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ABSTRACT 

Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range 
of aerospace propulsion applications including emissions monitoring, leak detection, and 
hydrazine monitoring.  These applications often require sensitive gas detection in a range of 
environments. An effective sensing approach to meet the needs of these applications is a 
Schottky diode based on a SiC semiconductor.  The primary advantage of using SiC as a 
semiconductor is its inherent stability and capability to operate at a wide range of temperatures. 
The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and 
gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure 
requires good control of the interface between these gas sensitive layers and the SiC.  This paper 
reports on the development of SiC gas sensors. The focus is on two efforts to better control the 
SiC gas sensitive Schottky diode interface.  First, the use of palladium oxide (PdOx) as a barrier 
layer between the metal and SiC is discussed.  Second, the use of atomically flat SiC to provide 
an improved SiC semiconductor surface for gas sensor element deposition is explored. The use 
of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that 
SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the 
sensor for each application is necessary.   

 INTRODUCTION  

Silicon carbide (SiC) has high potential as the electronic semiconductor material for a 
new family of high temperature sensors and electronics.  Silicon carbide can operate as a 
semiconductor in conditions under which silicon cannot adequately perform, such as at 
temperatures above 400°C. [1].  Silicon carbide gas sensors have been in development for a 
number of years using a range of device structures including capacitors [2], transistors [3], and 
Schottky diodes [4-8].  These sensors have been shown to be highly sensitive to several gases, 
including hydrogen and hydrocarbons, making them useful for a range of applications. One area 
where SiC semiconductor technology can be applied is in gas sensing for aerospace applications.   
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A range of aerospace applications require chemical sensing technology [9].   One 
application area is the monitoring of emissions from high temperature combustion environments 
such as propulsion systems.  In aeronautic combustion emissions monitoring applications, 
sensitive detection of nitrogen oxides (NOx) and hydrocarbons (CxHy) can be used to reduce 
emissions and potentially monitor the efficiency and health of the engine.  For in-situ engine 
monitoring, high temperature operation is necessary.  A significant challenge in this application is 
determining the relative emission constituents in a mixed and varying chemical environment. A 
SiC based gas sensor can be combined with other sensors forming a High Temperature 
Electronic Nose sensor array to characterize a range of emission species emitted by an engine 
[9]. 

 
A second application area is monitoring of fuel leaks in launch vehicles [10].  Detection 

of low concentrations of hydrogen and hydrocarbon fuels is critical in avoiding explosive 
conditions that could harm personnel and damage the vehicle.  Reliable vehicle operation also 
depends on the timely and accurate measurement of these leaks.  Detection of low 
concentrations of fuel is generally necessary from room temperature to cryogenic ambient and in 
air or inert gas atmospheres.  Further, measurement of highly toxic propellants such as hydrazine 
in concentrations as low as the parts per billion (ppb) level is desired to safeguard the health of 
astronauts or ground personnel exposed to propulsion systems. This includes operation of 
manned systems such as the International Space Station or for ground operations of future 
Exploration Launch vehicles.  

 
These applications require operation in a variety of challenging conditions: from 

cryogenic temperature to above 600°C, from chemically inert environments to highly corrosive 
engine conditions, and from the detection of one gas over a wide concentration range in inert 
environments to the detection of several gases over more narrow concentration ranges in the 
presence of interfering gases.  These applications commonly require high sensitivity, long-term 
stability, good repeatability, and sensor operation at elevated temperatures to detect the gases of 
interest. The combination of these sensor requirements has led NASA Glenn Research Center 
(NASA GRC) SiC gas sensor development to concentrate on sensors based on the Schottky 
diode structure.  

