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Abstract 

A refined zigzag theory is presented for laminated-composite and 
sandwich plates that includes the kinematics of first-order shear-
deformation theory as its baseline. The theory is variationally consistent 
and is derived from the virtual work principle. Novel piecewise-linear 
zigzag functions that provide a more realistic representation of the 
deformation states of transverse-shear-flexible plates than other similar 
theories are used. The formulation does not enforce full continuity of the 
transverse shear stresses across the plate’s thickness, yet is robust. 
Transverse-shear correction factors are not required to yield accurate 
results. The theory is devoid of the shortcomings inherent in the previous 
zigzag theories including shear-force inconsistency and difficulties in 
simulating clamped boundary conditions, which have greatly limited the 
accuracy of these theories. This new theory requires only C0-continuous 
kinematic approximations and is perfectly suited for developing 
computationally efficient finite elements. The theory should be useful for 
obtaining relatively efficient, accurate estimates of structural response 
needed to design high-performance load-bearing aerospace structures. 

. 

 

Nomenclature 

a, b         lateral dimensions of a rectangular plate 

2h          total plate (laminate) thickness 

( )2 kh          thickness of the kth material layer (lamina) 

( )1 2,x x         reference plate-coordinate axes positioned in the middle plane of the  
          laminate 

z           thickness coordinate axis 

N           number of material layers (laminae) through the laminate thickness   

mS          reference middle plane of the laminate 

uS ,  Sσ        parts of the cylindrical edge surface of the laminate where displacements 
          and tractions are prescribed,  respectively 

0C          denotes a continuous function whose first-order derivative is     
          discontinuous  



 

 2

 uC , Cσ         intersections of the cylindrical edge surfaces ( uS , Sσ ) with the middle 
          surface mS where displacements and traction resultants are prescribed,  
          respectively 

,s n          unit outward tangential and normal vectors to the mid-plane boundary  
          (see Figure 1) 

q           applied transverse pressure [force/length2]  (see Figure 1) 

1 2( , , )zT T T        prescribed in-plane and transverse shear tractions (see Eq. (14)) 

( ) ( )
1 2( , , )k k

zu u u       in-plane and transverse components of the displacement vector in the kth 
          material layer (see Eqs. (1)) 

1 2 1 2( , , , , , , )u v w θ θ ψ ψ    kinematic variables of the refined zigzag plate theory (see Eqs. (1)) 

1 2 12( , , )N N N       membrane stress resultants (see Eqs. (16)) 

1 2 12( , , )M M M      bending and twisting stress resultants (see Eqs. (17)) 

1 2 12 21( , , , )M M M Mφ φ φ φ    bending and twisting stress resultants due to zigzag kinematics (see Eqs. 
          (17)) 

1 2( , )Q Q         transverse shear stress resultants (see Eqs. (18)) 

1 2( , )Q Qφ φ        transverse shear stress resultants due to zigzag kinematics (see Eqs. (18)) 

( ) ( 1,2)k
αφ α =        zigzag functions (see Eqs. (1)) 

( ) ( 1,2)k
αβ α =        derivatives of zigzag functions with respect to the thickness coordinate  

          (see Eq. (2.2)) 

( )kξ          dimensionless thickness coordinates of the kth layer (lamina)  (see Eq.  
          (5)) 

( )kz          thickness coordinate of the interface between the kth and ( 1)k + th   
          layers (see Figure 1) 

( ) ( )( , )k ku v        dimensionless in-plane displacements along the interface between the kth 

          and ( 1)k + th layers (see  Figure 2) 

( )( ) ( ) ( ) ( ) ( )
11 22 12 2 1, , , ,k k k k k

z zε ε γ γ γ   strains in the kth layer (see Eqs. (3)) 
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1 2( , )x xαγ  ( 1,2)α =     average shear strains (see Eq. (2.1) and Eq. (9)) 

( 1,2)αη α =       transverse-shear strain measures (see Eqs. (11)) 

1 2( , )x xαψ  ( 1,2)α =     zigzag amplitude functions (see Eqs. (1)) 

( )( ) ( ) ( ) ( ) ( )
11 22 12 2 1, , , ,k k k k k

z zσ σ τ τ τ   stresses in the kth layer (see Eqs. (3)) 

( )k
iE          Young's moduli of the kth layer (see Table 1) 

( )k
ijG          shear moduli of the kth layer (see Table 1) 

( )k
ijν          Poisson ratios of the kth layer (see Table 1) 

ijA , ijB , ijD , and ijG     constitutive stiffness coefficients (see Eqs. (22)) 

( ) ( ),k k
ij pqC Q        in-plane and transverse shear elastic stiffness coefficients for the kth  

          layer (see Eqs. (3)) 

Gα  ( 1,2)α =       weighted-average, laminate-dependent transverse shear constants (see  
          Eqs. (12.3)) 

δ           variational operator (see eq. (14)) 

,, ( )xα α
∂

∂ i         partial differentiation 

2k           shear correction factor for First-order Shear Deformation Theory (FSDT) 
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1. Introduction 

 High-performance and lightweight characteristics of advanced composite materials have spurred a 
wider range of applicability of these materials in military and civilian aircraft, aerospace vehicles, and 
naval and civil structures. To realize the full potential of composite structures, further advances in 
structural design and analysis methods are necessary. In particular, development of cost-effective and 
reliable laminated-composite structures as the primary load-bearing components of a vehicle requires 
further advances in stress analysis and failure prediction methodologies. 

 A wide variety of modern civilian and military aircraft employ relatively thick laminated composites, 
with one hundred or more layers, in the primary load-bearing structures. Such structures can exhibit 
pronounced transverse shear deformation and, under certain conditions, design-critical thickness-stretch 
deformations. Fail-safe design of these structures requires accurate stress-analysis methods, particularly 
for regions of stress concentration. Computationally efficient analytical models based on beam, plate and 
shell assumptions that account for transverse shear and thickness-stretch deformations have recently been 
addressed in [1-3]. To achieve accurate computational models, three-dimensional finite element analyses 
are often preferred over beam, plate, and shell models that are based on First-order Shear-Deformation 
Theories (FSDT). This preference is because the latter tend to underestimate the normal stresses, 
particularly in highly heterogeneous and thick composite and sandwich laminates [4-7]. For composite 
laminates with hundreds of layers, however, three-dimensional modeling becomes prohibitively 
expensive, especially for nonlinear and progressive failure analyses. To realize improved response 
predictions based on beam, plate, and shell assumptions, a variety of refined theories have been 
developed, e.g., [8-11].  Many of these refined theories have significant flaws in their theoretical 
foundation and predictive capabilities and, for these reasons, have not found general acceptance in 
practical applications. 

 One class of refined theories that has emerged as practical for engineering applications is known as 
zigzag theories [12-24]. This class of theories employs a zigzag-like distribution for the in-plane 
displacements through the laminate thickness, while ensuring a fixed number of kinematic variables 
regardless of the number of material layers. It has been shown in [12-20] that zigzag theories provide 
sufficiently accurate response predictions for relatively thick laminated-composite and sandwich 
structures, including those for normal strains and stresses. Furthermore, these theories often yield the 
response predictions comparable to those that can be obtained from other layer-wise and higher-order 
theories that are more computationally intensive. To make a zigzag theory practical for a large-scale 
analysis and engineering design, the analytic framework of the theory must be well suited for an efficient 
finite element approximation. 

 Recently, Tessler et al. [25] elucidated several serious flaws in the most notable zigzag theories (see 
the discussion in Section 3), and proposed a refined zigzag methodology that eliminates these flaws in an 
original and theoretically consistent manner. This new methodology is general enough to provide a means 
for advancing this class of theories and is expected to be significantly more attractive for engineering 
practice, including applications of these theories in large-scale finite element analyses. 

 The aim of this report is to present a new zigzag theory for laminated-composite and sandwich plate 
structures that may exhibit a high degree of transverse shear flexibility, anisotropy, and heterogeneity. 
The range of applicability of the theory spans thin to relatively thick plates. This new theory is built upon 
the basic ideas of a refined zigzag theory for beams presented in [25]. Herein, FSDT is augmented with an 
improved zigzag kinematic field that involves a novel C0-continuous (across lamina interfaces) 
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representation of the in-plane displacements. The kinematic field is independent of the number of material 
layers and does not require enforcement of transverse-shear-stress continuity to yield accurate results. 
Unlike other similar theories (e.g., [12,21]), the zigzag contribution to the in-plane displacement field is 
physically realistic, is zero-valued at the top and bottom plate surfaces, and accounts for the shear 
deformation of every lamina in a consistent way. As a result, transverse-shear correction factors are not 
needed.  Additionally, the plate equilibrium equations, constitutive equations, boundary conditions, and 
strain-displacement relations are consistently derived from the virtual work principle. 

