

December 2008

NASA/TM-2008-215552

Guidance and Control Software Project Data
Volume 3: Verification Documents

Edited by
Kelly J. Hayhurst
Langley Research Center, Hampton, Virginia

https://ntrs.nasa.gov/search.jsp?R=20090006959 2019-08-30T06:07:12+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10547139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The NASA STI Program Office … in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated

by Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides access
to the NASA STI Database, the largest
collection of aeronautical and space science STI
in the world. The Program Office is also
NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports

of completed research or a major
significant phase of research that present
the results of NASA programs and include
extensive data or theoretical analysis.
Includes compilations of significant
scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers,
but having less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home

Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help

Desk at (301) 621-0134

• Phone the NASA STI Help Desk at (301)

621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

December 2008

NASA/TM-2008-215552

Guidance and Control Software Project Data
Volume 3: Verification Documents

Edited by
Kelly J. Hayhurst
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

iii

Table of Contents

1 INTRODUCTION AND BACKGROUND ON SOFTWARE ERROR STUDIES ...1
2 GUIDANCE AND CONTROL SOFTWARE APPLICATION ..3
3 SOFTWARE LIFE CYCLE PROCESSES AND DOCUMENTATION..5
4 ROLE IN TRAINING...7
5 SUMMARY..7
6 REFERENCES ..8
APPENDIX A: SOFTWARE VERIFICATION CASES AND PROCEDURES FOR THE
GUIDANCE AND CONTROL SOFTWARE PROJECT ...A-1
A.1 INTRODUCTION ...A-5
A.2 REVIEW AND ANALYSIS PROCEDURES ...A-6

A.2.1 REVIEW TEAM ..A-7
A.2.2 INSPECTOR ..A-7
A.2.3 MODERATOR...A-8
A.2.4 READER ..A-8
A.2.5 RECORDER ..A-9
A.2.6 OVERVIEW MEETING ..A-9
A.2.7 PROCEDURES FOR THE INSPECTION SESSIONS ...A-9

A.3 TEST CASE OVERVIEW..A-10
A.3.1 ARSP FUNCTIONAL UNIT TEST CASES ...A-12
A.3.2 ASP FUNCTIONAL UNIT TEST CASES..A-14
A.3.3 GSP FUNCTIONAL UNIT TEST CASES..A-16
A.3.4 TSP FUNCTIONAL UNIT TEST CASES ..A-17
A.3.5 TDSP FUNCTIONAL UNIT TEST CASES ...A-18
A.3.6 TDLRSP FUNCTIONAL UNIT TEST CASES ..A-19
A.3.7 GP FUNCTIONAL UNIT TEST CASES ..A-21
A.3.8 AECLP FUNCTIONAL UNIT TEST CASES...A-30
A.3.9 RECLP FUNCTIONAL UNIT TEST CASES...A-37
A.3.10 CRCP FUNCTIONAL UNIT TEST CASES ...A-43
A.3.11 CP FUNCTIONAL UNIT TEST CASES ..A-44
A.3.12 SP SUBFRAME TEST CASES...A-45
A.3.13 GP SUBFRAME TEST CASES ..A-45
A.3.14 CLP SUBFRAME TEST CASES ..A-46
A.3.15 FRAME TEST CASES ..A-47
A.3.16 TRAJECTORY TEST CASES...A-48
A.3.17 PASS/FAIL CRITERIA ...A-54

A.4 TEST CASE EXECUTION PROCEDURES..A-55
A.4.1 ENVIRONMENT AND DIRECTORY STRUCTURE FOR TEST CASE EXECUTION ..A-56
A.4.2 FUNCTIONAL UNIT TEST CASE EXECUTION PROCEDURE ..A-57
A.4.3 SUBFRAME AND FRAME TEST CASE EXECUTION PROCEDURE ..A-58
A.4.4 TRAJECTORY TEST CASE EXECUTION PROCEDURE ...A-60
A.4.5 STRUCTURAL TEST CASE EXECUTION PROCEDURE...A-61

A.5 DESIGN REVIEW CHECKLIST..A-62
A.6 CODE REVIEW CHECKLIST ...A-63
A.7 REQUIREMENTS TRACEABILITY MATRIX ...A-66

iv

A.8 SAMPLE REVIEW LOG FORM..A-69
A.9 GCS EQUIVALENCE CLASSES..A-71
A.10 TRACEABILITY MATRIX FOR REQUIREMENTS-BASED TEST CASESA-77
A.11 TEST CASE SUMMARY ...A-81
A.12 PROCEDURE TO GENERATE TEST CASES...A-87
A.13 MATHEMATICA MODELS ...A-93
A.14 SAMPLE TEST CASE..A-119

SAMPLE TEST CASE INPUT ..A-119
SAMPLE EXPECTED RESULTS ..A-124

A.15 SAMPLE TEST STUB..A-128
A.16 TEST CASE RESULTS LOG ..A-130
A.17 REFERENCES ..A-131
APPENDIX B: SOFTWARE VERIFICATION RESULTS FOR THE PLUTO
IMPLEMENTATION OF THE GUIDANCE AND CONTROL SOFTWARE ..B-1
B.1 INTRODUCTION ...B-5
B.2. REVIEW AND ANALYSIS RESULTS..B-5

B.2.1 DESIGN REVIEW ..B-5
B.2.2 CODE REVIEW ...B-5

B.3. PLUTO TEST RESULTS ..B-5
B.3.1 REQUIREMENTS BASED FUNCTIONAL UNIT TESTING ..B-7
B.3.2 SUBFRAME TESTING..B-19
B.3.3 FRAME TESTING ..B-22
B.3.4 TRAJECTORY TESTING...B-23
B.3.5 STRUCTURAL ANALYSIS AND TESTING ...B-24

B.4 TRACEABILITY MATRIX FOR PLUTO DESIGN AND CODE...B-52
APPENDIX C: REVIEW RECORDS FOR THE PLUTO IMPLEMENTATION OF THE
GUIDANCE AND CONTROL SOFTWARE...C-1
C.1 PLUTO PRELIMINARY DESIGN REVIEW..C-3

C.1.1 REVIEW NOTES FROM PRELIMINARY DESIGN REVIEW ..C-3
C.1.2 REVIEW LOGS FROM PRELIMINARY DESIGN REVIEW ..C-12

C.2 PLUTO DESIGN REVIEW..C-73
C.2.1 REVIEW NOTES FROM DESIGN REVIEW...C-73
C.2.2 REVIEW LOGS FROM DESIGN REVIEW...C-77

C.3 PLUTO CODE REVIEW ...C-96
C.3.1 REVIEW NOTES FROM CODE REVIEW ..C-96
C.3.2 REVIEW LOGS FROM CODE REVIEW ..C-99

APPENDIX D: TEST RESULTS LOGS FOR THE PLUTO IMPLEMENTATION OF THE
GUIDANCE AND CONTROL SOFTWARE...D-1
D.1 PLUTO TEST CASE RESULTS LOG FOR AECLP..D-3
D.2 PLUTO TEST CASE RESULTS LOG FOR ARSP...D-8
D.3 PLUTO TEST CASE RESULTS LOG FOR ASP..D-10

v

D.4 PLUTO TEST CASE RESULTS LOG FOR CP ..D-14
D.5 PLUTO TEST CASE RESULTS LOG FOR CRCP ..D-15
D.6 PLUTO TEST CASE RESULTS LOG FOR GP..D-16
D.7 PLUTO TEST CASE RESULTS LOG FOR GSP..D-27
D.8 PLUTO TEST CASE RESULTS LOG FOR RECLP..D-28
D.9 PLUTO TEST CASE RESULTS LOG FOR TDLRSP..D-33
D.10 PLUTO TEST CASE RESULTS LOG FOR TDSP ...D-36
D.11 PLUTO TEST CASE RESULTS LOG FOR TSP ..D-37
D.12 PLUTO TEST CASE RESULTS LOG FOR SP SUBFRAME ...D-38
D.13 PLUTO TEST CASE RESULTS LOG FOR GP SUBFRAME...D-38
D.14 PLUTO TEST CASE RESULTS LOG FOR CLP SUBFRAME ..D-39
D.15 PLUTO TEST CASE RESULTS LOG FOR FRAME...D-40
D.16 PLUTO TEST CASE RESULTS LOG FOR TRAJECTORY..D-41

Abstract

The Guidance and Control Software (GCS) project was the
last in a series of software reliability studies conducted at
Langley Research Center between 1977 and 1994. The technical
results of the GCS project were recorded after the experiment
was completed. Some of the support documentation produced as
part of the experiment, however, is serving an unexpected role
far beyond its original project context. Some of the software used
as part of the GCS project was developed to conform to the
RTCA/DO-178B software standard, "Software Considerations in
Airborne Systems and Equipment Certification," used in the civil
aviation industry. That standard requires extensive
documentation throughout the software development life cycle,
including plans, software requirements, design and source code,
verification cases and results, and configuration management
and quality control data. The project documentation that
includes this information is open for public scrutiny without the
legal or safety implications associated with comparable data
from an avionics manufacturer. This public availability has
afforded an opportunity to use the GCS project documents for
DO-178B training. This report provides a brief overview of the
GCS project, describes the 4-volume set of documents and the
role they are playing in training, and includes the verification
documents from the GCS project.

1 Introduction and Background on Software Error Studies

As the pervasiveness of computer systems has increased, so has the desire and obligation to
establish the reliability of these systems. Reliability estimation and prediction are standard
activities in many engineering projects. For the software aspects of computer systems, however,
reliability estimation and prediction have been topics of dispute, especially for safety-critical
systems. A primary challenge is how to accurately model the failure behavior of software such
that numerical estimates of reliability have sufficient credibility for systems where the probability
of failure needs to be quite small, such as in commercial avionics systems (ref. 1). A second
challenge is how to gather sufficient data to make such estimates. Software reliability models are
not used in the civil aviation industry, for example, because “currently available methods do not
provide results in which confidence can be placed to the level required for this purpose.” (ref. 2)

In an effort to develop methods to credibly assess the reliability of software for safety-critical
avionics applications, Langley Research Center initiated a Software Error Studies program in
1977 (ref. 3). A major focus of those studies was on generating significant quantities of software
failure data through controlled experimentation to better understand software failure processes.
The intent of the Software Error Studies program was to incrementally increase complexity and
realism in a series of experiments so that the final study would have statistically valid results,
representative of actual software development processes.

The Software Error Studies program started with initial investigations by the Aerospace
Corporation to define software reliability measures and data collection requirements (ref. 4-6).

2

Next, Boeing Computer Services (BCS) and the Research Triangle Institute (RTI) conducted
several simple software experiments with aerospace applications including missile tracking,
launch interception, spline function interpolation, Earth satellite calculation, and pitch axis
control (refs. 7-11). The experiment design used in these studies generally involved a number of
programmers (denoted n) who independently generated computer code from a given specification
of the problem to produce n versions of a program. In these experiments, no particular software
development standards or life-cycle models were followed. Because the problems were relatively
small and simple, the versions were compared to a known error-free version of the program to
obtain information on software errors.

Although the initial experiments were small and simplistic compared with real-world avionics
development, they yielded some interesting results that have influenced software reliability
modeling. The BCS and RTI studies showed widely varying error rates for faults. This finding
refuted a common assumption in early software reliability growth models that faults produced
errors at equal rates. These studies also provided evidence of fault interaction where one fault
could mask potentially erroneous behavior from another fault, or where two or more faults
together cause errors when alone they would not. (ref. 12) Additional investigations with n-
version programs (ref. 13) found that points in the input space that cause an error can cluster and
form “error crystals”. Extrapolating this finding to aerospace applications, where input signals
tend to be continuous in nature, the error crystals may manifest themselves as clusters of
successive faults that could have unintended consequences. (ref. 14)

The last project in the Software Error Studies program was the Guidance and Control Software
(GCS) project. It built on the previous experiments in two ways: (1) by requiring that the software
specimens for the experiment be developed in compliance with current software development
standards, and (2) by increasing the complexity of the application problem (ref. 15). At the time
of the GCS project, the RTCA/DO-178B guidelines, "Software Considerations in Airborne
Systems and Equipment Certification," (ref. 2) were the primary standard sanctioned by the
Federal Aviation Administration (FAA) for developing software to be approved for use in
commercial aircraft equipment (ref. 16). The DO-178B document describes objectives and
design considerations to be used for the development of software as well as verification,
configuration management, and quality assurance activities to be performed throughout the
development process. The DO-178B guidelines were selected as the software development
standard to be used for the GCS specimens.

The software application selected for the GCS project, as the title indicates, is a guidance and
control function for controlling the terminal descent trajectory of a planetary lander vehicle. This
terminal descent trajectory is the same fundamental trajectory referred to as the “seven minutes of
terror” in the entry, descent, and landing phase of a planetary mission, such as the recent Phoenix
Mars Lander (ref. 17). For the GCS project, the software requirements were reverse engineered
from a simulation program used to study the probability of success of the original NASA Viking
Lander mission to Mars in the 1970s (ref. 18). It is important to emphasize that the software
requirements documented for the GCS project, while realistic, are not the actual software
requirements used for NASA’s Viking Lander or any other planetary landers.

For the GCS experiment, two1 teams of software engineers were each tasked to independently
design, code, and verify a GCS program, following the software development guidance in DO-
178B, as closely as possible. In addition to those teams, another GCS version was produced,
without the constraint of compliance with DO-178B, to aid development and verification of the
requirements and simulation environment. Once all versions were complete, data on residual

1 The original plan for the GCS project called for three independent teams. Due to funding constraints,
only two teams were able to complete the project.

3

errors was supposed to be collected by running all the versions simultaneously in a simulation
environment, and using any discrepancies among the results of the versions as possible
indications of errors.

Results of the operational simulations and data collection are described in (ref. 15). The
purpose of this report is not to repeat those results, but to disseminate some of the project
documentation that has an unanticipated utility beyond its original project context. The project
documentation of interest is the documentation developed by the teams required to comply with
the DO-178B standard. That standard requires extensive records of all of the software
development life cycle activities. For the GCS project, those records included 18 documents
consisting of life cycle plans, development products including requirements and source code,
verification cases and results, and configuration management and quality control data.
Comparable data from a commercial avionics system would not be available for public review
because of proprietary and other legal considerations. The GCS project documentation is not
subject to those considerations because it is not data from an actual operational, or even
prototype, system. But, the data has sufficient realism to provide a window into the types of
activities and data involved in the production of DO-178 compliant software, which makes the
GCS documentation desirable from a training perspective.

The remainder of this report provides a brief overview of aspects of the GCS project relevant
to using the documentation for training. This information includes a description of the GCS
application, a synopsis of the software development processes used to follow the DO-178B
guidance, and the data that was generated as a result. Because the complete set of compliance
documents is large, the documents have been divided into four sets (planning, development,
verification, and other integral process documents) contained in separate volumes of this report.
Volume 3 includes in Appendices A-D all of the GCS documents, aside from planning, generated
as part of the verification process.

2 Guidance and Control Software Application

The requirements for the GCS application focus on two primary functions: (1) to provide
guidance and engine control of the lander vehicle during its terminal phase of descent onto the
planet's surface, and (2) to communicate sensory information to an orbiting platform about the
vehicle and its descent. Figure 1 shows a sketch of the lander vehicle, taken from (ref. 18), noting
the location of the terminal descent propulsion systems.

The guidance package for the lander vehicle contains sensors that obtain information about the
vehicle state and environment, a guidance and control computer, and actuators providing the
thrust necessary for maintaining a safe descent. The vehicle has three accelerometers (one for
each body axis), one Doppler radar with four beams, one altimeter radar, two temperature
sensors, three strapped-down gyroscopes, three opposed pairs of roll engines, three axial thrust
engines, one parachute release actuator, and a touch down sensor. The vehicle has a hexagonal,
box-like shape; three legs and a surface sensing rod protrude from its undersurface.

In general, the requirements for the planetary lander only concern the final descent to the
surface. Figure 2 shows a sketch of the phases of the terminal descent trajectory.

4

Terminal
descent engines
(3)

Leg 3

Leg 2

Leg 1

Propellant
tank (2)

Roll
engines (4)

Terminal
descent engines
(3)

Leg 3

Leg 2

Leg 1

Propellant
tank (2)

Roll
engines (4)

Figure 1. Lander with Terminal Descent Propulsion Systems

Figure 2. A Typical Terminal Descent Trajectory

Parachute Descent

Engines Begin Warm up

Chute Released

Phase 1

Phase 2

Phase 3

z v

yv

yv

x v

xv

x v

xv

xv

z v

z v

zv

zv

zv

yv

yv

yv

yv

Drop Height

Touch Down

Phase 4

x p
y p

z p

(Terminal Descent Begins)

Phase 5

x v

5

After the lander has dropped from orbit, the software controls the engines of the vehicle to the
surface of a planet. The initialization of the GCS starts the sensing of vehicle altitude. When a
predefined engine ignition altitude is sensed by the altimeter radar, the GCS begins guidance and
control of the lander. The axial and roll engines are ignited; while the axial engines are warming
up, the parachute remains connected to the vehicle. During this engine warm-up phase, the
aerodynamics of the parachute dictate the vehicle’s trajectory. Vehicle attitude is maintained by
firing the engines in a throttled-down condition. Once the main engines become hot, the
parachute is released and the GCS performs an attitude correction maneuver and then follows a
controlled acceleration descent until a predetermined velocity-altitude contour is crossed. The
GCS then attempts to maintain the descent of the lander along this predetermined velocity-
altitude contour. The lander descends along this contour until a predefined engine shut off
altitude is reached or touchdown is sensed. After all engines are shut off, the lander free-falls to
the surface.

The software requirements for this guidance and control application are contained in a
document called the Guidance and Control Development Specification (in Volume 2). As
mentioned earlier, the initial requirements for this application were reverse engineered from a
simulation program used to study the probability of success of the original NASA Viking Lander
mission to Mars. Prior to use in the experiment, the requirements were revised to make them
suitable for use in an n-version software experiment. Each of the GCS programs for the
experiment were developed from the same requirements document.

3 Software Life Cycle Processes and Documentation

Having some of the project teams adhere to the DO-178B guidelines as they created a software
version for the experiment was a significant element of the GCS project, requiring the
development and tracking of numerous software engineering artifacts not normally associated
with a software engineering experiment. The purpose of DO-178B is to provide guidelines for
the production of software such that the completed implementation performs its intended function
with a level of confidence in safety satisfactory for airworthiness. Along with the production of
software is the generation of an extensive set of documents recording the production activities.

DO-178B defines software development activities and objectives for the development life
cycle of the software, and the evidence that is needed to show compliance. The life-cycle
processes are divided into planning, development, and integral processes. The planning process
defines and coordinates the software development processes and the integral processes. The
software development processes involve identification of software requirements, software design
and coding, and integration; that is, the development processes directly result in the software
product. Finally, the integral processes function throughout the software development processes
to ensure integrity of the software products. The integral processes include software verification,
configuration management, and quality assurance processes. Section 11 of DO-178B describes
data that should be produced as evidence of performing all of the life cycle process activities (see
Table 1).

For the GCS project, some of this data was common for all of the teams, and other data was
intended to be specific to each team. For example, each team worked with the same plans,
standards, and requirements. Then, each individual team was responsible for independently
developing their own design, code, and corresponding verification data. To distinguish the
versions, each team was assigned a planetary name: Mercury, Venus, and Pluto2.

2 At the time the GCS experiment was conducted, Pluto had not yet been relegated to non-planet status.

6

Table 1. Life Cycle Data

Planning Process
Documents

Development Process
Documents

Integral Process
Documents

• Plan for Software Aspects of
Certification

• Software Development Plan
• Software Verification Plan
• Software Configuration

Management Plan
• Software Quality Assurance

Plan
• Software Requirements

Standards
• Software Design Standards
• Software Code Standards

• Software Requirements Data
• Design Description
• Source Code
• Executable Object Code

• Software Verification Cases and
Procedures

• Software Verification Results
• Software Life Cycle Environment

Configuration Index
• Software Configuration Index
• Problem Reports
• Software Configuration

Management Records
• Software Quality Assurance

Records
• Software Accomplishment

Summary

The DO-178B data associated with the development of the Pluto version of the GCS was
selected for publication. Most of the GCS documents correspond directly with the life cycle data
listed in Table 1. All together, the documentation includes over 1000 pages. So, for
dissemination purposes, the Pluto data was divided into the following 4 subsets:

Volume 1: Planning Documents
• Plan for Software Aspects of Certification of the Guidance and Control Software Project
• Software Configuration Management Plan for the Guidance and Control Software Project
• Software Quality Assurance Plan for the Guidance and Control Software Project
• Software Verification Plan for the Guidance and Control Software Project
• Software Development Standards for the Guidance and Control Software Project

Volume 2: Development Documents
• Guidance and Control Software Development Specification
• Design Description for the Pluto Implementation of the Guidance and Control Software
• Source Code for the Pluto Implementation of the Guidance and Control Software

Volume 3: Verification Documents
• Software Verification Cases and Procedures for the Guidance and Control Software Project
• Software Verification Results for the Pluto Implementation of GCS
• Review Records for the Pluto Implementation of the Guidance and Control Software
• Test Results Logs for the Pluto Implementation of the Guidance and Control Software

7

Volume 4: Other Integral Processes Documents
• Software Accomplishment Summary for the Guidance and Control Software Project
• Software Configuration Index for the Guidance and Control Software Project
• Problem Reports for the Pluto Implementation of the Guidance and Control Software
• Support Documentation Change Reports for the Guidance and Control Software Project
• Configuration Management Records for the Guidance and Control Software Project
• Software Quality Assurance Records for the Guidance and Control Software Project

Appendices A-D contain all of the original verification documents, except for verification
planning, for the GCS Project. Software Verification Cases and Procedures for the Guidance
and Control Software Project, in Appendix A, specifies the procedures for conducting reviews,
analysis, and testing, and describes the test cases that meet Level A requirements for verification.
The results of the review and analysis activities for the requirements and design are recorded in
Review Records for the Pluto Implementation of the Guidance and Control Software, in Appendix
B; and, Software Verification Results for the Pluto Implementation of the Guidance and Control
Software, in Appendix C, contains the results of all of the testing activities. The Test Results
Logs in Appendix D records the actual pass/fail results of the testing.

The content of the documents in the appendices has not been altered from the original versions
produced during the project.

4 Role in Training

At the time of the GCS project, there was no publicly available information, such as templates,
or examples, or training courses, to help a novice developer generate the type of evidence that a
certificating authority would expect to see to demonstrate compliance with DO-178B. As
mentioned earlier, compliance data from a real avionics system is not typically available for
public review because of various legal and safety considerations. For example, an avionics
manufacturer would likely consider the design and implementation of a system to be proprietary.
Those considerations do not apply to the data from the GCS project, because neither the
requirements nor the software versions represent an actual system with safety, liability, or other
considerations.

In addition to the availability of data, the GCS requirements and DO-178B compliance data
are sufficiently realistic to serve as an example of a DO-178B project: one that is small enough in
scale to be studied in a training course. The GCS documentation provides a window into the
activities and data produced throughout the development life cycle to comply with DO-178B.
Because the Federal Aviation Administration (FAA) was aware of the GCS project, they
recognized the potential value of the documentation for training. The FAA has designed software
training to include a case study portion that addresses avionics software issues that arise from the
application of the DO-178B guidelines. The case study gives students the opportunity to use
auditing techniques to identify flaws in lifecycle data. Because the GCS data was produced by
novices, there are plenty of flaws to find.

5 Summary

From 1977-1994, NASA Langley Research Center conducted a Software Error Studies
program that generated data that provided insights into the software failure process and into
conducting software engineering experiments as well. The GCS project was the final experiment
in that program. A unique feature of the GCS project was the requirement for some of the

8

software specimens used in the experiment to conform to the RTCA/DO-178B software standard,
"Software Considerations in Airborne Systems and Equipment Certification," used in the civil
aviation industry. The project documentation produced to meet that requirement has had the
unanticipated benefit of serving as case study material in software certification training long after
the conclusion of the original experiment. Volume 3 of this report contains all of the verification
documents from the GCS project. Other volumes of this report contain the rest of the GCS
compliance data including planning, development, and configuration management and quality
assurance documents.

