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Control ReconfigurationControl Reconfiguration

 Purpose of Reconfigurable Control  / Why ?
 Handle Failures & Land Safely
 Continue on with Mission
 Buy More Time to Terminate Flight at a Better Location (UAV)

 Overall Controller Objective.
 Maintain consistent stable performance in the presence uncertainties and

unmodeled dynamics.

General Background / Concepts



Control ReconfigurationControl Reconfiguration

 Why Adaptive Control.
 Handles Uncertainties and unpredicted parameter deviations.
 Adaptive control is better than Robust Control w.r.t. slow varying parameters.

 Why Robust Control (Such as Robust LQR servo design)
 Handles fast varying parameters and unmodeled dynamics.
 Has good flight experience.

 Solution to Adaptive & Robust control issues.
 Merge Adaptive augmentation into a Robust Baseline Controller.

General Background / Concepts
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•Motivation / Problem Statement  {The Big Picture}
• Land a damaged airplane or, return to a safe ejection site.
• Or continue with mission

•General Goals & Objectives
• Flight evaluation of neural net software.
• Increased survivability in the presence of failures or aircraft damage.

• Increase your boundary of a flyable airplane.
• Increase your chances to see another day.
• Increase your chances to continue the mission.

Reconfiguration Flight Control Systems



Motivation, cont
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• Airplanes in the Past Have Landed with Major Failures.

• But possibly not as many safe landings as could have, with
adaptive control methods.

• Our Goal is to Increase the Survivability Region for the Pilot
without luck or high skill levels or when  the pilot is injured.
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  How do we Reconfigure the Controller (called H or K)

• Many ways to adapt to a failure or unknown Plant (G) parameters:
 Adaptation Methods:

 Non-Learning Methods:
 Robust Reconfiguration Methods.
 Fault detection & isolation.
 Use of smart actuators (Handles only B matrix failures).
 Reconfigurable Retrofit Architecture methods.

 Learning Methods:
 Use of Neural networks
 To many to list (such as RBF Radial Basis Function )

Flight Control??Flight Control??



• Two Types of Adaptive controllers
1. Direct Adaptive
2. Indirect Adaptive

• The Direct Adaptive Controller Works on the Errors.
• Needs a Reference Model to Generate P_err = (P_cmd-Psensor)
• The Neural Network “Directly” Adapts to P_err.
• Does not need to know the source of error.

• No Aero Parameter Estimation Needed
• No need for persistently exciting signals

• The Indirect Adaptive Works on Identifying the source of Error.
• Does Not Need a Reference Model.
• Needs to Identify the Aerodynamics that have changed! (PID)

• PID is Time Consuming and may not be correct.
• Needs persistently exciting inputs.

General Statements on Adaptive Controller



Model Reference Adaptive Control (MRAC)Model Reference Adaptive Control (MRAC)

 Plant: Actual Plant parameters (G) are unknown.
 Reference Model: Ideal response (ym) to cmd r (Use a Stable Reference Model).
 Adaptation Law: Is used to adjust controller (H): can be NNs.

Reference Model:
Closed Loop Sys

Plant (G)
r error 

Adaptive Law (NN)
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Servomechanism Design Methodology
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 Note :
 LQR Servo = LQR PI
Jammed or failed surface is treated
    as a disturbance to the system.
 Approach is simple to implement.

If this statement is true there
exist a closed-loop system
that is stable.



Servomechanism Design Methodology (cont.)

 Remarks:
 For any such control law, asymptotic tracking and

disturbance rejection are achieved; that is, the error
goes to zero.

 If the augmented system is controllable, the control
law can be conveniently found by applying the
linear quadratic regulator (LQR) approach to the
augmented system.

 After setting up the augmentation we now need to
solve for the gain (k, kc)
 Just use LQR.
 This setup allows for a LQR tracker solution.
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Servomechanism Design Methodology (cont.)

 Optimize the following cost function.
 Optimal linear-quadratic-regulator (LQR) problem.

 The algebraic Riccati equation

 And the optimal control is given by:
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Why Neural Networks?Why Neural Networks?

–Neural Networks are Universal Approximators.
–Minimizes a H2 norm.
–They permit a nonlinear parameterization of uncertainty.
–Why Radial Basis Functions (RBF):

–RBFs will de-activate when signal is outside “neighborhood”.
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 The output of a RBF network with K neurons:
             is the response of the kth hidden neuron for

input vector x.
             is the connecting weight of the output neuron.
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Neurons
1 Hidden layer with 4 Neurons and 2 Inputs



FailuresFailures
InvestigatedInvestigated

2 groups of failures are “common” among aircraft mishaps/crashes.

• Aerodynamic Failures or uncertainties (A Matrix problems / lost
aero surfaces, bent wings)
• Or Not well known aero terms due to modelling errors.

• Control Failures (B Matrix problems / jammed control surfaces)
• Right stab jammed at 8. deg from trim



Control Reconfiguration ResultsControl Reconfiguration Results

 Time History of Surface Failure ( B matrix)
 Failure = Right Stabilator Jammed.

 At time = 10 seconds / 8 deg from trim.
 At time = 30 seconds Failure goes away (crew fixed the failure).

 Neural Networks
 Neural Networks turned off for the first run.
 Neural Networks turned on for second run.
 Without Dead Zones.



Robust Model Reference Adaptive
Control Design
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Control Reconfiguration ResultsControl Reconfiguration Results

 Time History of Surface Failure ( B matrix)
 Failure = Right Stabilator Jammed.

 At time = 10 seconds / 8 deg from trim.
 At time = 30 seconds Failure goes away (crew fixed the failure).

 Neural Networks
 Neural Networks turned off for the first run.
 Neural Networks turned on for second run.
 With Dead Zones & 20% decrease in learning rates.
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• Conclusions & Remarks

 Method presented:
 Robust LQR Servomechanism design with Model Reference Adaptive Control

 Reference Model was a “health” aircraft.
 Used Radial Basis Function Neural Networks

 Results:
 LQR Servomechanism behaved well with a failure.
 Using the Neural Networks improved the tracking compared to not using the

neural networks.

 Lesson learned:
 Test the removal of the failure with Neural Networks active to ensure good

performance.
 The crew could fix the problems and you don’t want the adaptive system to go

unstable.

Control Reconfiguration Conclusions
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