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This paper considers the stopping distance of an aircraft involved in a runway overrun 

incident when the runway has been provided with an extension comprised of a material 

engineered to induce high levels of rolling friction and drag. A formula for stopping distance 

is derived that is shown to be the product of a known formula for the case of friction without 

drag, and a dimensionless constant between 0 and 1 that quantifies the further reduction in 

stopping distance when drag is introduced. This additional quantity, identified as the Drag 

Reduction Factor, D, is shown to depend on the ratio of drag force to friction force 

experienced by the aircraft as it enters the overrun area. The specific functional form of D is 

shown to depend on how drag varies with speed. A detailed uncertainty analysis is presented 

which reveals how the uncertainty in estimates of stopping distance are influenced by 

experimental error in the force measurements that are acquired in a typical evaluation 

experiment conducted to assess candidate overrun materials. 

Nomenclature 

a   = acceleration 

d   = Drag force 

d0   = Initial drag force at entry into EMAS material 

f   = Friction force 

g   = acceleration of gravity 

m   = mass, and ln(FH/f) 

r   = Ratio of initial drag, d0, to constant friction force, f 

t   = time 

x   = displacement 

 

A   = Reference area, related to the area of a projection of an object on the plane that  

    is perpendicular to the direction of motion  

CD   = Drag coefficient 

D   = Drag Reduction Factor 

FH   = Horizontal force (friction plus drag) 

FV   = Vertical force (load) 

K, Kl   = Proportionality constants 

R   = Stopping distance 

V   = Speed 

V0   = Speed with which aircraft enters an EMAS runway extension 
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   = Coefficient of friction 

   = Density  

 

EMAS   = Engineered Materials Arresting System 

FAA   = Federal Aviation Administration 

LaRC   = Langley Research Center 

MDOE   = Modern Design of Experiments 

MTTF   = Mobile Tire Test Facility 

NASA   = National Aeronautics and Space Administration 

PANYNJ   = Port Authority of New York and New Jersey 

PDF   = Probability Density Function 

SDB   = Structural Dynamics Branch 

Standard error = Square root of variance. The ―one-sigma‖ estimate of dispersion 

I. Introduction 

unway overruns present a serious threat to the safety of airline passengers and crew, and can also result in 

costly damage to aircraft. Examples of such overrun accidents include 1) Little Rock, AR, MD82 aircraft, June 

1, 1999; 2) Toronto, Ontario, A340 aircraft, August 2, 2005; and 3) Chicago Midway, IL, B737 aircraft, December 

8, 2005. Loss of runway friction was considered a contributing cause in each of these accidents. 

Passive arresting systems have been studied as a countermeasure for loss of runway friction since the early 

1960s1–7. The most practical results have involved soft-ground materials of gradually increasing depth as the 

distance from the end of the paved runway threshold increases. Later studies8–11 considered foamed plastics, soils, 

foam cement, and quick-deploying net barriers.  

In September 2005, the Federal Aviation Administration (FAA) issued Advisory Circular No. 150/5220-22A that 

discusses Engineered Materials Arresting Systems (EMAS) for aircraft overruns12. Such a system consists of a bed 

of energy absorbing material extending the normal operating range of an airport runway. The material passively 

decelerates an aircraft by inducing high levels of friction and drag as the aircraft landing gear gradually sinks into it. 

Displacement drag forces that are generated as the landing gear burrows through this material are applied through 

the distance the aircraft traverses, as are friction forces. The resulting work dissipates the kinetic energy of the 

aircraft until it eventually comes to rest. 

Since the Midway Airport accident, more than 30 foam cement EMAS installations have been established as 

extensions of civil airport runways. Runway 4/22 at JFK International Airport received the first installation, soon 

after successful qualification tests were completed at the FAA Technical Center, Atlantic City, New Jersey in the 

1990s. In the interim, successful arrestments of three different aircraft have occurred. The Port Authority of New 

York & New Jersey (PANYNJ) has since been evaluating less costly candidate materials for an improved 

Engineered Materials Arresting System based on new, more durable materials that comply with the FAA Advisory 

Circular No. 150/5220-22A. 

In late 2007, PANYNJ entered into an agreement with NASA Langley Research Center’s Structural Dynamics 

Branch (SDB) to conduct field friction tests as part of their EMAS evaluation13. NASA has conducted research in 

the area of aircraft ground handling performance for several decades and has a strategic interest in improving 

aviation safety. Recently, SDB completed development of the Mobile Tire Test Facility (MTTF), shown in Fig. 1, 

which is designed to take friction measurements for tire/ground interactions at a variety of speeds and tire vertical 

loads and for a range of braking, steering, and rolling resistance test configurations. 

The SDB approached Langley’s Aircraft Systems Engineering Branch (ASEB) for certain testing technology 

support in conjunction with the proposed PANYNJ collaboration. Specifically, there was a request for a design of 

the test matrix to be used for field evaluations of candidate EMAS materials that could exploit the Modern Design of 

Experiments (MDOE), an integrated experiment design, execution, and analysis process that has been used for years 

by ASEB to maximize quality and productivity in empirical aerospace research at Langley and elsewhere14-19. An 

MDOE test matrix was executed using the MTTF on November 14, 2007 at a PANYNJ-designated site on the 

property of JFK International Airport. A comprehensive report20 describing results for the specific candidate EMAS 

materials under evaluation was prepared for delivery to the Port Authority in 2008. 

The current paper focuses on a related issue that surfaced during the EMAS materials evaluation tests at JFK. 

Those results suggested that an initial hypothesis about the stopping mechanism was incorrect. We assumed initially 

that an aircraft wheel immersed in an EMAS runway extension would experience a net horizontal force consisting of 

the sum of friction and drag forces, and that the aircraft’s kinetic energy in an overrun incident would be dissipated 
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by the work done as this net horizontal force was applied through the stopping distance. We therefore believed that 

measurements of the total horizontal force would be sufficient to predict stopping distance. 

 

Subsequent analysis suggests that while the work done to dissipate kinetic energy in a runway overrun incident is 

in fact the total horizontal force integrated over the stopping distance, the stopping distance itself is dependent on the 

ratio of drag force to friction force, rather than the simple sum of those two forces. This has important implications 

for how EMAS systems are evaluated because it suggests that friction and drag must be measured independently; a 

simple non-differentiated sum of the two forces is insufficient to assess stopping distance. 

Furthermore, since drag forces are dependent on velocity while friction forces are not, the greater the initial 

velocity of an aircraft entering an EMAS runway extension the greater will be the difference in drag and friction 

effects. For a relatively high-speed EMAS evaluation run, drag measurement errors will therefore have a different 

impact on estimates of stopping distance than an equivalent experimental error in estimating the force of friction. 

The dependence of stopping distance on the ratio of drag to friction suggested that friction measurement errors 

might be especially important, even when drag dominates in a high-speed entry. The experimental error in both 

friction and drag force measurements could be estimated directly from the data, as could the experimental error in 

measurements of the applied vertical load. This paper describes how stopping distance depends on these loads, and 

how these different experimental errors propagate into the uncertainty in estimates of stopping distance. 

The current paper begins with the derivation of a formula to predict stopping distance as a function of friction 

and drag forces for a specified EMAS entry speed. This is followed by an uncertainty analysis that reveals the 

relative impact of experimental errors in drag and friction on the uncertainty in stopping-distance forecasts. 

The analysis is complicated by the fact that stopping distance depends on how the drag force varies with speed. 

An initial assumption of a simple Rayleigh quadratic speed dependence for drag was not supported by the data, 

which suggested a more nearly linear speed dependence that implied some variation of Stokes’ drag. On the other 

hand, the EMAS evaluation runs were necessarily conducted over a relatively limited speed range due to practical 

real estate and cost constraints at JFK. These constraints foreclosed options for longer run-up and deceleration lanes, 

and longer EMAS test beds, that would have been necessary to accommodate testing at higher speeds. The 

dependence of drag on speed did appear to transition between first and second order as the rate of displacement of 

mass from the EMAS test beds increased, suggesting that the weaker speed dependence might have been an artifact 

of the low speeds dictated by resource constraints.  Stopping distance formulae are therefore derived in this paper for 

both linear and quadratic speed dependencies.  Both developments resulted in the same general functional form—a 

simple and well-known formula for friction-induced stopping distance that is multiplied by a dimensionless Drag 

Reduction Factor in the range of 0 to 1. The Drag Reduction Factor is a function of the ratio of drag force to friction 

force, and quantifies the further reduction in stopping distance that is achieved when frictional forces are augmented 

by drag. 

For both speed dependencies, the uncertainty in stopping distance is estimated under an assumption of different 

experimental errors for high-force drag and low-force friction measurements. The uncertainty analysis reveals some 

 

Figure 1. NASA's Mobile Tire Test Facility 
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unanticipated insights into the relative impact of friction and drag experimental errors on the precision of stopping 

distance estimates. 

The paper is organized as follows: The introduction in this Section I is followed in Section II by a brief review of 

stopping distance in the absence of drag, when only the force of friction is in play. The uncertainty in estimating 

stopping distance under these conditions is also quantified. Section III extends the friction-only case to account for 

the effects of quadratic drag. The impact on stopping distance precision of experimental errors in the measurement 

of friction and drag is considered in Section IV. Section V reviews experimental results of the NASA/PANYNJ 

collaboration that reveal an unanticipated speed dependence for drag. The impact that the observed speed 

dependence would have on stopping distance is described in Section VI. Section VII contains a discussion of 

principal findings, which are summarized in Section VIII. 

