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Summary 

We measured shear thinning, a viscosity decrease ordinarily 
associated with complex liquids such as molten plastics or 
ketchup, near the critical point of xenon. The data span a wide 
range of dimensionless shear rate: 10–3 < τγ  < 700, where γ  
is the shear rate and τ is the relaxation time of critical 
fluctuations. As predicted by theory, shear thinning occurred 
when τγ  > 1. The measurements were conducted aboard the 
Space Shuttle Columbia to avoid the density stratification 
caused by Earth’s gravity. 

Introduction 
Both oil in a car engine and paint on a paintbrush need 

viscosity control. Sliding engine parts sometimes shear the 
intervening oil layer fast enough to decrease the viscosity of 
the oil’s polymer additives, and such shear thinning is bad for 
the engine. Conversely, brushing a well-engineered paint onto 
a wall temporarily decreases the paint’s viscosity, and shear 
thinning helps to spread the paint. In general, shearing any 
fluid fast enough to distort its microscopic structure will 
change the viscosity. Shear thinning, a decrease in viscosity 
with increasing shear rate, is common in complex fluids from 
molten plastics to ketchup; such fluids have microscopic struc-
tures that relax slowly in comparison with the shear rate .γ  
Here, we report the first observation of shear thinning in a 
simple fluid. A viscometer measured the drag on a delicate 
nickel screen as it oscillated in a sample of xenon at its critical 
density. Upon approaching the liquid-vapor critical point 
(Fig. 1), the relaxation time τ of the critical fluctuations 
increased by orders of magnitude, and shear thinning occurred 
when τγ  > 1.  

Predictions of shear thinning usually rely on a detailed 
model of the molecules and their interactions. In contrast, the 
theory for viscosity near critical points (Refs. 1 to 10) assumes 
only that the interactions are short ranged and that the 
viscosity is dominated by the microscopic fluctuations that 

occur in all fluids. Because of this generality, an under-
standing of how distorted fluctuations cause shear thinning 
may lead to general insights for rheology, which describes the 
dependence of viscosity on shear rate and frequency. 

The critical fluctuations have a size ξ that increases as a 
fluid approaches its liquid-vapor critical point. Coupling 
between fluctuations of density and velocity causes the vis-
cosity η to increase as the power law .nxξ∝η  The viscosity 
increase is small because the universal exponent xη = 0.069 is 
small (Refs. 10 and 11). However, τ has a much larger 
increase because it is nearly proportional to the volume 
of a fluctuation ξ3. More precisely, τ varies as follows 
(Ref. 3): 
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which increases as the temperature T approaches the critical 
temperature Tc. Xenon at its critical density (ρc = 1.1 g/cm3) is 
a monatomic fluid with a convenient critical temperature of 
Tc = 17 °C. In Equation (1), the time-constant amplitude τ0 is 
tiny (1 ps), but we achieved a relaxation time as large as 
τ = 1 s during the microgravity measurements at 0.19 mK 
above the critical temperature. 

Shear thinning occurs when γ  exceeds 1/τ. A related 
phenomenon, viscoelasticity, occurs at small shear rates when 
the shearing is oscillatory at a frequency f that exceeds 1/τ. 
The first accurate measurement of near-critical viscoelasticity 
was made by a previous microgravity experiment, Critical 
Viscosity of Xenon (CVX, Ref. 11). The present experiment, 
CVX–2, measured shear thinning by driving the same vis-
cometer to amplitudes 30 times larger. This report summarizes 
the key results of the CVX–2 experiment. The interested 
reader can find a detailed description of the experiment and 
the data analysis in Reference 12. A list of symbols used in 
this report is presented in the appendix. 



NASA/TP—2009-215499  2

 
 

In general, the viscosity ( )τγτη ,f  depends on both the 
dimensionless frequency fτ and dimensionless shear rate τγ , 
but so far theory only handles viscoelasticity in the limit of 
zero shear rate, ( )0,τη f , and shear thinning in the limit of zero 
frequency, ( )τγη ,0 . Therefore, we analyzed our data by 
approximating xenon’s constitutive relation by the product of 
those two limiting cases: 
 

 ( ) ( ) ( )
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η
τγη

τη−τγτη ff  (2) 

 
The viscoelastic behavior ( )0,τη f  is known from theory 
(Ref. 6) and has been confirmed by experiment (Ref. 11). The 
shear-thinning behavior, 
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with p = xη/(3 + xη) = 0.022, is based on an analogy between 
near-critical fluids and polymer fluids: Douglas (Ref. 13) 
pointed out that the empirical Carreau-Yasuda relation 
(Ref. 14) used for many polymer fluids is consistent with the 
results from the renormalization group theory for near-critical 
fluids in the limits of small and large shear rates. 

