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Two diamond-machining methods
have been developed as part of an effort
to design and fabricate an off-axis, bi-
conic ellipsoidal, concave aluminum mir-
ror for an infrared spectrometer at the
Kitt Peak National Observatory. Beyond
this initial application, the methods can
be expected to enable satisfaction of re-
quirements for future instrument mir-
rors having increasingly complex (in-
cluding asymmetrical), precise shapes
that, heretofore, could not readily be fab-
ricated by diamond machining or, in
some cases, could not be fabricated at all.

In the initial application, the mirror is
prescribed, in terms of Cartesian coordi-
nates x and y, by aperture dimensions of
94 by 76 mm, placements of –2 mm off
axis in x and 227 mm off axis in y, an x
radius of curvature of 377 mm, a y radius
of curvature of 407 mm, an x conic con-
stant of 0.078, and a y conic constant of
0.127. The aspect ratio of the mirror
blank is about 6. 

One common, “diamond machining”
process uses single-point diamond turn-

ing (SPDT). However, it is impossible to
generate the required off-axis, biconic el-
lipsoidal shape by conventional SPDT be-
cause (1) rotational symmetry is an essen-
tial element of conventional SPDT and
(2) the present off-axis biconic mirror
shape lacks rotational symmetry. Follow-
ing conventional practice, it would be
necessary to make this mirror from a glass
blank by computer-controlled polishing,
which costs more than diamond machin-
ing and yields a mirror that is more diffi-
cult to mount to a metal bench.

One of the two present diamond-
machining methods involves the use
of an SPDT machine equipped with a
fast tool servo (FTS). The SPDT ma-
chine is programmed to follow the ro-
tationally symmetric asphere that best
fits the desired off-axis, biconic ellip-
soidal surface. The FTS is actuated in
synchronism with the rotation of the
SPDT machine to generate the differ-
ence between the desired surface and
the best-fit rotationally symmetric as-
phere. In order to minimize the re-

quired stroke of the FTS, the blanks
were positioned at a large off-axis dis-
tance and angle, and the axis of the
FTS was not parallel to the axis of the
spindle of the SPDT machine. The
spindle was rotated at a speed of 120
rpm, and the maximum FTS speed was
8.2 mm/s. 

In the second diamond-machining
method, the desired mirror surface is
generated by raster fly-cutting on a mul-
tiaxis machine, all three Cartesian axes
of which are actuated simultaneously.
The diamond tool cuts through a mirror
blank in a “down milling” mode with
toric cutter compensation. In the origi-
nal application, the fly-cut radius was 63
mm, the tool nose radius was 10 mm,
and the finish cut lasted 16 hours.
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An investigational method of improv-
ing the performance of a fuel cell that
contains a polymer-electrolyte mem-
brane (PEM) is based on the concept of
roughening the surface of the PEM,
prior to deposition of a thin layer of cat-
alyst, in order to increase the
PEM/catalyst interfacial area and
thereby increase the degree of utiliza-
tion of the catalyst. The roughening is
done by means of laser ablation under
carefully controlled conditions. Next,
the roughened membrane surface is
coated with the thin layer of catalyst
(which is typically platinum), then sand-
wiched between two electrode/catalyst
structures to form a membrane/ele c  t  -
rode assembly.

The feasibility of the roughening
technique was demonstrated in experi-
ments in which proton-conducting
membranes made of a perfluorosul-
fonic acid-based hydrophilic, proton-
conducting polymer were ablated by use
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Figure 1. This Scanning Electron Micrograph shows portions of a PEM before and after roughening by
laser ablation.
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