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Abstract 

Quantitative measures of the uncertainty of Earth System estimates can 

be as important as the estimates themselves. Second moments of estimation 

errors are described by the covariance matrix, whose direct calculation is im- 

practical when the number of degrees of freedom of the system state is large. 

Ensemble and reduced-state approaches to prediction and data assimilation 

replace full estimation error covariance matrices by low-rank approximation- 

s. The appropriateness of such approximations depends on the spectrum of 

the full error covariance matrix, whose calculation is also often impractical. 

Here we examine the situation where the error covariance is a linear transfor- 

mation of a forcing error covariance. We use operator norms and adjoints to 

relate the appropriateness of low-rank representations to the conditioning of 

this transformation. The analysis is used to investigate low-rank representa- 

tions of the steady-state response to random forcing of an idealized discrete- 

time dynamical system. 

Correspondence to: ff 



1 Introduction 

The value of an estimate of the Earth system state is &creased when accompanied by a 

measure of its uncertainty. Sophisticated users of weather and climate predictions base 

decisions on both forecast and forecast uncertainty (Changnon et al., 1999). Data assimi- 

lation systems combine information from different sources in a manner that depends upon 

its presumed uncertainty (Cohn, 1997). Ensemble prediction systems generate ensembles 

of initial conditions with statistics that attempt to reflect analysis errors (Barkrneijer et al., 

Uncertainty can be modeled as a random variable which is completely described by a 

probability density function (pdf). A partial description of the pdf is given by its mean 

and covariance. With some simplifying assumptions, equations can be obtained for the 

evolution of the mean and covariance. However, for realistic dynarnical systems with .a 

large number of degrees of freedom, the direct solution of these equations, particularly 

those for the covariance, is impractical due to computational costs and to incomplete 

knowledge of the sources of uncertainty. Therefore, in many situations the covariance 

must be modeled. 

One approach to covariance modeling is to specify analytically parameters such as the 

variances and correlation lengths (Dee and da Silva, 1998; Rabier et al., 1998). Complex 

features such as flow dependence may also be modeled through appropriate parameteri- 

zation @ish@jgaard, 1998). A second approach is to assume that the error variability is 

described well by just a few dominant structures and hence that the covariance matrix is 

approximated by a low-rank matrix. Low-dimensional covariance representations are of- 

ten directly connected to the dynamics, as in reduced-state Kalman filter data assimilation 

and ensemble prediction (Cane et al., 1996; Cohn and Todling, 1996; Houtekamer and 

Mitchell, 1998; Molteni et al., 1996). 

Comparison of low-dimensional covariance representations with the full covariance is 

only possible in idealized models where the number of degrees of freedom is small and 

the sources of uncertainty are specified (Cohn and Todling, 1996; Kleeman and Moore, 

1997; Whitaker and Sardeshmukh, 1998). Here our approach is to examine the equation 

satisfied by the covariance and to determine which of its properties control the covariance 



spectrum. We consider the situation where the error covariance is a linear transformation 

of a forcing error covariance and seek the properties of the linear transformation that affect 

the covariance spectrum. 

The paper is organized as follows. Section 2 introduces low-rank representations and 

the linear covariance equation. Section 3 analyzes this equation using first the singu- 

lar value decomposition and then operator norms. Section 4 applies the analysis to the 

discrete-time algebraic Lyapunov equation and illustrates the results with an example us- 

ing the dynamics of a generalized advection equation. Conclusions are given in Section 

5. 

2 Mathematical setting 

2.1 Covariance 

We suppose that our system state E, a real vector of length n, is a mean-zero random 

variable. In typical problems, E might be forecast or analysis error, or climatological 

anomaly. Considerable information about the system state is contained in the n x n 

covariance matrix P defined by 

P = (2) (1) 

where OT denotes transpose and (.) denotes expectation. The total variance of E is giv- 

en by tr P where tr denotes trace. The eigenvectors of P order state-space directions 

according to the variance they explain 

A measure of how well a rank-k matrix P ( ~ )  approximates the covariance matrix P is 

the quantity 11 P - ~ ( ~ 1 1 1 ;  11 - )I is a matrix norm, for instance the Schatten p-norm defined 

by 

where a, (X) is the i-th singular value of X. This family of matrix norms includes several 

common matrix norms; for covariance matrices, 11 Pll = tr P and 1 1  P /Ico = Al (P) where 

A,(P) is the i-th eigenvalue of P ordered in decreasing modulus. 