 
A Schottky diode is composed of a metal in direct contact with a semiconductor (MS), 

or a metal in contact with a very thin insulator or oxide on a semiconductor (MIS or MOS).  For 
gas sensing applications, the metal is often catalytic.  The advantage of Schottky diode gas 
sensors are their high sensitivity.  The detection mechanism for hydrogen (H2) involves the 
dissociation of H2 on the surface of a catalytic metal leading to the formation of a dipole layer at 
the interface of the metal and the insulator (or metal-semiconductor interface depending on the 
structure).  This dipole layer affects the effective Schottky barrier height of the diode resulting in 
an exponential change in the forward current and a quadratic change in the capacitance [11-12] 
while the diode is under fixed bias. The detection of hydrocarbons is possible if the sensor is 
operated at a high enough temperature to dissociate the hydrocarbon and produce atomic 
hydrogen at the sensor surface.  The resulting atomic hydrogen affects the sensor output in the 
same way as molecular hydrogen [4, 13-14]. Predominately, the temperature for sensitive 
hydrocarbon detection is beyond the upper limit for silicon-based Schottky diode functionality and 
thus SiC enables high temperature detection of hydrocarbons with high sensitivity.   

 
The successful use of the Schottky diode structure as a gas sensor depends on strict 

control of the metal-semiconductor interface [7].  One complicating factor in control of this 
interface is the operation of gas sensors at high temperatures.  Higher temperature operation 
implies possible reactions, especially metal silicide formation, between the catalytic sensing metal 
thin film and the SiC.  Overall, the choice of surface treatment or barrier layer(s) between the 
catalytic metal and the SiC substrate is complicated by simultaneous requirements of high sensor 
stability during high temperature operation while maintaining high sensitivity.    

 
A second major complicating factor in the control of the SiC interface is the quality of 



the SiC semiconductor.  In addition to high densities of extended crystalline defects such as 
micropipes, commercial SiC wafers also exhibit significantly rougher surfaces, and larger 
warpage than is typical for silicon wafers [15].  Thus, variability in the SiC surface itself 
significantly complicates efforts to control the catalytic metal/SiC interface.   

 
The purpose of this paper is to provide an update on the development and application 

of SiC Schottky diode gas sensors related to emission and safety applications.  In particular, this 
paper reports on the development of SiC gas sensors focusing on two efforts to better control the 
SiC gas sensitive Schottky diode interface.  First, the use of palladium oxide (PdOx) as a barrier 
layer between the metal and SiC is discussed.  Second, the use of atomically flat SiC to provide 
an improved SiC semiconductor surface for gas sensor element deposition is explored. The use 
of SiC gas sensors in a multiparameter detection system is briefly discussed. It is concluded that 
SiC gas sensors have potential in a range of propulsion system applications of SiC gas sensor 
systems, but tailoring of the sensor for each application is necessary.   

RESULTS AND DISCUSSION 

Barrier Layer: Pd/PdOx/SiC Structure 
 

The use of a barrier layer between the catalytic metal and SiC was explored in previous 
publications. For example, the use of a platinum/chrome carbide/silicon carbide (Pt/Cr3C2/SiC) 
Schottky diode structure using commercial off-axis SiC epilayer was described in reference 8. 
Overall, the sensor showed stable operation with good sensitivity at 580°C, some migration of the 
chemical species within the structure during heating, and changing behavior during an initial 
break-in period.   

 
In order to complement, and perhaps improve upon, the above approach using only 

palladium oxide as the barrier layer was investigated. It had been noted within our group that 
palladium oxide had formed naturally during heating processes in other palladium based SiC 
samples tested. Palladium oxide itself is a stable structure and its uncontrolled formation during 
heating was thought to disrupt the gas sensor structure.  The objective of this work is to apply the 
palladium oxide in a controlled manner by standard deposition techniques resulting in a 
Pd/PdOx/SiC structure. The approach is to form a barrier layer between the catalytic metal and 
SiC, thus stabilizing the sensor structure.  This section presents the results of characterizing the 
properties of this Pd/PdOx/SiC sensor structure. 