II. Stopping Distance Due to Friction 

We will briefly postpone consideration of drag effects in order to illustrate the general approach to estimating 

stopping distance with a simpler case in which only friction is in play. We assume that an aircraft rolls into the 

EMAS material at some original velocity, V0, and that this velocity decreases to zero over some range, R, the 

stopping distance. In the general case, retarding forces due to friction, f, and drag, d, act through the stopping 

distance, R, to perform work that dissipates the kinetic energy of the aircraft. 

We assume level runways and neglect such potential contributors to the retarding force as air resistance, the 

effects of airborne or standing precipitation, and any active aircraft systems for reducing velocity such as brakes or 

reverse thrusters. We also neglect factors that may extend the stopping distance, such as hydroplaning over standing 

water and residual engine thrust. That is, we neglect all other factors besides friction and drag forces that are 

attributable to the EMAS material itself. 

We compute the stopping distance, R, by integrating horizontal force over this distance to compute the 

corresponding work, and setting this equal to the kinetic energy of the aircraft. If the horizontal force is due only to 

friction, the force is independent of distance and is just the coefficient of friction, , times the vertical force, which 

is simply the product of mass, m, times the acceleration of gravity, g. Thus, we have 

 

21
2 0

0 0

x R x R

H

x x

mV F dx mg dx mg R 
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 

   
 (1) 

We solve for R and introduce the subscript f to explicitly denote the stopping distance due only to rolling friction 

and not to displacement drag, obtaining this well-known result: 

 

2

0

2
f

V
R

g
  (2) 

For a given original velocity, V0, the stopping distance due to rolling friction depends only on the coefficient of 

friction. Note that it does not depend on the mass of the aircraft. This is because the kinetic energy that must be 

dissipated, and the work generated by the force of friction to dissipate that energy, are each directly proportional to 

mass. 

FAA Advisory Circular No. 150/5220-22A, referenced above, requires that an EMAS runway extension be 

capable of stopping an aircraft overrun with an initial speed of 70 knots, or about 81 mph. Specific friction 

coefficient values depend on the nature and condition of the runway surface and the tire, but tabulated values in the 

range of about 0.03 for hard rubber on asphalt are representative. From Eq. (2), the corresponding stopping distance 

over untreated asphalt for an aircraft with an initial speed of 70 knots would then be in excess of 7200 feet. Real 

estate constraints typically limit the available overrun range to a few hundred feet. For example, airports in the New 

York City area have as little as 250 to 400 feet available for some runway extensions. These figures highlight the 

need for an arresting system that will provide shorter stopping distances than would occur with an untreated 

extension of an asphalt runway. Concrete is often used for runways instead of asphalt. The stopping distance on 

concrete is longer than on asphalt because concrete does not deform as much. The friction coefficient is typically 

less by a factor of two to three, and the stopping distance, per Eq. (2), is correspondingly longer. 

As part of the NASA collaboration with PANYNJ, the MTTF was used to acquire the data necessary to estimate 

the friction coefficient for a specimen of asphalt in a nearby parking lot. (Logistical considerations foreclosed 
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options of testing on an asphalt runway.) The uncertainty in this estimate of friction coefficient was also quantified. 

This presented a common problem in uncertainty analysis, in which one wishes to know the uncertainty of some 

quantity that is a function of one or more other factors. The uncertainty in those factors is known, and one wishes to 

know how they propagate into uncertainty in the quantity of interest. 

For a function of several variables, y(x1, x2, …, xn), the following general error propagation formula is well-

known for the case in which all errors are independent21, 22: 

 
1 2

22 2

2 2 2 2

1 2

  
ny x x x

n

y y y

x x x

  
   

  

    
        
     


 (3) 

In this case, y is the stopping distance given in Eq. (2) and there is only one independent variable, x1 = . 

Therefore, we have 
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 

  

 
     

   (4) 

or 

 
fR fR




 
  

   (5) 

That is, the standard error in stopping distance due to random error in the friction coefficient estimate is just the 

nominal stopping distance times the standard random error in friction coefficient expressed as a fraction of reading. 

The simple inverse-proportional relationship between stopping distance and friction coefficient means that, 

expressed as a fraction of reading, the standard random error in stopping distance and the standard random error in 

friction coefficient are the same: 

 

fR

fR


 




 (6) 

We estimated this ratio to be 0.019 for the asphalt data acquired at JFK, suggesting a standard error is the 

estimate of stopping distance over asphalt of less than 2% of reading. 

III. Impact of Quadratic Drag on Stopping Distance 

Displacement drag is the force that is associated with work performed when a wheel plows a furrow through the 

EMAS material. It is the work required to displace the EMAS material from the resulting rut. The energy required to 

perform this work is drawn from the kinetic energy of the aircraft, which reduces that energy and therefore reduces 

the speed of the aircraft. When displacement drag is in play as well as friction, the total horizontal force, FH, is 

comprised of the displacement drag force, d, and the force of friction, f. In this section, we extend Eq. (2) to account 

for the impact of displacement drag on stopping distance. 

A. Stopping Distance with Drag and Friction 

The force of friction is well known to be the product of the vertical load times the coefficient of friction. We 

assume that the drag force is analogous to the aerodynamic drag experienced by an object in relatively high-speed 

motion through a fluid, known as Rayleigh Drag. Rayleigh Drag is also known as quadratic drag because of its 

dependence on the square of speed. We assume this particular form of displacement drag for the EMAS materials 

because of empirical results in runway friction tests that have shown a similar speed dependence for displacement 

drag due to water, slush, or snow accumulation23-25. 
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We therefore have 

 HF f d 
 (7) 

where FH is the total horizontal force, 

 Vf F 
 (8) 

is the force of friction with  as the friction coefficient and FV as the vertical force; and 

 

21
2 Dd V AC 

 (9) 

is the displacement drag force, where  is the density of the ―fluid,‖ V is the speed, A is a reference area that is 

related to the area of a projection of the object on the plane that is perpendicular to the direction of motion, and CD is 

the drag coefficient, a dimensionless constant analogous to the coefficient of friction. The minus signs in Eqs; (8) 

and (9) indicate that the friction and drag forces are opposite the opposite the direction of motion. 

For a given vertical load, for which A is a constant, we can rewrite displacement drag as 

 
2d KV   (10) 

where for convenience we have rolled up a number of constants into K as follows: 

 
1

2 DK AC
 (11) 

Combining Eqs. (7), (8), and (10) with Newton’s second law yields this equation of motion for the vehicle 

traversing the EMAS material: 

 

2

HF ma KV mg   
 (12) 

The vehicle will stop when the force in Eq. (12) has been applied through a distance sufficient to generate an 

amount of work that consumes all of the available kinetic energy of the aircraft. That is, the condition for stopping 

the aircraft is 

 

21
2

0

R

HmV F dx 
 (13) 

This is the same formulation as the friction-only case, except for the added complication that drag is a function 

of velocity, which changes with distance. We must therefore express V as a function of distance. We begin by 

expressing the equation for horizontal force as the following non-linear differential equation: 
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m K mg
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 
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or 

 

22

2
0

d x K dx
g

dt m dt


  
    
    (15) 

But 

 

2

2

dx d x dV
V

dt dt dt
  

 (16) 

so 

 

2 0
dV K

V g
dt m


 

   
   (17) 

Apply the chain rule to the derivative representing acceleration: 

 

dV dV dx dV
V

dt dx dt dx

    
     
      (18) 

Insert this into Eq. (17): 
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dx m


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or 

 

2K
VdV V g dx

m


  
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    (20) 

Divide by the bracketed term on the right: 

 

2

VdV
dx

K
V g

m


 
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    (21) 

We take the indefinite integral of both sides of this equation. 
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The integral on the right is, of course, simply –x. The integral on the left is of a general form that can be evaluated as 

follows26: 

 
 

 2

2

1
ln

2

udu
au b

aau b
 




 (23) 

In this case, u = V, a = K/m, and b = g, so we have 

 

2ln
2

m K
V g x Const

K m


    
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      (24) 

where Const is a constant of integration. It is convenient to express Const as ln(C), which we can do with no loss of 

generality, where C is simply some constant yet to be evaluated. The reason for expressing the constant of 

integration in this form will be clear shortly. 

We thus have 

 

2ln ln( )
2

m K
V g x C

K m

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Or 
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We exploit two general properties of logarithms, as follows: 
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and 
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Using these results in Eq. (26): 
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In this equation, x measures the distance traveled by the aircraft since entering the EMAS material. At x = 0, V = V0, 

the original velocity of the aircraft upon entering the EMAS material. Therefore 

 

2
2

0
K

m
KV

g C
m

 
 (30) 

Substituting this for C2K/m in Eq. (29), we have: 
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The expression on the left of Eq. (31) is just FH/m, the horizontal force divided by the mass (i.e., the horizontal 

acceleration). Therefore: 
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m
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The term on the right of Eq. (32) in parentheses is simply the sum of the drag and friction forces that the aircraft 

experiences the moment it enters the EMAS material. That is, it is the initial retarding force. Eq. (32) reveals that the 

horizontal force decays exponentially from this initial retarding force, getting smaller as the aircraft gets further into 

the material. 