The optimal rank-k approximation P(k) of P in the Schatten p-norm is its projection 

onto its leading k eigenvectors given by 
I 

T P ( ~ )  = C Xi (P) wiwi 

where wi is the orthonormal eigenvector of P corresponding to the eigenvalue Xi(P). In 

this case, the error of the approximation is 

and the appropriateness of low-rank representations of P depends on its spectrum. How- 

ever, direct calculation of the eigenvalues of P is often not practical. 

2.2 Linear covariance equation 

Our approach is to to identify properties of the equation satisfied by P that control the 

spectrum of P. We consider the situation where the covariance matrix P satisfies an 

equation of the form 

L is a linear operator on matrices and Po is a forcing covariance matrix. Many systems 

where the covariance evolution is linear and the forcing is stationary can be written i-n 

this form. An example of a system with this form comes from the stochastically-forced 

discrete-time linear system 

ek is the system state at time-step k, Ak is the dynamics, bk is the random forcing and Jij 

is the Kronecker delta. The covariance Pk defined by 

satisfies the discrete-time covariance evolution equation 



which has the form of (5); we use the notation Ak = AkAk-l - . - A2A1. 

In the special case of stable1 time-independent dynamics Ak = A, the equation for the 

steady-state covariance matrix P is . 

We will examine in some detail equation (9) known as the discrete-time algebraic Lya- 

punov equation (DALE) (Kwon et al., 1996; Tippett and Marchesin, 1999a,b; Tippett 

et al., 2000a). We refer to,.& as the DALE operator; this nomenclature and notation 

is differs from that of Tippett et al. (2000a). Covariance .evolution in a continuous-time 

system can also be expressed in the form of (5) (Byers and Nash, 1987). 

We next examine what properties of (5) cause its solution P to have a good low-rank 

approximation. Since the initial or forcing covariance Po is often poorly known, results 

that require knowing details of Po are unsatisfactory. Results that depend mostly on C 

and require limited knowledge of Po are desirable. 

3 Analysis of linear matrix equations 

3.1 Inner products 

Linear algebra methods such as the eigenvalue and singular value decompositions can be 

used to analyze ( 9 ,  treating the covariance matrices as vectors of length n2 and 1: as an 

n2 x n2 matrix (Byers and Nash, 1987; Ghavirni and Laub, 1995). Eigenmode analysis 

is appropriate when the linear operator C is normal, that is when 1: has a complete set of 

orthogonal eigenvectors. The normality of 1: depends on the definition of orthogonality 

and hence on the choice of inner product on matrices. Any inner product (., -) on vectors 

can be written in the form 

where M is a Hermitian positive definite matrix and denotes conjugate transpose. The 

adjoint A* of A with respect to this inner product is A* = M - ~ A ~ M .  We may assume 

 h he discrete-time dynamics A is stable if and only if the eigenvalues of A lie inside the unit circle. 



M = I without loss of generality since a new state variable 2 = ~ ~ / ~ e  can be introduced 

with (el, €2) = <it2. 
1 

A natural matrix inner product, though not the most general, is defined by 

(X, Y) = tr  X ~ M Y .  (1 1) 

The matrix inner product (11) is compatible with the vector inner product (10) in the 

sense that the orthogonality of two rank-1 matrices elsf and € 2 ~ ;  is equivalent to the 

orthogonality of el and €2. The DALE operator LA has the pleasant properties with respect 

to this inner product that L i  = LA* and that LA being normal is equivalent to A being 

normal. We mention finally that for M = i the matrix inner product (1 1) is the Euclidean 

inner product on vectors of length n2 since 

3.2 Eigenvectors and singular vectors 

The singular value decomposition of a linear operator gives its rank, range, null space, 

2-norm and optimal low-rank approximations. Approximations of L that are low-rank in 

the space of n x n matrices are obtained from its singular value decomposition; when L is 

normal it is sufficient to use the eigenvalue decomposition. Suppose that oi (L), Ui, and Vi 

are respectively the i-th singular value, left singular vector and right singular vector of L. 