6 References

1. Littlewood, Bev, and Strigini, Lorenzo, Software Reliability and Dependability: a Roadmap,
22nd International Conference on Software Engineering, Future of Software Engineering
Track, June 4-11, 2000, Limerick Ireland, pp. 175 – 188.

2. Software Considerations in Airborne Systems and Equipment Certification. Doc. No.
RTCA/DO-178B, RTCA, Inc., Dec. 1, 1992.

3. Finelli, George B.: NASA Software Failure Characterization Experiments. Reliability
Engineering & System Safety, vol. 32, pp. 155–169, 1991.

4. Hecht, H.; Sturm, W. A.; and Tratlner, S.: Reliability Measurement During Software
Development. NASA CR-145205, 1977.

5. Hecht, H.: Measurement Estimation and Prediction of Software Reliability. NASA CR-
145135, 1977.

6. Maxwell, F. D.: The Determination of Measures of Software Reliability. NASA CR-158960,
1978.

7. Nagel, Phyllis M.; and Skrivan, James A.: Software Reliability: Repetitive Run
Experimentation and Modeling. NASA CR-165836, 1982.

8. Nagel, P. M.; Scholz, F. W.; and Skrivan, J. A.: Software Reliability: Additional
Investigation Into Modeling With Replicated Experiments. NASA CR-172378, 1984.

9. Dunham, Janet R.: Experiments in Software Reliability: Life-Critical Applications. IEEE
Transactions on Software Engineering, vol. SE-12, no. 1, Jan. 1986, pp. 110–123.

10. Dunham, J. R.; and Lauterbach, L. A.: An Experiment in Software Reliability Additional
Analyses Using Data From Automated Replications. NASA CR-178395, 1987.

11. Dunham, Janet R.; and Pierce, John L.: An Empirical Study of Flight Control Software
Reliability. NASA CR-178058, 1986.

12. Dunham, Janet R.; and Finelli, George B., Real-Time Software Failure Characterization, IEE
Aerospace and Electronic Systems Magazine, pp. 38-44, November 1990.

13. Ammann, P. and Knight, J.: "Data Diversity: An Approach To Software Fault Tolerance",
Digest of Papers FTCS-17: The 17th Annual International Symposium on Fault Tolerant
Computing, Pittsburg, Pennsylvania, July 1987.

14. Finelli, George B, Results of Software Error-Data Experiments, AIAA/AHS/ASEE Aircraft
Design, Systems and Operations Conference, September 7-9, 1988, Atlanta, Georgia, AIAA-
88-4436.

9

15. Hayhurst, Kelly J., Framework for Small-Scale Experiments in Software Engineering,
Guidance and Control Software Project: Software Engineering Case Study, NASA/TM-
1998-207666, May 1998.

16. Federal Aviation Administration, Advisory Circular, 20-115B, January 11, 1993.

17. Tobin, Kate, NASA Preps for ‘7 Minutes of Terror’ on Mars, May 23, 2008,
http://www.cnn.com/2008/TECH/space/05/23/mars.lander/index.html.

18. Holmberg, Neil A.; Faust, Robert P.; and Holt, H. Milton: Viking ’75 Spacecraft Design and
Test Summary. Volume I—Lander Design. NASA RP-1027, 1980.

A-1

Appendix A: Software Verification Cases and Procedures for the
Guidance and Control Software Project

Authors: Cuong C. Quach, NASA Langley Research Center, and Debbie Taylor, Computer
Sciences Corp.

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

A-2

A. Contents

A.1 INTRODUCTION .. A-5
A.2 REVIEW AND ANALYSIS PROCEDURES... A-6

A.2.1 REVIEW TEAM.. A-7
A.2.2 INSPECTOR ... A-7
A.2.3 MODERATOR .. A-8
A.2.4 READER.. A-8
A.2.5 RECORDER ... A-9
A.2.6 OVERVIEW MEETING ... A-9
A.2.7 PROCEDURES FOR THE INSPECTION SESSIONS .. A-9

A.3 TEST CASE OVERVIEW... A-10
A.3.1 ARSP FUNCTIONAL UNIT TEST CASES .. A-12
A.3.2 ASP FUNCTIONAL UNIT TEST CASES ... A-14
A.3.3 GSP FUNCTIONAL UNIT TEST CASES ... A-16
A.3.4 TSP FUNCTIONAL UNIT TEST CASES ... A-17
A.3.5 TDSP FUNCTIONAL UNIT TEST CASES... A-18
A.3.6 TDLRSP FUNCTIONAL UNIT TEST CASES ... A-19
A.3.7 GP FUNCTIONAL UNIT TEST CASES ... A-21
A.3.8 AECLP FUNCTIONAL UNIT TEST CASES.. A-30
A.3.9 RECLP FUNCTIONAL UNIT TEST CASES.. A-37
A.3.10 CRCP FUNCTIONAL UNIT TEST CASES .. A-43
A.3.11 CP FUNCTIONAL UNIT TEST CASES ... A-44
A.3.12 SP SUBFRAME TEST CASES .. A-45
A.3.13 GP SUBFRAME TEST CASES ... A-45
A.3.14 CLP SUBFRAME TEST CASES ... A-46
A.3.15 FRAME TEST CASES ... A-47
A.3.16 TRAJECTORY TEST CASES .. A-48
A.3.17 PASS/FAIL CRITERIA .. A-54

A.4 TEST CASE EXECUTION PROCEDURES ... A-55
A.4.1 ENVIRONMENT AND DIRECTORY STRUCTURE FOR TEST CASE EXECUTION ... A-56
A.4.2 FUNCTIONAL UNIT TEST CASE EXECUTION PROCEDURE ... A-57
A.4.3 SUBFRAME AND FRAME TEST CASE EXECUTION PROCEDURE.. A-58
A.4.4 TRAJECTORY TEST CASE EXECUTION PROCEDURE .. A-60
A.4.5 STRUCTURAL TEST CASE EXECUTION PROCEDURE.. A-61

A.5 DESIGN REVIEW CHECKLIST... A-62
A.6 CODE REVIEW CHECKLIST... A-63
A.7 REQUIREMENTS TRACEABILITY MATRIX .. A-66
A.8 SAMPLE REVIEW LOG FORM ... A-69
A.9 GCS EQUIVALENCE CLASSES... A-71
A.10 TRACEABILITY MATRIX FOR REQUIREMENTS-BASED TEST CASES.................................... A-77
A.11 TEST CASE SUMMARY .. A-81
A.12 PROCEDURE TO GENERATE TEST CASES .. A-87
A.13 MATHEMATICA MODELS ..A_93
A.14 SAMPLE TEST CASE... A-119
A.15 SAMPLE TEST STUB ... A-128

A-3

A.16 TEST CASE RESULTS LOG.. A-130
A.17 REFERENCES ... A-131

A-4

A. List of Tables

TABLE A.1: TEST CASES FOR ARSP FUNCTIONAL UNIT..A-13

TABLE A.2: TEST CASES FOR ASP FUNCTIONAL UNIT. ...A-15

TABLE A.3: TEST CASES FOR GSP FUNCTIONAL UNIT. ...A-16

TABLE A.4: TEST CASES FOR TSP FUNCTIONAL UNIT. ..A-17

TABLE A.5: CONDITIONS NOT GIVEN IN TABLE 5.13 OF THE GCS SPECIFICATION ...A-18

TABLE A.6: TEST CASES FOR TDSP FUNCTIONAL UNIT. ...A-18

TABLE A.7: CONDITIONS NOT GIVEN IN TABLE 5.11 OF THE GCS SPECIFICATION. ..A-19

TABLE A.8: TEST CASES FOR TDLRSP FUNCTIONAL UNIT. ..A-20

TABLE A.9: TEST CASES FOR GP FUNCTIONAL UNIT...A-22

TABLE A.10A: VALID DATA NOT ACCOUNTED FOR IN TABLE 5.10 OF THE GCS SPECIFICATIONA-29

TABLE A.10A: VALID DATA NOT ACCOUNTED FOR IN TABLE 5.10 (PART B) OF THE GCS SPECIFICATION.............A-29

TABLE A.11: TEST CASES FOR AECLP FUNCTIONAL UNIT. ..A-31

TABLE A.12: AE_TEMP TRANSITIONS NOT COVERED IN TABLE 5.1 OF GCS SPECIFICATION..................................A-36

TABLE A.13: TEST CASES FOR RECLP FUNCTIONAL UNIT. ..A-37

TABLE A.14: TEST CASES FOR CRCP FUNCTIONAL UNIT..A-43

TABLE A.15: TEST CASES FOR CP FUNCTIONAL UNIT. ..A-44

TABLE A.16: TEST CASES FOR GP SUBFRAME..A-45

TABLE A.17: TEST CASES FOR CLP SUBFRAME..A-46

TABLE A.18: FRAME TEST CASES. ..A-47

TABLE A.19: ATMOSPHERIC TEST CASES...A-49

TABLE A.20: TERMINAL DESCENT TEST CASES ..A-50

TABLE A.21: TRAJECTORY TEST CASE SUMMARY. ...A-52

TABLE A.22: ACCURACY TOLERANCES FOR VARIABLES IN SET 1. ..A-54

TABLE A.23: ACCURACY TOLERANCES FOR VARIABLES IN SET 2. ..A-55

TABLE A.9-1 : GCS EQUIVALENCE CLASSES...A-71

TABLE A.9-2 : LIST OF TEST CASES BY EQUIVALENCE CLASS NAME..A-74

TABLE A.10-1 : TRACEABILITY MATRIX WITH REQUIREMENTS -BASED TEST CASES ..A-77

TABLE A.11-1: FILE LIST FOR REQUIREMENTS-BASED TEST SUITES. ...A-83

TABLE A.11-1 (CONTINUED): FILE LIST FOR REQUIREMENTS-BASED TEST SUITES. ...A-85

TABLE A.11-2: FILE LIST FOR STRUCTURAL TESTING OF MERCURY AND PLUTO. ..A-86

A-5

A.1 Introduction

The purpose of this document, as described in Section 11.13 of Requirements and Technical
Concepts for Aviation RTCA/DO-178B, "Software Considerations in Airborne Systems and
Equipment Certification" (ref. A.2), is to provide details about how software verification process
activities are to be implemented for the Guidance and Control Software (GCS) project. As stated
in the preface, the development and verification of this software strictly follows guidelines
described in DO-178B. This document focuses on review and analysis as well as testing
methods. In particular, this document will provide details on procedures for conducting reviews
and analysis, describe the test cases that meet Level A requirements, and test procedures to use
for verification. Methods adopted for tracking test cases as well as accounting for test coverage
will also be discussed.

As stated in the Software Verification Plan, GCS verification activities are independent from
the development process. The development process produces artifacts that must undergo some
level of verification as described in DO-178B. Figure A.1 gives an overview of verification
activities for the GCS project and how they are related to the development processes. The
procedures for conducting the verification activities given in Figure A.1 are described in the
sections below.

Development Process Verification Activity Transition Criteria

Requirements

Design

Code

Integration

Beyond scope of GCS project�
No system requirements available.

Design Review

Code Review

Structural-based Tests

SW Requirements approved
by project management

Design Description reviewed and
approved by all inspectors

Meet 100% requirements coverage�
(Passed all requirements based test
cases.)

Source Code reviewed and
approved by all inspectors.

Meet 100% Multiple Condition /
Decision Coverage.�
(Which also meets:�
 100% Decision Coverage�
 100% Statement Coverage)

GCS Specification
SW Requirements Data

Design Description

Source Code

Source Code/Executable Code
Requirements-Based Testing

Low-level Tests�
(functional unit)

SW Integration Tests�
(subframe, frame, trajectory)

No HW/SW integration Tests

Figure A.1: Overview of verification activities.

A-6

The GCS project includes the development of two GCS implementations, Mercury and Pluto.
Both implementations are developed based on the same requirements and subject to the same
review and test procedures. Similarly, both are tested with the same set of requirements-based
test cases. Since the methods for reviewing design and code and developing test cases and
accounting for coverage are the same for both the Mercury and Pluto implementations, this
document will treat those topics generically. Additionally, since requirements-based test cases
will be identical for both implementations, there will only be one set of requirements test cases
for both Pluto and Mercury and one set of procedures for executing those test cases.

A.2 Review and Analysis Procedures

As stated in sections 6.1 to 6.3 of DO-178B, one of the general objectives of the software
verification process is to verify that "the high-level requirements have been developed into
software architecture and low-level requirements that satisfy the high-level requirements."
Additionally, the results of the coding process must be verified to ensure correctness and
accuracy with respect to the low-level requirements. During the Transitional Design process of
the GCS project, the programmers create a detailed software design that meets the requirements
defined in Version 2.3 (including formal modifications) of the GCS Specification.

For the GCS project, the review of the detailed design and the source code for each
implementation will consist of a series of inspections that are executed by a structured, team
approach. This inspection approach is based on the Design Review and Assessment Technical
Assessment Procedures (DRATAP) used by the U. S. Army Missile Command (ref. A.3) and has
been tailored to fulfill the requirements of DO-178B and the GCS project. The DRATAP itself is
a version of the Fagan Inspection methodology (ref. A.4) which has been tailored to meet the
needs of the Missile Command. Though the procedure for both the design and the code review
will be basically identical, the objectives in each are slightly different with respect to the product
being reviewed.

 The inspection methodology is based on a team approach where all members of the review
team have specific roles to perform. For the GCS project, there is a unique review team for each
implementation. Each review team consists of the Programmer and Verification Analyst assigned
to the implementation under review, the System Analyst, and the Software Quality Assurance
representative. Prior to the start of the actual inspection sessions, an overview meeting will be
held to review the procedures and roles for the inspections and distribute all materials that are
needed to perform the inspections. During the Inspection Sessions, the review team will discuss
and identify defects, clarity problems, and concerns about the product under review.

This Review Procedure identifies the tools used during the inspection, the roles of the review
team members during the inspections, the completion criteria, and the data that result from the
completed process. The verification tools needed for the inspections include the Review
Procedures (section A.5), the Design Review Checklist (section A.6) or the Code Review
Checklist (section A.9), the Traceability Matrix (section A.7) and supplemental data, and
Individual Inspection Preparation Logs (section A.8). The Inspection Logs can be produced
electronically and do not have to exactly follow the format given in section A.8, but all pertinent
information from section A.8 should be included.

The Review Checklist will be utilized by each member of the review team as a guide during
the inspection process to aid in finding defects and problems. The checklist is composed of a
series of questions about the detailed design with a yes/no column to be completed with the
questions. The questions are phrased such that a "no" response may indicate a defect or a
problem that requires further investigation and results in the generation of a Problem Report.

A-7

The GCS Requirements Traceability Matrix is also used during the inspection process. The
Traceability Matrix provides an organized list of the requirements, derived from the GCS
Specification. Each inspector with the exception of the programmer will use the Traceability
Matrix and supplemental data during individual inspections; however, only one Traceability
Matrix will result from a complete review. It is the responsibility of the Moderator of the
inspection team to complete the Traceability Matrix for each implementation's review and to add
low-level as well as any derived requirements to the matrix as necessary. The traceability data
document is a supplement to the matrix, and provides clarification of requirements and
verification criteria. The Traceability Matrix will be completed when the entire review process is
finished. There will be a Traceability Matrix for each implementation. The Traceability Matrix
will be the same for each implementation at the start of the Design Reviews. According to the
DO-178B guidelines, it is also necessary to trace the derived requirements through the
verification activities. As the Design Reviews progress, the Traceability Matrix for each
implementation may be modified as low-level and/or derived requirements are identified. The
Moderator will ensure that all derived requirements are added to the Traceability Matrix.

The Traceability Matrix will be used during the verification activities to track the requirements
through each implementation's design, source code, and testing of its executable image. In the
Traceability Matrix, columns are provided for each verification activity: design review, code
review, and all phases of testing. Consequently, one of the outputs of a review should be a
Traceability Matrix that has been modified to include any low-level and/or derived requirements
that are identified and justified, and the P-Spec number or module name from the artifact where
each requirement is addressed.

A Problem Report is generated when it is determined that a product (Design, Code,
Executable) contains a defect. The project's Problem and Action Reporting Procedures are used
to track errors and the changes made to the design and any other software development artifacts
as a result of errors. A Problem Report generated during a review includes detailed information
about the defect; a description of the problem including a reference to the document and
document section that justifies the problem report, the location in the design (P-Spec#) or source
code (Module name), the implementation's name, and other critical information. An example of a
Problem Report and instructions for completing it can be found in the Software Development
Standards.

The Traceability Matrix is given in the Software Verification Plan and will be under
configuration management. Any changes made to these documents must conform to the
Configuration Management Plan.

The following section describes the role of all the participants in the inspection sessions.

A.2.1 Review Team

As stated above, a review of the detailed design or source code for each implementation will
be conducted by a team through a series of inspections. Except for the Moderator, all members of
the review team will be Inspectors. In addition, the following members of the review team will
have an additional role in the inspection sessions: the Software Quality Assurance (SQA)
representative will be the Moderator, the Programmer will be the Reader, and the Verification
Analyst will be the recorder. Each of these roles is described below.

A.2.2 Inspector

Each Inspector performs a critical reading of the product under review with the intent of
identifying defects (as described above) in the product. The Review Procedures, checklist, and

A-8

Inspection Log will be supplied to each Inspector at the overview meeting to aid in the review.
The Traceability Matrix will also be supplied to the Verification Analyst and the System Analyst.
The critical reading of the assigned portion of the product to be inspected must be completed
before the first inspection session. Each Inspector should bring the completed checklist and a list
of any problems noted during the review (recorded on the Inspection Logs) to the inspection
sessions. The specific activities of an Inspector are:

1. Attend the Overview Meeting and all Inspection Sessions.
2. Review the verification procedures and tools (checklist, Inspection Logs, etc.) assigned by the

Moderator.
3. Review the product description and complete the checklist.
4. Record suspected defects on the Inspection Log.
5. Submit the completed Inspection Log to the Moderator at least four hours prior to the

Inspection Session.

A.2.3 Moderator

The Moderator provides the leadership for the inspection sessions. The Moderator performs
the following activities:

1. Chairs the Inspection Sessions and the Overview Meeting.
2. Schedules the Inspection Sessions and the Overview Meeting.
3. Collects all materials necessary for the Inspection Sessions and distributes these to the review

team. These materials include the product description, appropriate Review Checklist, Review
Procedures, appropriate Standards, blank Inspection Logs, and any other documentation
deemed necessary. Note that there is only one "official" Traceability Matrix that is produced
by the review, and this is will become part of the Software Verification Results.

4. Ensures that all time guidelines are followed.
5. Ensures that all issues are resolved and/or recorded to the satisfaction of the team.
6. Ensures that the appropriate column of the Traceability Matrix is completed with the design

P-Spec or code module number that satisfies the requirement or a Problem Report number,
adding low-level and/or derived requirements to the Traceability Matrix as necessary.

7. Ensures that any follow-up actions are documented, assigned for action, and resolved; and
schedules any necessary follow-up sessions.

A.2.4 Reader

During the Overview meeting, the Reader will give a brief description of the product under
review and the supporting documents. At the Inspection Session, the Reader guides the team
through each part of the product and must answer questions that arise about the product from the
other members of the review team. The parts of the product that are identified in the Inspections
Logs as suspect will be examined in detail. The Reader also performs the function of an
Inspector.

A-9

A.2.5 Recorder

The Recorder documents problems noted in an Inspection Session and initiates the necessary
Problem Reports. At the conclusion of the review, the Recorder will produce an electronic copy
of the Review Minutes. The Recorder also performs the function of an Inspector.

A.2.6 Overview Meeting

The purpose of this meeting is to ensure that the material to be reviewed and the associated
requirements are understood by all members of the review team. During this meeting, the
Moderator will discuss the scope of and procedures and tools for the inspections and will discuss
the role of each of the participants. The Moderator will also distribute the materials necessary to
inspect the product. These materials include the Design or Code Description, Review Procedures,
Review Checklist, Design or Code Standards, and blank Inspection Logs. All members of the
review team are required to attend this meeting. The Overview Meeting should be held at least
twenty-four man hours (which may be as many as 6 days due to the part-time schedules of some
of the GCS participants) before the scheduled time for the first inspection session.

A.2.7 Procedures for the Inspection Sessions

Prior to the Inspection Sessions, there is a period of time devoted to preparation for the
inspections. This preparation specifically consists of the review and assessment of the product by
each Inspector. Inspectors should review the product in detail, using the appropriate checklists.
Any suspected defects should be noted on the Inspection Log, and this form should be returned to
the Moderator at least four hours prior to the Inspection Session. The log should cite specific
requirements, Design Standards, or Code Standards for each suspected defect. The review team
is also responsible for identifying derived requirements in the product. All inspectors should be
allotted at least twenty-four man hours for preparation for the inspections.

During the Inspection Sessions, the Reader guides the team through the product and answers
questions about the product from the members of the review team. All problems noted by the
Inspectors and logged on the Inspection Logs should be discussed. The Programmer should
provide sufficient justification for all derived requirements, and the derived requirements should
be added to the Traceability Matrix to track their implementation throughout the development
process. The Recorder will initiate all necessary Problem Reports.

The inspection sessions should be limited to two hours per session, and no more than three
sessions should be scheduled during any given week. The inspection sessions should be repeated
until all of the product has been inspected. The following guidelines will be followed during each
inspection session:

1. Inspectors should bring all documents and notes, including a copy of the Inspection Log, to
the session.

2. Inspectors should avoid suggesting solutions to defects.
3. If no resolution to an issue is achieved after a reasonable discussion, the issue should be

logged for later action and continue to the next problem.
4. If a session lasts over two hours, the session should be stopped and a continuation scheduled

(within one or two days).

A-10

5. After the session, the Recorder should prepare Problem Reports for all items determined to be
problems by the Inspection Team.

6. Each implementation's Review notes, compiled by the Recorder, will be put into an informal
document, called Review Minutes.

The following data will result from the completed Design or Code Review process: a copy of
the Review minutes, the Traceability Matrix with the appropriate portion completed including the
addition of any derived requirements, and Problem Reports. The SQA Representative is
responsible for completing a report on the Design or Code Review Process. The SQA
Representative is also responsible for ensuring that all Problem Reports are addressed, tracked,
and satisfactorily closed (see the Software Quality Assurance Plan for details). The review
process is complete when the product has been completely reviewed according to the inspection
procedures and all reported problems are resolved.

A.3 Test Case Overview

This section describes the requirements-based test cases developed for GCS testing as required
by DO-178B section 11.13b. Requirements-based test cases are developed for the functional unit,
subframe, frame, and trajectory testing. In this section, test cases are organized by the functional
units, subframe, frame and trajectory. Traceability of requirements to test cases is established in
Table A.10-1 in section A.10. As stated in the Software Verification Plan, there are two
categories of requirements-based test cases at the functional unit level. These are the Normal
Range cases and the Robustness cases. Each functional unit test case name will contain the “NR”
or “RO” differentiate cases from each group. Test cases have been devised to provide the
coverage as described in the Software Verification Plan .

Equivalence class coverage is the first coverage requirement in DO-178B. Equivalence class
partitioning, as described in the Software Verification Plan, has been applied to GCS data
elements and the equivalence classes given in Table A.9-1. Cases that test each equivalence class
are given in Table A.9-2. For GCS purposes, variables from the RUN_PARAMETERS data
store are considered not to change. Even though these variables are listed in the input list of
functional units in the GCS Specification, they will not be tested as part of the input space of the
functional units. Another exception to creating equivalence class for GCS variables is that some
variables, while defined as integers in the actual code, are used as enumerated types. These
variables are tested as state transitions.