 One major benefit arising from the analytical form of this new theory is its ideal suitability to finite 
element modeling, where the kinematic-variable approximations need not exceed C0 continuity. The 
implication of this attribute is that computationally efficient finite elements can be developed and used in 
general-purpose finite element codes. This benefit will enable an efficient use of accurate zigzag 
approximations in large-scale analyses to facilitate the development of robust designs of high-
performance aerospace vehicles. 

 In the remainder of the paper, the theoretical foundation of the new theory and its quantitative 
assessment are detailed. The zigzag kinematic assumptions, strain-displacement equations, and 
constitutive lamina relations are presented in Section 2. The major theoretical anomalies associated with 
the previous zigzag theories are briefly discussed in Section 3. A set of unique zigzag functions is then 
introduced and their mathematical structure is described in Section 4. The plate equilibrium equations and 
their associated boundary conditions, derived from the virtual work principle, are presented in Section 5. 
In Section 6, an extensive quantitative assessment of the theory is carried out, using closed-form solutions 
for simply supported and cantilevered plates made of laminated-composite and sandwich material 
systems. Some of the example problems represent significant challenges for any approximate theory. It is 
demonstrated that this new zigzag theory eliminates a major flaw of other similar theories; that is, the 
theory enables accurate modeling of the clamped boundary condition while adhering strictly to the 
variationally required boundary conditions. Finally, several concluding remarks emphasizing the merits of 
the new theory are presented in Section 7. 

 

2. Kinematics and formulation 

 Consider a laminated plate of uniform thickness 2h  with N  perfectly bonded orthotropic layers (or 
lamina) as shown in Figure 1. Points of the plate are located by the orthogonal Cartesian coordinates 

1 2( , , )x x z . The ordered pair 1 2( , ) mx x S∈  denotes the in-plane coordinates, where mS  represents the set 
of points given by the intersection of the plate with the plane 0z = , referred to herein as the middle 
reference plane (or midplane). The symbol [- , ]z h h∈  is the through-the-thickness coordinate, with 

0z =  identifying the midplane. The plate is subjected to a normal-pressure loading, 1 2( , )q x x , attributed 
to the midplane, mS , that is defined as positive in the positive z  direction. In addition, a traction vector, 

( )1 2, , zT T T , is prescribed on S Sσ ⊂ , where S  denotes the total cylindrical-edge surface. On the 

remaining part of the edge surface, uS S⊂ , displacement restraints are imposed (or prescribed). The 
sections of the plate edge are related by uS S Sσ ∪ =  and uS Sσ ∩ = ∅ . Moreover, the curves 

mC S Sσ σ= ∩  and u u mC S S= ∩  define the two parts of the total perimeter uC C Cσ= ∪ surrounding 
the midplane region, mS .  Finally, it is presumed that the lamina constitutive properties may differ 
appreciably from lamina to lamina, the plate deformations result in small strains, and that body and 
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inertial forces are negligible. 

 The orthogonal components of the displacement vector, corresponding to material points of the plate 
(or laminate), are expressed as 

  

( ) ( )
1 1 2 1 2 1 1 2 1 1 1 2

( ) ( )
2 1 2 1 2 2 1 2 2 2 1 2

1 2 1 2

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , )

k k

k k

z

u x x z u x x z x x z x x

u x x z v x x z x x z x x

u x x z w x x

θ φ ψ

θ φ ψ

≡ + +

≡ + +

≡              (1) 

where the in-plane displacement components ( )
1

ku  and  ( )
2
ku  are comprised of constant, linear, and zigzag 

variations through the thickness. The zigzag variations are 0C -continuous functions with discontinuous 
thickness-direction derivatives along the lamina interfaces.  The superscript ( )k  is used to indicate 
quantities corresponding to the kth lamina, whereas the subscript ( )k  defines quantities corresponding to 
the interface between the k and (k+1) laminae. Thus, the kth lamina thickness is defined in the range 

( 1) ( )[ , ] ( 1,..., )k kz z z k N−∈ =  (see Figure 1). The transverse displacement zu  is assumed to be constant 
through the thickness and is independent of constitutive properties of the kth lamina; hence the superscript 
( )k  does not appear in its definition. 

(a) (b) 

Figure 1: (a) General plate notation, and (b) lamination notation. 

 

 

 The kinematic variables in Eqs. (1) can be interpreted as follows. For homogeneous plates, the zigzag 
functions ( ) ( 1,2)k

αφ α =  vanish identically and Eqs. (1) yield the kinematics of FSDT. For this 
degenerate case, u  and v  represent the midplane displacements along the coordinate directions 1x  and 
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2x , respectively; 1θ  and 2θ  represent average bending rotations of the transverse normal about the 
positive 2x   and the negative 1x  directions, respectively; and w  is the transverse deflection. For more 
precise definitions of the kinematic variables within FSDT refer, for example, to Ref. [1]. The symbols  

( ) ( 1,2)k
αφ α =  denote through-the-thickness piecewise-linear zigzag functions associated with 

nonhomogeneous plates, yet to be defined. The 1 2( , ) ( 1,2)x xα αψ ψ α= =  functions represent the 
spatial amplitudes of the zigzag displacements and, together with the other five kinematic variables, are 
the unknowns in the analysis. The zigzag displacements ( ) ( 1,2)k

α αφ ψ α =  may be regarded as 
corrections to the in-plane displacements associated with laminate heterogeneity.  

 Consistent with the kinematic assumptions in Eqs. (1), the theory accounts for transverse shear 
deformation. (Transverse normal deformations are neglected in the kinematics; however, their inclusion 
may be possible following, for example, [1]). Correspondingly, the in-plane and transverse shear strains 
are 

  ( ) ( )
11 ,1 1,1 1 1,1

k ku zε θ φ ψ= + +                      (2.1) 

  ( ) ( )
22 ,2 2,2 2 2,2

k kv zε θ φ ψ= + +                      (2.2) 

  ( ) ( ) ( )
12 ,2 ,1 1,2 2,1 1 1,2 2 2,1( )k k ku v zγ θ θ φ ψ φ ψ= + + + + +              (2.3) 

  ( ) ( ) ( 1,2)k k
zα α α αγ γ β ψ α= + =                    (2.4) 

where, henceforward, ,
( )( )
xα

α

∂
≡

∂
ii  denotes a partial derivative with respect to the midplane coordinate, 

( 1,2)xα α = . Also, the following notation is introduced 

  , ( 1,2)wα α αγ θ α≡ + =                                           (2.5) 

  ( )( ) ( ) ( 1,2)k k

zα αβ φ α∂
≡ =

∂
                                        (2.6) 

where the shear angles αγ  are uniform through the total laminate thickness, and ( )k
αβ  are piecewise constant 

functions that are uniform through the thickness of each individual lamina. 

    The generalized Hooke's law for the kth orthotropic lamina, whose principal material directions are arbitrary 
with respect to the midplane reference coordinates, 1 2( , ) mx x S∈ , is written as 
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( ) ( ) ( )
11 11 12 16 11

22 12 22 26 22

12 16 26 66 12

2 22 12 2

1 12 11 1

0 0
0 0
0 0

0 0 0
0 0 0

k k k

z z

z z

C C C
C C C
C C C

Q Q
Q Q

σ ε
σ ε
τ γ
τ γ
τ γ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦                           (3) 

where ( ) ( , 1,2,6)k
ijC i j =  and ( ) ( , 1,2)k

pqQ p q =  are the transformed elastic stiffness coefficients referred to the 

1 2( , , )x x z coordinate system and relative to the plane-stress condition that ignores the transverse-normal stress. The 
expressions for these coefficients in terms of the elastic moduli corresponding to the material coordinates can be 
found, e.g., in  [10]. 

 

3. Anomalies of previous zigzag theories 

 The ‘linear zigzag model’, that was developed for plate bending problems by Di Sciuva [12] and later 
examined further in [13-24], employs only five kinematic variables. In reference to Eqs. (1), these 
variables are u , v , w , 1ψ  and 2ψ .  In contrast to Eqs. (1), Di Sciuva’s zigzag-amplitude variables, 1ψ  

and 2ψ , both contribute to the individual in-plane displacements, i.e., ( )
1 1 ,1 1 2( , , , )ku f u w ψ ψ=  and 

( )
2 2 ,2 1 2( , , , )ku f v w ψ ψ= , thus resulting in a system of plate equilibrium equations that is coupled with 

respect to 1ψ  and 2ψ   (refer to Ref. [12] for the precise form of the displacement expansions of Di 
Sciuva’s theory).  Di Sciuva determines the appropriate zigzag functions by enforcing the transverse 
shear stresses to be continuous along the adjacent lamina interfaces and, in addition, by requiring that the 
zigzag functions vanish in a single layer that is selected a priori, labeled herein as a ‘fixed layer.’ As a 
result of the above stated  assumptions and transverse shear stress-constraint conditions, Di Sciuva’s 
theory attains the following characteristics: (a) the transverse shear stresses are uniform through the 
thickness and they correspond to those in the ‘fixed layer’; (b) the laminate transverse shear stiffness is 
governed by the transverse shear moduli of the ‘fixed layer’ alone; (c) the transverse shear strains and 
stresses erroneously vanish along fully clamped edges; and (d) the integral of the transverse shear stress 
across the laminate thickness does not correspond to the shear force resultant obtained from the 
corresponding plate equilibrium equations – a physical inconsistency (or anomaly) in the definition of the 
shear force. 