 
The Pd/PdOx/SiC sensor structure is fabricated as follows: a commercially available 2” 

diameter, 3.5° off-axis, 6H-SiC 400 microns (µm) thick substrate with 2 µm thick epilayer of n-type 
doping of 2.0 E+16 is patterned with photoresist and a Schottky diode photomask to form multiple 
diode contacts on the front side of the wafer.  Sputtering is used to reactively deposit 50 
Angstroms (Å) of PdOx on the SiC substrate followed by the deposition of 450 Å of Pd on top of 
the PdOx. A lift-off technique is then used to form circular Pd/PdOx/SiC Schottky patterns of 
diameter 830 µm.   Backside contacts were achieved by sputtering 100 Å of titanium (Ti) and 
5000 Å of nickel (Ni), followed by annealing at 1000°C for 5 minutes in nitrogen (N2). 

 
The gas sensor testing facility and sample connections have been described elsewhere 

[4].  The sample rested on a hot stage whose temperature was controlled from room temperature 
to near 600°C.  Current-time (I-t) measurements were taken to characterize diode responses as a 
function of time during exposure to a variety of gases.  The Pd/PdOx/SiC Schottky diode structure 
was heated at 450°C for a total of 1400 hours. The sensor was periodically tested by first being 
exposed to air for 5 minutes, N2 for 5 minutes, 0.5% hydrogen in N2 for 10 minutes, pure N2 for 5 
minutes, and then air.  The gain of the sensor was calculated as the difference in currents 
between hydrogen bearing gas and air divided by the current in air, i.e., the change in signal 
divided by the baseline.  

 



The response of the Pd/PdOx/SiC Schottky diode sensor to the air/nitrogen/hydrogen-
nitrogen/air test cycle at a bias voltage of 1 V is shown in Figure 1 at two separate times: 305 and 
979 hours. The data shows good repeatability of signal in form and magnitude at 305 and 979 
hours. At both times, the sensor has limited response to changes from air to nitrogen followed by 
a large response of over two orders of magnitude change in current to 0.5% H2/ 99.5%  N2. The 
response to hydrogen is much quicker than the recovery of the sensor signal after the sample is 
again exposed to nitrogen at 20 minutes. The overall recovery in inert environments is slower in 
N2 than air, but previously this has been found to be test chamber dependent.  This data shows a 
sensor with a highly sensitive response to hydrogen and a repeatable behavior over a significant 
period of time. 

 
The long term behavior of the sensor over the full 1400 hours of testing at 450°C is 

shown in Figure 2. In this figure, the sensor current in air and in 0.5% H2/ 99.5% N2 is shown over 
time at 450°C measured at 1 V.  Also shown in Figure 2 is the gain of the sensor derived from 
currents in 0.5 H2/ 99.5% N2 and air. Figure 2 shows that after a break-in period during 
approximately the first 40 hours, the sensor baseline current in air, current in 0.5 % H2/95% N2 
and overall gain is shown to be generally stable with heating for 1400 hours.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 1. The Pd/PdOx/SiC Schottky diode gas sensor tested at 450°C at 305 hours (□) and 979 
hours ( ) in 0.5% hydrogen and at 1V. The sensor response shows a strong and nearly 
repeatable response to 0.5% hydrogen in nitrogen over the heating period. 
 

 
The overall result of this high temperature testing is that the Pd/PdOx/SiC sensor has 

high sensitivity with prolonged stability and represents a marked improvement over a Pd/SiC 
Schottky diode sensor without the PdOx layer [4].  Surface analysis was conducted on the tested 
PdOx based sensor (not shown) and no significant silicide formation or species migration was 
observed.  In other words, two of the major reasons for sensor degradation, silicide formation and 
species migration, are significantly inhibited. Thus, the barrier layer of PdOx prevents and 
minimizes chemical reaction between the catalytic sensing layer (metal or metal alloy) and the 
substrate layer (SiC).  Palladium oxide prevents formation of metal silicides, an unwanted 
reaction product that forms between the catalytic sensing layer and the substrate layer. These 
silicide materials can adversely affect the sensitivity of the hydrogen detection. The barrier 
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interlayer is resistant to further oxidation when made from palladium oxide. This resistance to 
oxidation prevents other degradation of the sensor at high temperatures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The Pd/PdOx/SiC Schottky diode gas sensor response at 450°C and at 1V. Shown is 
the baseline current in air, current in 0.5% hydrogen in nitrogen, and the sensor gain (change in 
sensor signal/baseline signal). The sensor is seen to have nearly constant behavior throughout 
the extended test period after a break-in period.  