As in the prior case in which only friction was in play, we integrate the horizontal force, represented by Eq. (32), 

from 0 to R. We do this to compute the work done by this force over a distance R. When this work is sufficient to 

dissipate the original kinetic energy that the aircraft had as it entered the EMAS material, the aircraft will stop, and 

R will be the stopping distance. Therefore, we have 
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The integral on the right is of an elementary form that is easy to evaluate: 
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We therefore have the following as a condition of stopping: 
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which reduces to 
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The term on the right of Eq. (36) is the fraction of the total retarding force attributable to friction. We take the 

natural logarithm of both sides to solve for R: 

 

2

0

2
ln

K mg
R

m KV mg





  
    

     (37) 

We can express this as 

 

2

0

2

0

2 1
ln ln 1

1

K KV
R

m mgKV

mg





 
 

                     
    (38) 

Solving Eq. (38) for R: 

 

2

0ln 1
2

m KV
R

K mg

  
   

    (39) 

B. The Role of Friction 

The fact that drag forces tend to dominate friction forces, especially in the relatively more interesting cases of 

high EMAS entry speed, may suggest that friction forces are essentially negligible, and that it should be possible to 

estimate stopping distance to a very good approximation by ignoring friction forces altogether. However, Eq. (39) 

reveals that the stopping distance, R, is a function of the ratio of the drag force to the friction force. In the limit as 

the coefficient of friction approaches zero, the stopping distance approaches infinity, no matter how great the 

displacement drag is. The important role that friction plays in stopping an aircraft can be understood by recognizing 

that, absent friction in this model, the only force available to dissipate kinetic energy is one that depends on velocity. 

Recall Eq. (20), reproduced here for convenience: 

 

2K
VdV V g dx

m


  
    

     

For = 0, this reduces to  

 

KV dV K
dV dx dx

m V m

   
       

     (40) 

Integrating both sides: 

 

 ln
dV K K

dx V const x
V m m

 
      

 
 

 (41) 

We express the integration constant as ln(C) with no loss of generality: 

 

       
ln ln ln

K
m

xK
V C CV x CV e

m

 
      

   (42) 
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We evaluate Eq. (42) at x=0, where V=V0: 

 

 
0

0 0

1
1

K
m

xV
CV C e

V V


    

 (43) 

So, absent friction, we have from Eq. (43): 

 

 
0

K
m

x
V V e




 (44) 

That is, absent friction the velocity approaches zero exponentially with distance, but zero velocity remains an 

asymptotic limit, never reached. A finite coefficient of rolling friction ensures that the aircraft’s velocity reaches 

zero in a finite distance. Recall Eq. (31): 

 

2
2

2 0
K

m
xK KV

V g g e
m m

 
  

    
      

Solving for V: 

 

    
2 2

2

0 1
K K

m m
x xmg

V V e e
K

 
  

 (45) 

When =0, Eq. (45) reduces to the decaying exponential velocity formula in Eq. (44) for the case of no friction, in 

which velocity only approaches zero in an asymptotic limit so that the stopping distance is infinite. But for ≠ 0, 

when x = R, V = 0, and substituting these values and solving for R yields Eq. (39) for (a finite) stopping distance. 

This demonstrates that the only difference between a finite stopping distance and an infinite one is a non-zero 

coefficient of friction. 

C. Asymptotic Behavior of Stopping Distance Formula 

We require that the stopping distance formula (Eq. (39), reprinted here for convenience) give sensible results in 

certain limiting cases: 

 

2

0ln 1
2

m KV
R

K mg

  
   

     

Note, for example, that the stopping distance goes to zero as the original velocity, V0, goes to zero. While not 

especially interesting per se, this is a necessary result for the stopping distance formula to be credible. 

A more interesting case occurs when the ratio of drag force to friction force gets small but V0 is not necessarily 

small. For this case K = ½ACD has to be small, meaning that some or all of the other factors influencing drag 

besides velocity (EMAS material density, reference area, drag coefficient) are small. We would expect in this case 

that the general formula for stopping distance, Eq. (39), would approach the stopping distance formula in Eq. (2), 

which was derived for the case of no drag. 

From the series representation for ln(1+a): 

 

 
2 3 4

1

1

ln(1 ) 1
2 3 4

i
i

i

a a a a
a a

i






 
         

 

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we have the following well-known approximation for small a: 

 
ln(1 )a a 

 (46) 

Assuming small K, we can therefore rewrite Eq. (39) using Eq. (46) as follows: 

 
0

2 2

0 0
 

2 2
Small K f

m KV V
R R

K mg g 

 
   

   (47) 

which is, indeed, Eq. (2), the formula for stopping distance when drag is negligible, for the case of V = V0. We add 

the f0 subscript to explicitly denote this as the stopping distance when only friction is in play, for the case in which V 

is the original velocity upon entry into the EMAS material, V0. 

D. The Drag Reduction Factor 

Equation (47), originally derived as Eq. (2), is a well-known formula for stopping distance when there is no 

displacement drag and only friction is in play. In this section we will show that generalizing the problem by 

introducing displacement drag simply extends this basic formula for stopping distance by a multiplicative factor that 

ranges between zero and one, representing the additional reduction in stopping distance attributable to drag. That is, 

we will show that the general formula for stopping distance can be cast in this form: 

 
0

2

0

2
f

V
R D R D

g
 

 (48) 

where D, the Drag Reduction Factor, is a dimensionless function of the ratio of drag force to friction force that lies 

between zero and one. 

We begin by noting that the general stopping distance formula, Eq. (39), can be expressed as follows: 

 

0ln 1
2

m d
R

K f

  
   

    (49) 

where 
2

0 0
d KV is the initial displacement drag when the aircraft first enters the EMAS material, and f = mg is 

the constant friction force applied throughout the stopping distance. Note that the m/2K factor in Eq. (49) can also be 

expressed in terms of these two forces: 

 
0

2

0

2

0 02 2
f

m mg V f
R

K KV g d





    
     

      (50) 

Inserting Eq. (50) into Eq. (49):  

 

0

2 2

0 0 0 0

0 0

ln 1 ln 1
2 2

f

f d V f d V
R R D

d f g d f g 

                 
                  

                   (51) 
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where we introduce D, the ―Drag Reduction Factor‖: 

 0

0

ln 1
f d

D
d f

    
     

    
 (52) 

The construction of the stopping distance formula in the form of Eq. (51) is particularly revealing. It shows that the 

effect of introducing displacement drag is to simply reduce the friction-only stopping distance by a factor of D. If we 

define r to be the ratio of the initial displacement drag, d0, to the constant friction force, f, we have 

 

 ln 1 r
D

r




 (53) 

The addition of drag must result in a non-negative stopping distance that is less than the friction-only case for 

any ratio of displacement drag to friction force. Therefore D must lie between zero and one for any value of r.  To 

find out whether this is true or not, we evaluate D in the limit as r approaches zero and again in the limit as r 

approaches infinity.  The D factor approaches an indeterminate form in both cases, but we can circumvent this by 

invoking L’Hopital’s Rule, which states that as x approaches some limit, c, the ratio of f(x)/g(x) approaches the ratio 

of the derivatives of f(x) and g(x) if that ratio exists. Begin with the derivatives of the numerator and denominator of 

Eq. (53): 

 

ln(1 ) 1

1

1

d r

dr r

dr

dr








 

From the derivatives we have, by L’Hopital’s Rule: 

 

1
ln(1 ) 11lim lim

1 1r c r c

r rD
r c 

 
               
 

 (54) 

We therefore have 

 0
lim 1
r

D



 (55a) 

and 

 
lim 0
r

D



 (55b) 

so 0 ≤ D ≤ 1 for all values of r = d0/f, which, by Eq. (48), means that the addition of any non-zero displacement drag 

will always reduce stopping distance from the friction-only case, as required. 

IV. Impact of Experimental Force Measurement Errors 

The stopping distance, R, has been shown to be the product of two quantities, the friction-only stopping distance 

for the EMAS entry speed, V0, and the Drag Reduction Factor. Each is a function of the ratio of two forces. The 

friction-only stopping distance for a given initial speed depends only on the coefficient of friction, , which is the 
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ratio of the force of friction, f, to the vertical load, FV. The drag reduction factor depends only on the ratio of the 

drag force to the force of friction. 

It is only possible to directly measure the force of friction on a test wheel with a given vertical load by measuring 

the horizontal force it experiences as it traverses a candidate EMAS material under conditions of negligible drag. A 

detailed discussion of the techniques for making such a friction-only measurement are beyond the scope of this 

paper, but one general method might be to execute one or more preliminary high-speed runs intended to evacuate a 

rut in the EMAS material, followed by a run at a specified vertical load in the same test bed, but at micro-speeds. 

Since drag is a function of speed and also of the frontal area of EMAS material that the wheel encounters, the 

combination of very low speed and a pre-evacuated rut should result in drag forces that are low enough to be 

neglected if the speed is sufficiently low. The horizontal force measured under these conditions can then be 

attributed to friction. The ratio of this friction force to the vertical load applied when it is measured represents an 

empirical estimate of the coefficient of friction, . 

Drag forces cannot be measured directly, since any practical conditions that induce drag will also induce friction. 

Only the total horizontal force, FH, consisting of the sum of friction and drag, can be measured directly. However, if 

preliminary low-force micro-speed measurements of the horizontal force in an evacuated EMAS rut have resulted in 

reliable estimates of the friction coefficient, then the force of friction can be estimated even for high-speed runs 

dominated by drag.  One need only multiply the friction coefficient by the vertical load applied during those runs. 