 To remove the flaws associated with Di Sciuva’s ‘linear zigzag model’, Tessler et al. [25] introduced a 
refined zigzag theory for laminated-composite and sandwich beams in which: (1) a novel zigzag function 
is used to produce non-vanishing zigzag displacements in every lamina, thus removing the shear stiffness 
bias associated with the ‘fixed layer’ approach, and (2) the equilibrium of transverse shear stresses along 
adjacent lamina interfaces is fulfilled only in an average sense. The resulting theory is devoid of the 
aforementioned flaws of the previous zigzag theories and has been shown to demonstrate consistently 
superior results.  In what follows, an extension of the methodology presented in [25] to plates is described 
in detail. 
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4. Refined zigzag functions and transverse shear constitutive relations 

 The refined zigzag functions of the present theory are defined by using functions that are piecewise 
linear and 0C continuous through the laminate thickness. For convenience, dimensionless lamina-
interface displacements ( )iu  and ( ) ( 0,1,..., )iv i N=  are used to define ( )

1
kφ  and ( )

2
kφ , respectively (see 

Figure 2 depicting the notation for a three-layered laminate).  

 Thus, for the kth lamina located in the range ( 1) ( )[ , ]k kz z− , ( )
1

kφ  and ( )
2

kφ  are given as  

  ( ) ( ) ( )1 1
1 ( 1) ( )2 2(1 ) (1 )k k k

k ku uφ ξ ξ−≡ − + +                                  (4) 

  ( ) ( ) ( )1 1
2 ( 1) ( )2 2(1 ) (1 )k k k

k kv vφ ξ ξ−≡ − + +  

where 

  ( ) ( )
( 1)[( ) / 1] [ 1,1] ( 1,..., )k k
kz z h k Nξ −= − − ∈ − =                      (5) 

with the first lamina beginning at (0)z h= − , the last ( thN ) lamina ending at ( )Nz h= , and the 

thk lamina ending at ( )
( ) ( 1) 2 k
k kz z h−= + ,  where ( )2 kh  denotes the thk lamina thickness.   

 

 

(a) Layer notation                   (b) Zigzag function ( )
1

kφ       (c) Zigzag function ( )
2

kφ  

Figure 2.  Notation for a three-layered laminate and ( )
1

kφ and ( )
2

kφ  zigzag functions defined in terms 
of interfacial displacements, ( )iu  and ( ) ( 0,1,..., )iv i N= . 

 

 

(1)v

(2)v

(1)u

(2)u

( )
1 ( )k zφ ( )

2 ( )k zφ
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Evaluating Eqs. (4) at the laminae interfaces gives rise to the definitions of the interfacial displacements 

  
( ) ( ) ( ) ( )

( 1) 1 ( ) 1

( ) ( ) ( ) ( )
( 1) 2 ( ) 2

( 1), ( 1)

( 1), ( 1) ( 1,..., )

k k k k
k k

k k k k
k k

u u

v v k N

φ ξ φ ξ

φ ξ φ ξ
−

−

= = − = =

= = − = = =
               (6.1) 

where the interfacial displacements at the bottom and top plate surfaces are set herein to vanish 
identically, i.e. 

  (0) ( ) (0) ( ) 0N Nu u v v= = = =                                        (6.2) 

Substituting Eqs. (4) into Eqs. (2.6) results in the piecewise-constant functions ( )k
αβ  given by 

  
( )

( ) ( 1)1
( )( )

( ) ( 1)2

1
2

k
k k

kk
k k

u u
v vh

β
β

−

−

−⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭

                                         (7) 

Because the zigzag functions are zero-valued on the top and bottom surfaces, as defined by Eqs. (6), 
through-the-thickness integrals of the slope functions ( ) ( 1,2)k

αβ α =  vanish identically, i.e. 

  

( ) ( )
1( )

11
( )

( ) ( )2
2

1

2
0
0

2

N
k k

kh k
k Nh

k k

k

h
dz

h

β
β
β β

=

−

=

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

∑
∫

∑
                    (8) 

Integrating Eqs. (2.4) across the laminate thickness and normalizing the result by the total laminate 
thickness, reveals that  

  
( )

1 1
( )

2 2

1
2

kh z
kh
z

dz
h

γ γ
γ γ−

⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∫                                   (9) 

Thus, ( 1,2)αγ α =  represent the average transverse shear strains, coinciding with the common 
representation of the transverse shear strains used in FSDT. Also, Eqs. (9) indicate that the zigzag 
amplitude variables, ( 1,2)αψ α = , do not contribute to the average transverse shear strains.  

 The ( )ku  and ( )kv  interfacial displacements are obtained from Eqs. (7) in terms of ( )k
αβ  

( 1,2; 1,..., )k Nα = = , i.e. 

  
( )

( ) ( 1)( ) 1
( )

( ) ( 1)2

2 ( 1,..., )
k

k kk
k

k k

u u
h k N

v v
β
β

−

−

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
                (10.1) 
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or, alternatively, 

  

( ) ( )
1

( ) 1

( ) ( ) ( )
2

1

2
( 1,..., )

2

k
i i

k i
k

k i i

i

hu
k N

v
h

β

β

=

=

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑
                        (10.2) 

with Eqs. (6.2) defining zero-valued top- and bottom-surface interfacial displacements.  

 Following the approach in [25], the ( )k
αβ  functions are determined by first casting the transverse shear 

strains, Eqs. (2.4), in terms of the transverse-shear strain measures, ( 1,2)α α αη γ ψ α≡ − = , and the 
zigzag amplitude functions, ( 1,2)αψ α = , as 

  

( ) ( )
1 1 1 1

( )
2 2 22

(1 ) 0

0 (1 )

k k
z

k
z

γ η β ψ
γ η ψβ

⎡ ⎤+⎧ ⎫ ⎧ ⎫ ⎧ ⎫
≡ + ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬

+⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎢ ⎥⎣ ⎦                   (11) 

The αη  strain measures are set to vanish explicitly in Di Sciuva’s theory [12] and  enforced to vanish by 

way of penalty constraints in Averill’s theory  [21], thus equating αγ  to αψ . Presently, no such 
constraints are imposed on these strain measures.  

 The transverse shear stresses using Eqs. (3) and Eqs. (11) are given as 

  
( ) ( ) ( )

1 11 12 1 1 1
( )

2 12 22 2 22

(1 ) 0

0 (1 )

k k k
z

k
z

Q Q
Q Q

τ η β ψ
τ η ψβ

⎛ ⎞⎡ ⎤+⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤
⎜ ⎟≡ + ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎜ ⎟+⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠

          (12.1) 

or, alternatively, they can be expressed as 

  
( ) ( )

1 11 12 1

2 12 22 2

k k
z

z

Q Q
Q Q

τ η
τ η

⎧ ⎫ ⎧ ⎫⎡ ⎤
≡⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦
 

     
( ) ( )

( ) ( ) ( ) ( ) 12 22
11 1 1 22 2 2( ) ( )

12 11

1 /(1 ) (1 )
/ 1

k k
k k k k

k k
Q QQ Q

Q Q
β ψ β ψ

⎧ ⎫ ⎧ ⎫⎪ ⎪+ + + +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎩ ⎭⎩ ⎭

       (12.2) 

In this form of the transverse-shear constitutive relations, the stress vector associated with the αη  strain 
measures is independent of the zigzag functions. The second and third stress vectors include, as their 
normalization factors, the coefficients ( ) ( )(1 ) ( 1,2)k kQαα αβ α+ =  that are dependent on the zigzag 

functions through ( )k
αβ .  Herein, these normalization factors are set to be constant quantities, denoted as 

( 1,2)Gα α = , thus imposing constraint conditions on the distribution of the zigzag functions.  
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These constraints give rise to the expressions for ( )k
αβ  

  

1
( )( )
111

( )
22

( )
22

1

1

kk

k

k

G
Q
G

Q

β

β

⎧ ⎫−⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ −

⎪ ⎪⎩ ⎭

                        (12.3)

           

The 1G  and 2G  constants are obtained by integrating Eqs. (12.3) through the laminate thickness while 
making use of Eqs. (8), resulting in 

  

11 ( )

( )( )
1 11111

1 1( )2

( ) ( )
22 1 22

11
2

1 1
2

kNh
kkh k

kNh

k kh
k

hdz
h Qh QG

G dz h
h Q h Q

−−

−
=

− −

−
=

⎧ ⎫⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎪ ⎪⎪ ⎪ ⎜ ⎟⎜ ⎟ ⎪ ⎪⎪ ⎪⎧ ⎫ ⎪⎝ ⎠ ⎪ ⎪⎝ ⎠ ⎪≡ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪
⎪ ⎪⎝ ⎠ ⎪ ⎪⎩ ⎭ ⎝ ⎠⎩ ⎭

∑∫

∑∫
                (12.4) 

where it is seen that 1G  and 2G  are weighted-average transverse-shear stiffness coefficients of their 

respective lamina-level coefficients, ( )
11

kQ  and ( )
22

kQ . 