 
 
Overall, this approach takes a reaction product, PdOx, whose formation previously 

contributed to the disruption of the sensor structure and, by controlling its formation and position 
in the gas sensor structure, uses it to improve sensor stability and sensitivity.  Oxidation of the 
barrier layer, which is sometimes problematic with other barrier layers, is not an issue with PdOx 
because it is already oxidized and the PdOx layer is very stable. In the extreme, the top surface 
layers of the PdOx could be potentially reduced to Pd through combination with atomic hydrogen.  
If this occurs, it is believed but has not yet been verified, that this would likely increase the 
sensitivity of the device by creating more Pd which could later be reoxidized.  However, it would 
not result in irreversibly degrading the structure with, e.g., the formation of silicides. Thus, it 
suggested that the use of PdOx between the catalytic metal and the SiC is a highly viable 
approach to stabilizing the Schottky diode structure and such data as shown in Figure 2 suggests 
a notable advancement in the basic Schottky diode sensor structure. Future work will examine 
the use of PdOx with other catalytic metals such as platinum (Pt) as well as in conjunction with 
reactive insulators such as tin oxide. 

 
 
SiC Surface Treatment: Atomically Flat SiC 
 
The first use of atomically flat SiC in sensing applications was discussed in reference 8. 

The result of that testing is shown in Figure 3 which compares the sensor response of an 
atomically flat (AF) and non-atomically flat (NAF) SiC Schottky diode gas sensor showing the 
data starting at 200°C and finishing at 300°C. The difference in response between these two 
sensors takes effect when the sensor is heated to 300°C and is easily evident in Figure 3.  The 
AF sensor gain increases dramatically compared to the NAF sensor and stabilizes near 325 
hours into the testing or after nearly 200 hours at 300°C. The gain of the AF sensor is near 7250 
while that of the NAF sensor is near 50.  Thus the gain of the AF sensor response averages 
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nearly 145 times greater than that of the NAF sensor. These preliminary results have suggested a 
strong advantage to the use of on-axis and atomically flat SiC over the standard materials on 
which SiC Schottky diode gas sensors are fabricated [8].  

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
Figure 3. Demonstration of atomically flat SiC gas sensor responses from reference 8:  a) Side by 
side sample of AF and NAF sensors. The bottom is the non-atomically flat sensor and the top is 
the atomically flat sensor. Surface differences between the two sensors are significant and 
include hillock morphology from a screw dislocation on the left mesa.  b) Comparison of sensor 
gain to 0.5% hydrogen between Pt/SiC sensors deposited on atomically flat SiC ( ) and non-
atomically flat SiC ( ). At near 150 hours of testing at 200°C, both sensors are heated to 300°C. 
The difference in response between the sensors is easily observed.  

 
 
Subsequent work being reported in this paper involves moving from the basic atomically 

flat mesa structure holding only a sensor, as shown in Figure 3, towards an atomically flat 
structure that includes the components necessary for an operational gas sensor. Such a structure 
would not only include the gas sensitive Schottky diode, but also a temperature detector and 
heater to control the sensor’s temperature in variable environments. The approach is to develop a 
process to fabricate a small, complete sensing structure with minimal thermal mass such as those 
formed in silicon-based structures [9]. Such processing capabilities are necessary if the full 
potential of atomically flat SiC gas sensors is to be achieved in compact microsystems.  