These values of the friction force can then be subtracted from total horizontal force measurements made at high 

speed to yield an experimental estimate of the drag force. The friction coefficient is independent of speed under 

conditions of interest (no braking, etc), so the drag force can be estimated for any speed by this method. With an 

adequate estimate of both drag and friction, the quantity r can then be estimated, and thus the Drag Reduction 

Factor. 

Because the friction-only stopping distance, 
0f

R , and the Drag Reduction Factor, D, both depend on forces that 

are measured in an EMAS evaluation experiment, the precision of the stopping distance estimated via Eq. (48) will 

depend on experimental force measurement errors. This section quantifies how such measurement errors propagate 

into the uncertainty in stopping distance, and which experimental errors have the greatest impact. 

The friction coefficient, , is defined as  = f/FV, so the friction-only stopping distance at V=V0 can be expressed 

in terms of forces that are directly measured as follows: 

 
0

2

0

2

V
f

V F
R

gf
   (56) 

The relatively low-level friction force measurements, whether made with the technique outlined above or some 

other method, can utilize instrumentation scaled to smaller ranges than required for large-force measurements of 

vertical load and high-speed horizontal forces when drag is in play. This would be recommended to maximize the 

quality of the low-force measurements, in which case the friction force measurements would be expected to have a 

different experimental error than the high-force vertical and horizontal force measurements. This distinction is taken 

into account in the subsequent analysis. 

Since d = FH – f, the drag/friction ratio, r=d/f, can also be expressed in terms of forces that are directly 

measured: 

 Hd F f
r

f f


    (57) 

and we also have 

 1 1 H H HF f f F f F
r

f f f

  
       (58) 
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The Drag Reduction Factor, D, can then also be expressed as a function of measured forces.  Assume that we are 

only interested in the uncertainty in stopping distance under operational conditions in which drag dominates and 

frictional forces make a negligible contribution to the total horizontal force.  In that case, FH>>f; i.e., r>>1, and: 

 1 HF
r r

f
    (59) 

Then 

 
   ln 1 ln

ln H

H

r r f F
D

r r F f

  
    

 
 (60) 

and 

 
0

2

0 ln ln
2

V H V H
f

H H

V F f F F F
R R D

gf F f F f


      
        

      
  (61) 

where we have introduced the symbol 
2

0

2

V

g
  to simplify the notation. Note that Eq. (61) is simply a generalized 

extension of the friction-only stopping distance formula of Eq. (56) to include drag, with FH=d+f replacing f in the 

stopping distance formula. For d=0, Eq. (61) reverts to Eq. (56). One seemingly valid approach to estimating 

stopping distance in the presence of drag is to use the same technique as when drag is not in play, that is, to divide 

the quantity  by a friction coefficient estimated from the total measured horizontal force (drag plus friction) rather 

than friction alone. However, Eq (61) illustrates that if the horizontal force includes drag as well as friction, the 

resulting calculation must be multiplied by a correction factor consisting of the log of the total horizontal force 

expressed as a multiple of friction, which is just the log of 1 plus the drag/friction ratio. 

From Eq. (61) we see that the estimate of stopping distance for a specified EMAS entry speed, V0, depends on 

three measured forces; the vertical load, FV, and values of horizontal force under two conditions, when drag is 

negligible (f) and when it is not (FH). The impact that experimental errors in these measurements have on the 

uncertainty in the stopping distance estimate can be calculated as before, using the standard error propagation given 

in Eq. (3), which for this case can be expressed as 

 

2 2 2

2 2 2 2

V HR F F f

V H

R R R

F F f
   

       
       

     
  (62) 

To facilitate the differentiation, we rewrite Eq. (61) as follows: 

    1ln ln lnV H
V H H

H

F F
R F F F f

F f
     

        
  

 (63) 

The derivatives of R with respect to each of the measured forces are now computed, to be inserted into Eq. (62). 

 ln H

V H

R F

F F f

   
    

   
  (64) 
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     2 1

2 2 2

1
ln ln

1 1
       ln 1 ln

1 ln

V H H H

H H

H V H
V

H H H

V H

H H H

R
F F f F F

F F

F F F
F

F f F F f

R F F

F F F f








 
    
           

        
           

       

         
        

         

  (65) 

 V

H

R F

f F f

  
   

   
  (66) 

As noted above, estimating stopping distance from force measurements in an EMAS material evaluation 

experiment entails essentially two classes of force measurements, which we may describe as ―large forces‖ and 

―small forces.‖ Large forces include the total horizontal force at high-speed entry into the EMAS material and the 

vertical loads that simulate the aircraft weight per wheel. These are expected to be on the order of thousands of 

pounds in a typical evaluation experiment involving the FAA-mandated evaluation speed of 70 knots. By contrast, 

the force of friction under conditions of negligible drag, f, will be proportional to the vertical load, with the 

coefficient of friction, , as a dimensionless proportionality constant. Specific values of  will depend on the EMAS 

material but values on the order of several hundredths would be anticipated, meaning that frictional forces would be 

one or two orders of magnitude smaller than the vertical load forces—perhaps a few hundred pounds at most. As 

noted above, the most accurate measurements of these smaller forces would require force instrumentation scaled to 

much smaller ranges than the instruments that would be used to measure the large vertical loads and high-speed drag 

forces. We assume for this analysis, then, that the experimental force measurement errors can be characterized as 

those that accompany the large force measurements (FH and FV), and those that accompany the small force 

measurements (f). 

We introduce the following nomenclature for the large-force experimental errors, under the assumption that the 

uncertainty in horizontal and vertical large-force measurements is the same: 

 
2 2 2

V HF F F     (67) 

We also introduce this simplifying nomenclature: 

 ln HF
m

f

 
  

 
 (68) 

Insert Eqs. (64) – (68) into Eq. (62): 

  
2 2 2

22 2 2 21 V V
R F f

H H

F F
m m

F F f


  

        
          
         

  (69a) 

  
2 2 2

22 2 2 21
1 V

R F f

H H

F
m m

F F


  



        
          
         

  (69b) 
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The variance in stopping distance is seen to be the weighted sum of the variances in large- and small-force 

measurements, with the small-force weighting much larger than the large-force weighting. Therefore a given 

experimental error in the small-force measurements will contribute significantly more uncertainty to the stopping 

distance estimate than a similar error in the large-force measurements. 

To see this, consider first the large-force weighting, represented by the term in square brackets. Vertical and 

horizontal forces are expected to be of comparable orders of magnitude so their ratio will be of order one. The 

quantity m is the logarithm of a force ratio.  Because the logarithm is such a weak function of its argument, m will 

also be small for even the largest force ratios anticipated under practical conditions. So the magnitude of the entire 

weighting factor for large-force variance is expected to be relatively small—on the order of 10 for typical force 

levels. 

By contrast, the weighting for the small-force variance is the square of a large ratio of forces. Specifically, it is 

the square of the ratio of the relatively large vertical load to the relatively small friction force, where that ratio is just 

the reciprocal of the coefficient of friction. The coefficient of friction will vary from one EMAS material to another, 

but can be expected to be on the order of 10-1 or less. The square of its reciprocal will therefore be on the order of 

102 or greater, which is at least an order of magnitude greater than a typical weighting for the large-force variance. 

We therefore reach a somewhat paradoxical conclusion, which is that notwithstanding how small the force of 

friction is compared to the drag induced by an EMAS material, a precise estimate of stopping distance is much more 

dependent upon high-precision friction measurements than on the quality of the drag measurements. In fact, the 

smaller the magnitude of the friction force relative to the vertical load, the more the uncertainty in stopping distance 

depends on the experimental error in estimating the friction force. 

Because of the relative weightings, we can achieve a very good approximation to the uncertainty in stopping 

distance by simply ignoring the contribution due to large-force experimental error. Eq. (68) then reduces to 

 

2

2 2V
R f

H

F

F f


 

   
    

   
  (70) 

The coefficient of friction is just the drag-free horizontal force, f, divided by the vertical load, FV, so Eq. (70) can 

be rewritten as follows: 

 

2

2 2

R f

HF


 



 
  
 

  (71) 

But  is just
0f

R , the stopping distance when only friction is in play. So Eq. (71) reduces to: 

 0f

R f

H

R

F
 

 
  
 

 (72) 

Thus, the standard error in stopping distance is directly proportional to the standard error in friction force and for 

practical purposes is essentially independent of the uncertainty in drag, notwithstanding how much greater a role 

drag plays in the total horizontal retarding force of an EMAS material than friction. This is attributable to the 

dependence of stopping distance on the ratio of drag to friction, with small errors in estimates of the relatively small 

denominator having substantial influence on the value of the force ratio and therefore the stopping distance. 

V. Empirical observations of the Dependence of Drag on Velocity  

During the NASA/PANYNJ collaboration, the MTTF shown in Fig. 1 was used to make horizontal force 

measurements on an aircraft test tire at two speeds and at two loads for each of two candidate EMAS materials that 

differed chiefly in their density. Low speed, low-load runs with a very shallow immersion depth generated 

horizontal forces attributed to friction, with drag assumed to be negligible. The coefficient of friction was computed 

for each candidate EMAS material by dividing these low-speed, low-immersion horizontal force measurements by 

the applied load on the test tire, which could be varied by a pneumatic pressure system built into the MTTF for this 
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purpose. The speed-independent friction forces estimated in this way were subtracted from total horizontal force 

measurements made at higher speeds, where drag was the dominant mechanism. The horizontal force net of friction 

forces was attributed to drag. 