That is, the n x n matrices Ui and Vi satisfy LVi = oi(L) Ui and (Ui, U j )  = (Vi, Vj)  = dij 

where (-, -) is the matrix inner product. Then the decomposition of P in the left singular 

vectors of L is 
n2 

Approximate solutions of (5) are found using low-rank approximations of L. If L has 

some large singular values, for instance, suppose that ak(L) >> o k + l  (L), then a natural 

approximation f) of P is obtained using the optimal (in the space of n x n matrices) rank-k 

approximation L(k) of L to obtain 



with error 

So if the projection of Po onto the first k right singular vectors of L is not too small, 

P shares with p a large component in the directions spanned by the first k left singular 

vectors of L. However, there is no guarantee that the approximation P is low-.rank unless 

there is some information about the rank of the left singular vectors of L. For instance, 

if the singular vectors of L are rank-1 matrices, then P is at most rank-k, though not, in 

general, the optimal rank-k approximation P(". In general the singular vectors of L are 

not rank-1 matrices. 

An example where L is normal and its eigenvectors are rank-1 matrices is the normal 

DALE operator LA. The eigenvalues and eigenvectors of LA are (1 - Xi(A)Xj(A))-I and 

zizj respectively where Xi (A) and zi are respectively the eigenvalues and eigenvectors of 

A (Lancaster, 1970). The DALE operator LA is normal if and only if A is normal, in 

which case the eigenvectors zi of A form a complete and orthonormal basis, and Po can 

be decomposed in this basis as 
n n. 

The representation 

of the solution of (9) shows that there are two extreme situations where the covariance 

matrix P has a dominant low-rank part; in one case the spectrum of P is determined by 

that of A, in the other by Po. 

In the first situation A is nearly unstable with some eigenvalues near the unit circle. 

In this case, P has large components that project onto the leading eigenvectors of A, if 

the projection of Po onto the leading eigenvectors of A does not happen to be small. For 

example, for Po = I and normal A, the solution of (9) is 



and the eigenvectors of A are eigenvectors of P. In this case, P has a good low-rank 

representation if A has a few, but not all of its eigenvalyes near the unit circle. The second 

situation occurs when Po has some large eigenvalues and the spectrum of A is fairly flat. 

Then P has large components on the space spanned by the leading eigenvectors of Po. For 

instance, when A = cl, 0 5 c < 1, P given by 

has a good low-rank representation if Po does. These two mechanisms can interfere with 

each other and examples c h  be constructed where Po has large eigenvalues and A is 

nearly unstable but the spectrum of P is flat. 

There is no correspondingly simple analysis of the DALE for nonnormal dynamics. 

However, in the next section we show that features seen in the analysis of the normal 

DALE operator hold both for the nonnormal DALE operator and for general C. Namely 

for the DALE we show the relation between the stability of A and the spectrum of P and 

for general C the connection between the conditioning of L and the spectrum of P. 

3.3 Operator norms and positive maps 

Examining the eigenvalue and singular value decompositions of the linear operator C 

does not use the fact that C is an operator on matrices and hence does not necessarily 

give information about how C relates the matrix properties of Po and P. This kind of 

information can be found in the operator norm of C defined by 

IiCXllP llCllP = max ------ . 
IlXllP 

The operator norm IICllp relates the matrix properties of P and Po, though, for general 

operators there is not a simple expression for its value. 

A linear operator C with the property that it maps covariance matrices to covariance 

matrices is positive map and hence has the property that its co-norm is simple to charac- 

terize and that its conditioning is related to the spectrum of P (Bhatia, 1997; Tippett et al., 

2000a). Many properties of solutions of the DALE and of the continuous time algebraic 

Lyapunov equation (CALE) are direct consequences of the solutions being given by pos- 

itive maps (Bhatia, 1997). For instance, the fact that positive maps have their maximum 



response in the p = oo norm to uncorrelated forcing 

Xl(LP0) A1 - max - = Xl(Ll) , I I L i l m  = YX X1(Po) Po X I  (Po) 

has consequences for solutions of the DALE and CALE (Hewer and Kenney, 1988; 

Gahinet et al., 1990; Kenney and Hewer, 1990). The eigenvectors of the "bound ma- 

trix" B r LI order the state space directions according to the possible response of the 

system there and can be used in estimates (Tippett and Marchesin, 1999a). 

Similarly, results relating the forcing Po that produces maximum variance to the re- 

sponse of the adjoint system to uncorrelated error forcing (Kenney and Hewer, 1995; 

Farrell and Ioannou, 1996; Kleeman and Moore, 1997) also hold for any positive map. 