Data for each test case originates in its respective data files as given in the tables below.
These data files are used in the procedure given in section A.5 to generate the test-input and
expected-results files (these are also given in tables below). Each file is written in FORTRAN
namelist format and contain the values of variables in all four data stores, and are the actual files
used to actually test the code. The test-input file contains the input values of variables before the
functional unit is executed. The expected-results file contains the value of what the variables
should be after the functional unit has executed.

Test stubs (or test drivers) have been written to insure that the integrity of the four data stores
are maintained. When each test case is executed, using the execution procedure described in the
test case execution section below, the expected-result file is compared to the values generated by
the tested code. All four data stores are compared even though the tested code may only effect
several variables in a single data store. This ensures that the remaining data elements not
inadvertently overwritten during execution of a functional unit test case.

A-11

There is a general problem of verifying history variable rotations when all the variables are the
same values. It is not possible to verify that a rotation has occurred. This problem is particularly
acute for the status variables and computation indicators that require histories. In testing the
history rotation of these variables, it is necessary to introduce alternating patterns so that the
rotation can be verified. For variables that are matrices, this alternating pattern introduces values
into matrix elements that would otherwise be zeros. Unfortunately, this is necessary to be sure
that even those elements are rotated.

The sections below give a comprehensive listing of requirements-based test cases for each
functional unit, subframe, frame, and trajectory. Each functional units section gives a list of
variables being tested, any special conditions that test case has to cover, and a table of all the test
cases in for that functional unit. Only files specific to each test case are given in tables in this
section. Other files needed for generating and executing the test cases are given in Table A.11-1
and Table A.11-2 along with test case generation procedures in section A.11.

The first column of each Test Case Table, “Test Case Data File”, gives the name of the data
file used to generate the test case. A description follows in the second column. The last two
columns labeled “Test-Input File” and “Expected-Results File” give the files generated by using
the procedure in section A.11.

A-12

A.3.1 ARSP Functional Unit Test Cases

Table A.1 gives a listing of all requirements-based test cases for the ARSP functional unit. All
test cases manipulate the variables:

AR_COUNTER

AR_ALTITUDE

AR_STATUS

K_ALT

K_ALT only needs to be tested for rotation in this functional unit. For this case, the K_ALT

rotation can be tested at the same time as testing AR_STATUS = FAIL. These two variables are
independent of each other. To verify upper and lower bounds checking for AR_ALTITUDE, the
various histories of AR_ALTITUDE are set beyond the bounds while their corresponding
AR_STATUS histories are set to healthy. This is unrealistic but its the only way to force the
bounds checks. AR_FREQUENCY is also listed in the GCS Specification as an input variable to
this functional unit but is not tested because it is from the RUN_PARAMETERS data store. The
values assigned to the tested variables are given in the Test Case Data File.

A-13

Table A.1: Test cases for ARSP functional unit.

Test Case Data
File

Description Test-Input File Expected-
Results File

arsp_ro_001.m Test AR_COUNTER out of UPPER bound arsp_ro_001.tc arsp_ro_001.ex

arsp_ro_002.m Test AR_COUNTER out of LOWER bound arsp_ro_002.tc arsp_ro_002.ex

arsp_ro_003.m Force extrapolation with AR_ALTITUDE[0] out of LOWER
bound to see if bounds checking messages are executed.

arsp_ro_003.tc arsp_ro_003.ex

arsp_ro_004.m Force extrapolation with AR_ALTITUDE[1] out of LOWER
bound to see if bounds checking messages are executed.

arsp_ro_004.tc arsp_ro_004.ex

arsp_ro_005.m Force extrapolation with AR_ALTITUDE[2] out of LOWER
bound to see if bounds checking messages are executed.

arsp_ro_005.tc arsp_ro_005.ex

arsp_ro_006.m Force extrapolation with AR_ALTITUDE[3] out of LOWER
bound to see if bounds checking messages are executed.

arsp_ro_006.tc arsp_ro_006.ex

arsp_ro_007.m Force extrapolation with AR_ALTITUDE[0] out of UPPER
bound to see if bounds checking messages are executed

arsp_ro_007.tc arsp_ro_007.ex

arsp_ro_008.m Force extrapolation with AR_ALTITUDE[1] out of UPPER
bound to see if bounds checking messages are executed

arsp_ro_008.tc arsp_ro_008.ex

arsp_ro_009.m Force extrapolation with AR_ALTITUDE[2] out of UPPER
bound to see if bounds checking messages are executed

arsp_ro_009.tc arsp_ro_009.ex

arsp_ro_010.m Force extrapolation with AR_ALTITUDE[3] out of UPPER
bound to see if bounds checking messages are executed

arsp_ro_010.tc arsp_ro_010.ex

arsp_nr_011.m Test normal extrapolation & test setting AR_STATUS =1 &
K_ALT = 1 (row 2 of table 5.4 in Spec.)

arsp_nr_011.tc arsp_nr_011.ex

arsp_nr_012.m Test for proper setting of AR_STATUS[0] and K_ALT[0]
according to row 3 of table 5.4 with no echo returned &
AR_STATUS[0] = Failed

arsp_nr_012.tc arsp_nr_012.ex

arsp_nr_013.m Test for proper setting of AR_STATUS[0] and K_ALT[0]
according to row 3 of table 5.4 with no echo returned &
AR_STATUS[1] = Failed

arsp_nr_013.tc arsp_nr_013.ex

arsp_nr_014.m Test for proper setting of AR_STATUS[0] and K_ALT[0]
according to row 3 of table 5.4 with no echo returned &
AR_STATUS[2] = Failed

arsp_nr_014.tc arsp_nr_014.ex

arsp_nr_015.m Test for proper setting of AR_STATUS[0] and K_ALT[0]
according to row 3 of table 5.4 with no echo returned &
AR_STATUS[3] = Failed

arsp_nr_015.tc arsp_nr_015.ex

arsp_nr_016.m Test Zero - AR_COUNTER and setting of AR_STATUS[0] to
healthy

arsp_nr_016.tc arsp_nr_016.ex

arsp_nr_017.m Test upper bound - AR_COUNTER arsp_nr_017.tc arsp_nr_017.ex

arsp_ro_018.m Test INVALID status - AR_STATUS[0] arsp_ro_018.tc arsp_ro_018.ex

arsp_ro_019.m Test INVALID status - AR_STATUS[1] arsp_ro_019.tc arsp_ro_019.ex

arsp_ro_020.m Test INVALID status - AR_STATUS[2] arsp_ro_020.tc arsp_ro_020.ex

arsp_ro_021.m Test INVALID status - AR_STATUS[3] arsp_ro_021.tc arsp_ro_021.ex

arsp_nr_022.m Test AR_ALTITUDE calculation based on AR_COUNTER
and setting of AR_STATUS[0] and K_ALT[0] according to
row 1 of table 5.4 in the Spec. Also test history rotations for
AR_ALTITUDE, AR_STATUS[0,2], & K_ALT[0,2]

arsp_nr_022.tc arsp_nr_022.ex

arsp_nr_023.m Test AR_ALTITUDE calculation based on AR_COUNTER
and test history rotations for AR_ALTITUDE,
AR_STATUS[1,3], & K_ALT[1,3]

arsp_nr_023.tc arsp_nr_023.ex

A-14

A.3.2 ASP Functional Unit Test Cases

Table A.2 is a listing of all requirements-based test cases for the ASP functional unit.
Variables involved in the test cases are:

A_ACCELERATION

A_COUNTER

ATMOSPHERIC_TEMP

A_STATUS

Note that A_ACCELERATION and A_STATUS are variables with a history dimensions. The

oldest elements in these variables will not require testing since it is discarded after the history
rotation.

A-15

Table A.2: Test cases for ASP functional unit.

Test Case
Data File

Description Test-Input
File

Expected-Results
File

asp_nr_001.m Test A_ACCELERATION calculated from A_COUNTER &
A_STATUS set to HEALTHY

asp_nr_001.tc asp_nr_001.ex

asp_nr_002.m Test A_ACCELERATION calculated from average & A_STATUS set
to UNHEALTHY

asp_nr_002.tc asp_nr_002.ex

asp_nr_003.m Test UNHEALTHY A_STATUS. A_ACCELERATION calculated
from A_COUNTER but previous A_STATUS[1] was UNHEALTHY

asp_nr_003.tc asp_nr_003.ex

asp_nr_004.m Test UNHEALTHY A_STATUS. A_ACCELERATION calculated
from A_COUNTER but previous A_STATUS[2] was UNHEALTHY

asp_nr_004.tc asp_nr_004.ex

asp_nr_005.m Test UNHEALTHY A_STATUS. A_ACCELERATION calculated
from A_COUNTER but previous A_STATUS[3] was UNHEALTHY

asp_nr_005.tc asp_nr_005.ex

asp_nr_006.m Test History variable rotation for A_ACCELERATION[0-4] &
A_STATUS[0,2]

asp_nr_006.tc asp_nr_006.ex

asp_nr_007.m Test History variable rotation A_STATUS[1] asp_nr_007.tc asp_nr_007.ex
asp_ro_008.m Test LOW out of bound for ATMOSPHERIC_TEMP asp_ro_008.tc asp_ro_008.ex
asp_ro_009.m Test HIGH out of bound for ATMOSPHERIC_TEMP asp_ro_009.tc asp_ro_009.ex
asp_ro_010.m Test LOW out of bound for A_COUNTER[1] asp_ro_010.tc asp_ro_010.ex
asp_ro_011.m Test LOW out of bound for A_COUNTER[2] asp_ro_011.tc asp_ro_011.ex
asp_ro_012.m Test LOW out of bound for A_COUNTER[3] asp_ro_012.tc asp_ro_012.ex
asp_ro_013.m Test HIGH out of bound for A_COUNTER[1] asp_ro_013.tc asp_ro_013.ex
asp_ro_014.m Test HIGH out of bound for A_COUNTER[2] asp_ro_014.tc asp_ro_014.ex
asp_ro_015.m Test HIGH out of bound for A_COUNTER[3] asp_ro_015.tc asp_ro_015.ex
asp_nr_016.m Test A_COUNTER at zero - based on hueristic!! asp_nr_016.tc asp_nr_016.ex
asp_ro_017.m Test A_ACCELERATION[0,x] out of LOWER bound asp_ro_017.tc asp_ro_017.ex
asp_ro_018.m Test A_ACCELERATION[0,x] out of UPPER bound asp_ro_018.tc asp_ro_018.ex
asp_ro_019.m Test A_ACCELERATION[0,y] out of LOWER bound asp_ro_019.tc asp_ro_019.ex
asp_ro_020.m Test A_ACCELERATION[0,y] out of UPPER bound asp_ro_020.tc asp_ro_020.ex
asp_ro_021.m Test A_ACCELERATION[0,z] out of LOWER bound asp_ro_021.tc asp_ro_021.ex
asp_ro_022.m Test A_ACCELERATION[0,z] out of UPPER bound asp_ro_022.tc asp_ro_022.ex
asp_ro_023.m Test A_ACCELERATION[1,x] out of LOWER bound asp_ro_023.tc asp_ro_023.ex
asp_ro_024.m Test A_ACCELERATION[1,x] out of UPPER bound asp_ro_024.tc asp_ro_024.ex
asp_ro_025.m Test A_ACCELERATION[1,y] out of LOWER bound asp_ro_025.tc asp_ro_025.ex
asp_ro_026.m Test A_ACCELERATION[1,y] out of UPPER bound asp_ro_026.tc asp_ro_026.ex
asp_ro_027.m Test A_ACCELERATION[1,z] out of LOWER bound asp_ro_027.tc asp_ro_027.ex
asp_ro_028.m Test A_ACCELERATION[1,z] out of UPPER bound asp_ro_028.tc asp_ro_028.ex
asp_ro_029.m Test A_ACCELERATION[2,x] out of LOWER bound asp_ro_029.tc asp_ro_029.ex
asp_ro_030.m Test A_ACCELERATION[2,x] out of UPPER bound asp_ro_030.tc asp_ro_030.ex
asp_ro_031.m Test A_ACCELERATION[2,y] out of LOWER bound asp_ro_031.tc asp_ro_031.ex
asp_ro_032.m Test A_ACCELERATION[2,y] out of UPPER bound asp_ro_032.tc asp_ro_032.ex
asp_ro_033.m Test A_ACCELERATION[2,z] out of LOWER bound asp_ro_033.tc asp_ro_033.ex
asp_ro_034.m Test A_ACCELERATION[2,z] out of UPPER bound asp_ro_034.tc asp_ro_034.ex
asp_ro_035.m Test A_ACCELERATION[3,x] out of LOWER bound asp_ro_035.tc asp_ro_035.ex
asp_ro_036.m Test A_ACCELERATION[3,x] out of UPPER bound asp_ro_036.tc asp_ro_036.ex
asp_ro_037.m Test A_ACCELERATION[3,y] out of LOWER bound asp_ro_037.tc asp_ro_037.ex
asp_ro_038.m Test A_ACCELERATION[3,y] out of UPPER bound asp_ro_038.tc asp_ro_038.ex
asp_ro_039.m Test A_ACCELERATION[3,z] out of LOWER bound asp_ro_039.tc asp_ro_039.ex
asp_ro_040.m Test A_ACCELERATION[3,z] out of UPPER bound asp_ro_040.tc asp_ro_040.ex
asp_ro_041.m Test UNHEALTHY A_STATUS. A_ACCELERATION calculated

from A_COUNTER but previous A_STATUS[1,1] was INVALID
asp_ro_041.tc asp_ro_041.ex

asp_ro_042.m Test UNHEALTHY A_STATUS. A_ACCELERATION calculated
from A_COUNTER but previous A_STATUS[1,1] was INVALID

asp_ro_042.tc asp_ro_042.ex

asp_ro_043.m Test UNHEALTHY A_STATUS. A_ACCELERATION calculated
from A_COUNTER but previous A_STATUS[3,1] was INVALID

asp_ro_043.tc asp_ro_043.ex

asp_ro_044.m Test UNHEALTHY A_STATUS. A_ACCELERATION calculated
from A_COUNTER but previous A_STATUS[3,2] was INVALID

asp_ro_044.tc asp_ro_044.ex

A-16

A.3.3 GSP Functional Unit Test Cases

Table A.3 gives a listing of all requirements-based test cases for the GSP functional unit.

Three variables tested by in test cases are:

ATMOSPHERIC_TEMP

G_COUNTER

G_ROTATION

Note that G_ROTATION is in the input list only because it has to be accessed for history

rotations.

Table A.3: Test cases for GSP functional unit.

Test Case
Data File

Description Test-Input File Expected-
Results File

gsp_nr_001.m Test History rotation for G_ROTATION gsp_nr_001.tc gsp_nr_001.ex
gsp_ro_002.m Test out of LOWER bound for

ATMOSPHERIC_TEMP
gsp_ro_002.tc gsp_ro_002.ex

gsp_ro_003.m Test out of UPPER bound for
ATMOSPHERIC_TEMP

gsp_ro_003.tc gsp_ro_003.ex

gsp_ro_004.m Test out of LOWER bound for G_COUNTER[1] gsp_ro_004.tc gsp_ro_004.ex
gsp_ro_005.m Test out of LOWER bound for G_COUNTER[2] gsp_ro_005.tc gsp_ro_005.ex
gsp_ro_006.m Test out of LOWER bound for G_COUNTER[3] gsp_ro_006.tc gsp_ro_006.ex
gsp_ro_007.m Test out of UPPER bound for G_COUNTER[1] gsp_ro_007.tc gsp_ro_007.ex
gsp_ro_008.m Test out of UPPER bound for G_COUNTER[2] gsp_ro_008.tc gsp_ro_008.ex
gsp_ro_009.m Test out of UPPER bound for G_COUNTER[3] gsp_ro_009.tc gsp_ro_009.ex

A-17

A.3.4 TSP Functional Unit Test Cases

Table A.4 is a listing of all requirements-based test cases for the TSP functional unit. All test

cases manipulate the variables:

SS_TEMP

THERMO_TEMP

Table A.4: Test cases for TSP functional unit.

Test Case Data
File

Description Test-Input File Expected-Results
File

tsp_nr_001.m Test normal range of Both SS_TEMP &
THERMO_TEMP - outputs THERMO_TEMP
calculation for equivalence class THERMO_TEMP.1
and SS_TEMP.1

tsp_nr_001.tc tsp_nr_001.ex

tsp_nr_002.m Test normal range of SS_TEMP - outputs SS_TEMP
calculation for equivalence class SS_TEMP.2

tsp_nr_002.tc tsp_nr_002.ex

tsp_nr_003.m Test normal range of SS_TEMP - outputs SS_TEMP
calculation for equivalence class SS_TEMP.3

tsp_nr_003.tc tsp_nr_003.ex

tsp_ro_004.m Test SS_TEMP out of upper range - outputs SS_TEMP
calculation for equivalence class SS_TEMP.4

tsp_ro_004.tc tsp_ro_004.ex

tsp_ro_005.m Test SS_TEMP out of lower range - outputs SS_TEMP
calculation for equivalence class SS_TEMP.5

tsp_ro_005.tc tsp_ro_005.ex

tsp_nr_006.m Test THERMO_TEMP - outputs THERMO_TEMP
calculation for equivalence class THERMO_TEMP.2

tsp_nr_006.tc tsp_nr_006.ex

tsp_nr_007.m Test THERMO_TEMP - outputs THERMO_TEMP
calculation for equivalence class THERMO_TEMP.3

tsp_nr_007.tc tsp_nr_007.ex

tsp_ro_008.m Test THERMO_TEMP - outputs THERMO_TEMP
calculation for equivalence class THERMO_TEMP.4

tsp_ro_008.tc tsp_ro_008.ex

tsp_ro_009.m Test THERMO_TEMP - outputs THERMO_TEMP
calculation for equivalence class THERMO_TEMP.5

tsp_ro_009.tc tsp_ro_009.ex

tsp_ro_010.m Force use of THERMO_TEMP to test out of LOWER
bound for THERMO_TEMP - Equivalence class
THERMO_TEMP.7

tsp_ro_010.tc tsp_ro_010.ex

tsp_ro_011.m Force use of THERMO_TEMP to test out of UPPER
bound for THERMO_TEMP - Equivalence class
THERMO_TEMP.6

tsp_ro_011.tc tsp_ro_011.ex

A-18

A.3.5 TDSP Functional Unit Test Cases

Table A.6 gives a listing of all requirements-based test cases for the TDSP functional unit. All

test cases manipulate the variables:

TDS_STATUS

TD_COUNTER

Table 5.13 of the GCS Specification does not define the processing that is to occur if the

TDS_STATUS is failed. Furthermore, there are no provisions to prevent this functional unit
from executing when that occurs. To ensure robustness, it will be necessary to test the behavior
of the functional unit when TDS_STATUS is failed. Table A.5 below lists the missing conditions
from Table 5.13 of the GCS Specification and gives their respective test case. These cases are
also given in Table A.6.

Table A.5: Conditions not given in Table 5.13 of the GCS Specification

Input Output Test Case

TDS_
STATUS

TD_
COUNTER

TD_
SENSED

TDS_
STATUS

Names

failed all zeroes unchanged failed TDSP_RO_004.TC
failed all ones unchanged failed TDSP_RO_005.TC
failed mixture of ones

& zeroes
unchanged failed TDSP_RO_006.TC

Table A.6: Test cases for TDSP functional unit.

Test Case
Data File

Description Test-Input File Expected-
Results File

tdsp_nr_001.m Test healthy status & all counter bits off tdsp_nr_001.tc tdsp_nr_001.ex
tdsp_nr_002.m Test healthy status & all counter bits on tdsp_nr_002.tc tdsp_nr_002.ex
tdsp_nr_003.m Test healthy status & mixed counter bits tdsp_nr_003.tc tdsp_nr_003.ex
tdsp_ro_004.m Test unhealthy status & zero counter tdsp_ro_004.tc tdsp_ro_004.ex
tdsp_ro_005.m Test unhealthy status & all counter bits on tdsp_ro_005.tc tdsp_ro_005.ex
tdsp_ro_006.m unhealthy status & mixed counter bits tdsp_ro_006.tc tdsp_ro_006.ex
tdsp_ro_007.m Tests INVALID TDS_STATUS tdsp_ro_007.tc tdsp_ro_007.ex

A-19

A.3.6 TDLRSP Functional Unit Test Cases

Table A.8 is a listing of all test cases for the TDLRSP functional unit. All test cases

manipulate the variables:

FRAME_COUNTER TDLR_COUNTER

FRAME_BEAM_UNLOCKED TDLR_STATE

K_MATRIX TDLR_VELOCITY

For robustness testing purposes, Table 5.11 of the GCS Specification is missing several cases

that should be tested. These conditions are given in Table A.7 below. Note that the
Beam_lock_time calculated by:

 Beam_lock_time = DELTA_T *(FRAME_COUNTER - FRAME_BEAM_UNLOCKED)

Table A.7 also identifies the test cases for each of those conditions. These cases are also
repeated in Table A.8.

Table A.7: Conditions not given in Table 5.11 of the GCS Specification.

Input Output Test Case

TDLR_
STATE

TDLR_
COUNTE

R

Beam_lock_time
≥

TDLR_LOCK_TIME

TDLR_
STATE

FRAME_BEAM_
UNLOCKED

Names

locked ≠ 0 d locked Unchanged TDLRSP_RO_006.TC

unlocked ≠ 0 no unlocked Unchanged TDLRSP_RO_002.TC

unlocked = 0 no unlocked Unchanged TDLRSP_RO_004.TC

A-20

Table A.8: Test cases for TDLRSP functional unit.