The shear-thinning function (Eq. (3)) also works at 
intermediate shear rates, but theory and experiment had 

disagreed about the value of the shear-rate scale factor Aγ 
(Ref. 15). The value Aγ = 0.121, which describes Oxtoby’s 
numerical results from mode-coupling theory (Ref. 1),  
is twice the value from Hamano et al.’s measurements, 
Aγ = 0.067±0.007 (Ref. 16). Like all previous measurements of 
near-critical shear thinning, Hamano et al. measured a binary 
liquid mixture instead of a monatomic fluid. However, their 
results are particularly valuable because they used a Couette 
viscometer to create a uniform shear field. 

Experiment and Analysis 
The density of a fluid near its liquid-vapor critical point is 

enormously sensitive to gradients of pressure and temperature. 
Shear thinning cannot be observed in quiescent xenon on 
Earth because the gradient of pressure caused by Earth’s 
gravity stratifies the density so that the layer near the critical 
density is too thin to be studied in a viscometer. To reduce 
gravitational stratification, the measurements were conducted 
in microgravity aboard Space Shuttle Columbia in 2003 during 
the ill-fated mission STS–107. Much of the data was down-
linked during the flight, and the unexpected recovery of the 
hard disk drive from Columbia’s debris made 99 % of the 
data available. 

To limit temperature gradients, the 11-cm3 xenon sample 
was sealed into a thick-walled copper cell (Fig. 2) that was 
surrounded by three temperature-controlled aluminum shells. 
That arrangement limited temporal variations of temperature 
to 10 μΚ and spatial variations to less than 0.2 μK. The 
viscosity was determined by measuring the drag on an 
oscillating rectangle of nickel screen. Its small mass (1 mg) 
made it insensitive to vibrations of the space shuttle’s 
structure. One of the screen wires was extended out of the 
rectangle and soldered to a stiff yoke to act as a torsion spring. 
The yoke supported the screen between four electrodes placed 
parallel to the screen. 

Oscillating voltages applied to the electrodes generated a 
calculable torque on the screen that caused it to oscillate much 
like a child’s seesaw at frequencies of f = 1, 2, 3, or 5 Hz.  
The applied torque plus the opposing hydrodynamic torque 
determined the oscillating screen’s angular displacement, 
which was detected by the unbalance of a capacitance bridge. 
We obtained the hydrodynamic torque from the ratio of the 
Fourier transforms of torque and displacement. See 
Reference 11 for more details about the viscometer. 

Attention was focused on the wires with the largest shear 
rate, specifically the wires located at both tips of the oscil-
lator. Because the angular displacements were less than 
0.05 radians, the tips’ motion was approximated as a linear 
displacement of amplitude x0. The hydrodynamic drag force 
on the tip wire, ( )τγ,,0 fxF , which depended on x0 and f as 
well as on the dimensionless shear rate τγ , was deduced  
from the hydrodynamic torque on the entire oscillator and its 
derivative with respect to amplitude. 
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The qualitative signature of shear thinning near Tc was a 
nonlinear dependence of the drag force F as a function of the 
oscillator’s amplitude x0; the drag decreased as the amplitude 
increased. However, this signature was superimposed on an 
increase in the drag due to the convective term of the Navier-
Stokes equation ( )[ ] ,ν∇•νρ  which is not related to critical 
fluctuations. Therefore, we measured just the convective 
contribution to F in the Newtonian fluid far from Tc and 
extrapolated its value into the non-Newtonian region near Tc. 
Dividing each non-Newtonian value of F by the extrapolated 
Newtonian value removed the Navier-Stokes nonlinearity and 
its noncritical dependence on x0. Additional measurements 
made at a small amplitude xsmall were used to remove the  
effect of viscoelasticity and its dependence on f. The resulting 
force ratio, 
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was assumed to depend only on the dimensionless shear 
rate τγ . 
 
