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Abstract

Woven SiC/SiC composites represent a broad family of composites 
with a broad range of properties which are of interest for many 
energy-based and aero-based applications. Two important 
features of SiC/SiC composites which one must consider are the 
reinforcing fibers themselves and the fiber-architecture they are 
formed into. The range of choices for these two features can 
result in a wide range of elastic, mechanical, thermal, and 
electrical properties. In this presentation, it will be demonstrated 
how the effect of fiber-type and fiber architecture effects the 
important property of “matrix cracking stress” for slurry-cast 
melt-infiltrated SiC matrix composites, which is often considered 
to be a critical design parameter for this system of composites.
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CMC Potential Applications

• Aero hot-section parts
• Hypersonic TPS and 

control structures
• Auto and land-based 

gas turbine 
components

• Nuclear containment 
for future generation 
reactors

Combustor 
liner

Vanes Blades Flaps and Seals

Rocket nozzles

Courtesy of David Marshall, Teledyne
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Critical Issues for Composite Designer

• The range of composites available
– Fiber-type
– Fiber architecture
– Interphase
– Matrix

• Cost
• Performance

– Models
– Property database
– Reliability

• Manufacturability

Therefore, it is essential that 
constituent-based performance 
relationships are established so 
that the composite designer can 
weigh cost vs performance vs 
manufacturability issues and 
capabilities for the range of 
composites available.

There is much to be done. However, much is known which should 
serve as a good starting point for future work.
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Outline

• The effect of fiber-type on woven composite 
mechanical properties (Slurry Cast Melt 
Infiltrated Matrix)
– As the fiber goes, so goes the composite

• Fiber architectures that enable
– Understanding the effect of fiber architecture in 

order to fabricate the best combination of 
composite properties

• Issues, Implications and Conclusions
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The Effect of Fiber-Type on 2D Woven Melt- 
Infiltrated SiC-matrix Composites

Based on IGTI publications in 2004 and 2007 and a paper in process with 
International Journal of Applied Ceramic Technology (V. Pujar coauthor)
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Fiber Comparison 
1000 hr Use Temperature (σf = 500 MPa)

From, J.A. DiCarlo and H.M. Yun, Handbook of Ceramic Composites, Chapter 2 (Kluwer: NY, 2005)

Oxides SiC-based
Best of small 
diameter = Syl-iBN

Sylramic-iBN:

Polycrystalline B- 
containing SiC fiber 
(Sylramic, 
processed by COIC) 
subjected to post- 
process nitrogen 
containing heat 
treatment at high 
temperature (> 
1700oC).

Removes B and 
improves creep- 
rupture properties
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Fabric

Low Temp. 
CVI Si-BN
Interphase
Infiltration

CVI SiC
Matrix

Infiltration

MI SiC/SiC

Weaving

Reactor

Reactor

Silicon Melt
Infiltration

Furnace

CVI Preform

Slurry Cast SiC MatrixSiC/SiC 
preform

Standard Slurry Cast Melt-Infiltrated (MI) 2D&3D 
Woven Composites (GEPSC, Newark Delaware)

For Syl-iBN, 
special treatment 
prior to CVI Si-BN
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2D Woven MI SiC/SiC Composites Evaluated
Panel Fiber-

type 
Avg 
fiber 

radius,  
μm 

# of 
fibers 
per 
tow 

epcm Avg specimen 
thickness, mm 

Average f 
 [# specimens] 

(scatter) 
 

Average 
fBN

* 
 

Average  
fCVI SiC

* 
 

SYLiBN-1 
(223) 

Sylramic-
iBN 

5 800 7.9 2.26 [11] 
(+0.07/-0.19) 

0.352 [11] 
(+0.014/-0.004) 

0.114 0.286 

SYLiBN-2 
(224) 

Sylramic-
iBN 

5 800 7.9 2.05 [10] 
(+0.14/-0.12) 

0.386 [10] 
(+0.026/-0.022) 

0.157 0.287 

SYLiBN-3 
(226) 

Sylramic-
iBN 

5 800 7.9 1.93 [10] 
+ 0.09 

0.410 [10] 
(+0.02/-0.018) 

0.134 0.270 

         
SA-1 (243) Tyranno 

SA3 
5 800 7.1 2.05 [7] 

(+0.06/-0.12) 
0.348 [7] 

(+0.02/-0.01) 
0.120 0.281 

SA-2 (244) Tyranno 
SA3 

5 800 7.1 1.97 [5] 
(+0.04/-0.05) 

0.362 [5] 
(+0.008) 

