NASA/TM-2008-215436

Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

Jennifer C. Xu and Gary W. Hunter Glenn Research Center, Cleveland, Ohio

Dorothy Lukco ASRC Aerospace Corporation, Cleveland, Ohio

Chung-Chiun Liu Case Western Reserve University, Cleveland, Ohio

Benjamin J. Ward Makel Engineering Inc., Chico, California

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected

papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to *help@ sti.nasa.gov*
- Fax your question to the NASA STI Help Desk at 301–621–0134
- Telephone the NASA STI Help Desk at 301–621–0390
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320

Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

Jennifer C. Xu and Gary W. Hunter Glenn Research Center, Cleveland, Ohio

Dorothy Lukco ASRC Aerospace Corporation, Cleveland, Ohio

Chung-Chiun Liu Case Western Reserve University, Cleveland, Ohio

Benjamin J. Ward Makel Engineering Inc., Chico, California

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

Acknowledgments

The assistance of Drago Androjna (Retired from Sierra Labo, Inc.) in gas testing and the support of NASA Aviation Safety Program, and the Space Fire Detection and Integrated Vehicle Health Monitoring Projects are greatly appreciated.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

Jennifer C. Xu and Gary W. Hunter National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

> Dorothy Lukco ASRC Aerospace Corporation Glenn Research Center Cleveland, Ohio 44135

Chung-Chiun Liu Case Western Reserve University Cleveland, Ohio 44106

> Benjamin J. Ward Makel Engineering, Inc. Chico, California 95973

Abstract

Carbon dioxide (CO_2) is one of the major indicators of fire and therefore its measurement is very important for low-falsealarm fire detection and emissions monitoring. However, only a limited number of CO₂ sensing materials exist due to the high chemical stability of CO_2 . In this work, a novel CO_2 microsensor based on nanocrystalline tin oxide (SnO₂) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO₂ based CO₂ microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: $SnO_2 = 1$: 8 (molar ratio), the resistance of the sensor has a linear response to CO₂ concentrations for the range of 1 to 4% CO₂ in air at 450 °C. This approach has demonstrated the use of SnO₂, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

Introduction

Carbon dioxide (CO₂) gas is one of the most challenging gas species to detect due to its high chemical stability. However, there is a significant need for CO₂ sensors for aerospace and commercial applications, especially for low powered microsensors. These applications include low-falsealarm fire detection which detect chemical species indicative of a fire (e.g., CO and CO₂) (ref. 1), as well as for environmental and emissions monitoring (ref. 2). Due to the stable chemical properties of CO₂ gas, only a limited number of CO₂ sensing materials exist. Most existing CO₂ sensors are bulky in size and involve complicated fabrication processes (ref. 3 and 4). The high power consumption for the bulky CO₂ sensor is also a significant issue which needs to be addressed. While actively working on miniaturizing CO_2 sensors using existing solid electrolyte sensing material (refs. 2, 5, and 6), we have also been aggressively exploring new CO_2 sensing materials. A novel CO_2 sensing material, nanocrystalline tin oxide (SnO₂) doped with copper oxide (CuO) has been successfully demonstrated for CO_2 detection. Contrary to traditional electrochemical-based CO_2 sensors, which involve a multiple-electrolyte structure (refs. 2 to 6) and are hard to miniaturize, the new sensing material is a solid-state resistorbased CuO and SnO₂ mixture allowing straightforward fabrication of the CO_2 microsensor.

Experimental

Sensor Fabrication

The CuO-SnO₂ nanomaterial-based CO₂ microsensors were fabricated utilizing the following process: First, platinum interdigitated electrodes (30 µm wide fingers and spacing) were microfabricated on a quartz substrate (250 µm in thickness) using photolithography and thin-film sputtering. Then, SnO₂ sol gel was synthesized through a water-based solgel process using tin chloride (SnCl₄) as a precursor to react with ammonium hydroxide (NH₄OH) (ref. 7). Freshly deposited CuO was produced by reacting copper chloride (CuCl₂) with potassium hydroxide (KOH), followed by removal of excess potassium and chloride ions in the solution. The SnO₂ sol gel was then homogeneously mixed with freshly deposited CuO in different ratios. The mixture was drop deposited on the interdigitated electrode area (1.10 by 0.99 mm). Finally, the sensors were heated at 700 °C for 2 hr to convert the doped sol-gel mixture into a nanocrystalline sensing material, with particle diameters smaller than 20 nm.

