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Local-in-time Adjoint-based Method for Optimal
Control/Design Optimization of Unsteady
Compressible Flows

N. K. Yamaleev,*B. Diskin,’and E. J. Nielsen?

We study local-in-time adjoint-based methods for minimization of flow matching func-
tionals subject to the 2-D unsteady compressible Euler equations. The key idea of the
local-in-time method is to construct a very accurate approximation of the global-in-time
adjoint equations and the corresponding sensitivity derivative by using only local infor-
mation available on each time subinterval. In contrast to conventional time-dependent
adjoint-based optimization methods which require backward-in-time integration of the ad-
joint equations over the entire time interval, the local-in-time method solves local adjoint
equations sequentially over each time subinterval. Since each subinterval contains rela-
tively few time steps, the storage cost of the local-in-time method is much lower than that
of the global adjoint formulation, thus making the time-dependent optimization feasible
for practical applications. The paper presents a detailed comparison of the local- and
global-in-time adjoint-based methods for minimization of a tracking functional governed
by the Euler equations describing the flow around a circular bump. Our numerical results
show that the local-in-time method converges to the same optimal solution obtained with
the global counterpart, while drastically reducing the memory cost as compared to the
global-in-time adjoint formulation.

I. Discrete Optimal Control Problem

We consider time-dependent optimization problems that include both optimal control and shape/design
optimization of unsteady compressible flows governed by the 2-D Euler equations. The governing equations
are discretized by using a node-centered finite-volume scheme, where solution values are stored at the mesh
nodes. Inviscid fluxes at cell interfaces are computed using the upwind scheme of Roe.! The discretized
Euler equations including the boundary conditions can be written in the following form:

Q" -Q"!

TL: 1
—— +R"=0, (1)

where Q = fV UdV, U is a vector of the conserved variables, V is the control volume, and R is the spatial
undivided flux residual. It should be noted that the above discrete formulation (1) is very general and can be
directly applied to the unsteady Reynolds-averaged Navier-Stokes equations. In Eq. (1), the time derivative
has been approximated using the implicit first-order backward-difference (BDF-1) formula. Note that 2nd—
and 3rd-order BDF formulae can also be used in the present formulation with minor modifications.?

The discrete time-dependent optimization problem is formulated as follows:

N
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s.t. Eq. (1),
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where D is a vector of the control or design variables which may depend on time, D, is a set of admissible
controls, which depends on specifics of the target physical system and ensures the existence of a solution of the
optimization problem, N is the total number of time steps, Q is the solution of the unsteady, compressible
Euler equations (1), Fop; is an objective functional. The minimization problem (2) is very general and
directly applicable to both active flow control and aerodynamic design optimization of unsteady flows.
Similar optimal control and design optimization problems governed by the unsteady incompressible and
compressible Euler/Navier-Stokes equations have been considered in.?

To reduce the complexity of the optimization problem (2), without loss of generality, it is assumed that
the objective functional Fop; is a scalar quantity. In the present analysis, we consider the following discrete
convex functional at each time level:

12
fr=x [ep- ()] 3)
S

where C; is an aerodynamic quantity such as lift or pressure on the controlled boundary surface T, C’;argec

is a given target value of C;. In the present paper, only matching objective functionals given by Eq. (3) are
considered.

II. Global-in-time Adjoint-based Optimization Method

The discrete time-dependent optimization problem (2) is solved by using the method of Lagrange mul-
tipliers which is used to enforce the governing equations and the corresponding boundary conditions (1) as
constraints. The discrete Lagrangian functional is defined as follows:

N N - " )
LD.QA) = 3 ['Ar + 5 (A" (TF =+ Re) At (A1) (Q - Q). @)

where A is a vector of Lagrange multipliers or costate variables, n = 1 corresponds to the initial moment
of time, Q™™ is the initial condition for the Euler equations, f™ is the objective functional given by Eq. (3),
and R™ = R(Q", D) is the spatial undivided residual. Note that the scalar product of the costate vector
and the flux residual vector in Eq. (4) can be interpreted as the integral over the computational domain.
The sensitivity derivative is obtained by differentiating the Lagrangian with respect to D, which yields
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Regrouping the terms, Eq. (5) can be recast as follows:
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For aerodynamic design optimization and optimal control problems, the number of design or control variables
may be very large. Therefore, the computation of 0Q/9ID is extremely expensive in terms of the CPU time,
because it requires as many solves of the primary problem as the total number of the design/control variables
involved. To eliminate this term from the Lagrangian, the second, third, and forth terms on the right hand
side are set equal to zero, thus leading to the following adjoint equations for determining the Lagrange
multipliers:

T
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The main advantage of the adjoint formulation is that at each optimization iteration, the adjoint equations
(7) do not depend on D and should be solved once regardless of the number of the control/design variables.
Equations (7) represent a linear system of equations for the adjoint variables, which are solved backward in
time. Using the Lagrange multipliers found from Egs. (7), the sensitivity derivative is calculated as follows:

N N T i T
dL < Of" OR")" ., [0QN .
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where 2 8D = and 2B Sn- are calculated by using Q™ stored during the forward sweep in time.
A minimum of the functional is found by using the steepest descent method in which each step of the
optimization cycle is taken in the negative gradient direction

dL
Dloy = DL -4, (m) , (9)

where 0 is an optimization step size which can be chosen adaptively, k is the number of optimization
cycle, D! is an I-th component of the vector the control/design variables, D. Note that for optimal control
problems considered herein, D! denotes the value of the control variable at the I-th time step, so that the
dimensionality of the vector D is equal to the total number of time steps used for integration of the flow
equations. The sensitivity derivative dL/dD; in Eq. (9) is determined using Eq. (8) which requires the
solution of the adjoint equations (7). During the solution of the adjoint equations which are integrated
backward in time, the sensitivity derivative at each time step is computed and added to its value at the
previous time step. At n = 1, the complete sensitivity derivative vector is available and used in Eq. (9) for
calculating a new value of each control variable DfC 4+1- Then, the entire optimization cycle is repeated until
|Dj,., — Dj| < efor all I, where € is a given tolerance. The above procedure can be summarized in the form
of the following global-in-time adjoint-based algorithm:
ALGORITHM 1.

1. Choose §, Dy; set K =1 and fil—]g =0.

2. Solve Eq. (1) for Q7 for n =1, N and store Q},..., QY.

3. Solve Eq. (7) backward in time for A}, n =1, N.

4. Evaluate % using Eq. (8).

5. Calculate D} | using Eq. (9) for all .

6. If |D} , —D.L|| > ¢, set k =k + 1 and go to (2); otherwise stop.

III. Local-in-time Adjoint-based Optimization Method

As has been mentioned in the foregoing section, at each iteration of the global-in-time adjoint-based
optimization method, the flow equations are integrated forward in time while the adjoint equations are
integrated backward in time over the entire time interval considered. Since the adjoint equations (7) depend
on Q7, the solution of the flow problem has to be stored for all time levels over which the optimization
problem is solved. For realistic 3-D large-time optimal control problems, these storage requirements can
quickly become prohibitive. This motivates us to use suboptimal strategies to reduce the memory cost of
the global-in-time adjoint-based optimization procedure presented in the foregoing section.

We begin by dividing the entire time interval into M subintervals such that 0 =77 < ... < T4 =
NAt = Tqpal, where T, = AtN,,, M < N, and At is the time step used for integrating the flow and
adjoint equations. In general, this partitioning can be chosen so that each subinterval contains one or several
time steps of the time-marching scheme used for solving the flow equations. The main idea of the proposed
suboptimal strategy is based on the observation that the sensitivity derivative of the the global-in-time
Lagrangian can be represented as a sum of the sensitivity derivatives of local-in-time functionals:

aL L arm 10)
dD 42 dD
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where the local Lagrangian functionals are defined as

Nfl frat+ Nfl [Anr (% + R”) At, for2<m<M
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Q and A are local conserved and adjoint variables defined on the subinterval (T}, T)+1], accordingly.