Test Case Data
File

Description Test-Input File Expected-
Results File

tdlrsp_nr_001.m Test: 1) TDLR_STATE = 0 & TDLR_COUNTER != 0
(line 2 of table 5.11) 2) line 16 of table 5.12 2) history
rotation for TDLR_VELOCITY & K_MATRIX

tdlrsp_nr_001.tc tdlrsp_nr_001.ex

tdlrsp_ro_002.m Test: 1) TDLR_STATE = 0 & TDLR_COUNTER != 0
but elapsed time < TDLR_LOCK_TIME (not listed in
table 5.11)

tdlrsp_ro_002.tc tdlrsp_ro_002.ex

tdlrsp_nr_003.m Test: TDLR_STATE = 0 & TDLR_COUNTER = 0
(line 3 of table 5.11)

tdlrsp_nr_003.tc tdlrsp_nr_003.ex

tdlrsp_ro_004.m Test: TDLR_STATE = 0 & TDLR_COUNTER = 0 but
elapsed time < TDLR_LOCK_TIME (not listed in table
5.11)

tdlrsp_ro_004.tc tdlrsp_ro_004.ex

tdlrsp_nr_005.m Test: 1) TDLR_STATE = 1 & TDLR_COUNTER = 0
(line 1 of table 5.11) 2) line 1 of table 5.12 (no beams
in lock)

tdlrsp_nr_005.tc tdlrsp_nr_005.ex

tdlrsp_ro_006.m Test: 1) TDLR_STATE = 1 & TDLR_COUNTER != 0
(not listed in table 5.11) 2) line 1 of table 5.12 (no
beams in lock)

tdlrsp_ro_006.tc tdlrsp_ro_006.ex

tdlrsp_nr_007.m Test: Beam 1 in lock (line 2 of table 5.12) tdlrsp_nr_007.tc tdlrsp_nr_007.ex
tdlrsp_nr_008.m Test: Beam 2 in lock (line 3 of table 5.12) tdlrsp_nr_008.tc tdlrsp_nr_008.ex
tdlrsp_nr_009.m Test: Beam 3 in lock (line 4 of table 5.12) tdlrsp_nr_009.tc tdlrsp_nr_009.ex
tdlrsp_nr_010.m Test: Beam 4 in lock (line 5 of table 5.12) tdlrsp_nr_010.tc tdlrsp_nr_010.ex
tdlrsp_nr_011.m Test: Beams 1 & 2 in lock (line 6 of table 5.12) tdlrsp_nr_011.tc tdlrsp_nr_011.ex
tdlrsp_nr_012.m Test: Beams 1 & 3 in lock (line 7 of table 5.12) tdlrsp_nr_012.tc tdlrsp_nr_012.ex
tdlrsp_nr_013.m Test: Beams 1 & 4 in lock (line 8 of table 5.12) tdlrsp_nr_013.tc tdlrsp_nr_013.ex
tdlrsp_nr_014.m Test: Beams 2 & 3 in lock (line 9 of table 5.12) tdlrsp_nr_014.tc tdlrsp_nr_014.ex
tdlrsp_nr_015.m Test: Beams 2 & 4 in lock (line 10 of table 5.12) tdlrsp_nr_015.tc tdlrsp_nr_015.ex
tdlrsp_nr_016.m Test: Beams 3 & 4 in lock (line 11 of table 5.12) tdlrsp_nr_016.tc tdlrsp_nr_016.ex
tdlrsp_nr_017.m Test: Beams 1, 2, & 3 in lock (line 12 of table 5.12) tdlrsp_nr_017.tc tdlrsp_nr_017.ex
tdlrsp_nr_018.m Test: Beams 1, 2, & 4 in lock (line 13 of table 5.12) tdlrsp_nr_018.tc tdlrsp_nr_018.ex
tdlrsp_nr_019.m Test: Beams 1, 3, & 4 in lock (line 14 of table 5.12) tdlrsp_nr_019.tc tdlrsp_nr_019.ex
tdlrsp_nr_020.m Test: Beams 2, 3, & 4 in lock (line 15 of table 5.12) tdlrsp_nr_020.tc tdlrsp_nr_020.ex
tdlrsp_nr_021.m Test: ALL Beams in lock (line 16 of table 5.12) tdlrsp_nr_021.tc tdlrsp_nr_021.ex
tdlrsp_ro_022.m Test FRAME_BEAM_UNLOCKED out of UPPER

bound
tdlrsp_ro_022.tc tdlrsp_ro_022.ex

tdlrsp_ro_023.m Test FRAME_BEAM_UNLOCKED out of LOWER
bound

tdlrsp_ro_023.tc tdlrsp_ro_023.ex

tdlrsp_ro_024.m Test FRAME_COUNTER out of UPPER bound tdlrsp_ro_024.tc tdlrsp_ro_024.ex
tdlrsp_ro_025.m Test FRAME_COUNTER out of LOWER bound tdlrsp_ro_025.tc tdlrsp_ro_025.ex
tdlrsp_ro_026.m Test TDLR_STATE INVALID value tdlrsp_ro_026.tc tdlrsp_ro_026.ex
tdlrsp_ro_027.m Test TDLR_COUNTER out of LOWER bound tdlrsp_ro_027.tc tdlrsp_ro_027.ex
tdlrsp_ro_028.m Test TDLR_COUNTER out of UPPER bound tdlrsp_ro_028.tc tdlrsp_ro_028.ex

A-21

A.3.7 GP Functional Unit Test Cases

Table 9 is a listing of all requirements-based test cases for the GP functional unit. All test

cases manipulate the variables:

AE_SWITCH GP_PHASE

AE_TEMP GP_VELOCITY

AR_ALTITUDE G_ROTATION

A_ACCELERATION K_ALT

CHUTE_RELEASED K_MATRIX

CL RE_SWITCH

CONTOUR_CROSSED TDLR_VELOCITY

FRAME_COUNTER TDS_STATUS

GP_ALTITUDE TD_SENSED

GP_ATTITUDE

GP robustness test cases # 60 - 65 are supposed to provide out-of-bounds testing for

GP_VELOCITY(1...3,0) which is both computed and then used in GP. The computation for this
is impossible to reverse engineer to get starting values. Currently the best way to do this is to
make other time histories (specifically GP_VELOCITY(1...3,2)) out of bounds, thereby forcing
GP_VELOCITY(1...3,0) out of bounds.

A-22

Table A.9: Test cases for GP functional unit.

Test Case
Data File

Description Test-Input File Expected-
Results File

gp_tc.1 Initial GP Frame with All valid inputs. Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.10

gp_nr_001.tc gp_nr_001.ex

gp_tc.2 Transition Frame, Frame 246 with all valid inputs Tests Equivalence
Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_nr_002.tc gp_nr_002.ex

gp_tc.3 FRAME = 251 with CHUTE_RELEASED set to 1. All valid data
tested. Also tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_nr_003.tc gp_nr_003.ex

gp_tc.4 FRAME = 252 with CHUTE_RELEASED = 1 where GP_PHASE
goes to 3. All valid data tested. Also tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_nr_004.tc gp_nr_004.ex

gp_tc.5 FRAME 950 when CONTOUR_CROSSED will be set to 1 by the end
of the frame. All valid data tested. Also tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1
G_ROTATION.6

gp_nr_005.tc gp_nr_005.ex

gp_tc.6 FRAME 951 with CONTOUR_CROSSED = 1. Tests all valid data
and equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1
G_ROTATION.6

gp_nr_006.tc gp_nr_006.ex

gp_tc.7 FRAME = 2073 when CL = 2. Tests valid data and Equivalence
Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1
G_ROTATION.6

gp_nr_007.tc gp_nr_007.ex

gp_tc.8 FRAME = 2078 where CL = 2 and GP_PHASE changes to 4. Tests
valid data and Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1
G_ROTATION.6

gp_nr_008.tc gp_nr_008.ex

gp_tc.9 FRAME = 2073 where CL = goes to 2. Tests valid data &
Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.4
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1

gp_nr_053.tc gp_nr_053.ex

A-23

gp_tc.10 FRAME = 2078 CL = 2, GP_PHASE changes to 5 (TD_SENSED = 1,
GP_PHASE = 2, and engines are not HOT, Chute is attached) Tests
valid data and Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.3
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1

gp_nr_102.tc gp_nr_102.ex

gp_tc.11 FRAME = 2078 CL = 2, GP_PHASE changes to 5 (ALT <=
DROP_HEIGHT, TDS_STATUS = failed, GP_PHASE = 3). Tests
valid data and Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1

gp_nr_103.tc gp_nr_103.ex

gp_tc.12 FRAME = 2078 CL = 2, GP_PHASE changes to 5 (Chute released,
Engines Hot, Touchdown sensed). Tests valid data and Equivalence
Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1

gp_nr_104.tc gp_nr_104.ex

gp_tc.13 FRAME = 2078 CL = 2, GP_PHASE changes to 5 (Chute released,
Engines off, Touchdown sensed). Tests valid data & Equivalence
Classes:
 A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1

gp_nr_105.tc gp_nr_105.ex

gp_tc.14 FRAME = 2078 CL = 2, GP_PHASE changes to 5 (Chute released,
Engines off, TDS_STATUS = failed) Tests valid data and
Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1

gp_nr_106.tc gp_nr_106.ex

gp_tc.15 Based on FRAME = 951 GPALT2 is < 0. (after rotation) Tests
Equivalence Classes: GP_ALTITUDE.3

gp_ro_009.tc gp_ro_009.ex

gp_tc.16 Based on FRAME = 951 GPALT2 is > 2000. (after rotation) Tests
Equivalence Classes: GP_ALTITUDE.2

gp_ro_010.tc gp_ro_010.ex

gp_tc.17 Based on FRAME = 951 A_ACCELERATION(1,0) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_011.tc gp_ro_011.ex

gp_tc.18 Based on FRAME = 951 A_ACCELERATION(1,0) > 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_012.tc gp_ro_012.ex

gp_tc.19 Based on FRAME = 951 A_ACCELERATION(2,0) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_013.tc gp_ro_013.ex

gp_tc.20 Based on FRAME = 951 A_ACCELERATION(2,0) > 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_014.tc gp_ro_014.ex

gp_tc.21 Based on FRAME = 951 A_ACCELERATION(3,0) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_015.tc gp_ro_015.ex

gp_tc.22 Based on FRAME = 951 A_ACCELERATION(3,0) > 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_016.tc gp_ro_016.ex

gp_tc.23 Based on FRAME = 951 A_ACCELERATION(1,1) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_017.tc gp_ro_017.ex

gp_tc.24 Based on FRAME = 951 A_ACCELERATION(1,1) > 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_018.tc gp_ro_018.ex

gp_tc.25 Based on FRAME = 951 A_ACCELERATION(2,1) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_019.tc gp_ro_019.ex

gp_tc.26 Based on FRAME = 951 A_ACCELERATION(2,1) > 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_020.tc gp_ro_020.ex

gp_tc.27 Based on FRAME = 951 A_ACCELERATION(3,1) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_021.tc gp_ro_021.ex

gp_tc.28 Based on FRAME = 951 A_ACCELERATION(3,1) > 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_022.tc gp_ro_022.ex

gp_tc.29 Based on FRAME = 951 A_ACCELERATION(1,2) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_023.tc gp_ro_023.ex

gp_tc.30 Based on FRAME = 951 A_ACCELERATION(1,2) < 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_024.tc gp_ro_024.ex

A-24

gp_tc.31 Based on FRAME = 951 A_ACCELERATION(2,2) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_025.tc gp_ro_025.ex

gp_tc.32 Based on FRAME = 951 A_ACCELERATION(2,2) >5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_026.tc gp_ro_026.ex

gp_tc.33 Based on FRAME = 951 A_ACCELERATION(3,2) < -20. Tests
Equivalence Classes: A_ACCELERATION.3

gp_ro_027.tc gp_ro_027.ex

gp_tc.34 Based on FRAME = 951 A_ACCELERATION(3,2) > 5. Tests
Equivalence Classes: A_ACCELERATION.2

gp_ro_028.tc gp_ro_028.ex

gp_tc.35 Based on FRAME = 951 GP_ATTITUDE(1,1,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_029.tc gp_ro_029.ex

gp_tc.36 Based on FRAME = 951 GP_ATTITUDE(1,1,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_030.tc gp_ro_030.ex

gp_tc.37 Based on FRAME = 951 GP_ATTITUDE(1,2,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_031.tc gp_ro_031.ex

gp_tc.38 Based on FRAME = 951 GP_ATTITUDE(1,2,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_032.tc gp_ro_032.ex

gp_tc.39 Based on FRAME = 951 GP_ATTITUDE(1,3,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_033.tc gp_ro_033.ex

gp_tc.40 Based on FRAME = 951 GP_ATTITUDE(1,3,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_034.tc gp_ro_034.ex

gp_tc.41 Based on FRAME = 951 GP_ATTITUDE(2,1,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_035.tc gp_ro_035.ex

gp_tc.42 Based on FRAME = 951 GP_ATTITUDE(2,1,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_036.tc gp_ro_036.ex

gp_tc.43 Based on FRAME = 951 GP_ATTITUDE(2,2,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_037.tc gp_ro_037.ex

gp_tc.44 Based on FRAME = 951 GP_ATTITUDE(2,2,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_038.tc gp_ro_038.ex

gp_tc.45 Based on FRAME = 951 GP_ATTITUDE(2,3,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_039.tc gp_ro_039.ex

gp_tc.46 Based on FRAME = 951 GP_ATTITUDE(2,3,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_040.tc gp_ro_040.ex

gp_tc.47 Based on FRAME = 951 GP_ATTITUDE(3,1,2) > 1. (after rotation)
Tests Equivalence Class GP_ATTITUDE.2

gp_ro_041.tc gp_ro_041.ex

gp_tc.48 Based on FRAME = 951 GP_ATTITUDE(3,1,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_042.tc gp_ro_042.ex

gp_tc.49 Based on FRAME = 951 GP_ATTITUDE(3,2,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_043.tc gp_ro_043.ex

gp_tc.50 Based on FRAME = 951 GP_ATTITUDE(3,2,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_044.tc gp_ro_044.ex

gp_tc.51 Based on FRAME = 951 GP_ATTITUDE(3,3,2) > 1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.2

gp_ro_045.tc gp_ro_045.ex

gp_tc.52 Based on FRAME = 951 GP_ATTITUDE(3,3,2) < -1. (after rotation)
Tests Equivalence Classes: GP_ATTITUDE.3

gp_ro_046.tc gp_ro_046.ex

gp_tc.53 FRAME = 951 ARALT0 is < 0. Tests Equivalence Classes:
AR_ALTITUDE.3

gp_ro_047.tc gp_ro_047.ex

gp_tc.54 FRAME = 951 ARALT0 is > 2000. Tests Equivalence Classes:
AR_ALTITUDE.2

gp_ro_048.tc gp_ro_048.ex

gp_tc.55 FRAME = 951 ARALT1 is < 0. Tests Equivalence Classes:
AR_ALTITUDE.3

gp_ro_049.tc gp_ro_049.ex

gp_tc.56 FRAME = 951 ARALT1 is > 2000. Tests Equivalence Classes:
AR_ALTITUDE.2

gp_ro_050.tc gp_ro_050.ex

gp_tc.57 FRAME = 951 ARALT2 is < 0. Tests Equivalence Classes:
AR_ALTITUDE.3

gp_ro_051.tc gp_ro_051.ex

gp_tc.58 FRAME = 951 ARALT2 is > 2000. Tests Equivalence Classes:
AR_ALTITUDE.2

gp_ro_052.tc gp_ro_052.ex

gp_tc.59 Based on FRAME = 951 GPVEL2(1) is < -100. (after rotation) Tests
Equivalence Classes: GP_VELOCITY.3

gp_ro_054.tc gp_ro_054.ex

gp_tc.60 Based on FRAME = 951 GPVEL2(1) is > 100. (after rotation) Tests
Equivalence Classes: GP_VELOCITY.2

gp_ro_055.tc gp_ro_055.ex

gp_tc.61 Based on FRAME = 951 GPVEL2(2) is < -100. (after rotation)
Tests Equivalence Classes: GP_VELOCITY.3

gp_ro_056.tc gp_ro_056.ex

A-25

gp_tc.62 Based on FRAME = 951 GPVEL2(2) is > 100. (after rotation) Tests
Equivalence Classes: GP_VELOCITY.2

gp_ro_057.tc gp_ro_057.ex

gp_tc.63 Based on FRAME = 951 GPVEL2(3) is < -100. (after rotation) Tests
Equivalence Classes: GP_VELOCITY.3

gp_ro_058.tc gp_ro_058.ex

gp_tc.64 Based on FRAME = 951 GPVEL2(3) is > 100. (after rotation) Tests
Equivalence Classes: GP_VELOCITY.2

gp_ro_059.tc gp_ro_059.ex

gp_tc.65 Based on FRAME = 951 GPVEL2(1) is > 100. (after rotation) forcing
GPVEL0(1) to be out-of-bounds Tests Equivalence Classes:
GP_VELOCITY.2

gp_ro_060.tc gp_ro_060.ex

gp_tc.66 Based on FRAME = 951 GPVEL2(1) is < -100. (after rotation)
forcing GPVEL0(1) to be out-of-bounds. Tests Equivalence Classes:
GP_VELOCITY.3

gp_ro_061.tc gp_ro_061.ex

gp_tc.67 Based on FRAME = 951 GPVEL2(2) is > 100. (after rotation)
forcing GPVEL0(2) to be out-of-bounds Tests Equivalence Classes:
GP_VELOCITY.2

gp_ro_062.tc gp_ro_062.ex

gp_tc.68 Based on FRAME = 951 GPVEL2(2) is < -100. (after rotation)
forcing GPVEL0(2) to be out-of-bounds Tests Equivalence Classes:
GP_VELOCITY.3

gp_ro_063.tc gp_ro_063.ex

gp_tc.69 Based on FRAME = 951 GPVEL2(3) is > 100. (after rotation) forcing
GPVEL0(3) to be out-of-bounds Tests Equivalence Classes:
GP_VELOCITY.2

gp_ro_064.tc gp_ro_064.ex

gp_tc.70 Based on FRAME = 951 GPVEL2(3) is < -100. (after rotation)
forcing GPVEL0(3) to be out-of-bounds Tests Equivalence Classes:
GP_VELOCITY.3

gp_ro_065.tc gp_ro_065.ex

gp_tc.71 Based on FRAME = 951 P0 = G_ROTATION(1, 0) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_066.tc gp_ro_066.ex

gp_tc.72 Based on FRAME = 951 Q0 = G_ROTATION(2, 0) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_067.tc gp_ro_067.ex

gp_tc.73 Based on FRAME = 951 R0 = G_ROTATION(3, 0) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_068.tc gp_ro_068.ex

gp_tc.74 Based on FRAME = 951 p0 = G_ROTATION(1, 0) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_069.tc gp_ro_069.ex

gp_tc.75 Based on FRAME = 951 q0 = G_ROTATION(2, 0) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_070.tc gp_ro_070.ex

gp_tc.76 Based on FRAME = 951 r0 = G_ROTATION(2, 0) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_071.tc gp_ro_071.ex

gp_tc.77 Based on FRAME = 951 p1 = G_ROTATION(1, 1) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_072.tc gp_ro_072.ex

gp_tc.78 Based on FRAME = 951 q1 = G_ROTATION(2, 1) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_073.tc gp_ro_073.ex

gp_tc.79 Based on FRAME = 951 r1 = G_ROTATION(3,1) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_074.tc gp_ro_074.ex

gp_tc.80 Based on FRAME = 951 p1 = G_ROTATION(1, 1) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_075.tc gp_ro_075.ex

gp_tc.81 Based on FRAME = 951 q1 = G_ROTATION(2, 1) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_076.tc gp_ro_076.ex

gp_tc.82 Based on FRAME = 951 r1 = G_ROTATION(3, 1) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_077.tc gp_ro_077.ex

gp_tc.83 Based on FRAME = 951 p2 = G_ROTATION(1, 2) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_078.tc gp_ro_078.ex

A-26

gp_tc.84 Based on FRAME = 951 q2 = G_ROTATION(2, 2) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_079.tc gp_ro_079.ex

gp_tc.85 Based on FRAME = 951 r2 = G_ROTATION(3, 2) < -1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.12

gp_ro_080.tc gp_ro_080.ex

gp_tc.86 Based on FRAME = 951 p0 = G_ROTATION(1, 2) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_081.tc gp_ro_081.ex

gp_tc.87 Based on FRAME = 951 q2 = G_ROTATION(2,2) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_082.tc gp_ro_082.ex

gp_tc.88 Based on FRAME = 951 r2 = G_ROTATION(3, 2) > 1 (as used by
the program in GP_ROTATION) Tests Equivalence Classes:
G_ROTATION.11

gp_ro_083.tc gp_ro_083.ex

gp_tc.89 FRAME = 951 TDLVEL0 (1) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_084.tc gp_ro_084.ex

gp_tc.90 FRAME = 951 TDLVEL0 (1) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_085.tc gp_ro_085.ex

gp_tc.91 FRAME = 951 TDLVEL0 (2) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_086.tc gp_ro_086.ex

gp_tc.92 FRAME = 951 TDLVEL0 (2) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_087.tc gp_ro_087.ex

gp_tc.93 FRAME = 951 TDLVEL0 (3) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_088.tc gp_ro_088.ex

gp_tc.94 FRAME = 951 TDLVEL0 (3) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_089.tc gp_ro_089.ex

gp_tc.95 FRAME = 951 TDLVEL1 (1) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_090.tc gp_ro_090.ex

gp_tc.96 FRAME = 951 TDLVEL1 (1) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_091.tc gp_ro_091.ex

gp_tc.97 FRAME = 951 TDLVEL1 (2) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_092.tc gp_ro_092.ex

gp_tc.98 FRAME = 951 TDLVEL1 (2) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_093.tc gp_ro_093.ex

gp_tc.99 FRAME = 951 TDLVEL1 (3) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_094.tc gp_ro_094.ex

gp_tc.100 FRAME = 951 TDLVEL1 (3) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_095.tc gp_ro_095.ex

gp_tc.101 FRAME = 951 TDLVEL2 (1) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_096.tc gp_ro_096.ex

gp_tc.102 FRAME = 951 TDLVEL2 (1) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_097.tc gp_ro_097.ex

gp_tc.103 FRAME = 951 TDLVEL2 (2) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_098.tc gp_ro_098.ex

gp_tc.104 FRAME = 951 TDLVEL2 (2) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_099.tc gp_ro_099.ex

gp_tc.105 FRAME = 951 TDLVEL2 (3) < -100 Tests Equivalence Classes:
TDLR_VELOCITY.3

gp_ro_100.tc gp_ro_100.ex

gp_tc.106 FRAME = 951 TDLVEL2 (3) > 100 Tests Equivalence Classes:
TDLR_VELOCITY.2

gp_ro_101.tc gp_ro_101.ex

gp_tc.107 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 1 and
alt > ENGINES_ON_ALTITUDE
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.2
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.10 TDLR_VELOCITY.1
G_ROTATION.6

gp_ro_107.tc gp_ro_107.ex

A-27

gp_tc.108 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 2,
AE_TEMP = 0, CHUTE_RELEASED = 1
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.2
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_ro_108.tc gp_ro_108.ex

gp_tc.109 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 2,
AE_TEMP = 1, CHUTE_RELEASED = 1
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_ro_109.tc gp_ro_109.ex

gp_tc.110 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 2,
AE_TEMP = 2, CHUTE_RELEASED = 0
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_ro_110.tc gp_ro_110.ex

gp_tc.111 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 3,
AE_TEMP = 2, CHUTE_RELEASED = 1, TD_SENSED=0 alt >
DROP_HEIGHT, TDS_STATUS = healthy, EQ <=
MAX_NORMAL_VELOCITY.
 Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_ro_111.tc gp_ro_111.ex

gp_tc.112 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 3,
AE_TEMP = 2, CHUTE_RELEASED = 1, TD_SENSED=0 alt <=
DROP_HEIGHT, TDS_STATUS = failed, EQ <=
MAX_NORMAL_VELOCITY
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_ro_112.tc gp_ro_112.ex

gp_tc.113 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 3,
AE_TEMP = 2, CHUTE_RELEASED = 1, TD_SENSED=0 alt <=
DROP_HEIGHT, TDS_STATUS = healthy, EQ >
MAX_NORMAL_VELOCITY
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_ro_113.tc gp_ro_113.ex

gp_tc.114 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.10 In this test GP_PHASE = 3,
AE_TEMP = 2, CHUTE_RELEASED = 1, TD_SENSED=0 alt >
DROP_HEIGHT, TDS_STATUS = failed, EQ <=
MAX_NORMAL_VELOCITY
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.6 TDLR_VELOCITY.1
G_ROTATION.8 G_ROTATION.9

gp_ro_114.tc gp_ro_114.ex

A-28

gp_tc.115 FRAME_COUNTER = 0, which is out-of-bounds, making
FRAME_ENGINES_IGNITED out-of-bounds. FRAME_COUNTER
is an input from the simulator, so this is an unusual case (an invalid
case), but the only way it can be tested
Tests Equivalence Classes: FRAME_ENGINES_IGNITED.3

gp_ro_115.tc gp_ro_115.ex

gp_tc.116 FRAME_COUNTER = -32768, which is out-of-bounds, making
FRAME_ENGINES_IGNITED out-of-bounds. FRAME_COUNTER
is an input from the simulator, so this is an unusual case (an invalid
case), but the only way it can be tested
Tests Equivalence Classes: FRAME_ENGINES_IGNITED.2

gp_ro_116.tc gp_ro_116.ex

gp_tc.117 This is a special robustness test that tests the valid inputs not
accounted for in the Spec table 5.9 In this test AE_SWITCH = on,
GP_ALTITUDE > DROP_HEIGHT,
SQRT(2*GRAVITY*GP_ALTITUDE) + GP_VELOCITY(x) <=
MAX_NORMAL_VELOCITY
Tests Equivalence Classes:
A_ACCELERATION.1 GP_ALTITUDE.1
GP_ATTITUDE.1 GP_VELOCITY.1
G_ROTATION.5 TDLR_VELOCITY.1
G_ROTATION.6

gp_ro_117.tc gp_ro_117.ex

A-29

Tables 10a and 10b below provide more information about the robustness test cases that test
table 5.10 of the GCS Specification. These table cover GP_PHASE transitions resulting from
variable combinations that are possible but not specified. The information is divided into two
tables to avoid confusion resulting from the heterogeneous mix of variables used in determining
the value of GP_PHASE as given in Table 5.10 of the GCS Specification. Table A.10a covers
transitions for GP_PHASE equal 1 and 2; while Table A.10b covers transitions for GP_PHASE
equal 3

Table A.10a: Valid data not accounted for in Table 5.10 of the GCS specification

Input Output Test Case

GP_
PHASE

TD_SENSED AE_
TEMP

CHUTE_
RELEASED

GP_ALTITUDE GP_
PHASE

Names

1 Not Sensed Cold Not Released > ENGINES_ON_
ALTITUDE

1 GP_RO_107.TC

2 Not Sensed Cold Released < ENGINES_ON_
ALTITUDE

2 GP_RO_108.TC

2 Not Sensed Warm Released < ENGINES_ON_
ALTITUDE

2 GP_RO_109.TC

2 Not Sensed Hot Not Released < ENGINES_ON_
ALTITUDE

2 GP_RO_110.TC

Table A.10a: Valid data not accounted for in Table 5.10 (Part B) of the GCS specification

Input Output Test Case

GP_
PHASE

TD_
SENSED

AE_
TEMP

CHUTE_
RELEASED

Altitude 2 • Gravity • GP _ ALTITUDE

+ GP_ VELOCITY(x)

TDS_

STATUS
GP_

PHASE
Names

3 Not
Sensed

Hot Released >DROP_
HEIGHT

≤ MAX_NORMAL_
VELOCITY

healthy 3 GP_RO_111.T
C

3 Not
Sensed

Hot Released ≤DROP_
HEIGHT

≤ MAX_NORMAL_
VELOCITY

failed 3 GP_RO_112.T
C

3 Not
Sensed

Hot Released ≤DROP_
HEIGHT

>MAX_NORMAL_
VELOCITY

healthy 3 GP_RO_113.T
C

3 Not
Sensed

Hot Released >DROP_
HEIGHT

≤ MAX_NORMAL_
VELOCITY

failed 3 GP_RO_114.T
C

A-30

A.3.8 AECLP Functional Unit Test Cases

Table A.11 gives a listing of all requirements-based test cases for the AECLP functional unit.