Since the l-norm measuring variance response is dual to the oo-norm, IILII = IIL* = 

]lL*lllco. Additionally, the linear operator L achieves its l-norm on the rank-1 matrix 

wwT where w is the leading eigenvector of L*I since 

(ILwwT(I1 = ( I ,  LwwT) = wT(L*l)w = X1(C*l) - (22) 

The eigenvectors of the BT - L*I are the stochastic optimals, ordering state space 

according to how much variance is excited by forcing there as shown by the relation 

t r  P = t r  LPo = (Po, BT) (Bhatia, 1997). 

The operator norm of C is also related to low-rank representations of P. A necessary 

condition for P to admit a low-rank representation is that it be ill-conditioned, that is, for 

the condition number K, (P) to be large where K, (P) = 11 P (1, ( 1  P-I (I, The conditioning 

of P depends on that of L and of Po as shown by the relation 

more general results are available for LA (Tippett et al., 2000a). Therefore, for the special 

case Po = I ,  P can be ill-conditioned and have a good low-rank approximation only if L 

is ill-conditioned. 

Another connection between low-rank representations of P and the operator norm of L 

is seen in the relation 



which follows directly from the operator norm definition and bounds the fraction of the 

total variance explained by the first eigenmode of P. A significant fraction of the total 
1 

variance of P can be in its first eigenmode if the same is true of Po, or if the quantity 

Il.Cllmll~-llll is large. 

An additional useful property of positive maps is that they preserve ordering2. That is, 

if one has upper and lower bounds P, 5 Po I I?:, then 

CP, 5 P I C P , + . -  (25) 

These bounds give bounds for the eigenvalues, diagonal and total variance of P 

Using the upper and lower bounds with P, = An (Po) I and PC = X1 (Po) l gives bounds 

that depend on the bound matrix: 

Xn (PO) B I P I (Po) B . (29) 

When the bounds in (29) are tight and P has a well-separated set of leading eigenvalues, 

the leading eigenvectors of P and B span approximately the same subspaces (Golub and 

Van Loan, 1996, Theorem 7.2.4); However, if P does not have a well-separated set of 

leading eigenvalues, P - X1 (Po) B may be small without the leading eigenvectors of P and 

B spanning approximately the same subspaces. 

4 Analysis of the DALE 

The preceding analysis can be used to determine when the solution of the DALE (9) 

admits a low-rank representation. The condition number of the DALE operator requires 

calculating the norm of LA and C;'. For the normal DALE operator, / /LA [ I p  = XI (LA) = 

(1 - ]A1 (A) I2)-l and (Tippett et al., 2000a). 

 o or two symmetric matrices X and Y ,  X < Y means that Y - X is positive semidefinite. 



showing that LA is ill-conditioned when A has some but not all of its eigenvalues near the 

unit circle. I 

In the case of nonnormal dynamics A, IIL,' 11, can be estimated in terms of the singular 

values of A, 

and llLAllp can be bounded by 

1 1 
2r  (A) + r2 (A) - 

where the radius of stability r (A )  is the distance from A to the closest unstable matrix 

(Mori, 1990; Tippett et al., 2000a)). These estimates show that the DALE operator LA is 

ill-conditioned when A is nearly unstable and the A has at least one singular value that is 

not near unity. 

An example of stable nonnormal dynamics that produces a highly ill-conditioned DALE 

is the dynamics coming from the generalized one-dimensional advection equation 

with a > 0 and initial and boundary conditions 

respectively. Nonnormality is due to the undifferentiated term c'(x)p and the boundary 

conditions. A similar model with periodic boundary conditions is described in detail in 

(Tippett et al., 2000b). Disturbances move from left to right with speed a. As disturbances 

pass through regions where c'(x) < 0 they grow and where cl(x) > 0 they decay. The 

zero boundary condition at the left boundary forces the solution to be identically zero 

after the time a-* required to cross the domain. As a consequence, the operator A, that 

advances the solution T time units is nilpotent and all its eigenvalues are identically zero; 

there is no modal growth. 

3 ~ o r  normal stable matrices r (A)  = 1 - IXl(A)I, the distance from its largest eigenvalue to the unit 

circle. For nonnormal dynamics the radius of stability depends on the pseudospectrum of A (Trefethen, 

1997).Eigenvalues near the unit circle, large singular values and sensitive eigenvalues cause the radius of 

stability to be small. 



