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Control ReconfigurationControl Reconfiguration

 Purpose of Reconfigurable Control  / Why ?
 Handle Failures & Land Safely
 Continue on with Mission
 Buy More Time to Terminate Flight at a Better Location (UAV)

 Overall Controller Objective.
 Maintain consistent stable performance in the presence uncertainties and

unmodeled dynamics.

General Background / Concepts



Control ReconfigurationControl Reconfiguration

 Why Adaptive Control.
 Handles Uncertainties and unpredicted parameter deviations.
 Adaptive control is better than Robust Control w.r.t. slow varying parameters.

 Why Robust Control (Such as Robust LQR servo design)
 Handles fast varying parameters and unmodeled dynamics.
 Has good flight experience.

 Solution to Adaptive & Robust control issues.
 Merge Adaptive augmentation into a Robust Baseline Controller.

General Background / Concepts
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•Motivation / Problem Statement  {The Big Picture}
• Land a damaged airplane or, return to a safe ejection site.
• Or continue with mission

•General Goals & Objectives
• Flight evaluation of neural net software.
• Increased survivability in the presence of failures or aircraft damage.

• Increase your boundary of a flyable airplane.
• Increase your chances to see another day.
• Increase your chances to continue the mission.

Reconfiguration Flight Control Systems



Motivation, cont
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• Airplanes in the Past Have Landed with Major Failures.

• But possibly not as many safe landings as could have, with
adaptive control methods.

• Our Goal is to Increase the Survivability Region for the Pilot
without luck or high skill levels or when  the pilot is injured.
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  How do we Reconfigure the Controller (called H or K)

• Many ways to adapt to a failure or unknown Plant (G) parameters:
 Adaptation Methods:

 Non-Learning Methods:
 Robust Reconfiguration Methods.
 Fault detection & isolation.
 Use of smart actuators (Handles only B matrix failures).
 Reconfigurable Retrofit Architecture methods.

 Learning Methods:
 Use of Neural networks
 To many to list (such as RBF Radial Basis Function )

Flight Control??Flight Control??



• Two Types of Adaptive controllers
1. Direct Adaptive
2. Indirect Adaptive

• The Direct Adaptive Controller Works on the Errors.
• Needs a Reference Model to Generate P_err = (P_cmd-Psensor)
• The Neural Network “Directly” Adapts to P_err.
• Does not need to know the source of error.

• No Aero Parameter Estimation Needed
• No need for persistently exciting signals

• The Indirect Adaptive Works on Identifying the source of Error.
• Does Not Need a Reference Model.
• Needs to Identify the Aerodynamics that have changed! (PID)

• PID is Time Consuming and may not be correct.
• Needs persistently exciting inputs.

General Statements on Adaptive Controller



Model Reference Adaptive Control (MRAC)Model Reference Adaptive Control (MRAC)

 Plant: Actual Plant parameters (G) are unknown.
 Reference Model: Ideal response (ym) to cmd r (Use a Stable Reference Model).
 Adaptation Law: Is used to adjust controller (H): can be NNs.

Reference Model:
Closed Loop Sys

Plant (G)
r error 

Adaptive Law (NN)
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Servomechanism Design Methodology
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 Note :
 LQR Servo = LQR PI
Jammed or failed surface is treated
    as a disturbance to the system.
 Approach is simple to implement.

If this statement is true there
exist a closed-loop system
that is stable.



Servomechanism Design Methodology (cont.)

 Remarks:
 For any such control law, asymptotic tracking and

disturbance rejection are achieved; that is, the error
goes to zero.

 If the augmented system is controllable, the control
law can be conveniently found by applying the
linear quadratic regulator (LQR) approach to the
augmented system.

 After setting up the augmentation we now need to
solve for the gain (k, kc)
 Just use LQR.
 This setup allows for a LQR tracker solution.

cc
xkkxu +=

Control Law

e = r ! y" 0

U
DB

B

x

x

ACB

0A

x

x

cccc
c

!
"

#
$
%

&

'
+!

"

#
$
%

&
!
"

#
$
%

&

'
=

!
!

"

#

$
$

%

&
•

•

is  system augmented The



Servomechanism Design Methodology (cont.)

 Optimize the following cost function.
 Optimal linear-quadratic-regulator (LQR) problem.

 The algebraic Riccati equation

 And the optimal control is given by:
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Why Neural Networks?Why Neural Networks?

–Neural Networks are Universal Approximators.
–Minimizes a H2 norm.
–They permit a nonlinear parameterization of uncertainty.
–Why Radial Basis Functions (RBF):

–RBFs will de-activate when signal is outside “neighborhood”.
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Activation function



 The output of a RBF network with K neurons:
             is the response of the kth hidden neuron for

input vector x.
             is the connecting weight of the output neuron.
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Neurons
1 Hidden layer with 4 Neurons and 2 Inputs



FailuresFailures
InvestigatedInvestigated

2 groups of failures are “common” among aircraft mishaps/crashes.

• Aerodynamic Failures or uncertainties (A Matrix problems / lost
aero surfaces, bent wings)
• Or Not well known aero terms due to modelling errors.

• Control Failures (B Matrix problems / jammed control surfaces)
• Right stab jammed at 8. deg from trim



Control Reconfiguration ResultsControl Reconfiguration Results

 Time History of Surface Failure ( B matrix)
 Failure = Right Stabilator Jammed.

 At time = 10 seconds / 8 deg from trim.
 At time = 30 seconds Failure goes away (crew fixed the failure).

 Neural Networks
 Neural Networks turned off for the first run.
 Neural Networks turned on for second run.
 Without Dead Zones.



Robust Model Reference Adaptive
Control Design
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Control Reconfiguration ResultsControl Reconfiguration Results

 Time History of Surface Failure ( B matrix)
 Failure = Right Stabilator Jammed.

 At time = 10 seconds / 8 deg from trim.
 At time = 30 seconds Failure goes away (crew fixed the failure).

 Neural Networks
 Neural Networks turned off for the first run.
 Neural Networks turned on for second run.
 With Dead Zones & 20% decrease in learning rates.
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• Conclusions & Remarks

 Method presented:
 Robust LQR Servomechanism design with Model Reference Adaptive Control

 Reference Model was a “health” aircraft.
 Used Radial Basis Function Neural Networks

 Results:
 LQR Servomechanism behaved well with a failure.
 Using the Neural Networks improved the tracking compared to not using the

neural networks.

 Lesson learned:
 Test the removal of the failure with Neural Networks active to ensure good

performance.
 The crew could fix the problems and you don’t want the adaptive system to go

unstable.

Control Reconfiguration Conclusions
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