Table A.12 gives additional AE_TEMP transitions for robustness test cases that test Table 5.1 of
the GCS Specification. It covers conditions not given in Table 5.1 of the GCS Specification. All
test cases manipulate the variables:

A_ACCELERATION GP_ROTATION

AE_SWITCH GP_VELOCITY

AE_TEMP INTERNAL_CMD

CHUTE_RELEASED PE_INTEGRAL

CL TE_DROP

CONTOUR_CROSSED TE_INTEGRAL

FRAME_COUNTER TE_LIMIT

FRAME_ENGINES_IGNITED VELOCITY_ERROR

GP_ALTITUDE YE_INTEGRAL

GP_ATTITUDE

A-31

Table A.11: Test cases for AECLP functional unit.

Test Case
Data File

Description Test-Input File Expected-
Results File

aeclp_tc.1 Initial AECLP Frame. Tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.6

aeclp_nr_001.tc aeclp_nr_001.ex

aeclp_tc.2 Frame 2, tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.6

aeclp_nr_002.tc aeclp_nr_002.ex

aeclp_tc.3 Frame 251, tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.6

aeclp_nr_003.tc aeclp_nr_003.ex

aeclp_tc.4 Frame 252, tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.8
G_ROTATION.6

aeclp_nr_004.tc aeclp_nr_004.ex

aeclp_tc.5 Frame 950, tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.10
G_ROTATION.5

aeclp_nr_005.tc aeclp_nr_005.ex

aeclp_tc.6 Frame 951, tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.2 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.10
G_ROTATION.5

aeclp_nr_006.tc aeclp_nr_006.ex

aeclp_tc.7 Frame 2077 tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.2 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.10
G_ROTATION.5

aeclp_nr_007.tc aeclp_nr_007.ex

aeclp_tc.8 Frame 2078 tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.2 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.6

aeclp_nr_008.tc aeclp_nr_008.ex

A-32

aeclp_tc.9 Frame 2083 tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.2 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1

aeclp_nr_009.tc aeclp_nr_009.ex

aeclp_tc.10 Frame 250 tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.8
G_ROTATION.6

aeclp_nr_010.tc aeclp_nr_010.ex

aeclp_tc.11 Frame 949 tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.5

aeclp_nr_011.tc aeclp_nr_011.ex

aeclp_tc.12 Frame 955 tests valid inputs and Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.2 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1 G_ROTATION.5

aeclp_nr_012.tc aeclp_nr_012.ex

aeclp_tc.13 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ALTITUDE.4

aeclp_ro_013.tc aeclp_ro_013.ex

aeclp_tc.14 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ALTITUDE.3

aeclp_ro_014.tc aeclp_ro_014.ex

aeclp_tc.15 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ATTITUDE.3

aeclp_ro_015.tc aeclp_ro_015.ex

aeclp_tc.16 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ATTITUDE.2

aeclp_ro_016.tc aeclp_ro_016.ex

aeclp_tc.17 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ROTATION.3

aeclp_ro_017.tc aeclp_ro_017.ex

aeclp_tc.18 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ROTATION.2

aeclp_ro_018.tc aeclp_ro_018.ex

aeclp_tc.19 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ROTATION.3

aeclp_ro_019.tc aeclp_ro_019.ex

aeclp_tc.20 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_ROTATION.2

aeclp_ro_020.tc aeclp_ro_020.ex

aeclp_tc.21 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_VELOCITY.3

aeclp_ro_021.tc aeclp_ro_021.ex

aeclp_tc.22 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_VELOCITY.2

aeclp_ro_022.tc aeclp_ro_022.ex

aeclp_tc.23 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_VELOCITY.3

aeclp_ro_023.tc aeclp_ro_023.ex

aeclp_tc.24 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_VELOCITY.2

aeclp_ro_024.tc aeclp_ro_024.ex

aeclp_tc.25 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_VELOCITY.3

aeclp_ro_025.tc aeclp_ro_025.ex

aeclp_tc.26 Tests Frame 955 with all valid inputs and Equivalence Classes:
GP_VELOCITY.2

aeclp_ro_026.tc aeclp_ro_026.ex

aeclp_tc.27 Tests Frame 955 with all valid inputs and Equivalence Classes:
PE_INTEGRAL.3

aeclp_ro_027.tc aeclp_ro_027.ex

aeclp_tc.28 Tests Frame 955 with all valid inputs and Equivalence Classes:
PE_INTEGRAL.2

aeclp_ro_028.tc aeclp_ro_028.ex

aeclp_tc.29 Tests Frame 955 with all valid inputs and Equivalence Classes:
TE_INTEGRAL.3

aeclp_ro_029.tc aeclp_ro_029.ex

A-33

aeclp_tc.30 Tests Frame 955 with all valid inputs and Equivalence Classes:
TE_INTEGRAL.2 TE_LIMIT.3

aeclp_ro_030.tc aeclp_ro_030.ex

aeclp_tc.31 Tests Frame 955 with all valid inputs and Equivalence Classes:
TE_LIMIT.5

aeclp_ro_031.tc aeclp_ro_031.ex

aeclp_tc.32 Tests Frame 955 with all valid inputs and Equivalence Classes:
TE_LIMIT.4

aeclp_ro_032.tc aeclp_ro_032.ex

aeclp_tc.33 Tests Frame 955 with all valid inputs and Equivalence Classes:
VELOCITY_ERROR.3

aeclp_ro_033.tc aeclp_ro_033.ex

aeclp_tc.34 Tests Frame 955 with all valid inputs and Equivalence Classes:
VELOCITY_ERROR.3 TE_LIMIT.3

aeclp_ro_034.tc aeclp_ro_034.ex

aeclp_tc.35 Tests Frame 955 with all valid inputs and Equivalence Classes:
YE_INTEGRAL.3

aeclp_ro_035.tc aeclp_ro_035.ex

aeclp_tc.36 Tests Frame 955 with all valid inputs and Equivalence Classes:
YE_INTEGRAL.2

aeclp_ro_036.tc aeclp_ro_036.ex

aeclp_tc.37 Tests Frame 955 with all valid inputs and Equivalence Classes:
A_ACCELERATION.3

aeclp_ro_037.tc aeclp_ro_037.ex

aeclp_tc.38 Tests Frame 955 with all valid inputs and Equivalence Classes:
A_ACCELERATION.2

aeclp_ro_038.tc aeclp_ro_038.ex

aeclp_tc.39 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.2
VELOCITY_ERROR.1

aeclp_ro_039.tc aeclp_ro_039.ex

aeclp_tc.40 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.2
VELOCITY_ERROR.1

aeclp_ro_040.tc aeclp_ro_040.ex

aeclp_tc.41 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1

aeclp_ro_041.tc aeclp_ro_041.ex

aeclp_tc.42 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.2
VELOCITY_ERROR.1

aeclp_ro_042.tc aeclp_ro_042.ex

aeclp_tc.43 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1

aeclp_ro_043.tc aeclp_ro_043.ex

A-34

aeclp_tc.44 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.2
VELOCITY_ERROR.1

aeclp_ro_044.tc aeclp_ro_044.ex

aeclp_tc.45 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.2
VELOCITY_ERROR.1

aeclp_ro_045.tc aeclp_ro_045.ex

aeclp_tc.46 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1

aeclp_ro_046.tc aeclp_ro_046.ex

aeclp_tc.47 This robustness case tests a condition not listed in table 5.1 of the
Spec. The combination of these values may cause invalid state
transitions. Also Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.2
VELOCITY_ERROR.1

aeclp_ro_047.tc aeclp_ro_047.ex

aeclp_tc.48 This case uses all valid inputs, but the value for G_ROTATION(2) has
been computed to give a specific result in INTERNAL_CMD.
INTERNAL_CMD(1) = -.701 (which is out of bounds) Tests
Equivalence Classes:
INTERNAL.CMD.3

aeclp_ro_048.tc aeclp_ro_048.ex

aeclp_tc.49 This case uses all valid inputs, but the value for G_ROTATION(2)
has been computed to give a specific result in INTERNAL_CMD.
INTERNAL_CMD(1) = 1.701 (which is out of bounds) Tests
Equivalence Classes:
INTERNAL.CMD.2

aeclp_ro_049.tc aeclp_ro_049.ex

aeclp_tc.50 This case uses all valid inputs, but the value for G_ROTATION(3) has
been computed to give a specific result in INTERNAL_CMD.
INTERNAL_CMD(2) = -.701 (which is out of bounds) Tests
Equivalence Classes:
INTERNAL.CMD.3

aeclp_ro_050.tc aeclp_ro_050.ex

aeclp_tc.51 This case uses all valid inputs, but the value for G_ROTATION(3) has
been computed to give a specific result in INTERNAL_CMD.
INTERNAL_CMD(2) = 1.701 (which is out of bounds) Tests
Equivalence Classes:
INTERNAL.CMD.2

aeclp_ro_051.tc aeclp_ro_051.ex

aeclp_tc.52 This case uses all valid inputs, but the value for TE_INIT has been
computed to give a specific result in INTERNAL_CMD.
INTERNAL_CMD(3) = -.701 (which is out of bounds) Tests
Equivalence Classes:
INTERNAL.CMD.3

aeclp_ro_052.tc aeclp_ro_052.ex

aeclp_tc.53 This case uses all valid inputs, but the value for TE_INIT has been
computed to give out of bound results in INTERNAL_CMD.
INTERNAL_CMD(3) = 1.701 Tests Equivalence Classes:
INTERNAL.CMD.2

aeclp_ro_053.tc aeclp_ro_053.ex

A-35

aeclp_tc.54 AE_SWITCH is still off at end of frame, giving AE_CMD = 0
FRAME_ENGINES_IGNITED > 1 All valid inputs. Tests
Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1

aeclp_nr_054.tc aeclp_nr_054.ex

aeclp_tc.55 This tests INTERNAL_CMD > 1.0 Tests Equivalence Classes:
A_ACCELERATION.1 PE_INTEGRAL.1
YE_INTEGRAL.1 TE_INTEGRAL.1
TE_LIMIT.1 INTERNAL.CMD.1
AE_CMD.1 GP_ALTITUDE.1
VELOCITY_ERROR.1

aeclp_nr_055.tc aeclp_nr_055.ex

aeclp_tc.56 Tests Equivalence Classes: FRAME_ENGINES_IGNITED.2 aeclp_ro_056.tc aeclp_ro_056.ex

aeclp_tc.57 Tests Equivalence Classes: FRAME_ENGINES_IGNITED.3 aeclp_ro_057.tc aeclp_ro_057.ex

A-36

Table A.12: AE_TEMP transitions not covered in Table 5.1 of GCS Specification.

Input Output Test Case

AE_TEMP

GP_ALTITUDE

(FRAME_COUNTER -
FRAME_ENGINES_IGNITED)

*
DELTA_T

AE_TEMP

Names

COLD > ENGINES_ON_ALTITUDE < FULL_UP_TIME COLD AECLP_RO_39.TC
COLD > ENGINES_ON_ALTITUDE ≥ FULL_UP_TIME COLD AECLP_RO_40.TC
COLD ≤ ENGINES_ON_ALTITUDE ≥ FULL_UP_TIME COLD AECLP_RO_41.TC

WARM > ENGINES_ON_ALTITUDE < FULL_UP_TIME WARM AECLP_RO_42.TC
WARM ≤ ENGINES_ON_ALTITUDE < FULL_UP_TIME WARM AECLP_RO_43.TC

WARM > ENGINES_ON_ALTITUDE ≥ FULL_UP_TIME WARM AECLP_RO_44.TC
HOT > ENGINES_ON_ALTITUDE < FULL_UP_TIME HOT AECLP_RO_45.TC
HOT ≤ ENGINES_ON_ALTITUDE < FULL_UP_TIME HOT AECLP_RO_46.TC

HOT > ENGINES_ON_ALTITUDE ≥ FULL_UP_TIME HOT AECLP_RO_47.TC

A-37

A.3.9 RECLP Functional Unit Test Cases

The requirements-based test cases for the RECLP functional unit are given in Table A.13.

This test suite involves three test variables, RE_SWITCH, G_ROTATION, and THETA.
RE_SWITCH is 1 for all test cases the values for the other two variables are given in the
Description column. The majority of the testing for this functional unit involves determination of
RE_CMD based on the values of G_ROTATION and THETA. RE_CMD is determined by
plotting G_ROTATION and THETA on Figure A.5.2 of the GCS Specification.

Table A.13: Test cases for RECLP functional unit.

Test Case
Data File

Description Test-Input File Expected-
Results File

reclp_tc.1 This case tests
THETA = 0.002569999999999999,
G_ROTATION = 0.00157
RE_CMD = 1.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.2

reclp_nr_001.tc reclp_nr_001.ex

reclp_tc.2 This case tests
THETA = -0.002569999999999999,
G_ROTATION = 0.00157
RE_CMD = 1.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.3

reclp_nr_002.tc reclp_nr_002.ex

reclp_tc.3 This case tests
THETA = -0.002569999999999999,
G_ROTATION = -0.00157
RE_CMD = 1.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.3

reclp_nr_003.tc reclp_nr_003.ex

reclp_tc.4 This case tests
THETA = 0.002569999999999999,
G_ROTATION = -0.00157
& RE_CMD = 1.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.4

reclp_nr_004.tc reclp_nr_004.ex

reclp_tc.5 This case tests
THETA = 0.00478,
G_ROTATION = -0.00157
RE_CMD = 1.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.5

reclp_nr_005.tc reclp_nr_005.ex

reclp_tc.6 This case tests
THETA = -0.00478,
G_ROTATION = -0.00157
RE_CMD should be 2.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.2

reclp_nr_006.tc reclp_nr_006.ex

A-38

reclp_tc.7 This case tests
THETA = -0.00478,
G_ROTATION = 0.00157
RE_CMD should be 1.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.2

reclp_nr_007.tc reclp_nr_007.ex

reclp_tc.8 This case tests
THETA = 0.00478,
G_ROTATION = 0.00157
RE_CMD should be 2.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.5

reclp_nr_008.tc reclp_nr_008.ex

reclp_tc.9 This case tests
THETA = 0.00634,
G_ROTATION = 0.00157
RE_CMD should be 7.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.6

reclp_nr_009.tc reclp_nr_009.ex

reclp_tc.10 This case tests
THETA = -0.00634,
G_ROTATION = 0.00157
RE_CMD should be 6.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.1

reclp_nr_010.tc reclp_nr_010.ex

reclp_tc.11 This case tests
THETA = -0.00634,
G_ROTATION = -0.00157
RE_CMD should be 6.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.1

reclp_nr_011.tc reclp_nr_011.ex

reclp_tc.12 This case tests
THETA = 0.00634,
G_ROTATION = -0.00157
RE_CMD should be 7.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.6

reclp_nr_012.tc reclp_nr_012.ex

reclp_tc.13 This case tests
THETA = 0.002569999999999999,
G_ROTATION = 0.00828
RE_CMD should be 7.
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.4

reclp_nr_013.tc reclp_nr_013.ex

reclp_tc.14 This case tests
THETA = -0.002569999999999999,
G_ROTATION = 0.00828
RE_CMD should be 1
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.3

reclp_nr_014.tc reclp_nr_014.ex

reclp_tc.15 This case tests
THETA = -0.002569999999999999,
G_ROTATION = -0.00828
RE_CMD should be 6
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.3

reclp_nr_015.tc reclp_nr_015.ex

A-39

reclp_tc.16 This case tests
THETA = 0.002569999999999999,
G_ROTATION = -0.00828
RE_CMD should be 1
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.4

reclp_nr_016.tc reclp_nr_016.ex

reclp_tc.17 This case tests
THETA = 0.00634 &
G_ROTATION = -0.00828
RE_CMD should be 7
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.6

reclp_nr_017.tc reclp_nr_017.ex

reclp_tc.18 This case test following:
THETA = 0.00634 &
G_ROTATION = 0.00828
RE_CMD should be 7
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.6

reclp_nr_018.tc reclp_nr_018.ex

reclp_tc.19 This case test following:
THETA = -0.00634 &
G_ROTATION = 0.00828
RE_CMD should be 6
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.1

reclp_nr_019.tc reclp_nr_019.ex

reclp_tc.20 This case test following:
THETA = -0.00634 &
G_ROTATION = -0.00828
RE_CMD should be 6
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.1

reclp_nr_020.tc reclp_nr_020.ex

reclp_tc.21 This case test following:
THETA = 0.0042 &
G_ROTATION = 0.00826
RE_CMD should be 5
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.4

reclp_nr_021.tc reclp_nr_021.ex

reclp_tc.22 This case test following:
THETA = -0.0042 &
G_ROTATION = 0.00826
RE_CMD should be 1
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.3

reclp_nr_022.tc reclp_nr_022.ex

reclp_tc.23 This case test following:
THETA = -0.0042 &
G_ROTATION = -0.00826
RE_CMD should be 4
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.3

reclp_nr_023.tc reclp_nr_023.ex

reclp_tc.24 This case test following:
THETA = 0.0042 &
G_ROTATION = -0.00826
RE_CMD should be 1
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.4

reclp_nr_024.tc reclp_nr_024.ex

A-40

reclp_tc.25 This case test following:
THETA = 0.0065 &
G_ROTATION = -0.00826
RE_CMD should be 7
Tests valid inputs and Equivalence Classes:
G_ROTATION.1
THETA.6

reclp_nr_025.tc reclp_nr_025.ex

reclp_tc.26 This case tests with:
THETA = -0.0061,
G_ROTATION = -0.00826
RE_CMD should be 6

reclp_nr_026.tc reclp_nr_026.ex

reclp_tc.27 This case tests with:
THETA = -0.0065,
G_ROTATION = 0.00826
RE_CMD should be 6

reclp_nr_027.tc reclp_nr_027.ex

reclp_tc.28 This case tests with:
THETA = 0.0061,
G_ROTATION = 0.00826
RE_CMD should be 7

reclp_nr_028.tc reclp_nr_028.ex

reclp_tc.29 This case tests with:
THETA = 0.0061,
G_ROTATION = 0.009999
RE_CMD should be 7

reclp_nr_029.tc reclp_nr_029.ex

reclp_tc.30 This case tests with:
THETA = -0.0061,
G_ROTATION = 0.009999
RE_CMD should be 6

reclp_nr_030.tc reclp_nr_030.ex

reclp_tc.31 This case tests with:
THETA = -0.0061,
G_ROTATION = -0.009999
RE_CMD should be 6

reclp_nr_031.tc reclp_nr_031.ex

reclp_tc.32 This case tests with:
THETA = 0.0065,
G_ROTATION = -0.009999
RE_CMD should be 7

reclp_nr_032.tc reclp_nr_032.ex

reclp_tc.33 This case tests with:
THETA = 0.0063,
G_ROTATION = -0.00826
RE_CMD should be 7

reclp_nr_033.tc reclp_nr_033.ex

reclp_tc.34 This case tests with:
THETA = -0.0063,
G_ROTATION = 0.00826
RE_CMD should be 6

reclp_nr_034.tc reclp_nr_034.ex

reclp_tc.35 This case tests with:
THETA = -0.0063,
G_ROTATION = 0.009999
RE_CMD should be 1

reclp_nr_035.tc reclp_nr_035.ex

reclp_tc.36 This case tests with:
THETA = 0.0063,
G_ROTATION = -0.009999
RE_CMD should be 1

reclp_nr_036.tc reclp_nr_036.ex

reclp_tc.37 This case tests with:
THETA = -0.006400000000000001,
G_ROTATION = 0.009999
RE_CMD should be 6

reclp_nr_037.tc reclp_nr_037.ex

reclp_tc.38 This case tests with:
THETA = 0.006400000000000001,
G_ROTATION = -0.009999
RE_CMD should be 5

reclp_nr_038.tc reclp_nr_038.ex

reclp_tc.39 This case tests with:
THETA = 0.006400000000000001,
G_ROTATION = -0.0100001
RE_CMD should be 1

reclp_nr_039.tc reclp_nr_039.ex

reclp_tc.40 This case tests with:
THETA = -0.006400000000000001,
G_ROTATION = -0.0100001
RE_CMD should be 6

reclp_nr_040.tc reclp_nr_040.ex

A-41

reclp_tc.41 This case tests with:
THETA = -0.006400000000000001,
G_ROTATION = 0.0100001
RE_CMD should be 1

reclp_nr_041.tc reclp_nr_041.ex

reclp_tc.42 This case tests with:
THETA = 0.006400000000000001,
G_ROTATION = 0.0100001
RE_CMD should be 7

reclp_nr_042.tc reclp_nr_042.ex

reclp_tc.43 This case tests with:
THETA = 0.006400000000000001,
G_ROTATION = -0.015709
RE_CMD should be 6

reclp_nr_043.tc reclp_nr_043.ex

reclp_tc.44 This case tests with:
THETA = 0.006400000000000001,
G_ROTATION = 0.015709
RE_CMD should be 7

reclp_nr_044.tc reclp_nr_044.ex

reclp_tc.45 This case tests the +P2 boundary with Theta > 0. These numbers are
valid but not necessarily realistic for GCS.
THETA = 0.038,
G_ROTATION = 0.02 == P2
RE_CMD should be 5

reclp_nr_045.tc reclp_nr_045.ex

reclp_tc.46 This case tests the -P2 boundary with Theta < 0. These numbers are
valid but not necessarily realistic for GCS.
THETA = -0.038,
G_ROTATION = -0.02 == -P2
RE_CMD should be 5

reclp_nr_046.tc reclp_nr_046.ex

reclp_tc.47 Boundary test with
THETA = 0.039,
G_ROTATION = 0.01 == P1
RE_CMD should be 3

reclp_nr_047.tc reclp_nr_047.ex

reclp_tc.48 Boundary test with
THETA = -0.039,
G_ROTATION = -0.01 == -P1
RE_CMD should be 2