The discrete-time dynamics A, that advances the solution T time units is given by (see 

Appendix) 
1 

where s ( x )  = exp [(c(x  - ar )  - c(x) ) /a]  ; note that s ( x )  = exp -rcl(x)  in the limit 

ar  << 1. In this example we take a = 1/12, T = 1 and c(x)  given by 

I .& 

c(q)  = 1 + -- arctan(l6(0.5 - x ) )  . 
16 n 

In most parts of the domain cl(x) FZ 0 so that there is little growth. Around x = 0.5, 

cl(x)  < 0 and there is amplification as shown in the plots of c(x)  and s ( x )  in Fig. 1. 

Nonmodal transient growth is found from the singular values and singular vectors of A,. 

The singular values and left singular vectors of A, are the square roots of the eigenvalues 

and the eigenvectors of A,AF (see Appendix) 

The singular values of A are zero and the values taken on by s (x ) .  The maximum growth 

in one time step is a l ( A )  = 1.37 is sensitive to cl(x) .  Where s ( x )  > 1 there is local 

amplification. In the spatially discrete case, the singular vectors of A are columns of the 

identity matrix. The leading singular vectors are associated with the region where s ( x )  

has its maximum. 

We add mean-zero Gaussian distributed random noise bk at each time-step: 

with covariance Po = I + G where G is a Gaussian correlation model with correlation 

length 0.25 and normalized so that t r  G = 1. A sense of the time behavior of the system 

is seen by looking at the mean with respect to x of the forcing bk and of the response yk in 

Fig. 2 which show that the dynamics amplify the forcing and increase the time coherence. 

The maximum possible amplification is found from the diagonal matrices B = CI and 

BT = CATI to give that IICAllm = 1209.6 and llCAlll = 1157.6. The norm of LA is 



large because though the eigenvalues of A are far from the unit circle, they are sensitive to 

perturbations. The maximum of B is within ar  of the right boundary and the maximum of 

BT occurs within ar of the left boundary, in contrast to the leading singular vectors which 

depending on c ( x )  can be located anywhere in the domain (see Appendix). Since left 

singular vectors will always be to the left of their corresponding right singular vectors, left 

(right) singular vectors will always be a better approximation for B (BT) than right (left). 

The norm of L-' is bounded by 1 5 IIC,l/I, < 2.88 from (31). So LA is ill-conditioned 

and we expect the steady-state covariance P to have a low-rank approximation. 

We calculate P using exact dynamics and a spatial descretization with 48 grid points. 

Figure 3a shows eigenvalues Xi(P) of P along with the upper and lower bounds obtained 

from the bound matrix B and (29). Much of the variance of P is contained in a few 

modes as suggested by the ill-conditioning of LA. The spread in the bounds is due to the 

spectrum of Po not being flat. Figure 3b shows the diagonal of P and bounds obtained 

from the bound matrix and (29). 

The relation between k and the fraction of variance explained by ~ ( ' " 1  is seen in Fig. 4; 

about 10 modes explain half of the variance. Also shown is the fraction of variance 

explained when P is projected onto the eigenvectors of 6, the left singular vectors of A 

and the right singular vectors of A. The eigenvectors of B efficiently explain the variance 

of P while the left singular vectors of A do not do as well but are much better than the 

right singular vectors. 

5 Conclusions 

Ensemble and reduced-state approaches to prediction and data assimilation have shown 

low-rank covariance representations to be useful covariance models. How appropriate 

such approximation are in a given problem depends on the spectrum of the full covariance, 

which is often not available. We have examined the situation when the covariance P is a 

linear transform L of a forcing covariance Po. 

The singular value decomposition of the transformation L only gives useful informa- 

tion in special cases. More useful information is obtained from operator norms of the 

transformation. Since the transformation is a positive map, mapping covariance matrices 



to covariance matrices, there are simple expressions for its norm. 111-conditioning is a 

necessary condition for the covariance matrix to admit a low-rank approximation. We 
I 

show that the covariance P can be ill-conditioned only when the forcing covariance Po 

or the transformation C are ill-condtioned. A similar result shows that the fraction of 

variance explained by the first eigenmode of the covariance can be large only when the 

same is true of the forcing covariance or when C is ill-conditioned. 

The numerical cost of calculating these norms can be comparable to calculating the full 

covariance, though the issue of poorly known error sources is avoided. Lanczos methods 

can be used if it is possible 'to apply CPo to a vector. Theoretical insight can also be 

gained as demonstrated in the case of the discrete-time algebraic Lypunov equation where 

the usefulness of low-rank representation is directly related to stability properties of the 

dynamics. 