0.126 0.281 

SA-3 (246) Tyranno 
SA3 

5 800 7.1 2.15 [10] 
(+0.05/-0.08) 

0.332 [10] 
(+0.006/-0.004) 

0.098 0.274 

         
HN (94) Hi-

Nicalon 
6.85 500 7.1 3.05 [7] 

(+0.11/-0.13) 
0.274 [7] 

(+0.012/-0.01) 
0.039 0.227 

         
Z-1 (132) Tyranno 

ZMI 
5.5 800 8.7 3.75 [9] 

+0.06 
0.281 [9] 

(+0.004/-0.006) 
0.082 0.227 

Z-2 (137) Tyranno 
ZMI 

5.5 800 8.7 3.62 [4] 
(+0.12/-0.14) 

0.292 [4] 
(+0.01/-0.01) 

0.072 0.198 

         
HNS-1 [6] Hi-

Nicalon S 
6.5 500 7.1 2.49 [7] 

(+0.04/-0.09) 
0.302 [9] 

(+0.012/-0.004) 
0.04 0.25 

HNS-2 [6] Hi-
Nicalon S 

6.5 500 7.1 2.17 [9] 
(+0.08/-0.12) 

0.348 [9] 
(+0.020/-0.018) 

0.04 0.21 

 

All fiber fractions related to 
architecture and thickness

f = 2*(Nply Nf ) (epcm/10) (πRf
2) / t 
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2D Woven MI SiC/SiC Composites: Properties
Panel Avg. E, GPa 

[#RT spec] 
(scatter) 

 

Avg. UTS, 
MPa  

[# specimens] 
(scatter) 

Avg. ε, % 
[# specimens] 

(scatter) 
 

Avg. Stress on 
Fibers, GPa 
[#RT spec] 

(scatter) 
 

0.005% 
Offset 
Stress, 
MPa 

1st AE 
Event 
Stress, 
MPa 

1st Loud 
AE 

Event 
Stress, 
MPa 

AE 
Onset 
Stress, 
MPa 

Residual 
stress, 
MPa 

SYLiBN-
1 (223) 

247 [3] 
(+0.007/-0.006) 

361 [3] 
(+36/-32) 

0.35 [3] 
(+0.04/-0.06) 

1997 [2] 
(+ 79/-143) 

194 [3] 
(+ 6/- 9) 

150 [2] 
+ 3 

170 [2] 
+ 2 

192 [2] 
+ 2 

-60 [3] 
+ 7 

SYLiBN-
2 (224) 

271 [2] 
(+ 12) 

465 [2] 
+ 37 

0.47 [2] 
+ 0.03 

2368 [2] 
+ 75 

181 [2] 
+ 4 

131 [2] 
+ 1 

142 [2] 
+ 12 

189 [2] 
+ 16 

-60 [2] 
+ 10 

SYLiBN-
3 (226) 

238 [1] 444 [1] 0.45 [1] 2210 [1] 176 [1] 113 [1] 155 [1] 155 [1] -45 [1] 

          
SA-1 
(243) 

254 [1] 358 [1] 0.33 [1] 2000 [1] 152 [1] 117 [1] 141 [1] 145 [1] -20 [1] 

SA-2 
(244) 

236 [1] 372 [1] 0.34 [1] 2047 [1] 178 [1] 117 [1] 117 [1] 138 [1] -15 [1] 

SA-3 
(246) 

230 [1] 334 [1] 0.30 [1] 1978 [1] 178 [1] 113 [1] 125 [1] 135 [1] -30 [1] 

          
HN (94) 244 [7] 

(+43/-31) 
311 [7] 

(+17/-10) 
0.79 [7] 

(+0.12/-0.04) 
2272 [7] 

(+208/-141) 
126 [6] 
(+4/-5) 

95 [6] 
(+5/-8) 

109 [6] 
(+9/-5) 

114 [6] 
(+12/-8) 

-4 [6] 
(+7/-8) 

          
Z-1 (132) 213 [4] 

(+ 5/-3) 
279 [3] 
(+ 9/- 6) 

0.95 [3] 
(+0.04/-0.03) 

1973 [4] 
(+66/-35) 

111 [4] 
(+7 /-6) 

60 [4] 
(+17/-18)

67 [4] 
(+14/-16)

85 [4] 
(+10/-15) 

+12 [4] 
(+5/-9) 

Z-2 (137) 202 [4] 
(+ 5/- 3) 

261 [4] 
(+12/- 6) 

0.83 [4] 
(+0.02/-.0.03) 

