science, but difficult for any single
 agency to accomplish on its own
- US and international landed missions, 2-4 US Landers planned, project at MSFC/APL, managed by Lunar Science Program at MSFC
- Goals: understand the interior structure and composition of the moon
 - Determine the thickness of the lunar crust (upper and lower)
 - Characterize the chemical/physical stratification in the mantle
 - Determine the size, composition, and state (solid/liquid) of the core of the moon.
 - Characterize the thermal state of the interior

ILN (2014)

- US Science Definition Team recommended seismometers, heat flow probes, electromagnetic sounding, laser ranging (active or passive)
- International Core Instruments Working Group chartered July 2008 to define core ILN instruments
 - International Communications Working Group also chartered July 2008 to coordinate communication and navigation needs to support ILN and beyond, including spectrum, standardized communication protocols standardized data and networking protocols

Summary

- NASA is undertaking a sustainable yet comprehensive approach to robotic investigation of the moon to support science and exploration objectives
- The lunar flight projects being undertaken by NASA provide a *robust* robotic lunar flight program for the next decade, complement lunar R&A initiatives to rebuild a lunar science community, and increase international participation in NASA's exploration plans