 

Results and Discussion 
Figure 3 shows the measured magnitude and phase of the 

force ratio ( ).τγγC  The shear rate varies by a factor of 1.8 or 
more, and the frequency varies by a factor of 5, while as 
predicted by theory, the data vary only with dimensionless 
shear rate. At large dimensionless shear rates, the force 
decreased by as much as 1 % below the force in the absence of 
shear thinning. Although small, the decrease is remarkable 
because it indicates shear thinning of a monatomic fluid. 

Figure 3 also shows the results from computational fluid 
dynamics (CFD) calculations, which had two purposes. The 
first purpose was to estimate the shear rate at the surface of the 
experimental oscillator. The second purpose was to estimate 
the force ratio ( )τγγC  in non-Newtonian xenon. To do so, the 

CFD calculations used Equation (3) with the value Aγ ≡ 0.067, 
which describes Hamano et al.’s experimental data. Visco-
elasticity was ignored because the assumed constitutive rela-
tion of Equation (2) causes viscoelasticity to cancel out of the 
force ratio of Equation (4). 

The calculations yielded the force on a circular cylinder 
oscillating perpendicular to its axis. The fluid density and 
viscosity were matched to the experimental xenon, and the 
cylinder diameter was matched to the effective hydrodynamic 
diameter of the screen wires (Ref. 11), which had a roughly 
rectangular cross section of 8 by 30 μm. The circular cross 
section used by the CFD calculations allowed a direct check 
against Stokes’ analytical result (Refs. 17 and 18) at small 
amplitudes. At both small and large amplitudes, the CFD 
calculations approximated the response of the experimental 
oscillator in the Newtonian xenon far from Tc. 

There is no accurate analytical expression for ( )τγγC , the 
force ratio of a cylinder oscillating in a shear-thinning fluid. 
Therefore, we derived an approximate expression for the real 
quantity ( )τγ− γC1  and generalized it with two free param-

eters to obtain the fitting function 
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At large shear rates, the empirical parameter αmag allows for 
errors due to the approximate nature of Equation (5) 
(Ref. 12). At small shear rates, Equation (5) reduces to the 
simple expression 
 
 ( ) τγβ−τγ− γ mag

magFit ~1 pC  (6) 
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Equation (6) has the same form as Equation (3) in the limit of 
small shear rate; its only free parameter βmag is thus directly 
sensitive to the shear-rate scale factor Aγ. 

Equation (5) was fit to values of ( )τγ− γC1  for both the 

CFD data sets and the experimental data sets. Figure 4 shows 
that the fitted values of βmag have little frequency dependence 
but are larger than the values fit to the CFD results. The ratio  
 

 
 
between the measured and CFD values of βmag yields the result 
for Aγ in Equation (3): 
 
 029.0137.0 ±=γA  (7) 
 

This value, obtained at the liquid-vapor critical point of 
xenon, agrees with Oxtoby’s mode-coupling result of 0.121. A 
remaining challenge is to explain the disagreement between 
the computational fluid dynamics and experimental results at 
the large shear rates shown in Figure 4. Further measurements 
as well as theoretical work will be needed before Equation (2) 
can be replaced by a constitutive equation that is accurate at 
large shear rates. 

Concluding Remarks 
Shear thinning, a viscosity decrease common in complex 

liquids, was observed for the first time in a simple monatomic 
fluid. The measurements were made possible by conducting 
the Critical Viscosity of Xenon – 2 experiment on the Space 
Shuttle Columbia. The measured shear-rate scale factor of 
0.137±0.029 is in agreement with Oxtoby’s mode-coupling 
result of 0.121. 
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Appendix—Symbols 
 
Aγ shear-rate scale factor 

( )τγγC  shear-thinning force ratio 

( )τγγ
magFitC  emprical analytical representation of the real part of ( )τγγC  

F hydrodynamic drag force 
f frequency 
fτ dimensionless frequency 
T temperature 
Tc critical temperature 
xn universal critical exponent for viscosity 
xsmall small amplitude oscillation 
x0 linear tip wire displacement 
αmag empirical fitting parameter  
βmag empirical fitting parameter  
γ  shear rate 
η viscosity 
ρc critical density 
τ relaxation time of critical fluctuations 
τ0 time-constant amplitude 
ξ fluctuation length 
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