The local-in-time sensitivity derivatives dL™/dD, m = 1, M can be evaluated by using an adjoint-based
approach similar to one described in the foregoing section. Differentiating each local Lagrangian, L™, with
respect to D, collecting the 8@” /OD terms and setting their coefficients equal to zero yield the following
local flow adjoint equations for the subinterval (Ty,, Ty41]:

" - N 17T - N,
ﬁ(ANMJrl_A)—’—[ggNmii} AN"M:_S(J?;N% fOI'TL:Nerl
T
1 AT An+1 IR"™ AN of"
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Note that the last equation in Eq. (12) is used only on the first subinterval [T, T3] corresponding to m = 1.
Furthermore, if the local adjoint equations (12) are derived solely based on the local-in-time Lagrangian L™
itself, i.e., no information about the global-in-time Lagrangian is invoked, then A in Eq. (12) is identically
equal to zero. With the local adjoint variables A satisfying Eq. (12), the local sensitivity derivative on the
subinterval (T, T, 11] is calculated as follows:

Nm+1 Nm+1

= n=Np+1 n=N,,+1 (13)
b 20 Ay 4 2 (R T A 0" \" A1

The local sensitivity derivative at the m-th time subinterval is calculated using Eq. (13) and added to
the sum of the sensitivity derivatives obtained at the previous (m — 1) subintervals in accordance with Eq.
(10). Once the global sensitivity derivative is available at the last M-th time subinterval, the vector of
control/design variables is updated by using the steepest descent method as follows:

Dy41 =Dy — 0 (%)k , (14)
where k is the number of an optimization iteration, and Jj is the optimization step size which is chosen
adaptively at each optimization cycle. The steepest descent iterations are repeated until |Dgy1 — Dg| <,
where € is a user-specified tolerance.

Comparing Eq. (7) with Eq. (12) and Eq. (8) with Eqgs. (10, 13), the following important conclusions can
be drawn. First of all, each local-in-time set of the adjoint equations (12) defined on a given time subinterval
is independent of the other adjoint equations defined on the rest of the time interval [0, Thpa], thus indicating
that the local adjoint equations (12) can be solved sequentially starting from m = 1 and marching forward
one subinterval by another up to m = M. It should be emphasized that within each subinterval (Ty,, Tyn41],
the local adjoint equations (12) have to be integrated backward in time. The local sensitivity derivatives
calculated on each subinterval using Eq. (13) are then summed up to give the sensitivity derivative for the
entire time interval [0, Thapa)]. Note that the flow adjoint variables obtained with the local adjoint equations
(12) for m = 1, M and the corresponding total sensitivity derivative given by Eq. (10) are not equal to those
of the global-in-time formulation Eqs. (7, 8), i.e., A # A on (Ty,, Thnt1], where A denotes the solution of the
global adjoint equations (7). Though the above approach only approximates the original global sensitivity
derivative given by Eqgs. (7, 8), it reduces the memory cost by a factor of M as compared with the global-
in-time formulation. Indeed, since the local adjoint equations on each time subinterval (Ty,, Tyn41] can be
solved independently on the adjoint equations defined on the other subintervals, only the flow solutions for
the current subinterval, Q = [QV=*1, ..., QV=+1]T have to be stored, thus drastically reducing the memory
cost.
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The second observation resulted from the comparative analysis of Egs. (7,8, 12, 13) is that the set of the
local adjoint equations (12) for m = T, M is identical to the global adjoint equations (7) if A in Eq. (12) is
set to be ANm+1+1 In spite of the fact that this approach provides complete consistency of the local and
global adjoint equations, it destroys the locality of the adjoint equations (12) defined on each subinterval
and therefore requires the same storage as the original global-in-time formulation.

The above considerations suggest that Ain Eq. (12) should be chosen such that it preserves the locality
of the local-in-time adjoint equations on each subinterval (T}, Tyn41] and provides a good approximation of
ANm+1+LTo satisfy these constraints, we have chosen A in the following form:

Ay = AT (15)

where k is the number of an optimization iteration. In other words, the required vector of adjoint variables
at the time level N,,11 + 1 is taken from the previous iteration of the steepest descent method (14). This
choice of A significantly reduces the memory cost as compared to the global-in-time adjoint formulation.
Indeed, in this case, the flow solution should be stored only at those time levels that belong to the current
time subinterval (Ty,, Trnt1]- In addition, M adjoint variables, Ag_mlﬂﬂ for m = 1, M, from the previous
optimization cycle should also be stored, as follows from Eq. (15). Therefore, the overall memory cost of
the proposed methodology is O(N/M + M) versus the O(N) cost of the global-in-time formulation. This
estimate suggests that the optimal value for the number of time subintervals is M = /N, where N is the
total number of time levels. Another advantage of this method is that if the steepest descent method (14)
converges, then the solution of the set of the local-in-time adjoint equations approach to the solution of the
original global adjoint equations, thus providing full consistency of the local to global formulations.