 Replacing Eqs. (12.3) into Eqs. (12.1), results in the transverse-shear constitutive relations of the form 

  

1
1 1( ) ( ) ( )

111 11 12

2 12 22 2
2 2 ( )

22

1

1

k k k
z

z
k

G
QQ Q

Q Q G
Q

γ ψ
τ
τ

γ ψ

⎧ ⎫⎛ ⎞
+ −⎪ ⎪⎜ ⎟

⎧ ⎫ ⎡ ⎤ ⎪ ⎝ ⎠ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎛ ⎞⎩ ⎭ ⎣ ⎦ ⎪ ⎪+ −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭                  (13.1) 

where, with the use of Eqs. (12.4), the dimensionless stiffness ratios are given as 

  ( )k
G

Q
α

αα
=

1( )

( ) ( 1,2)
2

k h

kh

Q dz
h Q

αα

αα
α

−

−

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∫                         (13.2) 

These ratios are, in general, piecewise-constant through the laminate thickness; however, for 
homogeneous plates, they are unit-valued. Thus, for homogeneous plates, the zigzag transverse-shear 
contributions vanish, in which case Eqs. (13.1) become identical to the corresponding relations of FSDT. 
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 The ( ) ( 1,2)k
αφ α =  zigzag functions are determined by substituting Eqs. (10.2) and Eqs. (12.3) into 

Eqs. (4), while making use of Eqs. (5), resulting in 

  

( )

( )

(1)
(1)

( ) ( 1)
( ) ( 1) ( )

2

( )
( 1) ( ) (0) ( ) ( 1)

( ) 1 1

( ) 1 2 2,...,

[ , ]; ; 2 ( 1,..., ; 1,2)

k
k i

k i k
i

k
k k k k

Gz h k
Q

G G Gz h h k N
Q Q Q

z z z z h z z h k N

α
α

αα

α α α
α

αα αα αα

φ

φ

α

−
−

=

− −

⎛ ⎞
= + − =⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + − + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∈ = − = + = =

∑          (13.3) 

It is seen that the zigzag functions are independent of the state of deformation and are represented by C0-
continuous, piecewise linear functions of the thickness coordinate. These functions possess slope 
discontinuity along lamina interfaces and vary linearly through the thickness of each lamina. Within each 
lamina, the transverse shear properties are represented by the stiffness ratios defined in Eqs. (13.2). For 
homogeneous plates, the zigzag functions vanish identically. 

 The zigzag amplitudes, ( 1,2)αψ α = , are vector functions of the actual response due to the applied 
loading, and they provide the proper scaling of the zigzag functions, thus controlling the total zigzag 
contribution to the in-plane displacements. The two zigzag amplitude functions and the remaining five 
kinematic variables constitute a set of seven kinematic variables associated with this refined zigzag plate 
theory.  

 

5. Equilibrium equations, boundary conditions, and constitutive relations 

 The plate equilibrium equations and boundary conditions are derived from the virtual work principle 
which, neglecting body forces and assuming zero shear tractions on the top and bottom bounding plate 
surfaces, may be written as 

  

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 11 22 22 12 12 1 1 2 2

( ) ( ) ( )
1 1 2 2

0

     

m

m

h
k k k k k k k k k k

z z z z
S h

h
k k k

z z
S C h

dz dS

q w dS T u T u T u ds dz
σ

σ δε σ δε τ δγ τ δγ τ δγ

δ δ δ δ

−

−

= + + + +

⎡ ⎤− − + +⎣ ⎦

∫ ∫

∫ ∫ ∫
        (14) 

where δ is the variational operator; all other symbols have been defined in Section 2.  
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 Substituting Eqs. (1) and (2) into Eq. (14), and integrating across the plate thickness yields the two-
dimensional statement of virtual work 

  

1 ,1 2 ,2 12 ,2 ,1

1 1,1 2 2,2 12 1,2 2,1

1 ,1 1 2 ,2 2

1 2 1 2

1 1,1 2 2,2 12 1,2 21 2,1 1 1 2 2

0 [ ( )

( )

( ) ( ) ]

[ ]

[ ]

[

m

m

S

n n zn n y n xC

S

N u N v N u v

M M M

Q w Q w q w dS

N u N v Q w M M ds

M M M M Q Q dS

σ

φ φ φ φ φ φ

δ δ δ δ

δθ δθ δθ δθ

δ δθ δ δθ δ

δ δ δ δθ δθ

δψ δψ δψ δψ δψ δψ

= + + +

+ + + +

+ + + + −

− + + + +

+ + + + + +

−

∫

∫

∫

1 1 2 2 ]n nC
M M ds

σ

φ φδψ δψ+∫

        (15) 

where the last two lines correspond to the zigzag kinematics contributions. In Eq. (15), the membrane 
stress resultants and conjugate strain measures are 

  { } { }( ) ( ) ( )
1 2 12 11 22 12, , , ,

hT k k k
m h

N N N dzσ σ τ
−

≡ = ∫N                  (16.1) 

  { },1 ,2 ,2 ,1, ,T
m u v u v≡ +e

                                       (16.2) 

Likewise, the bending stress resultants and conjugate strain measures are 

  

{ }

{ }

1 1 2 2 12 12 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 1 11 22 2 22 12 1 12 2 12

, , , , , ,

, , , , , ,

T
b

h k k k k k k k k k k k
h

M M M M M M M

z z z dz

φ φ φ φ

σ φ σ σ φ σ τ φ τ φ τ
−

≡

= ∫

M

        (17.1) 

  { }1,1 1,1 2,2 2,2 1,2 2,1 1,2 2,1, , , , , ,T
b θ ψ θ ψ θ θ ψ ψ≡ +e

                                    (17.2) 

and the transverse shear stress resultants and conjugate strain measures are 

  { } { }( ) ( ) ( ) ( ) ( ) ( )
2 2 1 1 2 2 2 1 1 1, , , , , ,

hT k k k k k k
s z z z zh

Q Q Q Q dzφ φ τ β τ τ β τ
−

≡ = ∫Q
           (18.1) 

  { },2 2 2 ,1 1 1, , ,T
s w wθ ψ θ ψ≡ + +e                                  (18.2) 

The force and moment resultants due to the prescribed tractions have the form  

   

{ }

{ }

1 2 1 2 1 2

( ) ( )
1 2 1 2 1 1 2 2

, , , , , ,

, , , , , ,

n n zn n n n n

h k k
zh

N N Q M M M M

T T T zT zT T T dz

φ φ

φ φ
−

= ∫                            (19) 
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Integrating Eq. (15) by parts results in seven equilibrium equations and associated boundary conditions. 
The equilibrium equations are 

  

1,1 12,2

12,1 2,2

1,1 2,2

1 1,1 12,2 1

2 12,1 2,2 2

1 1,1 12,2 1

2 21,1 2,2 2

: 0

: 0

: 0

: 0

: 0

: 0

: 0

u N N

v N N

w Q Q q

M M Q

M M Q

M M Q

M M Q

φ φ φ

φ φ φ

δ

δ

δ

δθ

δθ

δψ

δψ

+ =

+ =

+ + =

+ − =

+ − =

+ − =

+ − =

                                      (20) 

The kinematic and force boundary conditions are given by 

  u u=  on uC  or 1 1 12 2 1nN n N n N+ =  on Cσ                       (21.1) 

  v v= on uC  or  12 1 2 2 2nN n N n N+ = on Cσ                       (21.2) 

  w w=  on uC  or  1 1 2 2 znQ n Q n Q+ =  on Cσ                           (21.3) 

  1 1θ θ=  on uC  or  1 1 12 2 1nM n M n M+ =  on Cσ                          (21.4) 

  2 2θ θ=  on uC  or  12 1 2 2 2nM n M n M+ =  on Cσ                          (21.5) 

  1 1ψ ψ=  on uC  or  1 1 12 2 1nM n M n Mφ φ φ+ =  on Cσ                          (21.6) 

  2 2ψ ψ=  on uC  or  21 1 2 2 2nM n M n Mφ φ φ+ =  on Cσ                         (21.7) 

where 1 1cos( , )n x n=  and 2 2cos( , )n x n=  are the components (direction cosines) of the unit outward 
normal vector to the cylindrical plate edges. 