  
 Atomically flat or step-free surfaces were produced on commercially purchased on-axis 
4H-SiC wafers in the following manner [16,17]. First, dry reactive ion etching (RIE) was used to 
form 30 µm deep trenches into the wafer surface to form an array of isolated growth mesas. 
Following an in-situ hydrogen pre-growth etch at 1630°C for 2 minutes, pure stepflow epitaxial 
growth is then used to grow all initial surface steps out to the edge of the mesa leaving behind a 
mesa with a topmost surface that is step-free.  Only mesas that are not threaded by screw 
dislocations can be rendered step-free (i.e. atomically flat). Step-free mesas subjected to further 
growth will laterally evolve webbed cantilevered regions that extend out beyond the sidewalls at 
the top of the original mesa [16]. The sensor structure shown in Figure 4 resides on top of an 
atomically flat SiC “tabletop” that was mostly formed from lateral extension of SiC cantilevers 
grown from a much smaller pre-growth support mesa. As better described previously [16-17], the 
SiC epitaxial growth was carried out in a modified, commercial, horizontal flow, chemical vapor 
deposition (CVD) system with a tantalum carbide (TaC) coated susceptor. The growth was 
performed at a pressure of 200 millibar (mb), and a temperature of 1630°C. Propane (C3H8) and 
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silane (SiH4)  were used for precursors in a hydrogen carrier gas with a Si/C ratio of 0.65. The 
growth time was five hours. A 2700Å thick Pt film was sputter deposited on both atomically flat 
and non-flat mesas.  Photoresist was used to pattern the Pt film during an argon based dry etch 
and was then removed using solvents and an oxygen plasma.  Backside contact was made by 
1000Å Ti, 4000Å tantalum silicide (TaSi2), and 2000Å Pt which has been shown to be a stable 
contact stack for high temperature applications [18]. 
 

 

 
 
Figure 4. An atomically flat SiC mesa similar to the mesas shown in Figure 3, but now including 
both the Schottky diode gas sensor and a resistor for temperature control. 

 
A sensor pattern with a combined temperature detector/heater has been deposited on an 

atomically flat mesa with dimensions near 0.6 x 0.3 mm and is shown in Figure 4.  A Pt/SiC 
Schottky diode is shown in Figure 4 as the large contact pad in the center of the structure. A Pt 
resistor (with resistance ~ 50 ohms) forms the temperature detector/heater composed of the thin 
line metal pattern adjacent to the Schottky diode. Experience in fabrication of silicon based gas 
sensor systems has been used in the design of this SiC device. This and closely related 
structures are now in the process of testing and evaluation. Based on the results of this testing, 
modification of the atomically flat SiC device pattern will be performed. The long-term goal is to 
produce complete, operational SiC gas sensors that include the device structures pioneered in 
commercially available SiC, e.g., Pd/PdOx/SiC, but retain the sensing advantages seen by using 
atomically flat SiC.  
 
 

SENSOR APPLICATION 
 

While work proceeds towards improving high temperature durability and sensitivity of SiC 
Schottky diode gas sensors, these sensors are useful in their present state for a range of 
applications. One area of development is an integrated smart leak detection system for a range of 
propulsion systems. The objective is to produce a microsensor array, that includes hydrogen, 
oxygen, and hydrocarbon sensors by microfabrication (MEMS) based technology [10].  Thus, a 
range of potential launch vehicle fuels (hydrogen or hydrocarbons) and oxygen can be measured 
simultaneously.  The array is being incorporated with signal conditioning electronics, power, data 
storage, and telemetry.  The final system will be self-contained with the surface area comparable 
to a postage stamp. Thus, this postage stamp sized “Lick and Stick” type gas sensor technology 
can enable a matrix of leak detection sensors placed throughout a region with minimal size and 
weight as well as with no power consumption from the vehicle.  The sensors can detect a fuel 
leak from launch vehicles, and combine that measurement with a determination of the oxygen 
concentration to ascertain if an explosive condition exists.  Sensor outputs are fed to a data 
processing station, enabling real-time visual images of leaks, and enhancing vehicle safety.   