Figure 1.—AutoCAD drawing of the sensor structure, with an interdigitated electrode area of 1.10 by 0.99 mm, and two electrode contacts located at opposite sides.

Figure 1 is a drawing of the interdigitated electrodes showing the size of the electrode area. A wafer of around 50 mm diameter can be used to fabricate up to 100 sensors.

Sensor Testing

The CO₂ microsensors fabricated with different CuO/SnO₂ ratios were tested in a chamber on a heating stage and connected via probes to resistance meters. They were operated by measuring the electrical resistances of the sensor in various gases at a flow rate of 4000 sccm at a temperature of 450 °C.

Results and Discussion

Table 1 lists the CuO doping levels in SnO₂ as analyzed by X-Ray Photoelectron Spectroscopy (XPS), and the corresponding response of these materials to CO₂ gases. Results showed that only at a molar ratio of CuO: SnO₂ = 1: 8, does the microsensor respond to CO₂ at 450 °C.

TABLE 1.—XPS ANALYSIS OF CuO/SnO₂ NANOMATERIALS AND THEIR RESPONSES TO CO₂

Sample number	1	2	3	4	5
CuO: SnO ₂ (molar ratio)	1: 25.7	1: 15.4	1: 8.0	1: 3.4	1: 1.6
Response to CO_2	No	No	Yes	No	No

Figure 2 shows the testing results of carbon dioxide microsensors (CuO: $SnO_2 = 1$: 8 in molar ratio) in different gases. The sensor resistance was measured in air, nitrogen (N₂), air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and CO₂ in air from 1 to 4% at 450 °C. Figure 3 is a linear fit of sensor resistance change (compared to the value measured in air) versus CO₂ concentrations from 1 to 4% in air.

Results from table 1, figures 2 and 3 show that linear responses to CO_2 from 1 to 4% in air were achieved at a doping level of CuO: $SnO_2 = 1$: 8 in molar ratio. No CO_2 response was seen at other doping levels. The baseline of the sensor drifted slightly in air. These observations are being further investigated.

The CuO-SnO₂ nanomaterial-based CO₂ microsensor is a resistor-type sensor, which is fundamentally different both in structure and in measurement approach from the traditional solid electrolyte CO₂ sensor. It can be integrated into a sensor

Resistance of Cuo-SnO₂ Sensor Versus CO₂ Concentration in Air (450°C)

Figure 2.—Resistances of CuO-SnO₂ based microsensor (CuO: SnO₂ = 1: 8 in molar ratio) tested in air, N₂, air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and CO₂ in air from 1 to 4%, with a repeat measurement at 4% CO₂.

Resistance Change Versus CO₂ Concentration

Figure 3.—Linear fitting of sensor resistance change versus CO_2 concentration tested from 1 to 4% CO_2 gases in air.

array to provide signals for aerospace and commercial applications such as fire detection, emission and environmental This monitoring. innovation is also scientifically significant because SnO₂ is an n-type sensing material that has been widely used for detecting reducing gases such as carbon monoxide, hydrogen, and hydrocarbons (ref. 8). This demonstration is the first time to our knowledge of a CuO-SnO₂ sensing material responding to CO₂ gas in a significant and consistent way. This development creates opportunities for the batch fabrication of simple and inexpensive CO₂ microsensors with low power consumption due to their small sizes. It could also lead to research that could alter fundamental knowledge of SnO2 as a sensing material, leading to a wider range of detectable species. While there are some scientific speculations about the sensing mechanism, it is still not clear to us. Further exploration will include expanding the sensor detection range, improving the sensor baseline stability, and understanding the sensing mechanism.