 The plate constitutive relations are derived by using Eqs. (2) and (3) with Eqs. (16)-(18), and  
integrating over the laminate thickness. The resulting constitutive relations of the new zigzag plate theory 
are expressed in matrix form as 

  
m m

T
b b

s s

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

N A B 0 e
M B D 0 e
Q 0 0 G e

                                          (22) 
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where expressions for the components of  the stiffness matrices [ ]ijA≡A  ( , 1 3)i j = − , 

[ ] ( 1 3; 1 7)ijB i j≡ = − = −B , [ ] ( , 1 7)ijD i j≡ = −D , and [ ]ijG≡G  ( , 1 4)i j = −  are given in 
Appendix A. 

 Introducing Eqs. (22) into Eqs. (20) results in seven partial differential equilibrium equations in terms 
of seven kinematic variables, resulting in a 14th-order theory. The equilibrium equations can be solved 
exactly or approximately depending on the complexity of the material lay-up, boundary conditions, and 
loading. In addition, because the highest partial derivative appearing in the strain measures in Eqs. (15) 
are first order, computationally efficient C0-continuous plate finite elements can be developed, thus 
enabling application of this zigzag theory in large-scale analyses of complex aerospace structures.  

 

6. Example problems and results 

 To determine the accuracy of the present zigzag plate theory, analytic solutions for simply supported 
and cantilevered rectangular laminates are derived and detailed distributions of the displacements and 
stresses are examined. The rectangular laminates are defined on the domain 

1 2[0, ], [0, ], [ , ]x a x b z h h∈ ∈ ∈ − . 

 Example 1: A simply supported rectangular plate is subjected to the sinusoidal transverse pressure 
( )1 2 1 2, sin( / )sin( / )oq x x q x a x bπ π= . The simply supported boundary conditions are obtained from 

Eqs. (21). For cross-ply and uniaxial laminates, the kinematic and force boundary conditions along 
1 [0, ]x a∈  are  

  2 2 0v w θ ψ= = = =                           (23.1) 

  1 1 1 0N M M φ= = =                          (23.2) 

and along 2 [0, ]x b∈ , 

  1 1 0u w θ ψ= = = =                                (23.3) 

  2 2 2 0N M M φ= = =                             (23.4) 

For this set of boundary conditions, the exact solutions are obtained by the following trigonometric 
expansions 

  1 2sin( / )sin( / )w W x a x bπ π=                         (24.1) 

  1 1 1 2

1 1

cos( / )sin( / )
u U

x a x bθ π π
ψ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= Θ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪Ψ⎩ ⎭ ⎩ ⎭

                      (24.2) 
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  2 2 1 2

2 2

sin( / )cos( / )
v V

x a x bθ π π
ψ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= Θ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪Ψ⎩ ⎭ ⎩ ⎭

                      (24.3) 

where 1 2 1 2{ , , , , , , }U V W Θ Θ Ψ Ψ  are the unknown magnitudes of the kinematic variables that are 
determined from satisfaction of the equilibrium equations.  

 For antisymmetric angle-ply laminates, the kinematic and force boundary conditions along 1 [0, ]x a∈  
are  

  2 2 0u w θ ψ= = = =                          (25.1) 

  12 1 1 0N M M φ= = =                             (25.2) 

and along 2 [0, ]x b∈  

  1 1 0v w θ ψ= = = =                          (25.3) 

  12 2 2 0N M M φ= = =                          (25.4) 

Thus, the trigonometric expansions that satisfy Eqs. (25) exactly differ from those in Eq. (24) only for the 
u and v variables, and they are given by 

  1 2 1 2sin( / ) cos( / ), cos( / )sin( / )u U x a x b v V x a x bπ π π π= =                                (26) 

 Example 2: A cantilevered rectangular plate clamped along a single edge 1( 0)x = , free along the 

other edges, and subjected to the uniform transverse pressure ( )1 2, oq x x q= .  The clamped boundary 

conditions along 1 0x =  are  

  1 2 1 2 0u v w θ θ ψ ψ= = = = = = =                     (27.1) 

Unlike the previous zigzag theories where the clamped boundary conditions result in erroneous solutions 
for transverse shear stresses and forces that vanish along the clamped edges, the solutions of the present 
theory do not possess such anomalies. For instance, along the clamped boundary at 1 0x = , the kinematic 
constraints in Eqs. (27.1), with the use of Eqs. (2.5), (13.2), and (18), give rise to the following 
transverse-shear stresses, ( )

1 2(0, , )k
z x zτ , and force, 1 2(0, )Q x :  

  1

( )( ) 111
,1 2( )

1 11( 0)

(0, )
kk

z
h k

x h

Q
w x

Q Q dz
τ

= −

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪⎩ ⎭ ⎪ ⎪⎩ ⎭∫                     (27.2) 
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where, in general, ,1 2(0, ) 0w x ≠ . 

 The traction-free boundary conditions along the edge 1x a=  are 

  1 12 1 12 1 1 12 0N N M M Q M Mφ φ= = = = = = =                   (28.1) 

and along the edge 2 [0, ]x b∈  

  12 2 12 2 2 12 2 0N N M M Q M Mφ φ= = = = = = =                 (28.2) 

 For both example problems, various laminates are considered with the emphasis on relatively thick 
laminated composite and sandwich plates having the span-to-thickness ratio / 2 / 2 5a h b h= = . The 
mechanical material properties are listed in Table 1, whereas in Table 2 the stacking sequences of the 
laminates are summarized.  

 The example problems include: (1) a two-layer, cross-ply carbon-epoxy laminate, labeled as laminate 
A; (2) three variations of a three-layer sandwich laminate, laminates B, B1,  and B2 , having uniaxial 
carbon-epoxy face sheets and a  thick, closed-cell polyvinyl chloride (PVC) core. Herein, PVC is 
represented as an isotropic material. Laminates B1,  and B2 have progressively thinner face sheets;  (3) a 
sandwich laminate with two-layered titanium face sheets and a thick titanium honeycomb core, laminate 
F; and (4) a five-layer, angle-ply sandwich laminate with carbon-epoxy face sheets and a thick PVC core, 
laminate G. 

 For comparison purposes, additional analytic and finite element solutions were also obtained for the 
corresponding boundary-value problems using the three-dimensional elasticity theory [27, 28], FSDT, Di 
Sciuva theory [12], and MSC/MD-NASTRAN finite element code [29]. Note that application of FSDT 
generally requires the use of shear correction factors. For laminated composites, lamination-dependent 
shear correction factors have been shown to provide relatively accurate deflection predictions (e.g., refer 
to [30, 31]). Yet, such shear corrections fail to furnish substantial improvements for the normal strain and 
stress predictions. Presently, to establish a common framework reference for FSDT, 2 5 / 6k = , a shear 
correction factor that is appropriate for homogeneous plates, was used throughout.  

 For the simply supported cross-ply and uniaxial laminates, the exact solutions for the FSDT and Di 
Sciuva zigzag theory were obtained using the trigonometric functions in Eqs. (25.3) (excluding those 
functions for ( 1,2)αψ α =  which do not appear in FSDT). For the angle-ply antisymmetric laminates, 
Di Sciuva theory permits only approximate solutions to be determined. Presently, the Rayleigh-Ritz 
method was employed, where the kinematic variables were approximated with suitable Gram-Schmidt 
polynomials [26] that satisfy the kinematic boundary conditions exactly, Eqs. (26.1) and (26.2) (refer to 
Appendix B for details on the Gram-Schmidt polynomials). Furthermore, for the simply supported cross-
ply and angle-ply antisymmetric laminates, exact three-dimensional elasticity solutions were obtained 
using the solution procedures developed by Pagano [27] and Burton and Noor [28]. 