A prototype model of the “Lick and Stick” sensor system has been fabricated [8,10]. The 
complete system has signal conditioning electronics, power, data storage, and telemetry with 
hydrogen, hydrocarbon, and oxygen sensors. The assembly of this sensor system starting with 
the SiC Schottky diode gas sensor is shown in Figure 5.  Figure 5a shows the packaging of a SiC 
hydrocarbon sensor in a TO5 header with a wire bond extending from the TO5 connecting post to 
the front side of the SiC gas sensor. While the SiC sensor structure shown in Figure 5a is a 
sensor test pattern and not optimized for production, packaging of these sensors has occurred for 
multiple applications and highlights the use of even these developmental SiC gas sensors in 
operational systems. Figure 5b shows the integration of the SiC gas sensor with a hydrogen and 
oxygen sensor in an electronics board meant for sensor control and conditioning. Figure 5c 
shows the complete electronics including microprocessor, memory, and telemetry integrated with 
the three sensors and control electronics board.  These electronics parts have been chosen 
particularly for possible use in space flight applications.  

 

This “Lick and Stick” sensor system, shown in Figure 5, has been demonstrated to detect 
the presence of various hydrocarbon fuel (RP-1) concentrations (in this case, using a chrome 
carbide barrier layer), while simultaneously measuring the oxygen and hydrogen concentration 
[9].  This basic “Lick and Stick” sensor approach using the hydrogen and oxygen sensors is being 
considered for possible implementation in Crew Launch Vehicle (CLV) applications. Presently the 
flight version of this “Lick and Stick” leak detection system does not include the SiC gas sensor, 
which is still being matured for integration into flight ready systems.  Although operational and 
tested in applications, further development is under way to allow the SiC gas sensors to have the 
maturity of, e.g., the existing silicon-based hydrogen sensor [10]. This paper has described some 
of these maturation efforts.   

 

 

 
 
 
 
Figure 5. A prototype version of a “Lick and Stick” leak sensor system with hydrogen, 
hydrocarbon, and oxygen detection capabilities combined with supporting electronics including 
signal conditioning and telemetry.  a) SiC Schottky diode gas sensor in a TO5 header. b)  SiC gas 
sensor integrated with a hydrogen and oxygen sensor with control electronics. c) Complete “Lick 
and Stick” leak sensor system with hydrocarbon, hydrogen, and oxygen sensors integrated with 
microprocessor, memory, and telemetry. 

SUMMARY AND CONCLUSIONS 

SiC-based Schottky diodes have significant potential to meet the needs of a range of 
important aerospace applications. Reaching that potential remains a significant technical 
challenge although significant progress has been made. A major issue is control of the surface 
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interface between the catalytic gas-sensitive metal and the SiC semiconductor. Control of this 
interface is a major step towards enabling application of the unique properties of SiC Schottky 
diode gas sensors. However, this surface interface control is problematic, especially given the 
lack of maturity of SiC semiconductors and the fact that the sensors are standardly exposed to 
higher temperatures. This paper presents two examples of attempts to control the interface of a 
SiC-based Schottky diode gas sensor. The first method was to introduce a PdOx layer between 
the catalytic metal and a defect-containing SiC semiconductor, while the second was to employ 
an atomically flat SiC semiconductor surface.  

 
The PdOx barrier layer approach has shown significant potential in producing a sensitive 

sensor with stable response for more than 1400 hours. This is a significant step in achieving a 
stable baseline Schottky diode gas sensing structure.  While this barrier layer approach has 
produced a sensitive and stable sensor, the use of atomically flat SiC holds the highest potential 
for significantly changing the way SiC Schottky diodes are fabricated. The atomically flat 
approach ideally provides the same surface each time for device fabrication and should 
significantly increase device reproducibility. Steps are being taken to fabricate this atomically flat 
gas sensor structure with the complete components necessary for a gas sensor, i.e., usually a 
temperature detector and heater. Nonetheless, SiC gas sensor have been integrated and tested 
in a sensor array including “Lick and Stick” leak detection system, whose basic design is being 
considered for flight applications. SiC gas sensors are still being matured for some applications 
such as integration into a flight-worthy “Lick and Stick” leak detection system, but significant steps 
have been made as discussed in this paper. 
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