The dependence of drag on speed was estimated by dividing drag measurements made under identical conditions 

except for speed. A linear speed dependence would have resulted in a drag ratio equal to the ratio of speeds. A 

quadratic speed dependence would have resulted in a drag ratio equal to the square of that ratio. 

Speeds were measured using a ground-speed radar system, with measurements acquired at a rate of 50 per 

second. Mean and standard deviations of speed were estimated from these raw data. 

The error propagation formula in Eq. (3) can be used to develop a formula for the standard error in a ratio of two 

quantities for which the standard error in each is known: 

 

1 2

2 2 2

1

2 2

x x

y

yx
y

x x

 



  

  (73) 

Using Eq. (73) and the means and standard deviations for low-speed and high-speed runs enabled us to estimate 

speed ratios as well as the standard error in the estimate of such ratios. 

We can also apply Eq. (73) to estimate the ratio of two drag measurements and the standard error in estimating 

that ratio if we know the standard error in each of them. To estimate the standard error in drag, d, recall that drag is 

determined by subtracting an estimate of the force of friction, f, from measured horizontal force measurements, FH.  

Again, Eq. (3) is used to estimate the standard error in such a differential measurement: 

 

2 2

HH d F fd F f       
 (74) 

The force of friction is estimated from measured values of the vertical load, FV, and the coefficient of friction, , as 

follows: 

 Vf F
 (75) 

and we again invoke Eq. (3), applying it to Eq. (75) to estimate the standard error in the estimate of friction force: 
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2 2 2 2 2 2

V Vf F V F

V

f f
F

F
      



   
     

    
 (76) 

Combine Eqs. (76) and (74) to express the standard error in drag as a function of the standard errors in horizontal 

and vertical force measurements and the standard error in the estimate of friction coefficient: 

 

2 2 2 2 2

H Vd F V FF       
 (77) 

As with the speed measurements, horizontal and vertical force measurements were made at the rate of 50 per 

second, permitting a direct estimate of both mean values and standard errors for each run.  The standard error for 

friction coefficient, , was computed by applying Eq. (73) to the low-speed, shallow-immersion runs for which 

drag could be neglected.  In those cases, x1 and x2 represented horizontal force, FH, and load or vertical force, FV, 

respectively.  Thus, the standard error in each drag measurement could be computed using Eq. (77), and then 

Eq. (73) could be used to estimate the standard error in the ratio of two drag measurements. 
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To test whether the dependence of drag on speed is linear or quadratic by comparing ratios of drag 

measurements to ratios of speed and the square of speed, we need to know the standard error in the square of the 

ratio of two quantities for which the standard error in each is known. Again invoke Eq. (3) to generate the following 

result: 

 

1

2

2 2
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2 2

2 x

y x

x y
y

x x y


 

 
    
   (78) 

We are now in a position to test whether the ratio of two drag measurements is the same as the ratio of their 

corresponding speeds, or if the drag ratio is the same as the ratio of their corresponding speeds squared. The former 

result implies a linear dependence of drag on speed; the latter implies a quadratic speed dependence. 

We applied these tests to low- and high-speed runs through two candidate EMAS materials.  Under the terms of 

the Space Act Agreement between NASA and the PANYNJ, neither the data nor specific descriptions of the 

candidate EMAS materials can be published until two years after the Agreement went into effect, in October of 

2007.  That will be approximately 10 months after the publication date of the current paper. Force and speed data are 

not included in this report for that reason, nor are descriptions of the specific EMAS materials that were tested, 

except to say that one was of relatively low density while the other was of a somewhat higher density.  Within the 

constraints on early publication of proprietary data, it can be said that the ratio of measured mean speeds for the low-

density EMAS material runs was 4.4 ±0.6, per Eq. (73). The ratio of the square of mean speeds, per Eq. (78), was 

19.0 ±2.2. The ratio of drag forces corresponding to the low- and high-speed runs for the lower density EMAS 

material was 5.8 ±1.4, again applying Eq. (73) to the drag measurements. These results are summarized in Table 1. 

 

We can formally test the two null hypotheses of interest: 

 

 H01: d1/d2 - V1/V2=0, implying a linear speed dependence 

 H02: d1/d2 - (V1/V2)
2=0, implying a quadratic speed dependence 

 

To test the first hypothesis for the lower-density EMAS material, invoke Eq. (3) for the general case of the 

difference in two quantities for which the standard error in each is known: 

 1 2

2 2

2 1 y y yy y y       
 (79) 

Using Eq. (79) and the data from Table 1, we can test the first null hypothesis as follows: 

 
1 1

2 2

2 25.8 4.4 1.4,   1.4 0.6 1.5
d V

yd V
y        

 (80) 

The difference in drag and speed ratios is not large compared to the standard error in estimating the difference, 

so we cannot reject the null hypothesis that the drag ratio is the same as the speed ratio and conclude that the drag 

exhibits a linear speed dependence in the lower-density EMAS material. 

 

 

Table 1. Drag and speed ratios for lower-density EMAS material 

Quantity Value Standard Error (“one sigma”) 

Ratio of Speeds 4.4 0.6 

Squared Ratio of Speeds 19 2.2 

Ratio of Drag Measurements 5.8 1.4 
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The second hypothesis is tested in the same way and gives a consistent result: 

 
 1 1

2 2

2
2 25.8 19.0 13.2,   1.4 2.2 2.6

d V

yd V
y         

 (81) 

The magnitude of the difference between the ratio of drag measurements and the ratio of the square of the 

corresponding speed measurements is large compared to the standard error in estimating that difference, so we reject 

the null hypothesis that the drag ratio is the same as the square of the speed ratio and conclude that the drag does not 

exhibit a quadratic speed dependence in the lower-density EMAS material. This analysis is performed graphically in 

Fig 2. 

Figure  displays probability density functions (PDFs) featuring means and standard deviations from Table 1. The 

PDF on the left shows the distribution of speed ratios for low- and high-speed runs in the lower-density EMAS 

material. This is the distribution of drag ratios one would expect if drag varied linearly with speed. The PDF on the 

right in Fig. 2 represents the distribution of drag ratios that one would expect if there was a quadratic dependence of 

drag on speed in the lower-density EMAS material. It is broader than the PDF for the linear speed ratio because 

there is more uncertainty in the estimate of the square of the ratio of two random variables than in the linear ratio of 

the same variables, and it is shorter because the area of all PDFs sum to 1. The PDF in the middle represents the 

actual observed drag ratio for the lower-density EMAS material. 

 

Figure  shows that the observed ratio of high-speed drag to low-speed drag in the low-density EMAS material 

can be unambiguously resolved from the square of the ratio of observed speeds. From this we infer that quadratic 

drag is not in play as we assumed above when we derived the formula for stopping distance. On the other hand, the 

PDF corresponding to the observed drag ratio overlaps the PDF for the linear ratio of speeds to such a degree that 

we cannot resolve the two distributions with high confidence. We are therefore unable to reject the hypothesis that in 

the low-density EMAS material, displacement drag is a linear function of speed, but we are able to reject the 

hypothesis that displacement drag is a quadratic function of speed. 

The weak speed dependence for drag observed in the lower-density EMAS material suggests a Stokes’ Drag 

phenomenon. Stokes’ Drag is experienced by relatively small objects moving at relatively low speeds. It is directly 

proportional to speed, with a proportionality constant that depends on the dimensions of the object and certain 

properties of the medium in which it moves, such as its viscosity. 

 

Figure 2. Drag ratio (red), ratio of speeds (black), and ratio of squared 

speeds (blue) for the lower-density EMAS material  
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Because the empirical evidence of a linear speed dependence of drag upon speed in the lower-density EMAS 

material calls into question the stopping distance formula developed previously and given in Eq. (48), we performed 

a similar analysis for the higher-density EMAS material.  The same two hypotheses were tested as for the lower-

density EMAS material, this time using the data for the higher-density EMAS material that is summarized in 

Table 2. 

 

We again use Eq. (79) to test the first null hypothesis, as follows: 

 
1 1

2 2

2 27.4 4.0 3.4,   1.0 0.5 1.1
d V

yd V
y        

 (82) 

Unlike the case of the lower-density EMAS material, the difference in drag and speed ratios is in fact larger than 

the standard error in estimating it, so we reject the null hypothesis that the drag ratio is the same as the speed ratio 

and tentatively conclude that the drag does not exhibit a linear speed dependence in the higher-density EMAS 

material. Because the drag ratio is greater than the speed ratio, the speed dependence appears to be stronger than 

linear, although this conclusion may be based on a weakness in the experimental method used to estimate drag, as 

will be discussed below. 

The second hypothesis is tested in the same way: 

 
 1 1

2 2

2
2 27.4 16.0 8.6,   1.0 2.1 2.3

d V

yd V
y         

 (83) 

The magnitude of the difference between the ratio of drag measurements and the ratio of the square of the 

corresponding speed measurements is large compared to the standard error in estimating that difference, so we reject 

the null hypothesis that the drag ratio is the same as the square of the speed ratio and again conclude that the drag 

does not exhibit a quadratic speed dependence in the lower-density EMAS material. 