The above local-in-time strategy for solving the minimization problem (2, 3) can be formulated in the
form of the following algorithm:

ALGORITHM 2.

1. Choose &, Dy, and M;set m =1, k=1, A)™™" =0 for m = 1, M, and 4& = 0.
2. Solve Eq. (1) for QN=+1 ... QY+t

3. Solve Eq. (12) with A = A" *! backward in time to find AN +1 . AN™ 1,
4. Store AkN’“H.

5. Evaluate ddL—];n using Eq. (13).

Set % = j—é + %.

Set m =m + 1, if m < M go to step (2); otherwise continue.

Calculate Dj4q using Eq. (14).

© »®» N

If [Dps1 — Dyl >eset m=1, k =k + 1, & =0 and go to (2); otherwise stop.

It should be noted that the above local-in-time adjoint-based algorithm can be directly used for solving both
time-dependent optimal control problems whose control variables depend on time and design optimization
problems whose design variables are independent of time. This is the key difference between the local-in-time
method and the locally optimal scheme and its variants (e.g., see Refs. [>4]), which are applicable only to
optimal control problems, but cannot be used for design optimization. One of these locally optimal control
strategies, which is also known as a receding horizon control technique, is presented next.

IV. Locally Optimal Control Strategy

In this section, the minimization problem (2) is interpreted as an optimal control problem with the
following control variables D = [D!,... D¥]T where N is the total number of time steps used for integration
of the governing equations (1). Similar to the local-in-time approach presented in the foregoing section, we
divide the entire time interval into M subintervals: 0 = T < ... < Tyry1 = NAt = Thpa- Along with
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the PDE-constrained global optimal control problem (2), we consider the following M local-in-time optimal
control problems:

L PR N1 A
. min Fop(D),  F(D) = 3 f(Q",D)At
DeD,, tE(Tnz7Tn7,+1] n=~N,, (16)

s.t. Eq. (1) on (Tyn, Tint1) with the initial condition Q™ = QNm |

where N,,, = 1 if m = 1 otherwise N,,, = N,,, + 1, Ti, = N,,At, At is the time step of the time-marching
scheme used for solving the flow equations, D = (Dy,s--- ,DNm+1)T is the subset of the control variables

that belong to the time interval (Ty,, Tm+t1], Q is the solution of the Euler equations over the subinterval
(Tma Tm+1]~

The local optimal control problems are solved sequentially over each time subinterval using the solution
from the previous subinterval as an initial condition. To solve each local control problem (16), we use an
adjoint-based gradient method similar to one described in Section II. The discrete Lagrangian for the local
optimization problem, the corresponding local adjoint equations, and the local sensitivity derivative on the
interval (Ty,, Trmt1] are identical to those used for the local-in-time adjoint-based method and given by Egs.
(11), (12), and (13), respectively. The locally optimal algorithm can be formulated as follows:

ALGORITHM 3.

1. choose 6, and M;set m =1, k=1, and & -

L™ _ Q.
dD =0;

2. Choose D{v’", ., DYNm

3. Solve Eq. (1) for Qg’", ce kNm“.

4. Solve Eq. (12) with A = 0 backward in time to calculate AkN’“, ce Agm“.
5. Evaluate % using Eq. (13).

6. Set Dy | = Dy — 51@%2; for Npp <n < Nppga.

7. If 3n : D}, | — Di}| > € then set k =k + 1 and go to (3); otherwise continue.

8. Set m=m+ 1, if m < M go to step (2); otherwise stop.

In spite of some similarities between Algorithms 2 and 3, there is one major difference, namely, how
local-in-time and locally optimal methods update the control variables. The local-in-time method uses the
local adjoint equations (12) to evaluate the global sensitivity derivative on [0, Thnal], which provides a search
direction in the entire design space and drives the control variables to a minimum of the global-in-time
objective functional (2). In contrast to the local-in-time method, the locally optimal technique sequentially
solves each local optimization problem (16), which is equivalent to finding a minimum of the local objective
functional in the design subspace of a much smaller dimension. The global solution on the entire time interval
[0, Thnal] is obtained by patching together all the local optimal control solutions (Qm, ljm), m=1,M. In
general, the locally optimal solution Qm may not be equal to the solution of the global-in-time optimization
problem Q", n = Ny, N,,,; on the same time subinterval. Therefore, Qm is suboptimal with respect
to the original time-dependent optimization problem. However, for the class of flow matching problems
considered in this paper, the the locally and globally (in time) optimal adjoint-based methods converge to
the same optimal solution. The main advantage of the locally optimal strategy is its efficiency. Indeed, a
local optimization problem on each time subinterval is M times smaller as compared to the original problem,
thus drastically reducing the memory cost if M is large. The locally optimal strategy can be used even if
each subinterval consists of a single time step; such optimization method is hereafter termed a “one-step”
method. In this case, the original time-dependent optimization problem is replaced with a sequence of
stationary optimal control problems.