reclp_nr_048.tc reclp_nr_048.ex

reclp_tc.49 Boundary test with
THETA = 0.019,
G_ROTATION = 0.01 == P1
RE_CMD should be 1

reclp_nr_049.tc reclp_nr_049.ex

reclp_tc.50 Boundary test with
THETA = -0.019,
G_ROTATION = -0.01 == -P1
RE_CMD should be 1

reclp_nr_050.tc reclp_nr_050.ex

reclp_tc.51 Boundary test for -THETA2 with
THETA = -0.04 == -THETA2,
G_ROTATION = 0.01 == P1
RE_CMD should be 1

reclp_nr_051.tc reclp_nr_051.ex

reclp_tc.52 Boundary test with
THETA = -0.042,
G_ROTATION = 0.02 == P2
RE_CMD should be 1

reclp_nr_052.tc reclp_nr_052.ex

reclp_tc.53 Boundary test with
THETA = -0.04299999999999999,
G_ROTATION = 0.03 == P3
RE_CMD should be 1

reclp_nr_053.tc reclp_nr_053.ex

reclp_tc.54 Boundary test with
THETA = -0.044,
G_ROTATION = 0.04 == P4
RE_CMD should be 1

reclp_nr_054.tc reclp_nr_054.ex

reclp_tc.55 Boundary test with
 THETA = 0.04 == THETA2,
 G_ROTATION = -0.01== P1
RE_CMD should be 1

reclp_nr_055.tc reclp_nr_055.ex

reclp_tc.56 Boundary test with
THETA = 0.042,
G_ROTATION = -0.02 == -P2
RE_CMD should be 1

reclp_nr_056.tc reclp_nr_056.ex

A-42

reclp_tc.57 Boundary test with
THETA = 0.04299999999999999,
G_ROTATION = -0.03 == -P3
RE_CMD should be 1

reclp_nr_057.tc reclp_nr_057.ex

reclp_tc.58 Boundary test with
THETA = 0.044,
G_ROTATION = -0.04 == -P4
RE_CMD should be 1

reclp_nr_058.tc reclp_nr_058.ex

reclp_tc.59 Boundary test with
THETA = -0.004,
G_ROTATION = 0.04 == P4
RE_CMD should be 1

reclp_nr_059.tc reclp_nr_059.ex

reclp_tc.60 This case tests with:
THETA = 0.0157079632679441,
G_ROTATION = 1.01
RE_CMD should be 7

reclp_ro_060.tc reclp_ro_060.ex

reclp_tc.61 This case tests with:
THETA = 0.0157079632679441,
G_ROTATION = -1.01
RE_CMD should be 7

reclp_ro_061.tc reclp_ro_061.ex

reclp_tc.62 This case tests with:
THETA = 3.1476718651402,
G_ROTATION = 0.5
RE_CMD should be 7

reclp_ro_062.tc reclp_ro_062.ex

reclp_tc.63 This case tests with:
THETA = -3.1476718651402,
G_ROTATION = 0.5
RE_CMD should be 7

reclp_ro_063.tc reclp_ro_063.ex

reclp_tc.64 This case tests with:
THETA = -0.05,
G_ROTATION = 0.5
RE_CMD should be 7

reclp_nr_064.tc reclp_nr_064.ex

reclp_tc.65 Test origin:
THETA = 0.,
G_ROTATION = 0
RE_CMD should be 1

reclp_nr_065.tc reclp_nr_065.ex

reclp_tc.66 Test THETA at -Pi:
THETA = -3.1476718651402,
G_ROTATION = 0
RE_CMD should be 6

reclp_nr_066.tc reclp_nr_066.ex

reclp_tc.67 Test THETA at Pi:
THETA = 3.1476718651402,
G_ROTATION = 0
RE_CMD should be 7

reclp_nr_067.tc reclp_nr_067.ex

reclp_tc.68 This case tests with:
THETA = 0.05,
G_ROTATION = -0.5
RE_CMD should be 6

reclp_nr_068.tc reclp_nr_068.ex

A-43

A.3.10 CRCP Functional Unit Test Cases

Table A.14 gives a listing of all requirements-based test cases for the CRCP functional unit.

Since only two variables are involved in the testing, their values are also given for each test case.
All test cases manipulate the variables:

AE_TEMP

CHUTE_RELEASED

Table A.14: Test cases for CRCP functional unit.

Test Case
Data File

Description Test-Input File Expected-
Results File

crcp_tc.1 Test initial frame with:
AE_TEMP = 0, CHUTE_RELEASE = 0

crcp_nr_001.tc crcp_nr_001.ex

crcp_tc.2 AE_TEMP = 0, CHUTE_RELEASE = 1
This is a valid, but unlikely case.

crcp_nr_002.tc crcp_nr_002.ex

crcp_tc.3 Frame 251:
AE_TEMP = 1, CHUTE_RELEASE = 0

crcp_nr_003.tc crcp_nr_003.ex

crcp_tc.4 Frame 251:
AE_TEMP = 1, CHUTE_RELEASE = 1
This is a valid, but unlikely case.

crcp_nr_004.tc crcp_nr_004.ex

crcp_tc.5 Frame 252:
AE_TEMP = 2, CHUTE_RELEASE = 0

crcp_nr_005.tc crcp_nr_005.ex

crcp_tc.6 Frame 252:
AE_TEMP = 2, CHUTE_RELEASE = 1

crcp_nr_006.tc crcp_nr_006.ex

crcp_tc.7 Frame 252:
AE_TEMP = 0, CHUTE_RELEASE = -1
This is a valid, but unlikely case.

crcp_ro_007.tc crcp_ro_007.ex

crcp_tc.8 Frame 252:
AE_TEMP = 0, CHUTE_RELEASE = 2
This is a valid, but unlikely case.

crcp_ro_008.tc crcp_ro_008.ex

crcp_tc.9 AE_TEMP = 3, CHUTE_RELEASE = 0
This is a valid, but unlikely case.

crcp_ro_009.tc crcp_ro_009.ex

crcp_tc.10 AE_TEMP = -1, CHUTE_RELEASE = 0
This is a valid, but unlikely case.

crcp_ro_010.tc crcp_ro_010.ex

A-44

A.3.11 CP Functional Unit Test Cases

CP requirements-based functional unit test cases are given in Table A.15. All test cases

manipulate the variables:

FRAME_COUNTER

SUBFRAME_COUNTER

Even though the GCS Specification lists many more variables as inputs for CP, the specific

value of the variables do not effect the operation of CP. The CP functional unit only copies these
values to the PACKET array. The variables are not used for decision in CP. Therefore, it is
unnecessary to test specific values of those variables. The only two variables that influence CP
operation are the ones listed above.

Table A.15: Test cases for CP functional unit.

Test Case Data
File

Description Test-Input File Expected-Results
File

cp_nr_001.m Test Packet and CRC generation for subframe 1
variables

cp_nr_001.tc cp_nr_001.ex

cp_nr_002.m Test Packet and CRC generation for subframe 2
variables

cp_nr_002.tc cp_nr_002.ex

cp_nr_003.m Test Packet and CRC generation for subframe 3
variables

cp_nr_003.tc cp_nr_003.ex

cp_nr_004.m Test Packet and CRC generation for subframe 1
variables when frame number is greater than 1

cp_nr_004.tc cp_nr_004.ex

cp_nr_005.m Test Packet and CRC generation for subframe 1
variables when sequence number is greater than 255

cp_nr_005.tc cp_nr_005.ex

A-45

A.3.12 SP Subframe Test Cases

All four of the requirements of SP subframe as listed in the traceability matrix, Table A.10-1,
are tested by test case SP_001. It tests to see if the TSP calculations are performed before other
functional units, verifies that all other functional units execute including CP. The data file
sp_001.m is used to generate the test-input file sp_001.tc and the expected results file sp_001.ex.

A.3.13 GP Subframe Test Cases

Table A.16 gives the test cases for the GP subframe. Since the GP subframe has only the GP
functional unit, tests of this subframe will be similar to test of the GP functional unit. The
difference is that subframe test also include calling CP to create the communications packet for
the GP subframe.

Table A.16: Test cases for GP Subframe.

Test Case
Data File

Description Test-Input File Expected-
Results File

gpsf_tc.1 Initial frame, tests all valid inputs gpsf_001.tc gpsf_001.ex
gpsf_tc.2 Transition frame 246. gpsf_002.tc gpsf_002.ex
gpsf_tc.3 FRAME = 251; CHUTE_RELEASED set to 1 this

frame. All valid inputs tested.
gpsf_003.tc gpsf_003.es

gpsf_tc.4 FRAME = 252; CHUTE_RELEASED = 1 &
GP_PHASE goes to 3

gpsf_004.tc gpsf_004.ex

gpsf_tc.5 FRAME = 950 CONTOUR_CROSSED will be set to 1
by the end of the frame. All valid data tested.

gpsf_005.tc gpsf_005.ex

gpsf_tc.6 FRAME = 951 with CONTOUR_CROSSED = 1 gpsf_006.tc gpsf_006.ex
gpsf_tc.7 FRAME = 2073 where CL = 2. All valid data tested. gpsf_007.tc gpsf_007.ex
gpsf_tc.8 FRAME = 2078 with CL = 2, and GP_PHASE changes

to 4. All valid data tested.
gpsf_008.tc gpsf_008.ex

A-46

A.3.14 CLP Subframe Test Cases

CLP subframe test cases are given in Table A.17. Since the AECLP functional unit must be
executed first in this subframe, CLP subframe test cases data is depends heavily on the AECLP
inputs. As can be seen from the traceability matrix (Table A.10-1), each CLP test case will test
all four of the CLP subframe requirements.

Table A.17: Test cases for CLP Subframe.

Test Case
Data File

Description Test-Input File Expected-
Results File

clp_tc.1 Test initial frame using data from aeclp_tc.1 clp_001.tc clp_001.ex
clp_tc.2 Test frame 2 using data from aeclp_tc.2 clp_002.tc clp_002.ex
clp_tc.3 Test frame 251 using data from aeclp_tc.3 clp_003.tc clp_003.es
clp_tc.4 Test frame 252 using data from aeclp_tc.4 clp_004.tc clp_004.ex
clp_tc.5 Test frame 950 using data from aeclp_tc.5 clp_005.tc clp_005.ex
clp_tc.6 Test frame 951 using data from aeclp_tc.6 clp_006.tc clp_006.ex
clp_tc.7 Test frame 2077 using data from aeclp_tc.7 clp_007.tc clp_007.ex
clp_tc.8 Test frame 2078 using data from aeclp_tc.8 clp_008.tc clp_008.ex
clp_tc.9 Test frame 2083 using data from aeclp_tc.9 clp_009.tc clp_009.es
clp_tc.10 Test frame 250 using data from aeclp_tc.10 clp_010.tc clp_010.ex
clp_tc.11 Test frame 949 using data from aeclp_tc.11 clp_011.tc clp_011.ex
clp_tc.12 Test frame 955 using data from aeclp_tc.12 clp_012.tc clp_012.ex
clp_tc.13 Test using aeclp_tc.54 data where AE_SWITCH

is still off at end of frame, giving AE_CMD = 0
FRAME_ENGINES_IGNITED > 1

clp_013.tc clp_013.ex

clp_tc.14 Test using aeclp_tc.55 data where
INTERNAL_CMD > 1.0

clp_014.tc clp_014.ex

A-47

A.3.15 Frame Test Cases

Frame test cases are given in Table A.18. They exercise all functional units for frames with
significant transitions during the terminal descent. These transition include changes in
GP_PHASE or other trajectory status variables and are given in the Table A.10-1.

Table A.18: Frame test cases.

Test Case
Data File

Description Test-Input File Expected-
Results File

frame_tc.1 Test initial frame with frame counter set to 1. All
valid data used.

frame_001.tc frame_001.ex

frame_tc.2 Test frame 246 where GP_PHASE = 2. This is the
frame that occurs just before AE_TEMP transitions
from 1 to 2 and CHUTE_RELEASED transitions
from 0 to 1.

frame_002.tc frame_002.ex

frame_tc.3 Test frame 251 where GP_PHASE = 2. This is the
frame that occurs just before AE_TEMP transitions
from 1 to 2 and CHUTE_RELEASED transitions
from 0 to 1.

frame_003.tc frame_003.es

frame_tc.4 Test frame 252 where GP_PHASE transitions from
2 to 3.

frame_004.tc frame_004.ex

frame_tc.5 Test frame where CONTOUR_CROSSED
transitions from 0 to 1.

frame_005.tc frame_005.ex

frame_tc.6 Test the frame just after CONTOUR_CROSSED
transitions to 1. This case added for completeness.

frame_006.tc frame_006.ex

frame_tc.7 Test the frame when CL = 2. frame_007.tc frame_007.ex
frame_tc.8 Test frame when GP_PHASE transitions from 3 to

4.
frame_008.tc frame_008.ex

frame_tc.9 Test frame when GP_PHASE starts as 5; no
execution should occur.

frame_009.tc frame_009.ex

A-48

A.3.16 Trajectory Test Cases

The ultimate goal of each GCS implementation is to land the spacecraft safely given some
initial set of parameters. These parameters reflect environmental conditions, the spacecraft, and
the flight conditions at the beginning of the terminal descent. In full trajectory testing, each
implementation’s code is linked and run in the simulator's environment. Unlike previous tests
which exercise the implementation as a stand-alone process, trajectory testing requires the
implementation to run as a subprocess of the simulator program. This is part of the high level
requirements. Additionally, the GCS Specification requires the implementation to be able to
execute multiple consecutive frames until the termination condition is reached. Since a landing is
not specifically stated as a high level requirement of the GCS software, trajectory testing will
encompass both successful landing cases and expected crash cases and will cover the part of the
simulator's input space that directly effects the implementation. Keep in mind that the objective
of trajectory testing is to verify each implementation's ability to run consecutive and multiple
frames. Whether the final result is a landing or a crash is inconsequential.

It is assumed for testing purposes that the GCS Simulator provides a stable model of the flight
and atmospheric dynamics when given a set of initial conditions. This is significant because test
case inputs for trajectory testing are parameters for the simulator, not the implementation. There
are nominally four sets of input parameters for the simulator. They are physical parameters of the
Viking Lander, aerodynamic response of the Lander, the atmospheric conditions during descent,
and the terminal descent conditions of the vehicle. Of these four sets, the atmospheric and initial
entry conditions have been identified to most directly effect the implementations and hence will
be considered as the input space for the implementation running under the simulator. The
physical parameters for the Lander will not be considered because modifying these parameters
could constitute testing various configurations of the vehicle and are beyond the scope of testing
GCS implementations. The aerodynamic responses of the vehicle are also not considered to be
part of the input space because they are used by the simulator. Section 2.1.2.2 of the GCS_SIM
User's Guide (ref. A.5) even gives staunch warning about modifications to this data set.

The specific parameters to be considered for trajectory tests are given below for the two
categories.

Atmospheric Conditions parameters:
 Initial Wind Velocity
 wind_gradiant
 Initial Temperature
 temperature_gradiant
Terminal Descent parameters:
 Initial Altitude
 Rotation Rates(x,y,z)
 Velocity(x,y,z)
 Rotational Angle around (-y,-z, x)

All parameters are in the USAGE_DISTRIBUTION.DAT input file for the GCS simulator
except for wind_gradiant, and temperature_gradiant which are found in the
INITIAL_CONSTANTS.DAT file. Hence, trajectory test cases inputs will consist of versions of
these two files with carefully selected values for the above variables. Special instructions for

A-49

modifying values in the USAGE_DISTRIBUTIONS.DAT and INITIAL_CONSTANTS.DAT
files are given in Section 2.1.2.1 of the GCS_SIM User's Guide.

The GCS simulator is capable of selecting its own initial conditions based on the values in the
USAGE_DISTRIBUTION.DAT file if those values are given in the form of a distribution. It
does so based on a seed for a random number generator which it also selects if one is not
specified. For trajectory tests, a seed will be specified although it is understood that the seed will
not effect the specific values being tested because the values in the
USAGE_DISTRIBUTION.DAT file will be specified in a manner that forces those specific
values to be the specified ones. The seed is used to select values for other variables not being
tested. To be consistent, the same seed will be used for all trajectory test cases. This seed will be
114291523 and it is set in the RUN_TRAJ.COM file.

Specific values used for atmospheric test cases are given in Table A.19 along with the test case
names. The limiting and optimal values for the parameters are derived from the GCS subsystem
description in the Viking '75 (ref. A.6) and from the GCS Specification. The optimal wind
velocity is given as 51m/s while the maximum is given as 90m/s; the minimum is obviously 0m/s.
The simulator allows wind gradient to vary from -1.10 x 10-2 to 1.10 x 10-2. The units are
derived based on analysis of the GCS simulator. The limiting values of -200 to 25 degrees are
based on the GCS Specification for the range of the ATMOSPHERIC_TEMP variable. A linear
temperature gradient is calculated based on a 1.5 km drop mentioned in the GCS Specification.
Note in the table below that nominal(N) values are used for all elements other than the variable of
specific interest for a test case. The nominal value is the value picked by the simulator software
given the above seed value. This is a consistent value for all test cases because all test cases will
be run using the same seed. A sample of the nominal value range is in the GCS_SIM User's
Guide.

Table A.19: Atmospheric Test Cases

Initial Wind
Velocity

Wind_Gradient
(/sec)

Initial
Temp

Temp gradient
(degree/km)

Test Case
Number

90 N N N 001
0 N N N 002

51 N N N 003
N -1.10x10-2 N N 004
N 0 N N 005
N 1.10x10-2 N N 006
N N -200 N 007
N N 0 N 008
N N 25 N 009
N N N 150 010
N N N 0 011
N N N -150 012

Specific values for terminal descent condition test cases are given in Table A.4. Limiting
values for initial altitude are 2000 meters (maximum value for altitude variables given in the
Specification) and 1400 meters (optimal altitude given in (ref. A.6)). A value of 0 is a legal value
for altitude but would not be applicable for an initial altitude. Rotation rates of -1.0 rad/sec to 1.0
rad/sec are permitted by the simulator software. No information is available on the velocity
range. Hence the range given by the usage distribution in the GCS_SIM User's Guide (p.12) was

A-50

used. It allows the X and Y velocity to vary between ±20 m/s and the Z velocity to vary between
0 and 200 m/s. The Rotational Angles are used by the simulator to calculate the initial attitude
cosines. No limits for the rotation angles were found while reviewing the simulator code for
calculating the attitude cosines. However, tests of the simulator software show that the -Y and -Z
rotation angles can vary between ±0.83 rads and the X rotation angle can vary from 0 to 2π.

Table A.20: Terminal Descent test cases

Initial

Altitude
Rotation Rates Velocity Vehicle Orientation Test Case

Number

(m)
x

(rad/s)

y
(rad/s)

z

(rad/s)

x
(m/s)

y
 (m/s)

z
(m/s)

x
(rad)

y
(rad)

z
(rad)

2000 N N N N N N N N N 013
1400 N N N N N N N N N 014
700 N N N N N N N N N 015
N N N N -20 N N N N N 016
N N N N 20 N N N N N 017
N N N N N -20 N N N N 018
N N N N N 20 N N N N 019
N N N N N N 0 N N N 020
N N N N N N 200 N N N 021
N N N N 0 0 N N N N 022
N N N N N N N 0 N N 023
N N N N N N N 6.28 N N 024
N N N N N N N N -0.83 N 025
N N N N N N N N 0.83 N 026
N N N N N N N N N -0.83 027
N N N N N N N N N 0.83 028
N 1 N N N N N N N N 029
N -1 N N N N N N N N 030
N N 1 N N N N N N N 031
N N -1 N N N N N N N 032
N N N 1 N N N N N N 033
N N N -1 N N N N N N 034

A-51

The nominal values selected by using the standard seed for the above test cases are as follows:

 Initial altitude: 1498.24 meters

 Rotation Rates: (rad/sec)
 about x -6.14 x 10-2
 about y -8.80 x 10-2
 about z -9.92 x 10-2

 Velocity (meters/sec)
 x -1.58
 y 20
 z 57.03

 Initial wind velocity 24.71 m/sec

 Initial temperature -140.56º C

 Orientation Angles (radian)
 about x 0.20
 about -y -0.17
 about -z -1.17

Tables A.19 and A.20 give specific input values for all trajectory test cases. To be consistent
with other sections above, Table A.21 is included to summarize all trajectory test cases for use
with test case generation and execution procedures.

A-52

Table A.21: Trajectory test case summary.

Test Case Data
File

Description Test-Input File Expected-Results
File

traj_atm_ic_001.tc
traj_atm_ud_001.tc

Test high wind velocity traj_atm_ic_001.tc
traj_atm_ud_001.tc

traj_atm_001.seed

traj_atm_ic_002.tc
traj_atm_ud_002.tc

Test no wind traj_atm_ic_002.tc
traj_atm_ud_002.tc

traj_atm_002.seed

traj_atm_ic_003.tc
traj_atm_ud_003.tc

Test optimal velocity traj_atm_ic_003.tc
traj_atm_ud_003.tc

traj_atm_003.seed

traj_atm_ic_004.tc
traj_atm_ud_004.tc

Test low wind gradient traj_atm_ic_004.tc
traj_atm_ud_004.tc

traj_atm_004.seed

traj_atm_ic_005.tc
traj_atm_ud_005.tc

Test 0 wind gradient traj_atm_ic_005.tc
traj_atm_ud_005.tc

traj_atm_005.seed

traj_atm_ic_006.tc
traj_atm_ud_006.tc

Test high wind gradient traj_atm_ic_006.tc
traj_atm_ud_006.tc

traj_atm_006.seed

traj_atm_ic_007.tc
traj_atm_ud_007.tc

Test low initial temp. traj_atm_ic_007.tc
traj_atm_ud_007.tc

traj_atm_007.seed

traj_atm_ic_008.tc
traj_atm_ud_008.tc

Test 0 initial temp. traj_atm_ic_008.tc
traj_atm_ud_008.tc

traj_atm_008.seed

traj_atm_ic_009.tc
traj_atm_ud_009.tc

Test high initial temp. traj_atm_ic_009.tc
traj_atm_ud_009.tc

traj_atm_009.seed

traj_atm_ic_010.tc
traj_atm_ud_010.tc

Test high temp. gradient traj_atm_ic_010.tc
traj_atm_ud_010.tc

traj_atm_010.seed

traj_atm_ic_011.tc
traj_atm_ud_011.tc

Test 0 temp. gradient traj_atm_ic_011.tc
traj_atm_ud_011.tc

traj_atm_011.seed

traj_atm_ic_012.tc
traj_atm_ud_012.tc

Test low temp gradient traj_atm_ic_012.tc
traj_atm_ud_012.tc

traj_atm_012.seed

traj_td_ic_013.tc
traj_td_ud_013.tc

Test highest initial altitude traj_td_ic_013.tc
traj_td_ud_013.tc

traj_td_013.seed

traj_td_ic_014.tc
traj_td_ud_014.tc

Test optimal altitude traj_td_ic_014.tc
traj_td_ud_014.tc

traj_td_014.seed

traj_td_ic_015.tc
traj_td_ud_015.tc

Test lowest altitude traj_td_ic_015.tc
traj_td_ud_015.tc

traj_td_015.seed

traj_td_ic_016.tc
traj_td_ud_016.tc

Test X velocity min. value traj_td_ic_016.tc
traj_td_ud_016.tc

traj_td_016.seed

traj_td_ic_017.tc
traj_td_ud_017.tc

Test X velocity max.
value.

traj_td_ic_017.tc
traj_td_ud_017.tc

traj_td_017.seed

traj_td_ic_018.tc
traj_td_ud_018.tc

Test Y velocity min. value traj_td_ic_018.tc
traj_td_ud_018.tc

traj_td_018.seed

traj_td_ic_019.tc
traj_td_ud_019.tc

Test Y velocity max.
value.

traj_td_ic_019.tc
traj_td_ud_019.tc

traj_td_019.seed

traj_td_ic_020.tc
traj_td_ud_020.tc

Test Z velocity min. value traj_td_ic_020.tc
traj_td_ud_020.tc

traj_td_020.seed

traj_td_ic_021.tc
traj_td_ud_021.tc

Test Z velocity max.
value.

traj_td_ic_021.tc
traj_td_ud_021.tc

traj_td_021.seed

A-53

traj_td_ic_022.tc
traj_td_ud_022.tc

Test no X & Y velocity traj_td_ic_022.tc
traj_td_ud_022.tc

traj_td_022.seed

traj_td_ic_023.tc
traj_td_ud_023.tc

Test min. X entry angle traj_td_ic_023.tc
traj_td_ud_023.tc

traj_td_023.seed

traj_td_ic_024.tc
traj_td_ud_024.tc

Test max. X entry angle traj_td_ic_024.tc
traj_td_ud_024.tc

traj_td_024.seed

traj_td_ic_025.tc
traj_td_ud_025.tc

Test min. Y entry angle traj_td_ic_025.tc
traj_td_ud_025.tc

traj_td_025.seed

traj_td_ic_026.tc
traj_td_ud_026.tc

Test max. Y entry angle traj_td_ic_026.tc
traj_td_ud_026.tc

traj_td_026.seed

traj_td_ic_027.tc
traj_td_ud_027.tc

Test min. Z entry angle traj_td_ic_027.tc
traj_td_ud_027.tc

traj_td_027.seed

traj_td_ic_028.tc
traj_td_ud_028.tc

Test max. Z entry angle traj_td_ic_028.tc
traj_td_ud_028.tc

traj_td_028.seed

traj_td_ic_029.tc
traj_td_ud_029.tc

Test positive X rotation
rate

traj_td_ic_029.tc
traj_td_ud_029.tc

traj_td_029.seed

traj_td_ic_030.tc
traj_td_ud_030.tc

Test negative X rotation
rate

traj_td_ic_030.tc
traj_td_ud_030.tc

traj_td_030.seed

traj_td_ic_031.tc
traj_td_ud_031.tc

Test positive Y rotation
rate

traj_td_ic_031.tc
traj_td_ud_031.tc

traj_td_031.seed

traj_td_ic_032.tc
traj_td_ud_032.tc

Test negative Y rotation
rate

traj_td_ic_032.tc
traj_td_ud_032.tc

traj_td_032.seed

traj_td_ic_033.tc
traj_td_ud_033.tc

Test positive Z rotation
rate

traj_td_ic_033.tc
traj_td_ud_033.tc

traj_td_033.seed

traj_td_ic_034.tc
traj_td_ud_034.tc

Test negative Z rotation
rate

traj_td_ic_034.tc
traj_td_ud_034.tc

traj_td_034.seed

A-54

A.3.17 Pass/Fail Criteria

This section focuses on the strategy used to determine pass or failure of a test case. Two
techniques are used to determine whether a test case passes or fails. The first is applicable to
functional unit, subframe, frame, and structural test cases. Trajectory cases use a different
technique because those cases are run with the GCS simulator.