Figure  compared linear and quadratic speed ratios with the observed drag ratio in the lower-density EMAS 

material, using the data summarized in Table 1. Figure 3. Drag ratio (red), ratio of speeds (black), and ratio of 

squared speeds (blue) for the higher-density EMAS material  does the same for the higher-density material, using 

the data in Table 2. As in Fig. 2, the PDF on the left in Fig. 3 shows the distribution of speed ratios for low- and 

high-speed runs. Again, this is the distribution of drag ratios one would expect if drag varied linearly with speed. 

The PDF on the right in Fig. 3 represents the distribution of drag ratios for a quadratic dependence of drag on speed. 

The PDF in the middle represents the actual observed drag ratio for the higher-density EMAS material. 

Figure  shows that the observed ratio of high-speed drag to low-speed drag in the higher-density EMAS material 

can be unambiguously resolved from the ratio of the square of the speed ratio, just as was the case for the lower-

density EMAS material.  However, the higher-density results in Fig. 3 differ from the lower density results in Fig. 2 

in that the drag ratio appears to also differ from the linear ratio of speeds.  The first impulse is to infer from this that 

for the higher-density EMAS material, drag is neither a quadratic function of speed nor a linear function of speed, 

but something in between.  However, this conclusion may be the result of a weakness in our technique for estimating 

drag, as will now be outlined. 

The technique used to estimate friction was to rely on runs at low applied load that resulted in relatively shallow 

immersion depths.  However, the immersion depth was never zero so drag forces were not eliminated entirely, as 

there was always some frontal area of EMAS material presented to the test wheel. This means that friction force 

estimates were probably overstated, and drag estimates made by subtracting these somewhat inflated friction values 

from a given horizontal force were therefore probably understated.   

Table 2. Drag and speed ratios for higher-density EMAS material 

Quantity Value Standard Error (“one sigma”) 

Ratio of Speeds 4.0 0.5 

Squared Ratio of Speeds 16.0 2.1 

Ratio of Drag Measurements 7.4 1.0 
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Friction forces were estimated for the low-density EMAS material only after confirming that there was no 

significant difference between low-speed and high-speed horizontal forces measured at a very shallow immersion 

depths.  Since drag depends on speed and friction does not, this implied negligible drag and suggested that the 

horizontal forcers are due only to friction. 

Low load (i.e., shallow immersion) friction forces were only estimated for the high-density EMAS material at 

low-speed.  The high-speed run was an outlier, generated from the repeat of a failed run executed earlier in the same 

test trench. Therefore there was no independent evidence that horizontal forces were the same for low and high 

speeds and therefore that drag was negligible during the high-density friction estimate. The high-density friction 

estimate might therefore have been more overstated than the low-density friction estimate. The increased density 

would argue for this as well, since the greater mass of material presented to a test wheel with the same immersion 

depth would have generated some additional drag. 

At high load (non-negligible immersion depth so finite drag), any overstatement of friction would understate the 

drag estimates by a greater percentage at low speed (low drag) than at high speed (high drag).  So the effect of 

overstating friction would be to produce a stronger apparent speed dependence than truly exists.  This may explain 

why the drag ratio for the higher-density EMAS material, while still significantly less than the ratio of squared 

speeds, was nonetheless somewhat greater than the linear speed ratio. It is possible that the speed dependence was 

actually linear for the higher-density material just as it appears to have been for the lower-density material, but that 

there is an apparent elevated speed dependence that is attributable to overstated friction estimates, as described. 

While Fig. 2 implies that the speed dependence for drag cannot be unambiguously distinguished from linear in 

the low-density material, the estimated speed dependence in fact does appear to be slightly greater than first-order 

(The mean of the red PDF in Fig. 2 is to the right of the mean of the black PDF, not withstanding considerable 

overlap of the two distributions). Again, this may be evidence of somewhat inflated friction force estimates due to 

non-negligible immersion depths even at low load. 

The fact that the higher-density data seems to forecast a stronger speed dependence than the lower-density data is 

consistent with the notion that apparent departures from a first-order speed dependence may be due to the 

experimental technique described above. This would constitute further evidence of linear Stokes drag rather than 

quadratic Rayleigh drag. In any case, there does not seem to be any empirical evidence to support a quadratic speed 

dependence for drag.   

To summarize the analysis of displacement drag’s dependence on speed in the two EMAS materials, it appears 

to be a linear phenomenon (similar to Stokes’ Drag) in the lower-density material, and may or may not have a 

stronger-than-linear speed dependence in the more dense material. In any case, there is no evidence to suggest that 

displacement drag is a quadratic function of speed for the loads, immersion depths, speed range, and materials of the 

PANYNJ EMAS evaluation experiment. We therefore re-derive the stopping distance formula in the next section 

assuming a linear speed dependence for drag instead of the quadratic speed dependence that was assumed when the 

 

Figure 3. Drag ratio (red), ratio of speeds (black), and ratio of squared speeds (blue) for 

the higher-density EMAS material  
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stopping distance formula was initially derived. This alternative derivation reveals a somewhat surprising result, 

which is that the form of the stopping distance formula is quite similar for quadratic and linear speed dependencies. 

Only the form of the Drag Reduction Factor, D, changes. 

VI. Impact of Linear Speed Dependence for Drag 

A formula for stopping distance was derived in the previous section under the assumption that drag forces 

exhibit a quadratic speed dependence. As noted earlier, this assumption was based on empirical results in runway 

friction tests that have shown a similar behavior for displacement drag due to water, slush, or snow accumulation. 

However, this assumption is not supported by the experimental results obtained during the current EMAS evaluation 

test. The observed speed dependence for drag in this test appeared to be closer to first-order than second-order. On 

the other hand, for practical reasons described earlier that had to do with resource constraints, the current data were 

acquired in a range of speeds that is considerably lower than the operational speed for which EMAS materials are 

ultimately to be evaluated. It is possible that the dependence of drag on speed is stronger in higher speed ranges. 

This remains an open research question, but because the current empirical evidence suggests a linear speed 

dependence for drag, in this section we re-derive the stopping-distance formula for the case of a linear dependence. 

A surprising result is that the formula for stopping distance derived under the assumption of a linear speed 

dependence for drag is nearly identical to the formula that was derived earlier under the assumption of a quadratic 

speed dependence. The only difference is that the Drag Reduction Factor depends on the ratio of drag to friction in a 

slightly different way. 

A. Stopping Distance Derivation, Linear Speed Dependence for Drag 

The derivation of the formula for stopping distance when drag is proportional to speed follows the derivation 

presented earlier for an assumed quadratic speed dependence. As before, we begin with the total horizontal force, 

FH = ma, where m is the mass of the vehicle and a is the horizontal acceleration. This force is just the sum of the 

force of friction, mg, and a drag force that is proportional to velocity rather than velocity squared, with a 

proportionality constant we will call K1 to denote its association with a first-order speed dependence: 

 1HF ma K V mg   
 (84) 

The vehicle will stop when the force in Eq. (84) has been applied through a distance sufficient to generate 

enough work to dissipate all of its kinetic energy, so as before the condition for stopping the aircraft in a distance, R, 

is 
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2

0

R

HmV F dx 
 (85) 

Again we must express FH as a function of distance in order to perform the integral in Eq. (85). We begin by 

expressing Eq. (84) as the following differential equation: 

 

2

12

d x dx
m K mg

dt dt
  

 (86) 

or: 

 

2

1

2
0

d x K dx
g

dt m dt


 
   
   (87) 
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Again we exploit the fact that acceleration is the derivative of speed with respect to time: 

 

2

2

dx d x dV
V

dt dt dt
     

so Eq. (87) becomes 

 

1 0
dV K

V g
dt m


 

   
   (88) 

Apply the chain rule to the derivative representing acceleration as in Eq. (18): 

 

dV dV dx dV
V

dt dx dt dx

    
     
       

and insert this into Eq. (88): 

 

1 0
dV K

V V g
dx m


   

     
     (89) 

or 

 

1K
VdV V g dx

m


  
    

    (90) 

Divide Eq. (90) by the bracketed term on the right: 

 

1

VdV
dx

K
V g

m


 
  

  
    (91) 

We take the indefinite integral of both sides of Eq. (91). 

 

1

VdV
dx

K
V g

m


 
  

  
  

 

 (92) 

The integral on the right is, of course, simply –x. The integral on the left is of a general form that can be evaluated as 

follows26: 

 

 2
ln

a bx bx ae bc
dx c ex

c ex e e

  
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 


 (93) 
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In this case, x=V, a=0, b=1, c=g, and e=K1/m, so Eq. (92) becomes 

 

2

1

2

1 1

ln
mV m g K

g V x Const
K K m




    
        

     (94) 

where Const is a constant of integration. It is again convenient to express Const as ln(C), which we can do with no 

loss of generality, where C is simply some constant yet to be evaluated. 