 For the cantilevered laminates, approximate solutions corresponding to Di Sciuva and refined 
(present) zigzag theories were developed using the Rayleigh-Ritz method. Here the displacement 
approximations are based on the Gram-Schmidt polynomials, using seven functions along the x1 axis and 
five along the x2 axis (see Appendix B). Furthermore, for the cantilevered plate (laminate B), a high-
fidelity three-dimensional (3D) finite element solution was obtained by using MSC/MD-NASTRAN. The 
model is regularly discretized and is comprised of three elements through the thickness for each face 
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sheet, six elements through the core thickness, and sixty subdivisions along each span direction, with the 
total of 43,200 HEXA20, linear-strain elements.  

 The numerical and graphical results that follow are labeled as:  

• 3D Elasticity (three-dimensional elasticity solutions using procedures developed by Pagano [27] 
for cross-ply laminates and by Noor and Burton [28] for angle-ply antisymmetric laminates). 

• FSDT (First-order Shear Deformation Theory, 2 5 / 6k = ). 

• Zigzag (D) (Di Sciuva [12]). 

• Zigzag (R) (present, refined zigzag theory). 

• 3D FEM (three-dimensional FEM solution using MSC/MD-NASTRAN [29]). 

• Zigzag (R-E) (transverse shear stresses obtained by way of integrating three-dimensional 
elasticity equilibrium equations, using the normal and in-plane shear stresses derived from the 
refined zigzag theory). 

 Comparisons of the maximum deflection and maximum top-surface displacement are presented for the 
simply supported square laminates ( / 2 / 2 5a h b h= = ) in Tables 3 and 4. These results demonstrate that 
both zigzag theories predict accurate plate displacements as compared to the three-dimensional elasticity 
solution, with the refined theory achieving slightly more accurate predictions. The laminate G case is 
somewhat pathological for Zigzag (D), because the solution in this case is only approximate and has not 
converged. The deflections predicted by FSDT are generally overly stiff; however, they are expected to 
improve substantially with the use of lamination-dependent shear correction factors. In Table 5, the range 
of applicability of the various theories is examined by comparing the maximum (central) plate deflection 
for a simply supported sandwich laminate B, where the solutions correspond to the span-to-thickness ratio 
in the range of 4 through 200. These results are also plotted in Figures 3(a) and 3(b). It is observed that 
both zigzag theories predict accurate deflections for all span-to-thickness ratios examined, whereas FSDT 
is overly stiff, especially in the thick regime, as expected. Even for a relatively thin laminate B 
( / 2 50a h = ), FSDT underestimates the maximum deflection by about 36%, which means that a much 
more significant shear correction factor would be required for FSDT for this type of laminate. 

 For the simply supported laminates, normalized through-the-thickness distributions for the in-plane 

displacement, 4 4 ( )
1 11 1(10 / ) (0, / 2, )k

ou D q a u a z= , the normal stress, ( )( )2 2
11 02h q aσ ≡ ×  

( )
11 ( / 2, / 2, )k a a zσ , and the transverse-shear stress, ( ) ( )

1 0 12 (0, / 2, )k
z zh q a a zτ τ≡ ,  are depicted in 

Figures 4-21.  

 For laminate A – an asymmetric cross-ply carbon-epoxy composite – the 1u  and 11σ  quantities are 
accurately modeled by the FSDT, Zigzag (D), and Zigzag (R) theories, with Zigzag (D) producing 
slightly underestimated 1u  displacement near the top surface (Figures 4-6). The major result differences 

for this laminate correspond to the 1zτ  distribution (Figure 6), where both FSDT and Zigzag (R) produce 

piecewise constant stresses, whereas Zigzag (D) gives a uniform (constant) distribution for 1zτ  that is 
significantly less accurate than the predictions of the other two theories. In addition, Zigzag (R) theory 
provides a more accurate evaluation of the average transverse shear stress within each lamina than does 
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FSDT. Also, the 1zτ  stress, obtained by equilibrium-based method, Zigzag (R-E), is best correlated with 
the three-dimensional elasticity solution (3D Elasticity).  

 The 1u , 11σ , and 1zτ results for sandwich panels B, B1 and B2 that have constant-thickness carbon-
epoxy face sheets and a PVC core are provided in Figures 7-15. The three laminates differ in terms of the 
face sheet thicknesses, starting with the thickest face sheets in laminate B and progressing to thinner face 
sheets in laminates B1 and B2. This study evaluates the effect of face sheet thinness on the through-the-
thickness displacement and stress variations. As evidenced from Figure 7, the 1u  zigzag effect is very 
strong in laminate B, and is less pronounced as the face-sheet thickness diminishes, as shown Figures 10 
and 13 for laminates B1 and B2, respectively. For laminate B, the top- and bottom-surface values of the 1u  
displacement are significantly underestimated by FSDT that is only capable of a linear (average) 
distribution. Also, as shown in Figure 8, FSDT grossly underestimates the normal stress 11σ  on the 
bounding surfaces where the greatest compression and tension occur. As the face sheets become thinner 
in relation to the core thickness, the FSDT predictions for 1u  and 11σ  tend to improve, as evidenced from 

Figures 7, 8, 10, 11, 13, and 14. However, FSDT tends to overestimate the transverse shear stress, 1zτ , 
significantly, while underestimating this stress in the core (refer to Figures 9, 12, and 15). As seen from 
Figures 9, 12, and 15, Zigzag (D) provides accurate response predictions for all three sandwich panels, 
with the exception of the transverse shear stress; the 1zτ  distributions are accurate within the core but 
erroneous in the face sheets.  By contrast, Zigzag (R) yields accurate solutions of all response quantities 
for the three sandwich panels examined. When the transverse shear stresses are evaluated from the 
constitutive relations, the theory provides the correct average values in the face sheets and in the core. 
Moreover, the equilibrium-based method, Zigzag (R-E), furnishes the superior transverse shear stresses 
that are virtually indistinguishable from those of three-dimensional elasticity.  

 The sandwich study just presented illuminates some of the basic flaws in the classical sandwich-
modeling assumptions, i.e., in-plane displacements are linear through-the-thickness and normal stresses 
are negligible in the core, and in-plane displacements are constant and transverse-shear stresses are 
negligible in the face sheets (e.g., refer to [32-34]). The hypothesis concerning the normal stresses is 
generally correct in the range of face-sheet thicknesses examined, as seen in Figures 8, 11, and 14; 
whereas the assumptions concerning the in-plane displacements and the transverse shear stresses are only 
confirmed for the sandwich panels with very thin face sheets. As seen in Figure 7, which depicts the 
laminate B results, the in-plane displacement exhibits a high gradient through the face sheets, thus 
departing appreciably from the classical, membrane assumption of uniform displacement. Furthermore, 
the average transverse shear stress in the face sheets is higher than in the core (see Figure 9), again 
contrasting with the classical assumption of negligible transverse shear stress in the face sheets. 

 The displacement and stress results for laminate F – a cross-ply sandwich with a lower degree of 
anisotropy than laminate B – are depicted in Figures 16–18. For this laminate, the zigzag effect of the in-
plane displacement is somewhat less pronounced than for laminate B. As in the previous example, Zigzag 
(R) yields highly accurate predictions of all response quantities. It is seen that FSDT provides over 
estimated values for the in-plane displacement on the bounding surfaces. Also, it is evident from Figure 
18(a) that the integral of the shear stress over the thickness computed using the Zigzag (D) transverse 
shear stress would result in a significantly greater value than the exact shear force. 

 Figures 19–21 demonstrate the results for laminate G – an angle-ply antisymmetric sandwich plate 
with multilayered face sheets. This is a highly challenging test case for any lamination theory. For this 
lamination, only an approximate solution can be obtained for Zigzag (D), requiring a large number of 
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suitable shape functions to achieve a converged solution. Using the Rayleigh-Ritz method with the Gram-
Schmidt polynomials approximating the kinematic variables (see the details of the approximating 
functions in Appendix B), a relatively inaccurate solution was obtained. Consequently, the Zigzag (D) 
results for the in-plane displacement (Figure 19) and normal stress (Figure 20) are somewhat erroneous. 
On the other hand, Zigzag (R) enables an exact solution to be obtained for this problem, once again 
yielding highly accurate predictions of the response quantities. As in the previous examples, FSDT 
models the in-plane displacement response only in an average sense (a linear distribution through the 
thickness), leading to a significant underestimation (a non conservative prediction) of the normal stress in 
the face sheets.  

 To examine the effect of clamped boundary conditions, a square cantilevered laminate B under a 
uniform transverse pressure was examined. Table 6 summarizes the maximum deflection calculated using 
the three different theories and a three-dimensional finite element solution that serves as a reference. The 
FSDT deflection is underestimated by an order of magnitude. The two zigzag theories give accurate 
results, with Zigzag (R) producing a somewhat superior deflection prediction. 