Appendix 

The operator A, that advances the solution of (33) in time is easily calculated by making 

a linear change of variables such that in the new variables (33) is the usual advection 

equation. The new dependent variable v ( x ,  t )  r L(x) ,LL(x,  t )  where L ( x )  - exp (c (x )  / a )  

satisfies 

with initial and boundary conditions 

The operator A, that advances (Al) in time is ~ , v ( x ,  t )  = v ( x  - ar, t )  and is related to 

A, by A, = (L(x))- 'A, L ( X )   h here fore 

A,p(x, t )  = (L(x))- '&L(x)P(x,  t )  

= L(x - a r ) ( ~ ( x ) ) - ~ ~ ( x  - ar,  t )  

= exp (c(x  - ar )  - c (x ) /a )  ~ ( x  - ar, t )  . 



The singular values and vectors of A, are the eigenvalues and eigenvectors of ATAT. 

except for 0 5 x 5 ar where A,AT is identically zero. ATA, is a multiplication operator. 

Its point spectrum contains zero and its continuous spectrum contains the range of s2 (x )  

for 0 5 x 5 1 (Halmos, 1967, Problem 66). For an eigenvalue ;\ in the continuous 

spectrum there is no eigenfunction but there is a sequence of approximate eigenfunctions 

fj such that llA fj - A  fj 11 -+ 0. Therefore, for non-constant c ( x )  the operator A,AT has no 

eigenfunctions but does have approximate eigenfunctions, for example those given by the 

eigenvectors of a spatially dscrete approximation. For instance, suppose the n spatial grid 

points are xi = iar/n for 0 < i n - 1. Then, the left singular vector associated with 

the singular value s ( x i )  is the i-the column of the identity matrix and the right singular 

vector is the i - 1-st column of the identity matrix. 

The bound matrix B satisfies B = ABAT + I and is found by solving 

P = APR + ( L ( x ) ) ~  

where B = L(x)-' PL(x ) - ' .  P is diagonal and given by 

as can be verified using the relation 



Therefore, 

int(x/ar) 

= exp -2a-'c(x) x exp 2a-'c(x - kar)  
k=O 

int(x/ar) 

= x exp -2a-'(c(o) - c(l: - kar))  

Similarly, the solution of BT = A ~ B T A  + I is given by 

The relation 

int(x/ar) 

B(x - ar )  = exp -2a-'(c(x - ar)  - c(x - k a ~ ) )  
k= 1 

= B(x) exp -2a-'(c(x - ar)  - c(x))  

- exp -2a-I (c(x)  - c(x - a ~ ) )  

shows that B(x) > B(x - a r )  if c(x)  is decreasing. As a consequence the maxima of B 

and BT occur within a.r of 1 and of 0 respectively. 
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Figure Captions 

Fig. 1. c(x) (solid line) and s(x) (dash-dot line) 

Fig. 2. (a) Mean with respect to x of the (a) forcing bk and (b) response ~k plotted with respect to 

the advection time T = h a .  

Fig. 3. (a) Eigenvalues Xi(P) of P (solid line) and their upper and lower bounds (dotted lines) 

obtained using (26) with Po = An (Po) l and Po = XI (Po) I. (b) Diagonal of P (solid line) and its 

bounds (dotted lines) obtained using (27) with Po = Xn(Po)l and P i  = XI (Po)l 

Fig. 4. Fraction of the variance explained by eigenvectors of P (solid line) eigenvectors of B 

(dotted dashed line), left singular vectors of A (dashed line) and right singular vectors of A (dotted 

line). 



Figures 

1.5 

Fig. 1. c(x) (solid line) and s(x) (dash-dot line) 



Fig. 2. (a) Mean with respect to x of the (a) forcing bk and (b) response € I ,  plotted with respect to 

the advection time T = h a .  



Fig. 3. (a) Eigenvalues Xi(P) of P (solid line) and their upper and lower bounds (dotted lines) 

obtained using (26) with P i  = Xn(Po)l and Po = XI (Pd) I. (b) Diagonal of P (solid line) and its 

bounds (dotted lines) obtained using (27) with Po = Xn(Po)l and Po = X1(Po)l 



Fig. 4. Fraction of the variance explained by eigenvectors of P (solid line) eigenvectors of B 

(dotted dashed line), left singular vectors of A (dashed line) and right singular vectors of A (dotted 

line). 