References

- 1. W.L. Grosshandler, "A review of measurements and candidate signatures for early fire detection," *NISTIR* 555, *Nat. Inst. of Stand. and Tech.*, Gaithersburg, MD, January 1995.
- G.W. Hunter, J.C. Xu, and D. Makel, "Case studies in chemical sensor development," In *BioNanoFluidic MEMS*, Peter J. Hesketh ed. Springer Science+Business Media, LLC, 2008, pp. 197–231.
- N. Miura, S. Yao, Y. Shimizu, N. Yamazoe, "Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary electrode," *J. Electrochem. Soc.* 139, 1992, pp. 2033–2036.
- 4. C. Lee, S.A. Akbar, and C.O. Park, "Potentiometric CO₂ gas sensor with lithium phosphorous oxynitride electrolyte," *Sens. Actuators*, B80, 2001, pp. 234–242.

- 5. B.J. Ward, C.C. Liu, and G.W. Hunter, "Novel processing of NASICON and sodium carbonate/barium carbonate thin and thick films for CO₂ Microsensor," *J. of Materials Science* 38, 2003, pp. 4289–4292.
- G.W. Hunter, J.C. Xu, C.C. Liu, B. Ward, D. Lukco, M. Artale, P. Lampard, D. Androjna, J.W. Hammond, "Miniaturized amperometric solid electrolyte carbon dioxide sensors," *ECS Trans. 3, (10) 203 (2006), 210th* Electrochemical Society Meeting, Cancun, Mexico, October 29 - November 3, 2006.
- Z.H. Jin, H.J. Zhou, Z.L. Jin, R.F. Savinell and C.C. Liu, "Application of nano-crystalline porous tin oxide thin film for CO sensing" *Sens. Actuators*, B52, 1998. pp. 188–194.
- T.G. Nenov and S.P. Yordanov. *Ceramic Sensors— Technology and Applications* Technomic Publishing, Lancaster, PA (1996).

	REPOR	Form Approved OMB No. 0704-0188						
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.								
1. REPORT DATE	(DD-MM-YYYY)	2. REPORT TY	PE		3. DATES COVERED (From - To)			
01-12-2008		Technical Me						
4. TITLE AND SUBTITLE Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide								
					5D. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) Xu, Jennifer, C.; Hunter, Gary, W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin, J.					5d. PROJECT NUMBER			
		5e. TASK NUMBER						
		5f. WORK UNIT NUMBER WBS 344397.04.03.03						
7. PERFORMING	ORGANIZATION NAM	ME(S) AND ADD	RESS(ES)		8. PERFORMING ORGANIZATION			
National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field Cleveland, Ohio 44135-3191					REPORT NUMBER E-16606			
9. SPONSORING/ National Aerona	MONITORING AGEN		10. SPONSORING/MONITORS ACRONYM(S)					
Washington, DC 20546-0001								
					11. SPONSORING/MONITORING REPORT NUMBER NASA/TM-2008-215436			
12. DISTRIBUTION/AVAILABILITY STATEMENT								
Unclassified-Unlimited Subject Categories: 1, 23, 24, and 25								
Subject Categories: 1, 25, 24, and 25 Available electronically at http://gltrs.grc.nasa.gov								
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390								
13. SUPPLEMENTARY NOTES Submitted to the IEEE Sensors Journal								
14 ARSTRACT								
Carbon dioxide (CO_2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire								
detection and emissions monitoring. However, only a limited number of CO ₂ sensing materials exist due to the high chemical stability of								
CO_2 . In this work, a novel CO_2 microsensor based on nanocrystalline tin oxide (SnO_2) doped with copper oxide (CuO) has been								
successfully demonstrated. The CuO-SnO ₂ based CO ₂ microsensors are fabricated by means of microelectromechanical systems (MEMS)								
technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: $\text{SnO}_2 = 1:8$ (molar ratio), the resistance of the sensor								
has a linear response to CO_2 concentrations for the range of 1 to 4 percent CO_2 in air at 450 °C. This approach has demonstrated the use of								
510 ₂ , typicarly used for the detection of reducing gases, in the detection of an oxidizing gas.								
Carbon dioxide (CO ₂); Gas; Fire detection; Low-false-alarm; Copper oxide (CuO); Microsensors; Nanomaterial; Tin oxide (SnO ₂); Nanocrystalline: MEMS: Emission monitoring: Environmental monitoring								
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON								
A DEDODT			ABSTRACT	OF	STI Help Desk (email:help@sti.nasa.gov)			
U. KEPUKI	U	U D	UU	9	301-621-0390			

Г

Т