1794 [4] 
(+49/-53) 

107 [4] 
(+ 5/- 4) 

64 [4] 
(+11/-9) 

74 [4] 
(+18/-13)

83 [4] 
(+11/-14) 

+12 [4] 
(+8/-7) 

          
HNS-

1[6] 
262 [1] 341 [1] 0.63 [1] 2278 [1] 154 [1] 80 134 150 -20 

 
HNS-

2[6] 
232 [1] 412 [1] 0.60 [1] 2245 [1] 147 [1] 85 115 135 -20 

 

Focus on matrix 
cracking strength: 

strength-reduction due to 
oxidation ingress 
(interphase and 

fiber/matrix oxidation 
resulting in strong 
bonding of fibers)
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Modal Acoustic Emission of CMCs
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•Locate damage events and failure events Δt
•Monitor stress(or time)-dependent matrix cracking Cumulative AE Energy
•Identify damage sources, e.g. matrix cracks, fiber breaks Frequency
•Measure stress(or time) dependent Elastic Modulus Speed of sound
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Room Temperature Stress Strain Behavior

• Polycrystalline SiC fibers have higher residual compressive 
stress, higher E, and higher nonlinear stress

• Lower E SiC-based fibers (HN and ZMI) have larger strains to 
failure
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Acoustic Emission Activity
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Convert composite stress to the stress in the 
composite “outside” the load-bearing minicomposite
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Benefits of “minimatrix” Approach

( ) ( ) thi
iic

c
kingMatrixCracc f

EfE
EMPa

σσ −−
−

•
=− min

minmin

1
95

Can model stress-strain behavior of most 2D woven 
MI composites (w/similar tow size)1

2

ε= σ/Ec + αδρc /Ef (σ
 

+ σth ) 
after Pryce and Smith; Curtin et al.

δ
 

= α r (σ
 

+ σth ) / 2τ
α = (1-f) Em / f Ec

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2
Strain, %

St
re

ss
, M

Pa

SA
fo = 0.18 & 0.14 [x]

SYL-iBN
fo = 0.20 & 0.18

ZMI-1
fo = 0.14

E = 210 GPa

HN
fo = 0.14

E = 220 GPa

Hysteresis Loops Removed

Circles indicate model 
(based on τ and measured 

final crack density)

Can establish a simple design stress: AE onset stress



CMCEE, November 2008

Minimatrix parameter compared to creep run-out at 
1200 and 1315oC
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1200oC: Good correlation between 
σc-Matrix-Cracking and run-out

1315oC: σc-Matrix-Cracking 
overestimates run-out condition
(creep effects become dominant)
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Fiber Architectures that Enable Processing and 
Properties for Desired Components

Approach Process a wide variety of fiber-architectures 
in order to (1) determine the effect of architecture on 
composite properties for the purpose of tailoring 
properties in desired directions and (2) determine if these 
architectures could be successfully fabricated in order to 
anticipate processing further architecture modifications.

Based on paper in process with Journal of the American Ceramic Society (J.A. 
DiCarlo, J.D. Kiser, and H.M. Yun co-authors)
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Sylramic-iBN Based Composites for Applications > 1300oC
• Sylramic-iBN = NASA derived heat treatments of Sylramic fiber
• Excellent creep resistance and thermal stability (up to 1800oC)

– Best mechanical performance at high temperatures
– In-situ grown (tailorable) BN-based interphase composition
– Enables high temp processing routes not possible with other fiber-types, 

usually at temperatures well above the application use temperature!
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Tailoring Cracking Behavior with Fiber Architecture 
(Syl-BN MI Composites)

• A variety of architectures are being studied for the 
Syl-iBN MI system to determine effect of fiber 
architecture and fiber content on matrix cracking
– 2D five harness satin with different tow ends per inch

• Standard composite (N24A) = 8 layers of balanced 7.9 epcm 
(20 epi)

– 2D five harness satin with different tow sizes
– 3D orthogonal with different Z fibers – balanced and 

unbalanced in X and Y direction
– Layer to layer angle interlock
– Through the thickness angle interlock (with low Y fiber 

content) ≅ Unidirectional composite
– 2D five harness satin with high tow ends per inch in X 

direction and rayon in Y direction ≅ Unidirectional 
composite
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Some 
Cross- 
Sections

5HS UNI

AI UNI

3DO-R

3DO-Z

LTL AI

Braid

2D 5HS
N24A
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Determination of Fiber Volume Fraction
fo = fraction of fibers that bridge a matrix crack 

