## Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

M. Singh<sup>1</sup> and R. Asthana<sup>2</sup>

<sup>1</sup>Ohio Aerospace Institute, MS 106-5, Ceramics Branch NASA Glenn Research Center, Cleveland, OH 44135

<sup>2</sup>Department of Engineering and Technology University of Wisconsin-Stout, Menomonie, WI 54751

## Abstract

Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

Keywords: C/C composite, Cu-clad-Mo, joining, microstructure, thermal management







































| Composite            | Metallic Substrate                        | Braze                                                         | Bonding                               |
|----------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------|
| C-C <sup>1,6</sup>   | Ti                                        | Silcoro-75 <sup>8</sup> , Palcusil-15 <sup>8</sup> ,<br>Cusil | Weak                                  |
| C-C <sup>2</sup>     | Ti                                        | Ticuni, Cu-ABA, Ticusil                                       | Good                                  |
| C-C <sup>1,6</sup>   | Ti and Hastealloy                         | MBF-20 <sup>8</sup> , MBF-30 <sup>8</sup>                     | Good (Ti), Fair<br>(Hastealloy)       |
| C-C <sup>3,4,5</sup> | Ti, Cu-clad Mo <sup>9</sup> , Inconel 625 | Ticusil <sup>7</sup>                                          | Good <sup>4</sup> , Fair <sup>5</sup> |
| C-C <sup>3,4,5</sup> | Cu-clad Mo <sup>9</sup>                   | Cusil-ABA <sup>7</sup>                                        | Good                                  |
| C-C <sup>3,4,5</sup> | Ti and Inconel 625                        | Cusil-ABA <sup>7</sup>                                        | Good                                  |
|                      | 11                                        |                                                               |                                       |

www.nasa.gov



