We thus have 

 

 
2

1

2

1 1

ln ln
mV m g K

g V x C
K K m




    
        

     (95) 

Multiply through Eq. (95) by
2 2

1K m : 

 

   
2 2

1 1 1 1

2 2
ln ln

K V K K K
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 

     
         

        (96) 

or 
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    
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       (97) 

Note that  
1

1 ln
K V

m
K V

e
m

 , so Eq. (97) can be rewritten as 
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or 
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Exponentiation of both sides of Eq. (99) produces this: 
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We can evaluate the constant, C, from the boundary condition that requires V in Eq. (100) to be V0 when x=0: 
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Insert Eq. (101) into Eq. (100): 
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or 
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Take the natural logarithm of both sides of Eq. (103): 
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When x = R, the stopping distance, V = 0 and Eq. (104) becomes: 
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As when we assumed that drag varied as the square of speed, let r represent the ratio of the drag force at EMAS 

entry speed to the force friction. That is, let 1 0r K V mg . We then rewrite Eq. (105) as follows, after 

multiplying through by m: 

 

   
2

1
1 0ln 1

K
mg r K V R

m


 
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   (106) 

Divide through by K1V0, and again invoke the definition of r: 
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Solve Eq. (107) for R, the stopping distance: 
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The term outside the brackets on the right of Eq. (108) can be written as follows: 

 

0
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fRmV V mg
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


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    (109) 

where, as before, 
0f

R is the stopping distance for an initial speed of V0, assuming only friction is in play (no drag). 

Inserting Eq. (109) into Eq. (108): 
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   (110) 

If drag depends on the square of speed as previously assumed, the stopping distance was seen to be the product 

of 
0f

R  and a Drag Reduction Factor, D, which depended only on r, the ratio of drag force to friction force. Equation 

(110) reveals that the same is true when the drag features only a first-order speed dependence. That is, the stopping 

distance is 
0f

R D  in either case, where D, the Drag Reduction Factor, is as follows: 
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We showed in the analysis that was based on a quadratic speed dependence for drag that the Drag Reduction 

Factor is a dimensionless number bounded by 0 and 1, which can be interpreted as the degree of further reduction in 

stopping distance from the friction-only case that is achieved by introducing drag. We now demonstrate that the 

Drag Reduction Factor is also bounded by 0 and 1when drag is directly proportional to speed. It is necessary to show 

this for any r, since adding drag must result in a shorter stopping distance than the friction-only case for any ratio of 

drag to friction, no matter how drag depends on speed. 

We evaluate D for the case of linear V dependence in the limit as r approaches zero and again in the limit as r 

approaches infinity. As was the case for a quadratic speed dependence for drag, D approaches an indeterminate form 

in both cases, but we can circumvent this by again invoking L’Hopital’s Rule, which states that as x approaches 

some limit, c, the ratio of f(x)/g(x) approaches the ratio of the derivatives of f(x) and g(x) if that ratio exists. Begin by 

expanding the version of D for linear speed dependence from Eq. (111): 
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By L’Hopital’s Rule, we divide the derivative of the numerator of Eq. (112) by the derivative of the denominator: 
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just as in Eq. (54). And therefore just as before, we have 

 0
lim 1
r

D



  

and 

 
lim 0
r

D



  

so 0 ≤ D ≤ 1 for all values of r, as required. 

We see that the formula for stopping distance has the same general form whether drag depends on speed or the 

square of speed.  It can be expressed in either case as the product of a well-known formula for stopping distance 

when only friction is in play, and a Drag Reduction Factor, D. In either case, The Drag Reduction Factor is a 

function of r, the ratio of drag to the force of friction, but the form of the relationship between D and r is slightly 

different for the linear and quadratic speed dependence cases as Eq. (111) indicates.  This difference results in a 

somewhat different expression for the variance in stopping distance as a function experimental force measurement 

errors, as will now be demonstrated. 

B. Uncertainty in Stopping Distance, Linear Speed Dependence for Drag 

Assume as before that we are only interested in the uncertainty in stopping distance under operational conditions 

in which drag dominates and frictional forces make only a negligible contribution to the total horizontal force. In 

that case, FH>>f; i.e., r>>1, and: 

 1 HF
r r

f
     
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and 
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where we as before we use the symbol 
2

0

2

V

g
  to simplify the notation. 

We will again invoke the error propagation formula first given in Eq. (3), which depends on the derivatives of 

the stopping distance formula with respect to FV, FH, and f. To facilitate the differentiation, we rewrite the stopping 

distance formula as follows: 
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 (116) 

If we again introduce the simplifying nomenclature: 

 ln HF
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the required derivatives of stopping distance can be summarized as follows: 
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We again introduce the nomenclature that distinguishes large-force experimental errors from the errors in 

estimating the much smaller force of friction, and again assume that the uncertainty in horizontal and vertical large-

force measurements is the same: 

 
2 2 2

V HF F F      

Inserting Eqs. (117) into Eq. (62) with the indicated notational changes produces this result: 
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For the high-speed conditions that are of most interest, the total horizontal force will be large compared to the force 

of friction and Eq. (118) can be simplified to good approximation as follows: 
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or 
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The standard error for stopping distance is just the square root of the variance given in Eq. (120): 
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A comparison of this result with Eq. (72) reveals that if drag is a linear function of speed, the standard error in 

the estimate of stopping distance is slightly more complex than if the speed dependence is quadratic. In both cases 

the standard error depends on the variance in experimental force measurements, but in the case of a linear speed 

dependence for drag we cannot justify ignoring the large-force errors as we were able to do for the case in which 

drag depends on the square of speed. We discuss the reason for this, and other points, in the next section. 
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VII. Discussion 

A number of unanticipated results occurred as this study unfolded along the following lines: A relationship 

between stopping distance and the forces measured in this EMAS evaluation experiment was first derived for the 

purpose of propagating experimental force measurement errors into an estimate of the standard error in stopping 

distance. The intent was to reveal how the uncertainty in stopping distance depends on these measurement errors, 

and to highlight any conditions for which special care might be required in the force measurements to ensure high 

quality estimates of stopping distance in future experiments. 

After the test and prior to the analysis there was an assumption that stopping distance was a function of the sum 

of large drag forces plus a much smaller and essentially negligible force of rolling friction, especially for the high 

EMAS entry speeds of particular concern. This assumption was predicated in part on a supposition that displacement 

drag would display a relatively strong (quadratic) dependence on speed, while the force of friction was known to be 

a relatively small fraction of applied load that was independent of speed. 

The derivation of the stopping distance formula revealed an unanticipated relationship between stopping distance 

and the ratio of drag force to the force of friction, rather than their sum, which has two important implications. The 

first is that the force of friction cannot simply be dismissed as a negligible augmentation of a dominant drag force. 

Stopping distance is influenced as much by the force of friction as by the force of drag, notwithstanding the 

substantially larger magnitude of drag. This then implied that the force of friction and the force of drag must each be 

estimated separately. Stopping distance is apparently not a simple function of some total horizontal retarding force. 

Furthermore, the error propagation analysis that originally motivated the stopping distance derivation revealed that 

uncertainty in stopping distance was a stronger function of experimental errors in the measurement of friction than 

of drag. This unanticipated result was true notwithstanding the degree to which drag dominates the total horizontal 

force, and in fact the smaller friction is, the greater the role of friction measurement errors in estimating the 

uncertainty in stopping distance. 

These insights lead to an attempt to segregate drag and friction forces in the current experiment, by the following 

technique: Horizontal forces on the test wheel measured as it traversed an EMAS test bed at very shallow immersion 

depths were attributed to friction only, since drag depends on the frontal area of EMAS material presented to the 

wheel  This friction-only assumption was tested by comparing the force measurements acquired under such shallow-

immersion conditions at two different speeds. Since drag depends on speed and friction does not, the fact that no 

difference could be resolved between the lower- and higher-speed horizontal force measurements for these very 

shallow immersions was interpreted as confirmation that drag was negligible under those conditions, and the 

measured horizontal forces could be attributed entirely to friction. 

These pure friction forces were used to estimate the coefficient of friction for the two candidate EMAS materials 

under evaluation. The friction coefficient is simply the ratio of the force of friction to the vertical load force. It can 

be used to estimate friction forces in other circumstances, by simply multiplying it by the vertical load in those 

circumstances. 

A series of higher-immersion runs was executed in which both drag and friction were in play. The force of 

friction was estimated for those runs from measured vertical load force data and the coefficient of friction 

determined previously from the friction-only runs. These friction force estimates were then subtracted from 

measured values of the total horizontal force in order to isolate the drag force. 

This isolation of drag forces resulted in another unanticipated result. The dependence of drag on speed was 

examined by comparing the ratio of drag values acquired at higher and lower speeds with the ratio of those speeds.  

Because of the assumed quadratic speed dependence, it was anticipated that the ratio of higher-speed and lower-

speed drag measurements would be the same as the square of the speed ratio. However, the drag ratio was observed 

to be much closer to the ratio of speeds than to the ratio of the square of the speeds. This suggested a linear speed 

dependence for drag rather than the quadratic speed dependence upon which the derivation of the stopping distance 

formula had been based. 

It was the formula for stopping distance based on a quadratic speed dependence for drag that had predicted the 

unanticipated dependence of stopping distance on the ratio of drag to friction rather than the sum, and which had 

motivated the segregation of drag and friction forces in the first place.  Since this relationship was now in doubt, the 

formula for stopping distance as a function of measured forces was re-derived, this time for a linear dependence of 

drag on speed. Again surprisingly, the same dependence of stopping distance on the ratio of drag to friction was 

observed, with only a slightly different functional form. That is, in either case the stopping distance could be 

expressed as the product of a simple and well-known formula for stopping distance when only friction is in play, and 

a dimensionless Drag Reduction Factor, D, in the range of 0 to 1 that quantifies the further reduction in stopping 

distance achieved when drag is introduced. Whether the dependence of drag on speed is linear or quadratic, D is a 
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function only of the ratio of the drag force at EMAS entry to the force of friction. The only difference is that D is a 

slightly different function of this ratio for the two speed dependencies, as Eq. (111) indicates. 