The GCS Specification requires all data flow, into and out of the software, to go through the
four data stores. Hence, results of any functional unit can be checked by examining the data in
the stores after the functional unit has executed. To determine whether a test case passes or fails,
test drivers compare the values of the data store with values from the expected-results file. If all
variables match their expected results, the test case passes. To further simplify the matching
process, the expected-results file uses the same NAMELIST format as the data stores.

The criteria for what constitutes a correct match varies for different variables. For variables
defined as INTEGERS and LOGICALS an exact match between the expected and actual results is
required. For real variables, the value generated during the test run must match to within a
tolerance of the expected value. The tolerances are determined based on empirical experience
with the GCS simulator and vary for different variables. The tolerance calculation is different for
the two sets of variables as given in Table A.22 and A.23. For variables listed in Table A.22, the
tolerance is either the absolute error (ε) or the relative error (δ) depending on whether the values
is less than the threshold (β), which is also empirically determined. For variables listed in Table
A.23, the tolerance is the absolute error (ε).

Table A.22: Accuracy tolerances for variables in set 1.

Data Element Name β ε δ

A_ACCELERATION(1,0) 1.0 .001 5.0D-9
AR_ALTITUDE 1.0 .001 5.0D-10
ATMOSPHERIC_TEMP 1.0 .001 5.0D-10
GP_ALTITUDE 5.0 .01 5.0D-5
GP_VELOCITY 1.0 .001 5.0D-6
TDLR_VELOCITY 1.0 .001 5.0D-10
TE_LIMIT 1.0 .001 5.0D-2

A-55

Table A.23: Accuracy tolerances for variables in set 2.

Data Element Name ε

A_ACCELERATION(2,0) .001
A_ACCELERATION(3,0) .001
G_ROTATION .001
GP_ATTITUDE .001
GP_ROTATION .001
INTERNAL_CMD .001
PE_INTEGRAL .001
TE_INTEGRAL .001
THETA .01
VELOCITY_ERROR .001
YE_INTEGRAL .001

It should be noted that the GCS simulator performs accuracy checks on only the current values

of the variables. For testing purposes, all history values of all variables must be checked to ensure
that data store integrity is maintained. To reduce the complexity of the comparison, test drivers
are set up to generate an output file if a mismatch is found for any variable. An absolute error
more than 1.0 x 10-8 is considered a mismatch for testing purposes

When a trajectory is run, one of the output files gives the starting seed, ending seed, whether
the space craft landed, the number of frames executed, and the final value of GP_PHASE. This
information is sufficient to determine whether the trajectory is run to completion and whether a
landing or a crash has occurred. More importantly, the number of frames and the final value of
GP_PHASE can be used to determine whether the high level requirements have been met, since
the highest level requirement is for each implementation to run consecutive and multiple frames
until the GP_PHASE is 5. If the ".SEED" output file for any trajectory test cases shows that
multiple frames were executed and that the final value of GP_PHASE is 5, then the
implementation can be considered to have met the high-level requirements. In addition to visual
survey of the “.SEED” files, the trajectory test case execution procedure includes an additional
step to compare the output seed files with those from the VENUS prototype. This is an additional
check to match the implementation to the VENUS prototype.

A.4 Test Case Execution Procedures

Once test cases and drivers have been developed and submitted to configuration management,
the verification analysts are ready to initiate testing of the GCS implementations. Given that the
GCS development activities follow the water-fall model, all the code is available when testing
commences. This is consistent with the requirements in DO-178B. Further, DO-178B requires
GCS testing to be conducted in the following order:

1) requirements-based functional unit testing.
2) requirements-based subframe testing
3) requirements-based frame testing
4) requirements-based trajectory testing

A-56

5) structural analysis and testing of functional units
The general procedure for any of the above categories of testing is to first request the

configuration items necessary for the test, place them in the appropriate directories, build the test
case with the test subjects, run the command file that executes the test suite, check for any
analysis files, determine if the items in the analysis file warrant problem reporting. If code
modifications are made, then all test cases for the changed code are re-executed. The sections
below will describe the directory structure that must be created to execute the test cases. The
specific configuration items and execution procedures necessary for the test case are also be
described.

A.4.1 Environment and Directory Structure for Test Case Execution

GCS implementations are written in VAX FORTRAN and are intended for execution on DEC
machines. To perform functional unit testing of GCS implementations, it is necessary to have a
directory structure that matches the DCL commands in the test support files. Otherwise, those
path names need to be edited to reflect the directory structure of the specific user. The figure
below illustrates the directory structure that a Verification Analyst must have for testing to avoid
excessive editing to support files.

USER

TEST_DRIVERS TEST_CASES IMPLEMENTATION

EXE

TDLRSP

OUT OUT

CLP

OUT

FRAME

TRAJ

TD

OUT

ATM

OUT

LNK

Note that the top level directory, "USER", is the user's home directory. The TEST_DRIVER
directory is used for storing the test drivers and support files. The TEST_CASES directory has a
series of subdirectories. There should be a subdirectory for each functional unit although not all
are shown. There should also be a subdirectory for each subframe and one for frame test cases as
shown. The IMPLEMENTATION directory is for storing the code to be tested. The name
should be changed to the name of the appropriate implementation. The test case execution
procedures will reference these directories for storing items Fetched from CMS. Again, it is
important that the naming of the directories be adhered to as the DCL command files will
reference those specific names.

For trajectory testing, a separate [TRAJ] directory is needed for trajectory tests with two sub
directories. The [TRAJ] directory will hold the simulator, the implementation to be tested, and
the data and support files required for trajectory testing. The [ATM] subdirectory will hold the
tests that vary the atmospheric conditions; the [TD] sub directory will hold the test cases that vary

A-57

the initial terminal descent conditions. Each sub directory will also contain an [OUT] directory
for simulator output. The [TRAJ] directory will contain the ".COM" files and executables for the
implementation and the simulator.

A.4.2 Functional Unit Test Case Execution Procedure

The following describes specific steps that must be followed for executing functional unit test
cases. Because this procedure is written for both the Pluto and Mercury implementations, some
file renaming will be necessary to account for the way files are stored in CMS. Additionally,
directory references must be changed to account for the tester's top level directory name.

1) Fetch all the code belonging to an implementation and place the code files in the
[implementation] directory:
Because specific file names will vary between implementations, all source files related to
an implementation should be fetched. Extra files are of no consequence since the link
command files will not use them. The link command files(obtained in the next step) will
link only the necessary files for a functional unit test concerned and disregard the extra
files.

2) Fetch the following data, support and utility files from the CMS library. Place them in their
respective directories. Refer to Table A.1 for specific names.

Data files

[TEST_CASES.functional-
unit]

Support Files
(directory below)

Utility Files
[TEST_DRIVERS]

functional-unit_NR_xx.TC, .EX
functional-unit_RO_xx.TC, .EX

i_LNKfunctional-unit.COM
 ->
[IMPLEMENTATION.LNK]
i_TEST_functional-unit.FOR
 -> [TEST_DRIVERS]

COMPARE_EXTERNAL.FOR
COMPARE_GUIDANCE.FOR
COMPARE_RUNPRAM.FOR
READ_TC.FOR
READ_EX.FOR
STRUCT.FOR_INC
COMMONS.FOR_INC
i_TC_DRIVER.COM

 Note that the "i_" represents the initial of the implementation. That is "M_" for Mercury

and "P_" for Pluto; the xxx represents the three digits identifying the test case; and
functional-unit is replaced by the name of the functional unit (e.g. ASP, GP). Two files
must also be renamed so that the implementation initial is removed. That is:

 i_TC_DRIVER.COM renames to TC_DRIVER.COM
 i_TEST_ functional-unit.FOR renames to TEST_functional-unit.FOR
3) The files in step 1, the implementation source code to be tested, should be compiled using

the VAX FORTRAN compiler. No special compile switches are necessary. (e.g. FOR
ASP.FOR) All object files should be placed in the same directory.

A-58

4) All files with ".FOR" extension fetched in step 2 should be compiled and object files placed
in the same directory. Again no switches should be used.

5) The i_LNKfunctional-unit.COM DCL command file fetched in step 2 above will link all
the object files for a functional unit. The resulting executable will be placed in the [EXE]
directory. Before using this link file, the file should be checked to ensure that the correct
directory reference are used The following command should be initiated from the [LNK]
directory:

 @i_LNKfunctional-unit.COM
6) The test cases can actually be executed in this step by the entering the command given

below. The command should be issued from the [TEST_DRIVERS] directory. The
command should be repeated for the number of test cases in the test suite for the functional
unit.

 @TC_DRIVER functional-unit tt xxx
 where: functional-unit is replaced by the name of the functional unit
 tt is replaced by the test type (NR or RO)
 xxx is replaced by the test case number
7) Once execution completes, the tester should look in the [USER.TEST_CASE.functional-

unit.OUT] directory to see if any analysis files have been generated. If there are any, the
tester should review them to see if a PR or SDCR should be initiated.

8) The tester should maintain a record of test cases executed for each test subject. An
example of the test log to be used is in section A.10. A test log should be completed for
tests on each functional unit. All test cases executed for a functional unit, structural or
requirements-based, can be recorded on the same log. This is because any errors requiring
code modification will require re-execution of all test cases for that functional unit. Listing
all test cases in the same log will reduce the burden of identifying which test cases were re-
executed The logs should be maintained for each implementation as the test history will
vary depending on the errors discovered in the specific implementation.

A.4.3 Subframe and Frame Test Case Execution Procedure

After all functional units have been tested, the Verification Analyst can begin Integration
Testing. This section describes the procedure for executing subframe and frame test cases on the
VAX. According to the GCS Specification, each subframe must issue a call to the subroutine
Sim_Rendezvous, This will not be done in the test driver because Sim-Rendezvous is not in the
scope of the GCS implementation. The order of operations for the subframe test stub is as
follows:

 Load in the test data

A-59

 Execute all functional units for the subframe
 Generate the expected value for the PACKET data element based on current test case values
 Compare all output with the expected results

In order to run the Subframe tests new drivers and command files are created. The
CLP_DRIVER.COM runs the Control Law Processing Subframe and SP_DRIVER.COM runs
the Sensor Processing Subframe. The test execution procedure for frame and subframe cases is
similar to the procedure described in the functional unit. The difference is in the specific files
that must be Fetched. Table A.1 should be referenced for specific file names for the subframe or
frame test cases. Therefore, steps similar to the previous procedure will be condensed in the
description below.

1) Fetch the implementation’s source code and place them in the [IMPLEMENTATION]
directory.

2) Fetch the necessary test cases and place them in the appropriate subframe directories under
the [TEST_CASES] directory. Place frame test cases in the [FRAME] directory.

3) Fetch the support files as listed in Table A.11-1 for the desired subframe. Note that these
files should be renamed to remove the implementation’s prefix.

3) Compile and link all FORTRAN files as before
4) The newly renamed LNKsubframe.COM file should be used to build the executable for the

test case. This step is identical to that for functional unit execution except the command is:
 @LNKsubframe
5) The test cases can then be executed using the following command syntax
 @subframe_DRIVER xx
 for example:
 @CLP_DRIVER 001
 for frame test cases:
 @FRAME_DRIVER xx

will run the CLP driver program using the CLP_001.TC test-input and the expected-results
file: CLP_001.EX. The output (if any) will be in the analysis file. Note that if no analysis
file is generated, then no error was found while executing the test suite.

6) Again, the tester should check the OUT directory under the specific test case directory for
any analysis files and determine if a PR or SDCR is necessary.

7) Again, a test log should be completed with an entry for each test case run. The test log
should show the disposition of each test case if errors are found.

A-60

A.4.4 Trajectory Test Case Execution Procedure

The procedure for trajectory testing will differ from previous procedures because tests must be
run with the simulator. Trajectory test procedure is divided into two parts. The first part builds
an executable to run with the simulator. The second part actually runs the test cases.

Procedure for linking the implementation to the simulator
1) Fetch all files related to a specific implementation and place them in the

[IMPLEMENTATION] directory along with the command file to build the
implementation:

 i_BUILD.COM (Note that the i_ should be the initial of the
implementation.)

2) Also fetch the following simulator utility files and place them in the
[IMPLEMENTATION] directory:

 GCS_SIM_RENDEZVOUS.OBJ
 GCS_SETUP.OBJ
 GCS_WHO_AM_I.OBJ
 PAGE_ALIGN.OPT
3) Build the implementation executable with the following command:
 @i_BUILD
4) The implementation executable should be in the [.EXE] directory upon completion. The

executable should be copied into the [TRAJ] directory for trajectory tests.

Procedure for running trajectory test cases
1) Fetch the trajectory data, support and utility files from CMS and place them in the

respective directories.
 (Files also listed in Table A.11-1)

Data files
(given below)

Support Files
[TRAJ]

Utility Files
[TRAJ]

 [TRAJ.ATM]
TRAJ_ATM_IC_xx.TC
TRAJ_ATM_IC_xx.TC
TRAJ_ATM_xx.SEED

 [TRAJ.TD]
TRAJ_TD_IC_xx.TC
TRAJ_TD_IC_xx.TC
TRAJ_TD_xx.SEED

i_TRAJ.COM
i_RUN_TRAJ.COM

ACCURACY.DAT
ALTERNATE_ACCURAC

Y.DAT
GCS_LIST.DAT
GCS_SIM_SWITCHES.DA

T
LIMITS.DAT
TABULAR_DATA.DAT
TRAJ_SIM.EXE

A-61

2) Edit the GCS_LIST.DAT file by replacing the second line in the file with the name of the

implementation’s executable to be tested.
4) Execute test cases from the [TRAJ] directory with the command:
 @RUN_TRAJ
 The output files for trajectory test cases will be placed in the respective [OUT] directory.
5) After executing all test cases, the VMS DIFFERENCE command should be used to

compare the seed files in the respective [OUT] directories with those fetched from CMS.

A.4.5 Structural Test Case Execution Procedure

Structural test case execution procedure for both implementations are identical to functional
unit test case execution. The file naming pattern is slightly different for each implementation.
The specific names are given in Table A.2. The general procedure is as follows:

1) If the executable for a functional unit has not been built at this point, then follow the
procedure in functional unit test execution procedure steps 1 to 4 to build an executable.

2) Fetch the structural test case from CMS. Refer to Table A.2 for specific names. Note
that structural test case files should be placed in the same directory as those for functional
unit tests.

 The Pluto implementation structural test cases have the following naming pattern:
 functional-unit_PST_xxx.TC for test case input files
 functional-unit_PST_xxx.EX for expected results files
 The naming pattern for the Mercury structural test cases are:
 M_functional-unit_ST_xxx.TC for test case input files
 M_functional-unit_ST_xxx.EX for expected results files
3) Fetch the support and utility files from CMS for the desired functional unit
4) Execute structural test:

For Pluto, the command to run the test cases is:
 “@TC_DRIVER functional-unit PST xxx”

For Mercury, the command to run the test cases is:
 “@M_ST_DRIVER functional-unit xxx”

where the driver is given the name of the functional unit and the test case number.

A-62

A.5 DESIGN REVIEW CHECKLIST

Process Structure

1. Does the design clearly follow the data flow and control flow described in the specification? yes/no
2. Does integration with the simulator follow the sequencing and implementation described in

the specification?
yes/no

3. Does process sequencing comply with the functional unit scheduling as presented in Table
4.3 in the specification?

yes/no

4. Do modules have high internal cohesion?3 yes/no
5. Do modules have low external coupling?4 yes/no
6. Are all module interfaces described? yes/no

Data Usage

1. Do the design data stores comply with those described in the specification's Data

Requirements Dictionary Part II?
yes/no

2. Do the specified data in the design data dictionary conform to the specification's Data
Requirements Dictionary Part I?

yes/no

3. If the design includes variables in addition to the global data store variables defined in the
GCS specification, and these variables represent flows between processes, are they included
in the design data dictionary?

yes/no

4. Do process inputs and outputs comply with the functional unit inputs and outputs in the
specification?

yes/no

5. Are all inputs to processes used? yes/no
6. Does each process modify only those global variables that are specified outputs for that

process?
yes/no

7. Are all the input/output variables of a process defined in the INPUT/OUTPUT section of the
design P-Spec for that process?

yes/no

Detail Requirements

1. Are sufficient algorithmic details given (including those not provided by the specification)? yes/no
2. Are all specified logical conditions included in the design? yes/no
3. Do logical conditions correctly use logical and relational operators? yes/no
4. Are exceptional conditions anticipated and handled as described in the specification? yes/no

Traceability

1. Does the design satisfy all the functional requirements described in the specification? yes/no
2. Can all parts of the design be traced back to the requirements? yes/no

3Cohesion refers to the degree to which the internal elements of a module are bound to a related task.
4Coupling refers to the degree of interconnectedness between modules.

A-63

Clarity

1. Is the overall function of each process described? yes/no
2. Are assumptions documented? yes/no

Compliance with Standards

1. Are all derived requirements identified and justified? yes/no
2. Was a successful balance check performed on the teamwork model of the design? yes/no
3. Do the software design and the design documentation comply with the approved

methodology and the design standards?
yes/no

A.6 CODE REVIEW CHECKLIST

Data Usage

1. Are COMMON BLOCKS labeled with the same names as the global data stores defined in

GCS Data Requirements Dictionary Part II?
yes/no

2. Do the variables in the COMMON BLOCKS use the same names and order as the variables
in the global data stores defined in the GCS Data Requirements Dictionary Part II?

yes/no

3. Do the variables in the COMMON BLOCKS have the same data types, number of
dimensions, and size of each dimension as specified in the GCS Data Requirements
Dictionary Part I?

yes/no

4. If the code includes variables in addition to those defined in the global data stores in the
GCS Data Requirements Dictionary Part II, are they defined, initialized, and used only
within the scope of a subframe?

yes/no

5. Are references to array subscripts expressed in column, row order? yes/no
6. Is array subscript usage within array bounds? yes/no
7. Are constant values used only as constants and not as variables? yes/no
8. Are DO loop index variables used only within the loop? yes/no
9. Does the code maintain that same loop index within a loop? yes/no

Structure

1. Does the code comply with the software architecture from the design? yes/no
2. Does the code avoid the use of GOTO statements? yes/no
3. Do all the code's statements perform a clear function? yes/no
4. Is the code void of any isolated or dead code segments? yes/no

A-64

Functions and Subroutines

1. Does each unit have a single function, and is it clearly described? yes/no
2. Do actual and formal parameters agree in number, order, dimension, and data type? yes/no
3. Are the functions of subroutine input and output parameters described? yes/no
4. Are all the parameters passed to a subroutine used? yes/no
5. Do the functions and subroutines return data of the correct type? yes/no
6. Is there a call to GCS_SIM_RENDEZVOUS before each subframe? yes/no
7. Are calls to GCS_SIM_RENDEZVOUS void of all parameters? yes/no
8. Does the code avoid using system calls? yes/no

Traceability

1. Does the code satisfy all the requirements in the Requirements Traceability Matrix

including all derived requirements?
yes/no

2. Do units map to a well-defined section in the Design? yes/no
Logic

1. Do logical conditions correctly use logical operators (.AND., .OR., .NOT.)? yes/no
2. Do logical conditions correctly use relational operators (.GT., .GE., .LT., .LE., .EQ., .NE.)? yes/no
3. Are all logical conditions included? yes/no
4. Are comparisons of real variables to exact values avoided? yes/no
5. Is loop nesting correct? yes/no
6. Do loops have single exit and single entry points? yes/no

Exceptional Conditions

1. Is there code to detect the exceptional conditions listed in the Non-Functional section of the

Requirements Traceability Matrix?
yes/no

2. If an exceptional condition is detected, does the code print the appropriate message to
FORTRAN logical unit 6?

yes/no

Computations

1. Are mixed type mathematical expressions avoided? yes/no
2. Do computations contain values with the same unit dimensions? yes/no
3. Does the code avoid assigning real expressions to integers causing truncation? yes/no
4. Are bit manipulations done correctly? yes/no

A-65

Compliance with Standards

1. Does the code follow basic structured programming techniques? yes/no
2. Does the software code and documentation comply with the approved code standards? yes/no

A-66

A.7 REQUIREMENTS TRACEABILITY MATRIX

Functional Requirements DESIGN CODE TESTCASES
0-1 Specify four separate, globally accessible data stores:
 EXTERNAL,
 GUIDANCE_STATE,
 RUN_PARAMETERS, and
 SENSOR_OUTPUT.

2-1 Control flow of the frame processing.
2-1.1 The appropriate control flow for a frame is:
 call to GCS_SIM_RENDEZVOUS.
 Satisfy the Sensor Processing subframe requirements (2-2).
 call to GCS_SIM_RENDEZVOUS.
 Satisfy Guidance Processing subframe requirements (2-3).
 call to GCS_SIM_RENDEZVOUS
 fulfill Control Law Processing subframe requirements (2-4)
 or terminate (2-1.2).

2-1.2 The implementation is to terminate immediately upon completion of
the Control Law Processing subframe requirements during the frame in which GP_PHASE is
set to 5.