 For the cantilevered sandwich laminate B, normalized through-the-thickness distributions of the in-

plane displacement, 4 4
1 11(10 / )ou D q a= ( )

1 ( , / 2, )ku a a z , the normal stress, ( )( )2 2
11 02h q aσ = ×  

( )
11 ( / 5, / 2, )k a a zσ , and the transverse-shear stress, ( )1 02z h q aτ = ×  ( )

1 ( / 5, / 2, )k
z a a zτ , are provided in 

Figures 22–24. The stresses were computed near the clamped edge 1 2( / 5, / 2)x a x a= =  to allow for 
proper comparisons with the accurate stresses obtained from the 3D FEM analysis. For this problem, both 
zigzag theories produce accurate results; however, application of Zigzag (R) resulted in superior 
predictions of transverse shear stresses. Finally, the normalized transverse shear force, 

( )
1 1

0

1 h k
zh

Q dz
q a

τ
−

= ∫ , evaluated at 2 / 2x a= , is plotted versus the normalized axial coordinate, 1 /x a , as 

shown in Figure 25.  For this problem, both FSDT and Zigzag (R) predict the correct linear distribution, 
yielding a maximum value at the clamped edge and vanishing at the free edge. This contrasts with an 
erroneous Zigzag (D) solution that varies in a non-linear manner across the span and which vanishes at 
the clamped edge. 

 

7. Conclusions 

 A refined zigzag theory has been developed for laminated-composite and sandwich plates that exhibit 
a high degree of transverse shear flexibility, anisotropy, and heterogeneity. In this refined theory, a first-
order shear-deformation theory is used as a baseline for the kinematic assumptions with a set of novel 
piecewise-continuous zigzag displacements added to the in-plane displacement components. The resulting 
kinematic field is independent of the number of material layers, and the zigzag displacements are defined 
by requiring only partial lamina-interface continuity requirements of transverse shear stresses. The force 
equilibrium equations, boundary conditions, and strain-displacement relations are completely consistent 
with respect to the virtual work principle, and transverse-shear correction factors are not required. The 
refined zigzag theory is better suited for engineering practice than previous similar theories because of its 
relative simplicity and its ability to model accurately the transverse shear and in-plane deformations of the 
individual laminae in a physically realistic manner. Unlike other similar theories, meaningful in-plane and 
transverse shear stresses are obtained directly from the constitutive equations, in a theoretically consistent 
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manner. The new theory is devoid of a major shortcoming of other similar theories; that is, the new theory 
enables accurate modeling of clamped boundary conditions.   

 Results for several example problems have been presented that highlight the superior predictive 
capability attainable with the present theory and its ability to model correctly clamped boundary 
conditions. The critical quantitative assessment of the new theory, that included analyses of highly 
heterogeneous sandwich laminates in bending, revealed that this refined zigzag theory is more accurate 
than previous similar theories.   

 An additional and important benefit is that the new zigzag theory lends itself well for finite element 
approximations. In particular, the theory is perfectly suited for the development of computationally 
efficient, C0-continuous finite elements. Because of a wide applicability range that includes laminated-
composite and sandwich structures, such finite elements would be highly desirable for large-scale 
analyses and design studies of high-performance aerospace vehicles. 
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Appendix A. Plate stiffness coefficients 

 The stiffness coefficients in Eq. (24) are computed from the following expressions using the 
constitutive coefficients given in Eq. (3). 

(1) Matrix [ ] ( , 1 3)ijA i j≡ = −A  , symmetric, (3x3): 

  A C
−

≡ ∫
h

h
dz                                                                                                            (A.1) 

(2) Matrix [ ] ( 1 3; 1 7)ijB i j≡ = − = −B  , non-symmetric, (3x7) : 

  B CBφ−
≡ ∫

h

h
dz                                                                                                           (A.2) 

(3) Matrix [ ] ( , 1 7)ijD i j≡ = −D , symmetric, (7x7) : 

  TD B CBφ φ−
≡ ∫

h

h
dz                                                                                                  (A.3) 

(4) Matrix [ ] ( , 1 4)ijG i j≡ = −G , symmetric, (4x4) : 

  T
β βG B Q B

−
≡ ∫

h

h
dz                                                                      (A.4) 

where 

  

( )
11 12 16

12 22 26

16 26 66

C
⎡ ⎤
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

kC C C
C C C
C C C                           (A.5) 

  

( )
22 12

12 11
Q

⎡ ⎤
≡ ⎢ ⎥

⎣ ⎦

kQ Q
Q Q                                                        (A.6) 

  

( )
1

( )
2

( ) ( )
1 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0

Bφ

φ

φ

φ φ

⎡ ⎤
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
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k

k

k k

z

z

z
                                 (A.7) 
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( )
2

( )
1

1 0 0

0 0 1
Bβ

β

β

⎡ ⎤
≡ ⎢ ⎥

⎢ ⎥⎣ ⎦

k

k
                                                                      (A.8) 

 

Appendix B. Gram-Schmidt polynomials 

 The Gram-Schmidt orthogonal polynomials [26] are widely used as shape functions for application to 
the Rayleigh-Ritz method. These functions can accommodate various kinematic boundary conditions and 
yield a diagonal mass matrix. 

 The procedure for constructing such polynomials is initially established for one-dimensional domains, 
whereas for two-dimensional applications, simple products of one-dimensional functions are used.  

 The general expression of a one-dimensional Gram-Schmidt polynomial χ(s), where s∈[0,1] is a 
dimensionless axial coordinate, is 

  ( )1 1( ) ( ) ( )p p p p ps s A s B sχ χ χ+ −= − −                                                              (B.1) 

where the coefficients pA  and pB  are computed from the expressions 

  
1 12 2

0 0
1 12 2

10 0

( ) ( )
,

( ) ( )

p p

p p

p p

s s ds s ds
A B

s ds s ds

χ χ

χ χ −

≡ ≡
∫ ∫
∫ ∫

                                       (B.2) 

The process of building these functions initiates with the first two polynomials 

  

1 2

0

1 1 2

( ) 0

( ) ( ) ( )

s

s s s

χ

χ μ μΩ Ω

=

=

                                                                                      (B.3) 

where 

  1

2

( )
( ) 1
s s
s s

μ
μ

≡
≡ −

                                                                                                   (B.4) 

The three exponent values (0,1,2)iΩ =  correspond, respectively, to the end condition of the function: 0 
if the function does not vanish, 1 if the function vanishes, however, its first derivative does not vanish, 
and 2 if the function and its first derivative vanish. 

 The orthogonality of the Gram-Schmidt polynomials is manifested by the relationship 

  
1

0
( ) ( )χ χ δ=∫ p q pq pqs s ds c                                                                                    (B.5) 
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where pqc  is a coefficient and pqδ  is the Kronecker’s delta. 

 For the cantilevered plate examined in Section 6, the Gram-Schmidt polynomials employed for the 
kinematic variables have the form 

  ( )1 2 1 2
1 1

, ( ) ( )
M N

ij i j
i j

f x x f x xχ χ
= =

= ∑∑                                                                     (B.6) 

where M=7, N=5, and ijf  are the unknown amplitude coefficients to be determined from the Rayleigh-
Ritz analysis. 
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with 
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1 1

2 2

/

/

x x a

x x b

≡

≡
                                                                                                            (B.9) 

 For the simply supported angle-ply antisymmetric laminates considered in Section 6, the Di Sciuva 
zigzag theory solutions utilizing the Rayleigh-Ritz method employ the Gram-Schmidt polynomials 
corresponding to M=N=5. Because the kinematic variables have different boundary conditions, Eq. (26.1-
a) and Eq. (26.2-a), the Gram-Schmidt polynomials are chosen according to the table below. 

 

Table B. Parameters for Gram-Schmidt polynomials. 

 

1( )i xχ  2( )i xχ  
Kinematic variable 

Ω1 Ω2 Ω1 Ω2 

u 1 1 0 0 

v 0 0 1 1 

w 1 1 1 1 

ψ1 0 0 1 1 

ψ2 1 1 0 0 

 

For example, the x1-direction functions for the transverse displacement, w, have the form, 

 

2
1 1 1 1

3 2
2 1 1 1 1

1 4 3 2
3 1 1 1 1 1

2

5 4 3 2
4 1 1 1 1 1 1

6 5 4 3 2
5 1 1 1 1 1 1 1

( )

3 1( )
2 2

1 17 3( ) 2
1 14 14

5 13 3 1( )
2 6 4 12

37 19 13 1( ) 3
11 11 33 33

x x x

x x x x

x x x x x

x x x x x x

x x x x x x x

χ

χ

χ

χ

χ

⎧
= −⎪

⎪
⎪ = − +
⎪
⎪Ω = ⎪ = − + −⎨Ω = ⎪
⎪ = − + − +⎪
⎪
⎪ = − + − + −
⎪⎩

                                 (B.10) 

 

Similar functions are constructed for the x2-direction. 
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Table 1. Mechanical material properties. 