Figure 4 illustrates how the Drag Reduction Factor depends on the behavior of drag as a function of speed. For a 

given ratio of drag force at EMAS entry speed to force of friction, a quadratic speed dependence for drag would 

result in a slightly greater reduction in stopping distance than if the speed dependence was linear. 

 

Figure 4 reveals some important insights about the impact on stopping distance of adding drag to the ubiquitous 

force of friction.  The first is that drag has a greater effect earlier and a lesser effect later.  That is, a small increase in 

drag from the no-drag, friction-only case has a dramatic impact in reducing stopping distance, but the more drag that 

is in play, the less effective additional drag becomes.  Once the drag force at EMAS entry speed is large enough 

relative to the force of friction that this ratio, r, is well to the right of the knee in Fig. 4, adding drag becomes a 

relatively ineffective tactic for achieving substantial further reductions in stopping distance. 

 

The effectiveness of drag as an agent for dissipating kinetic energy can be seen in Fig. 5, which displays the 

speed time histories for MTTF runs through the lower-density and higher-density EMAS material with a test-tire 

immersion depth of less than four inches.  The vehicle tires of the MTTF straddled a narrow test trench filled with 

EMAS material in each case, so that only the trailing test wheel (Figs. 1 and 6) encountered the EMAS material.  

 

Figure 4. Drag Reduction Factors when Displacement Drag is a 

Linear or Quadratic Function of Speed. 

 

Figure 5: Impact of EMAS material on Speed of MTTF 
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Notwithstanding the relatively shallow immersion of the test wheel, drag induced by the EMAS material was able to 

reduce the speed of the 18,000-pound MTTF from about 25 mph to about 16 mph in less than two seconds.  This 

corresponds to a dissipation of more than half of the kinetic energy of the MTTF, under conditions in which the 

operator was attempting to maintain a constant speed by applying pressure to the accelerator peddle.  The energy 

reduction is likely to have been even greater had there been no accelerating forces on the MTTF, and greater still 

without the restrictions on test-wheel immersion depth that are discussed below. 

The MTTF operator experienced no trouble maintaining a constant speed over asphalt, where only friction and 

no drag was in play.  Figures 4 and 5 are consistent, and suggest that adding even a little drag can result in a 

substantial reduction in kinetic energy. 

Figure 4 also illustrates something interesting about the impact of force measurement errors on the uncertainty in 

estimates of stopping distance.  Under the most interesting practical conditions, which involve EMAS entry speeds 

large enough for the quantity r in Fig. 4 to be well to the right of the knee, the change in stopping distance is a 

relatively weak function of the change in EMAS entry drag.  That is, the magnitude of the slope of D is relatively 

small.  In this region, rather large errors in the estimates of drag forces will have relatively minor effects on the 

estimates of stopping distance. This suggests that for practical purposes, a precise estimate of drag at a given EMAS 

entry speed is not a prerequisite for a good estimate of stopping distance. On the other hand, to estimate stopping 

distance the Drag Reduction Factor plotted in Fig. 4 is multiplied by a formula for friction-only stopping distance 

that is inversely proportional to friction coefficient, which is directly proportional to measured friction force values.  

This suggests that for the relatively low levels of friction coefficient anticipated under the no-braking conditions 

considered in this analysis, the uncertainty in stopping distance will be a relatively sensitive function of 

experimental errors in friction force measurements. This is supported by Eqs. (69) through (72) and the ensuing 

discussion. 

Although the general features of how stopping distance depends on the forces of friction and drag are the same 

for either a linear or quadratic speed dependence for drag as Fig. 4 indicates, the true dependence of drag on speed 

under operational conditions of special interest remains an open research question.  There are two reasons for this.  

The first is that the 5 mph to 30 mph speed range specified by the PANYNJ for this preliminary test is well below 

the 70-knot (80.6 mph) upper speed limit for which the FAA requires effective EMAS performance. It is therefore 

possible that something akin to Stokes Drag is in play at lower speeds, with its linear dependence on speed as 

observed in this experiment, while at higher speeds there is a transition to something that behaves more like 

Rayleigh Drag, with its quadratic speed dependence. 

 

The second reason that drag may depend on speed in a different way under operational conditions of interest 

than in this test is that full immersion depths were not realized, and the speed dependence for drag may be a function 

of immersion depth. Test wheel immersion depths were limited in this test to a few inches by a mechanical stop built 

into the MTTF test wheel assembly. The purpose of the mechanical stop was to keep the wheel mount hardware 

(yellow component in MTTF test wheel assembly of Fig. 6 up and out of the EMAS material, so that only forces on 

 

Figure 6. MTTF Test Wheel Assembly 
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the test wheel would be measured by the strain gauge balance shown in that figure. With an MTTF design 

modification that would facilitate full-immersion runs, it is possible that a quadratic dependence of drag on speed 

might be observed. 

Principal lessons learned in the present study include the fact that the dependence of drag on speed is an 

important factor in estimating stopping distance, and since this dependence may vary with such factors as immersion 

depth and mean speed, it needs to be evaluated under the full-speed, full-immersion conditions that are of most 

practical interest. A second important lesson learned is that since stopping distance depends on the ratio of 

displacement drag at EMAS entry speed to the force of friction, and not the sum of those two forces, it is just as 

important to measure friction under conditions of negligible drag as it is to measure drag under conditions of 

negligible friction. This would involve very shallow immersion depths and very low speeds, since drag is a function 

of the frontal area of material presented to the wheel and is also a function of speed. 

VIII. Summary of Results 

This study provided a number of unanticipated insights into the behavior of an aircraft during a runway overrun 

incident involving an Engineered Materials Arresting System.  These insights are related to the relative importance 

of friction and drag in such an incident, the dependence of drag on speed, the precision requirements in force 

measurements made as part of an EMAS materials evaluation experiment, and the unexpectedly simple relationship 

between stopping distance and the forces that are responsible for the work that dissipates the aircraft’s kinetic energy 

when both friction and drag are in play. 

An analytical investigation of stopping distance as a function of entry speed and forces on the test wheel lead to 

two different formulations for a stopping distance formula. One was based on the assumption of a quadratic 

dependence of drag on speed that is similar to Rayleigh Drag, and one was based on the assumption of a linear 

dependence of drag on speed that is similar to Stokes Drag. A linear speed dependence for drag was observed for the 

low-speed, shallow-immersion runs conducted in this test.  However, it was not possible to achieve full test wheel 

immersion depths because of a safety constraint designed to keep part of the test wheel assembly elevated, and real-

estate constraints (limited space for acceleration/deceleration) also prevented an evaluation of the EMAS materials 

at the full 70-knot speed specified by the FAA. The true speed dependence for drag under operational conditions 

therefore remains an open research question, and may in fact be quadratic notwithstanding the linear dependence 

observed under the limited conditions of this test. However, the dependence of stopping distance on measured forces 

was found to be similar for either a linear or quadratic dependence of drag on speed, and the essential findings of 

this test are the same in either case. 

Principal findings of this study are summarized as follows: 

 

 Stopping distance is not a simple function of the total horizontal force experienced by a wheel as it enters 

an EMAS runway extension. That is, the forces of friction and displacement drag do not simply add to 

produce a retarding force that can be used to forecast stopping distance. 

 

 When drag and friction are both in play, stopping distance for a given entry speed into an EMAS is the 

same as it would be if friction was in play and drag was not, except that this friction-only distance is further 

reduced by a dimensionless constant between 0 and 1 that quantifies the role of drag. This constant was 

named the Drag Reduction Factor, D, in this report. 

 

 The Drag Reduction Factor is a function of the ratio of the two horizontal force components. It depends on 

the ratio of the drag force at V0, the EMAS entry speed, to the speed-independent force of friction. 

 

 The form of the Drag Reduction Factor depends on whether displacement drag is proportional to speed or 

the square of speed. An anticipated quadratic speed dependence was not confirmed by the data, which 

suggested a linear speed dependence instead.  However, because of certain resource and safety constraints 

described in the paper, the data were acquired at lower speeds and more shallow immersion depths than 

will apply under typical operational conditions, for which the speed dependence may be stronger. 

 

 Drag generates a substantial further reduction in stopping distance beyond that which is attributable to 

rolling friction only. Further reductions of a factor of 5 to 10 or more beyond those achievable with rolling 

friction alone appear to be practical with realistically anticipated levels of drag. 
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 Drag effects accrue early. With even a modest addition of drag, the stopping distance drops substantially 

below what it would have been if only rolling friction were in play. 

 

 The impact that additional drag has on stopping distance is a monotonically decreasing function of the 

amount of drag already in play. Adding more drag therefore has a greater effect when relatively little drag 

is in play and rather less of an effect once there is already a substantial amount of drag. 

 

 The standard error in estimating stopping distance is a weighted sum of the standard experimental errors in 

measuring friction and the larger forces of horizontal drag and vertical load.  Uncertainty in stopping 

distance is a stronger function of experimental errors in estimating friction than in estimating either 

horizontal drag or vertical load, notwithstanding how much greater the drag and load forces tend to be than 

the force of friction under typical operating conditions. 
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