In Ref. [?], it has been proven that the locally optimal control strategy similar to one described above
converges to the solution of the global-in-time optimal control problem governed by the incompressible
Navier-Stokes equations. Although, similar proof is not currently available for the compressible Euler and
Navier-Stokes equations, our numerical results presented in the next section show that the locally optimal
control strategy works very well for the tracking functional Eq. (2) at supersonic flow regimes.
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V. Numerical Results

We consider simple unsteady compressible inviscid flows in a channel with a bump to evaluate the perfor-
mance of the local-in-time and locally optimal methods for design optimization and flow control problems.
For all test problems considered, the freestream Mach number is given by

M(t) = Mo+ AM cos(wt), (17)

where My is a mean value of the freestream Mach number, AM and w are an amplitude and frequency
of freestream Mach number oscillations. Since the freestream Mach number oscillates in time, the entire
flowfield is essentially unsteady.

N
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24 o One-step method
. ] Global-in-time method
23
2.2

N
[

Mach Number
N

I~
N ©

[
o

=
3

H
©
© T T T T

Figure 1. Comparison of the optimal Mach number distributions computed with the one-step and global-in-
time methods for the optimal flow control problem.

The test problems are solved on structured grids using a node-centered finite volume code that is first-
order accurate both in time and space. At each time step, the nonlinear discrete flow equations are solved by
using the Newton’s method. For each test, the Euler equations and their adjoints are converged to machine
precision. The local adjoint equations are integrated backward in time and require the solution of the Euler
equations to be known only for a current time subinterval which is much smaller that the entire time interval.
In the present implementation of local optimal and suboptimal methods, only the local unsteady solution
set on the current time subinterval is held in operating memory, while for the global-in-time optimization
method, the entire unsteady solution history for all time levels has to be stored. The derivatives of R and
f with respect to Q and D, which are required to form the adjoint equations and the sensitivity derivative,
are calculated using the complex variable formula proposed by Lyness.!?

A. Optimal Flow Control

First, we validate the implementation of the locally optimal method and test its performance for a time-
dependent optimal flow control problem given by Eq. (2). For this test case, the thickness of a circular
bump is set to be 10% of its chord length, and the final time, Thpay, is 1. The target solution is computed by
using the following parameters in Eq. (17): My = 2, AM = 0.5, and w = 177/9. The objective functional
is given by ,

fn — Z |:PJTL _ (P;arget)“} : (18)

jele

where Pj* and (P]t arget)n are computed and target time-dependent pressure profiles at the lower boundary

of the computational domain. Values of the freestream Mach number at each time step D = (M7, ..., My)T
are used as control variables. Both the locally optimal and global-in-time optimization procedures start
at a constant freestream Mach number which is set equal to 2.1 for all time levels. The optimization is
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Figure 2. Histories of convergence of the one-step and global-in-time adjoint-based optimization methods.

stopped when either the relative change in the value of each control variable becomes smaller than 104
or the absolute value of the normalized objective functional f™(D)/(Ny, 41 — Np) becomes smaller than
10~7. In contrast to the global-in-time procedure, the one-step method solves the adjoint equations over
one time step, so that only the flow solutions at the current and previous time levels should be stored, thus
drastically reducing the memory cost. Note that the computational cost of the global-in-time method per
each optimization cycle is IV times larger than that of the one-step scheme, where N is the total number of
time steps.

To compare the one-step and global-in-time adjoint-based optimization procedures and to evaluate accu-
racy of each method, the suboptimal and optimal Mach numbers are compared with the target Mach number
in Figure 1. As seen in the figure, both methods converge to the target solution on the entire time interval
considered, thus validating the one-step and global-in-time adjoint formulations. Note, however, that the
one-step strategy provides higher accuracy than its counterpart.