Orthotropic materials Isotropic materials 

C H P T 
Lamina 
material Carbon-Epoxy 

unidirectional 
composite 

Titanium 
honeycomb 
core 

Lamina 

material PVC core Titanium 

( )
1

kE  [GPa] 21.579 10×  -11.915 10×  

( )
2

kE  [GPa] 9.584 -11.915 10×  

( )
3

kE  [GPa] 9.584 1.915 

( )kE  
[GPa] 

-11.040 10×  21.041 10×  

( )
12

kν  0.32 -20.658 10×  

( )
13

kν  0.32 -60.643 10×  

( )
23

kν  0.49 -60.643 10×  

( )kν  0.3 0.31 

( )
12

kG  [GPa] 5.930 -84.227 10×  

( )
13

kG  [GPa] 5.930 -15.651 10×  

( )
23

kG  [GPa] 3.227 1.248 
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Table 2. Laminate stacking sequences (lamina sequence is in the positive z direction). 

Laminate Normalized lamina 
thickness, h(k)/h 

Lamina 
materials 

Lamina orientation 
[°] 

A Cross-ply 
composite (0.5/0.5) (C/C) (0/90) 

B Uniaxial 
sandwich (0.1/0.8/0.1) (C/P/C) (0/0/0) 

B1 
Uniaxial 
sandwich (0.025/0.95/0.025) (C/P/C) (0/0/0) 

B2 
Uniaxial 
sandwich (0.0025/0.995/0.0025) (C/P/C) (0/0/0) 

F Uniaxial 
sandwich (0.1/0.8/0.1) (T/H/T) (0/0/0) 

G Angle-ply 
sandwich (0.05/0.05/0.8/0.05/0.05) (C/C/P/C/C) (30/-45/0/45/-30) 

  

 
Table 3. Normalized maximum (central) deflection, 2 4

11(10 / ) ( / 2, / 2)ow D q a w a b= ,  
for simply supported laminates subjected to sinusoidal transverse pressure loading. 

 

Laminate 
Normalization 
factor, 

2 4
1110 / oD q a  

3D 
Elasticity FSDT Zigzag (D) Zigzag (R) 

A -28.147 10×  1.228 1.278 1.170 1.219 

B -27.502 10×  29.761 2.731 29.769 29.785 

B1 -22.201 10×  11.645 2.819 11.693 11.694 

B2 -32.402 10×  2.080 1.728 2.103 2.103 

F -25.444 10×  1.331 0.389 1.332 1.333 

G -23.551 10×  14.124 1.055 12.734 14.105 
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Table 4. Normalized maximum (top surface) displacement along 1x  axis 3 4
1 11(10 / )ou D q a= ×  

( )
1 ( , / 2, )Nu a b h of simply supported laminates subjected to sinusoidal transverse pressure loading. 

 

Laminate 
Normalization 
factor, 

3 4
1110 / oD q a  

3D 
Elasticity FSDT Zigzag (D) Zigzag (R) 

A -18.147 10×  4.233 4.152 3.855 4.251 

B -17.502 10×  9.977 2.156 9.945 9.897 

B1 -12.201 10×  2.008 2.099 2.030 2.032 

B2 -22.402 10×  1.809 1.993 1.851 1.851 

F -15.444 10×  0.643 0.796 0.646 0.649 

G -13.551 10×  3.908 0.704 1.295 3.845 

 

Table 5. Normalized maximum (central) deflection, 2 4
11(10 / ) ( / 2, / 2)ow D q a w a b= , for simply 

supported laminate B subjected to sinusoidal transverse pressure loading and corresponding to various 
span-to-thickness ratios. 

 

Span-to-
thickness 
ratio 

Normalization 
factor, 

2 4
1110 / oD q a  

3D 
Elasticity FSDT Zigzag (D) Zigzag (R) 

4 -11.832 10×  42.420 3.739 42.124 42.189 

10 -34.668 10×  9.734 1.321 9.738 9.739 

20 -42.931 10×  3.487 0.948 3.489 3.490 

50 -67.502 10×  1.305 0.841 1.305 1.305 

100 -74.688 10×  0.945 0.826 0.945 0.945 

200 -82.931 10×  0.852 0.822 0.852 0.852 
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Table 6. Normalized maximum (free-edge) deflection, 2 4
11(10 / ) ( , / 2)ow D q a w a b= , for cantilevered 

laminate B subjected to uniform transverse pressure loading. 

 

Normalization 
factor, 

2 4
1110 / oD q a  

3D FEM FSDT Zigzag (D) Zigzag (R) 

-27.502 10×  246.778 25.351 244.077 245.615 
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Figure 3 (a). Normalized central deflection vs. span-to-thickness ratio for simply supported laminate B 

subjected to sinusoidal transverse pressure. 
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Figure 3 (b). Normalized central deflection vs. span-to-thickness ratio for simply supported laminate B 

subjected to sinusoidal transverse pressure (zoomed view). 
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Figure 4. Normalized in-plane displacement for simply supported laminate A subjected to sinusoidal 
transverse pressure. 
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Figure 5. Normalized normal stress for simply supported laminate A subjected to sinusoidal transverse 

pressure. 
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Figure 6. Normalized transverse shear stress for simply supported laminate A subjected to sinusoidal 
transverse pressure. 
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Figure 7. Normalized in-plane displacement for simply supported laminate B subjected to sinusoidal 

transverse pressure. 
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Figure 8. Normalized normal stress for simply supported laminate B subjected to sinusoidal transverse 

pressure. 
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Figure 9. Normalized transverse shear stress for simply supported laminate B subjected to sinusoidal 

transverse pressure. 
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Figure 10. Normalized in-plane displacement for simply supported laminate B1 subjected to sinusoidal 

transverse pressure. 
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Figure 11 (a). Normalized normal stress for simply supported laminate B1 subjected to sinusoidal 

transverse pressure. 
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Figure 11 (b). Normalized normal stress near the top layer for simply supported laminate B1 subjected to 

sinusoidal transverse pressure. 
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Figure 12 (a). Normalized transverse shear stress for simply supported laminate B1 subjected to 

sinusoidal transverse pressure. 
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Figure 12 (b). Normalized transverse shear stress near the top layer for simply supported laminate B1 

subjected to sinusoidal transverse pressure. 
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Figure 13. Normalized in-plane displacement for simply supported laminate B2 subjected to sinusoidal 

transverse pressure. 
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Figure 14 (a). Normalized normal stress for simply supported laminate B2 subjected to sinusoidal 

transverse pressure. 
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Figure 14 (b). Normalized normal stress near the top layer for simply supported laminate B2 subjected 

to sinusoidal transverse pressure. 
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Figure 15 (a). Normalized transverse shear stress for simply supported laminate B2 subjected to sinusoidal 

transverse pressure. 
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Figure 15 (b). Normalized transverse shear stress near the top layer for simply supported laminate B2 

subjected to sinusoidal transverse pressure. 
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Figure 16. Normalized in-plane displacement for simply supported laminate F subjected to sinusoidal 

transverse pressure. 
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Figure 17. Normalized normal stress for simply supported laminate F subjected to sinusoidal transverse 

pressure. 
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Figure 18 (a). Normalized transverse shear stress for simply supported laminate F subjected to sinusoidal 

transverse pressure. 
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Figure 18 (b). Normalized transverse shear stress near the top layer for simply supported laminate F 

subjected to sinusoidal transverse pressure. 
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Figure 19. Normalized in-plane displacement for simply supported laminate G subjected to sinusoidal 
transverse pressure. 
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Figure 20. Normalized normal stress for simply supported laminate G subjected to sinusoidal transverse 

pressure. 
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Figure 21 (a). Normalized transverse shear stress for simply supported laminate G subjected to 

sinusoidal transverse pressure. 
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Figure 21 (b). Normalized transverse shear stress near the top layer for simply supported laminate 

G subjected to sinusoidal transverse pressure. 
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Figure 22. Normalized in-plane displacement for cantilevered laminate B subjected to uniform transverse 
pressure. 
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Figure 23. Normalized normal stress for cantilevered laminate B subjected to uniform transverse pressure. 
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Figure 24 (a). Normalized transverse shear stress for cantilevered laminate B subjected to uniform 

transverse pressure. 
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Figure 24 (b). Normalized transverse shear stress for cantilevered laminate B subjected to uniform 
transverse pressure. 
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Figure 25. Normalized transverse shear force along centerline of cantilevered laminate B subjected to 

uniform transverse pressure. 
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