(0 = loading direction), including fibers at 
an angle, e.g., a braided architecture

tw
RNNN

A
AN

f fplytowstowfply

c

ff
o

2
// π

==

t
RepcmNN

f ftowfply
o 10

2
/ π

=

Nf = total number of fibers in the 
cross-section of the tensile 
specimen, 

Af = area of a fiber

Ac = cross-sectional area of the 
tensile specimen (tw) 

Nply = # of plys or layers through 
the thickness, 

Nf/tow = # of fibers per tow (800 for 
Syl-iBN), 

Ntows/ply = number of tows per ply 
or layer

Rf is the fiber radius (5 mm or 
0.005 mm for Syl-iBN). 

epcm = tow ends per cm

wepcmN plytows 10/ =
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Composite Description Thickness 
(mm)

Fiber fraction, fo, 
in load direction

E 
(GPa)

UTS 
(MPa)

5HS UNI (1) Unbalanced five-harness satin; fill direction = Sylramic at 17 epcm; 
warp direction = low epcm rayon 

2.17 0.50 335 >818

AI UNI (2) Unbalanced through-the-thickness angle interlock; fill direction = 
Sylramic at 11 epcm, 7 layers; warp direction = low epcm ZMI and 
rayon

2.0 0.23 305 + 4 >472

3DO-Un-R 
(2)

Unbalanced 3D orthogonal; Y (loading) direction = Sylramic at 9.8 
epcm, 7 layers; X direction = Sylramic at 3.9 epcm; Z direction = 
Rayon

1.53 0.28 275 + 9 >575

3DO-Un-Z 
(2)

Unbalanced 3D orthogonal; Y (loading) direction = Sylramic at 9.8 
epcm, 7 layers; X direction = Sylramic at 3.9 epcm; Z direction = ZMI

1.58 0.27 262 + 9 596

LTLAI (1) Layer-to-layer angle interlock; 5.5 epcm, 3 layers 0.96 0.10 125 204
2D 5HS [6] Standard balanced 2D five-harness satin; ply lay up; number of plys 

varied from 4 to 8; epcm varied from 4.9 to 8.7.
1.5 to 2.2 0.12 to 0.2 220 to 

290
See [6]

2D 5HS [6] 
(double tow)

Balanced 2D five-harness satin ply lay up; two tows woven together at 
3.9 epcm, 8 plys.

2.1 0.19 197 480

Braid [8] Triaxial braid; double tow; -67/0/67 – tested in hoop orientation so 
fibers are oriented + 23o to testing axis, 4 layers

0.26 250 352

3DO-Bal-R-Y 
[7]

Nearly balanced 3D orthogonal; Y (loading) direction = Sylramic 
single tow at 7.9 epcm,8 layer; X direction = Sylramic double tow at 
3.9 epcm; Z fiber = Rayon 

1.95 0.20 238 336

3DO-Bal-Z-Y 
[7]

Nearly balanced 3D orthogonal; Y (loading) direction = Sylramic 
single tow at 7.1 epcm,8 layer; X direction = Sylramic double tow at 
3.9 epcm; Z fiber = ZMI

2.05 0.17 248 317

3DO-Bal-Z-X 
[7]

Same as 3DO-Bal-Z except oriented in the X (fill) direction (7 layer) 2 0.18 205 322

Description of Different Architecture Composites
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RT 0o σ/ε
 

of Different Architecture 
Syl-iBN MI Composites
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0o AE of Different Architecture Syl-iBN MI 
Composites
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Calculating the unbridged ⊥
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Effect of fo and max ⊥
 

tow size on Matrix Cracking Stress
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1315oC Creep-Rupture of Different Architecture Composites
• Significant improvement (~ 100 MPa) in creep-rupture properties 

for unbalanced fiber architectures with high fiber fraction in loading 
direction over standard 2D five-harness composites
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Design Stress Maps Can Be Constructed for 
Different Architectures and Fiber-Content
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Implications and Conclusions
• Simple, yet robust relationships for stress-strain 

behavior and elevated temperature life based on 
general acoustic-emission derived matrix cracking 
relationship 
– Appears to be representative at least up to 1200oC

• High temperature creep rupture properties controlled 
by fiber creep rupture properties

• Fiber architecture can be engineered to maximize 
stress carrying ability in desired direction(s)
– Matrix cracking stress dictated by fiber volume fraction and 

the size of the largest perpendicular-to-stress minicomposite
– Simple empirical relationship derived to account for effect of 

architecture on matrix cracking strength
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