The histories of convergence obtained with both optimization techniques are presented in Fig. 2. For the
one-step method, the value of the objective functional drops by an order of magnitude every 3 optimization
cycles. Only 6 optimization iterations are needed to reduce the objective functional by two orders of magni-
tude. The total number of optimization cycles required for convergence of the global-in-time method is an
order of magnitude larger than that of the one-step strategy. In spite of the fact that the combined number
of optimization iterations of the one-step method for all time levels is approximately the same as the total
number of optimization iterations performed by the globally optimal method, each iteration of the one-step
method is N times cheaper than that of its counterpart. For N = 11 used in this test case, the total CPU
time is reduced by about an order of magnitude as compared with the global adjoint-based formulation. This
is because at each iteration of the one-step method, the local control problem is solved over one time step,
while for the global-in-time method, the flow and adjoint equations are integrated over N time levels. Note
that for practical applications that require 102 — 10* time steps to resolve the unsteady flow dynamics, the
one-step method can provide three to four orders of magnitude reduction in the CPU time and memory cost
as compared with its conventional counterpart. To illustrate how the lift coefficient converges to its target
value, the optimal C}, obtained with one-step and global-in-time methods as well as the initial and target lift
coefficients are presented in Figure 3. The difference between the initial lift coefficient and its target value is
of the order of O(1), while the solutions obtained with the one-step and global-in-time methods are almost
indistinguishable from the target C, over the entire time interval considered.
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Figure 3. Comparison of the optimal lift coefficients computed using the one-step and global-in-time methods
with their initial and target values.

B. Design Optimization

The second test problem has been chosen to evaluate the performance of the local-in-time method for a
shape optimization problem given by Eq. (2). The bump shape is described by the following equation:

y = dipr(x) + dotpa(x) + darps(x),

where v;(x), i = 1,3 are given polynomials satisfying the requirement that the leading and trailing edges
of the bump continuously meet the straight lower wall on either side of the bump. The three coeflicients
dy, d, and d3 are design variables, i.e., D = [d1,d2,d3]T. The objective functional is the same as the one
used in the previous test problem. Similar to the previous example, the freestream Mach number varies in
time, according to Eq. (17) with My = 2, AM = 0.2, and w = 177/9. The target pressure distribution is
obtained by solving the unsteady 2-D Euler equations with the bump parameters/design variables chosen
to be d; = 0.05, do = 0.03, and d3 = 0.01. The initial value of the design variables are set to be zero.,
i.e., initially, there is no bump on the lower wall. Note that the target flow and bump shape parameters
are feasible, and the objective functional vanishes at the optimum; this information is used to monitor the
performance of the local and global-in-time optimization methods. The number of time subintervals used
in the local-in-time optimization procedure is set to be equal to 5, i.e., each interval consists of only two
time steps. The results presented hereafter have been obtained using the simplified form of the local-in-time
method with A = 0 in Eq. (12).

Histories of convergence of the objective functional obtained with the local- and global-in-time methods
are presented in Fig. 4. Overall, both methods demonstrate a similar convergence rate. The value of the
objective functional monotonically decreases until it becomes less than the specified tolerance which is set to
be 1076, About 50 design cycles are needed to reduce the objective functional by five orders of magnitude.
It should be noted that the local-in-time method demonstrates much faster convergence during the first
several cycles than its counterpart. Figure 5 shows convergence histories of all three design variables during
optimization. The most important conclusion that can be drawn from this comparison is that the local-
and global-in-time methods converge to the same solution. From this standpoint, the solution obtained
with the local-in-time method is optimal with respect to the original optimization problem (2). It should
also be noted that all the design variables approach to their target values. In spite of the fact that the
second bump parameter, ds, is slightly overpredicted while the third one, ds, is underpredicted, the optimal
shape is practically indistinguishable form the target bump, as one can see in Fig. 6. Form the comparisons
presented above it follows that the locally optimal method does not only converge to the same optimal
solution computed using the global-in-time method, but also reduces the memory cost by a factor 5 as
compared with its conventional counterpart.
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Figure 4. Convergence of the objective functional obtained with the local- and global-in-time methods for the
design optimization problem.
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Figure 5. Convergence of the design variables obtained with the local- and global-in-time methods for the
design optimization problem.
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Figure 6. The target and computed bump shapes.
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