2-2 Sensor Processing subframe requirements.
2-2.1 Satisfy the TSP requirements (2.1.5) prior to fulfilling any of the other
requirements in (2.1.1 and 2.1.4).

2-2.2 Satisfy all requirements in the sensor processing
 requirements hierarchy (2.1).

2-2.3 Satisfy all requirements in the communications processing requirements
(2.4) upon satisfying 2-2.1.

2-2.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS
specification.

2-3 The Guidance Processing subframe requirements.
2-3.1 Satisfy all requirements in the guidance processing requirements
(2.2).

2-3.2 Satisfy all requirements in the communications processing requirements
(2.4) upon satisfying 2-3.1.

2-4 The Control Law Processing subframe
 requirements.

2-4.1 Satisfy the AECLP requirements (2.3.1) prior to fulfilling any of the
CRCP requirements (2.3.3).

2-4.2 Satisfy all requirements in the control law processing requirements
hierarchy (2.3).

2-4.3 Satisfy all requirements in the communications processing requirements
(2.4) upon satisfying 2-4.1.

2-4.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS
specification.

2.1 SP -- Sensor Processing

2.1.1 ASP -- Accelerometer Sensor Processing

2.1.1-1 Rotate variables.

2.1.1-2 Adjust gain for temperature.

2.1.1-3 Remove characteristic bias.

2.1.1-4 Correct for misalignment.

2.1.1-5 Determine Accelerations.
2.1.1-5.1 Acceleration based on current A_COUNTER.
2.1.1-5.2 Acceleration based on mean of previous accelerations.
2.1.1-6 Determine Accelerometer Status
2.1.1-6.1 A_STATUS = healthy
2.1.1-6.2 A_STATUS = unhealthy
2.1.2 ARSP -- Altimeter Radar Sensor Processing
2.1.2-1 Rotate variables.
2.1.2-2 Determine altitude when echo is received. (based on
 AR_COUNTER)

2.1.2-3 Determine altitude when echo is not received
2.1.2-3.1 Determine altitude based on third-order polynomial.
2.1.2-3.2 Determine altitude based on previous calculation.
2.1.2-4 Set altimeter radar status.
2.1.2-4.1 AR_STATUS = healthy
2.1.2-4.2 AR_STATUS = failed
2.1.2-5 Set values of K_ALT.

A-67

2.1.2-5.1 K_ALT = 1
2.1.2-5.2 K_ALT = 0
2.1.3 TDLRSP -- Touch Down Landing Radar Sensor Processing
2.1.3-1 Rotate variables
2.1.3-2 Determine state for each radar beam.
2.1.3-2.1 TDLR_STATE = unlocked.
2.1.3-2.2 TDLR_STATE = locked.
2.1.3-3 Determine Whether to set FRAME_BEAM_UNLOCKED
2.1.3-3.1 Set FRAME_BEAM_UNLOCKED to FRAME_COUNTER
2.1.3-3.2 Leave FRAME_BEAM_UNLOCKED unchanged
2.1.3-4 Calculate the beam velocities
2.1.3-5 Process beam velocities based on which beam(s) locked.
2.1.3-5.1 no beams locked
2.1.3-5.2 Beam1 locked
2.1.3-5.3 Beam2 locked
2.1.3-5.4 Beam3 locked
2.1.3-5.5 Beam4 locked
2.1.3-5.6 Beam1 & Beam2 locked
2.1.3-5.7 Beam1 & Beam3 locked
2.1.3-5.8 Beam1 & Beam4 locked
2.1.3-5.9 Beam2 & Beam3 locked
2.1.3-5.10 Beam2 & Beam4 locked
2.1.3-5.11 Beam3 & Beam4 locked
2.1.3-5.12 Beam1, Beam2, & Beam3 locked
2.1.3-5.13 Beam1, Beam2, & Beam4 locked
2.1.3-5.14 Beam1, Beam3, & Beam4 locked
2.1.3-5.15 Beam2, Beam3, & Beam4 locked
2.1.3-5.16 Beam1, Beam2, Beam3, & Beam4 locked
2.1.3-6 Convert to body velocities.
2.1.3-7 Set values in K_MATRIX.
2.1.3-7.1 Kx = 0
2.1.3-7.2 Kx = 1
2.1.3-7.3 Ky = 0
2.1.3-7.4 Ky = 1
2.1.3-7.5 Kz = 0
2.1.3-7.6 Kz = 1
2.1.3-8 Set TDLR_STATUS.
2.1.4 GSP -- Gyroscope Sensor Processing
2.1.4-1 Rotate variables.
2.1.4-2 Determine the vehicle rotation rates along each of the vehicle's three
axes.

2.1.4-2.1 Adjust gain.
2.1.4-2.2 Convert G_COUNTER.
2.1.4-3 Set gyroscope status to healthy.
2.1.5 TSP -- Temperature Sensor Processing
2.1.5-1 Calculate solid state temperature
2.1.5-2 Calculate Thermal Temperature
2.1.5-3 Determine which Temperature to use (SS or Thermocouple)
2.1.5-3.1 Calculate the Thermo sensor upper limit
2.1.5-3.2 Calculate the Thermo sensor lower limit
2.1.5-4 Determine Atmospheric Temperature
2.1.5-5 Set status to healthy.
2.1.6 TDSP -- Touch Down Sensor Processing
2.1.6-1 Determine status of touch down sensor.
2.1.6-2 Determine whether touch down has been sensed.
2.2 GP -- Guidance Processing
2.2-1 Rotate variables.
2.2-2 Determine the attitude, velocities, and altitude.
2.2-2.1 Set up the GP_ROTATION matrix.
2.2-2.2 Calculate new values of attitude, velocity, and
 altitude.

2.2-3 Determine if the engines should be on or off.
2.2-3.1 Engines on
2.2-3.2 Engines off
2.2-4 Set FRAME_ENGINES_IGNITED
2.2-5 Determine velocity error.
2.2-6 Determine optimal velocity
2.2-7 Determine if contour has been crossed.
2.2-8 Determine guidance phase.
2.2-8.1 GP_PHASE = 1
2.2-8.2 GP_PHASE = 2
2.2-8.3 GP_PHASE = 3
2.2-8.4 GP_PHASE = 4

A-68

2.2-8.5 GP_PHASE = 5
2.2-9 Determine which set of control law parameters to use.
2.2-9.1 CL = 1
2.2-9.2 CL = 2
2.3 CLP -- Control Law Processing
2.3.1 AECLP -- Axial Engine Control Law Processing
2.3.1-1 Generate the appropriate axial engine commands when AE_CMD=ON.
2.3.1-1.1 Determine engine temperature
2.3.1-1.1.1 AE_TEMP = COLD
2.3.1-1.1.2 AE_TEMP = WARM
2.3.1-1.1.3 AE_TEMP = HOT
2.3.1-1.2 Compute limiting errors for pitch
2.3.1-1.3 Compute limiting error for yaw
2.3.1-1.4 Compute limiting error for thrust
2.3.1-1.5 Compute pitch, yaw, and thrust errors.
2.3.1-1.5.1 CHUTE_RELEASED = 1
2.3.1-1.5.2 CHUTE_RELEASRD = 0
2.3.1-1.5.3 CONTOUR_CROSSED = 1
2.3.1-1.5.4 CONTOUR_CROSSED = 0
2.3.1-1.6 Compute INTERNAL_CMD
2.3.1-1.7 Compute axial engine valve settings (AE_CMD).
2.3.1-1.7.1 when INTERNAL_CMD < 0.0
2.3.1-1.7.2 when 0.0 ≤ INTERNAL_CMD ≥ 1.0
2.3.1-1.7.3 when 1.0 < INTERNAL_CMD
2.3.1-2 Generate the appropriate axial engine commands when AE_CMD=OFF.
2.3.1-2.1 Set AE_CMD = 0
2.3.1-3 Set axial engine status to healthy.
2.3.2 RECLP -- Roll Engine Control Law Processing
2.3.2-1 Generate the appropriate roll engine command.
2.3.2-2 Set roll engine status to healthy.
2.3.3 CRCP -- Chute Release Control Processing
2.3.3-1 Determine appropriate parachute release command.
2.3.3-1.1 AE_TEMP = COLD
2.3.3-1.2 AE_TEMP = WARM
2.3.3-1.3 AE_TEMP = HOT
2.3.3-1.4 CHUTE_RELEASED = 0
2.3.3-1.5 CHUTE_RELEASED = 1
2.4 CP -- Communications Processing
2.4-1 Set communicator status to healthy.
2.4-2 Get synchronization pattern.
2.4-3 Determine sequence number.
2.4-4 Prepare sample mask.
2.4-4.1 Subframe 1 mask
2.4-4.2 Subframe 2 mask
2.4-4.3 Subframe 3 mask
2.4-5 Prepare data section.
2.4-5.1 Use subframe 1 data
2.4-5.2 Use subframe 2 data
2.4-5.3 Use subframe 3 data
2.4-2.5 Calculate checksum.

A-69

A.8 SAMPLE REVIEW LOG FORM

Individual Inspection Preparation Log Page 1 of __

Name:____________________________ Date Log Submitted:______
Implementation:____________________ Date of Inspection:________

Role: o Reader o Recorder
 o Moderator o Inspector

Defects/Clarity Problems/Concerns

Location of Concern Description of the problem
(i.e. module name/P-Spec #,
page number, etc.)
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___

The Moderator needs to have this completed form at least 4 hours before the scheduled Inspection session.

A-70

Individual Inspection Preparation Log Page__ of __

Defects/Clarity Problems/Concerns

Location Description of the problem

_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___
_______________________________ ___

A-71

A.9 GCS Equivalence Classes

This section gives the equivalence classes used for testing GCS implementations. Two tables
are include to allow cross referencing of equivalence class to test cases. Table A.9-1, GCS
Equivalence Classes, lists all the variables that have equivalent classes. These do not include
variables in the RUN_PARAMETER data store. Also, as stated previously, variables defined as
integers but used as enumerated types are not considered testable with equivalence classes.
Finally, variables that are outputs to the GCS simulator are not tested. The GCS Equivalence
Class Table gives the variable name, its type, its limits as defined in the GCS Specification, and
the equivalence classes defined for that variable. Table A.9-1 also associates an equivalence class
name with each class definition. This name is used in Table A.9-2 to test cases with the
equivalence class. The equivalence class names are derived from the variable name with an
arbitrary number extension. The names do not imply whether the class is valid or invalid. That
can be readily determined by reviewing the variable’s limits; typically, the first one listed is the
valid equivalence class. The following abbreviations are used in Table A.9-1 to represent
FORTRAN Type definition:

 R8 - REAL*8 I2 - INTEGER*2
 Ll - LOGICAL*1 I4 - INTEGER*4

Table A.9-1 : GCS Equivalence Classes

VARIABLE NAME TYPE Limits Equivalence Class Definitions Equivalence Class Name

A_ACCELERATION R8 [-20.,
5.]

-20. ≤ A_ACCELERATION ≤ 5
A_ACCELERATION > 5.
A_ACCELERATION < -20.

A_ACCELERATION.1
A_ACCELERATION.2
A_ACCELERATION.3

A_COUNTER I2 [0,

(215)-1]
0 ≤ A_COUNTER ≤ (215)-1

A_COUNTER > (215)-1
A_COUNTER < 0

A_COUNTER.1
A_COUNTER.2
A_COUNTER.3

A_STATUS Ll 0=HEALTHY
1=UNHEALTH
Y

HEALTHY
UNHEALTHY
INVALID

A_STATUS.1
A_STATUS.2
A_STATUS.3

AR_ALTITUDE R8 [0.,
2000.]

0. ≤ AR_ALTITUDE ≤ 2000.
AR_ALTITUDE > 2000.
AR_ALTITUDE < 0

AR_ALTITUDE.1
AR_ALTITUDE.2
AR_ALTITUDE.3

AR_COUNTER I2 [-1,

(215)-1]
-1 < AR_COUNTER ≤ (215)-1

AR_COUNTER > (215)-1
AR_COUNTER ≤ -1

AR COUNTER.1
AR_COUNTER.2
AR_COUNTER.3

AR_STATUS L1 0=HEALTHY
1=FAILED

HEALTHY
FAILED
INVALID

AR_STATUS.1
AR_STATUS.2
AR_STATUS.3

ATMOSPHERIC_TE
MP

R8 [-200.,
 25.]

-200. ≤ ATMOSPHERIC_TEMP ≤ 25.
ATMOSPHERIC_TEMP > 25.
ATMOSPHERIC_TEMP < -200.

ATMOSPHERIC_TEMP.1
ATMOSPHERIC_TEMP.2
ATMOSPHERIC_TEMP.3

FRAME_BEAM_
UNLOCKED

I4 [0,

(231)-1]
0 ≤ FRAME_BEAM_UNLOCKED ≤ (2��31)-1

FRAME_BEAM_UNLOCKED > (231)-1
FRAME_BEAM_UNLOCKED < 0

FRAME_BEAM_UNLOCKED.1
FRAME_BEAM_UNLOCKED.2
FRAME_BEAM_UNLOCKED.3

FRAME COUNTER I4 [1,

(231)-1]
1 ≤ FRAME COUNTER £ (231)-1

FRAME COUNTER > (231)-1
FRAME COUNTER < 1

FRAME COUNTER.1
FRAME COUNTER.2
FRAME COUNTER.3

A-72

Table A.9-1 : (Continued)

VARIABLE
NAME

TYPE Limits Equivalence Class Definitions Equivalence Class Name

FRAME_ENGINES_
IGNITED

I4 [1,
(231)-1]

1 ≤ FRAME_ENGINES_IGNITED ≤ (231)-1
FRAME_ENGINES_IGNITED > (231)-1
FRAME_ENGINES_IGNITED < 1

FRAME_ENGINES_IGNITED.1
FRAME_ENGINES_IGNITED.2
FRAME_ENGINES_IGNITED.3

G_COUNTER I2 [-(214-l),
214-1]

-((214) -1) ≤ G_COUNTER ≤ (214)-1
G_COUNTER > (214)-1
G_COUNTER < -((214) -1)

G_COUNTER.1
G_COUNTER.2
G_COUNTER.3

G_ROTATION R8 [-1.0,
 1.0]

-1.≤ G_ROTATION < -P4
-P4 ≤ G_ROTATION < -P3
-P3 ≤ G_ROTATION < -P2
-P2 ≤ G_ROTATION < -P1
-P1 ≤ G_ROTATION < 0
0 ≤ G_ROTATION < P1
P1 ≤ G_ROTATION < P2
P2 ≤ G_ROTATION < P3
P3 ≤ G_ROTATION < P4
P4 ≤ G_ROTATION < 1
G_ROTATION > 1
G_ROTATION < -1

G_ROTATION.1
G_ROTATION.2
G_ROTATION.3
G_ROTATION.4
G_ROTATION.5
G_ROTATION.6
G_ROTATION.7
G_ROTATION.8
G_ROTATION.9
G_ROTATION.10
G_ROTATION.11
G_ROTATION.12

GP_ALTITUDE R8 [0.,
 2000.]

0.≤ GP_ALTITUDE ≤ ENGINES_ON_ALTITUDE
ENGINES_ON_ALTITUDE.< GP_ALTITUDE ≤
2000
GP_ALTITUDE > 2000
GP_ALTITUDE < 0

GP_ALTITUDE.1

GP_ALTITUDE.2

GP_ALTITUDE.3
GP_ALTITUDE.4

GP_ATTITUDE R8 [-l.,1.] -1. ≤ GP_ATTITUDE ≤ 1.
GP_ATTITUDE > 1.
GP_ATTITUDE < -1.

GP_ATTITUDE.1
GP_ATTITUDE.2
GP_ATTITUDE.3

GP_ROTATION R8 [-l.,1.] -1. ≤ GP_ROTATION(i,j) ≤ 1.
GP_ROTATION(i,j) > 1.
GP_ROTATION(i,j) > -1.

GP_ROTATION.1
GP_ROTATION.2
GP_ROTATION.3

GP_VELOCITY R8 [-100.,
 100.]

-100. ≤ GP_VELOCITY(I) ≤ 100.
GP_VELOCITY > 100.
GP_VELOCITY < -100.

GP_VELOCITY.1
GP_VELOCITY.2
GP_VELOCITY.3

INTERNAL_CMD R8 [-.7,
 1.7]

-.7 ≤ INTERNAL_CMD < 0
0 £ INTERNAL_CMD ≤ 1.0
1.0 < INTERNAL_CMD ≤ 1.7
INTERNAL_CMD > 1.7
INTERNAL_CMD < -.7

INTERNAL_CMD.1
INTERNAL_CMD.2
INTERNAL_CMD.3
INTERNAL_CMD.4
INTERNAL_CMD.5

PE_INTEGRAL R8 [-100.,
 100.]

-100 ≤ PE_INTEGRAL ≤ 100.
PE_INTEGRAL > l00.
PE_INTEGRAL < -100.

PE_INTEGRAL.1
PE_INTEGRAL.2
PE_INTEGRAL.3

SS_TEMP I2 [0,
(215)-1]

M3 - 0.15L ≤ SS_TEMP ≤ M4 + 0.15L
0 ≤ SS_TEMP < M3 - 0.15L
M4 + 0.15L < SS_TEMP ≤ (215)-1
SS_TEMP > (215)-1
SS_TEMP < 0

SS_TEMP.1
SS_TEMP.2
SS_TEMP.3
SS_TEMP.4
SS_TEMP.5

TD_COUNTER I2 [-215,
(215)-1]

TD_COUNTER = 0
TD_COUNTER = -1
-215 ≤ TD_COUNTER ≤ (215)-1

TD_COUNTER.1
TD_COUNTER.2
TD_COUNTER.3

TDLR_COUNTER I2 [0,
(215)-1]

0 ≤ TDLR_COUNTER ≤ (215)-1
TDLR_COUNTER > (215)-1
TDLR_COUNTER < 0

TDLR_COUNTER.1
TDLR_COUNTER.2
TDLR_COUNTER.3

TDLR_STATE Ll 0=UNLOCKED
1=LOCKED

BEAM UNLOCKED
BEAM LOCKED
INVALID

TDLR_STATE.1
TDLR_STATE.2
TDLR_STATE.3

TDLR_VELOCITY R8 [-100.,
 100.]

-100.≤ TDLR VELOCITY ≤ 100.
TDLR_VELOCITY > 100.
TDLR_VELOCITY < -100.

TDLR_VELOCITY.1
TDLR_VELOCITY.2
TDLR_VELOCITY.3

A-73

TDS_STATUS Ll 0=HEALTHY
1=FAILED

HEALTHY
FAILED
INVALID

TDS_STATUS.1
TDS_STATUS.2
TDS_STATUS.3

TE_INTEGRAL R8 [-100.,
 100.]

-100. ≤ TE_INTEGRAL ≤ 100.
TE_INTEGRAL > 100.
TE_INTEGRAL < -100.

TE_INTEGRAL.1
TE_INTEGRAL.2
TE_INTEGRAL.3

TE_LIMIT R8 [-100.,
 100.]

-100. ≤ TE_LIMIT < TE_MIN
TE_MIN ≤ TE_LIMIT ≤ TE_MAX
TE_MAX < TE_LIMIT ≤ 100.
TE_LIMIT > 100.
TE_LIMIT < -100.

TE_LIMIT.1
TE_LIMIT.2
TE_LIMIT.3
TE_LIMIT.4
TE_LIMIT.5

THERMO_TEMP I2 [0,
(215)-1]

M3 ≤ THERMO_TEMP ≤ M4
M3 - 0.15L ≤ THERMO_TEMP < M3
M4 < THERMO_TEMP ≤ M4 + 0.15L
0 ≤ THERMO_TEMP < M3 - 0.15L
M4 + 0.15L < THERMO_TEMP ≤ (215)-1
THERMO_TEMP > (215)-1
THERMO_TEMP < 0

THERMO_TEMP.1
THERMO_TEMP.2
THERMO_TEMP.3
THERMO_TEMP.4
THERMO_TEMP.5
THERMO_TEMP.6
THERMO_TEMP.7

THETA R8 [-p,p] -p ≤ THETA < -THETA2
-THETA2 ≤ THETA < -THETA1
-THETA1 ≤ THETA < 0
0 ≤ THETA < THETA1
THETA1 ≤ THETA < THETA2
THETA2 ≤ THETA ≤ p
THETA > p
THETA < -p

THETA.1
THETA.2
THETA.3
THETA.4
THETA.5
THETA.6
THETA.7
THETA.8

VELOCITY_ERROR R8 [-300.,
 20.]

-300. ≤ VELOCITY_ERROR ≤ 20.
VELOCITY_ERROR > 20.
VELOCITY_ERROR < -300.

VELOCITY_ERROR.1
VELOCITY_ERROR.2
VELOCITY_ERROR.3

YE_INTEGRAL R8 [-100.,
 100.]

-100. ≤ YE_INTEGRAL ≤ 100.
YE_INTEGRAL > 100.
YE_INTEGRAL < -100.

YE_INTEGRAL.1
YE_INTEGRAL.2
YE_INTEGRAL.3

A-74

Table A.9-2 : List of Test Cases by Equivalence Class Name

Equivalence Class Name Test case(s)
A_ACCELERATION.1 AECLP_NR_001--012.TC,

GP_NR_001--008.TC,
ASP_NR_001.TC, ASP_NR_002.TC

A_ACCELERATION.2 AECLP_RO_038.TC,
GP_RO_012.TC, GP_RO_014.TC, GP_RO_016.TC, GP_RO_018.TC, GP_RO_020.TC,
GP_RO_022.TC, GP_RO_024.TC, GP_RO_026.TC, GP_RO_028.TC,
ASP_RO_018.TC, ASP_RO_020.TC, ASP_RO_022.TC, ASP_RO_024.TC, ASP_RO_026.TC,
ASP_RO_028.TC, ASP_RO_030.TC, ASP_RO_032.TC, ASP_RO_034.TC, ASP_RO_036.TC,
ASP_RO_038.TC, ASP_RO_040.TC

A_ACCELERATION.3 AECLP_RO_037.TC,
GP_RO_011.TC, GP_RO_013.TC, GP_RO_015.TC, GP_RO_017.TC, GP_RO_019.TC,
GP_RO_021.TC, GP_RO_023.TC, GP_RO_025.TC, GP_RO_027.TC,
ASP_RO_017.TC, ASP_RO_019.TC, ASP_RO_021.TC, ASP_RO_023.TC, ASP_RO_025.TC,
ASP_RO_027.TC, ASP_RO_029.TC, ASP_RO_031.TC, ASP_RO_033.TC, ASP_RO_035.TC,
ASP_RO_037.TC, ASP_RO_039.TC

A_COUNTER.1 ASP_NR_001.TC, ASP_NR_003.TC, ASP_NR_016.TC
A_COUNTER.2 ASP_RO_013 -- 015.TC
A_COUNTER.3 ASP_RO_010 -- 012.TC
A_STATUS.1 ASP_NR_001.TC
A_STATUS.2 ASP_NR_003 -- 005.TC
A_STATUS.3 ASP_RO_041 -- 049.TC
AR_ALTITUDE.1 GP_NR_001--008.TC

ARSP_NR_011.TC, ARSP_NR_016.TC, ARSP_NR_017.TC
AR_ALTITUDE.2 GP_RO_048.TC, GP_RO_050.TC, GP_RO_052.TC,

ARSP_RO_007 -- 010.TC
AR_ALTITUDE.3 GP_RO_047.TC, GP_RO_049.TC, GP_RO_051.TC

ARSP_RO_003 -- 006.TC
AR COUNTER.1 ARSP_NR_011.TC, ARSP_NR_016.TC, ARSP_NR_017.TC, ARSP_NR_022.TC,

ARSP_NR_023.TC,
AR_COUNTER.2 ARSP_RO_001.TC
AR_COUNTER.3 ARSP_RO_002.TC
AR_STATUS.1 ARSP_NR_011.TC, ARSP_NR_016.TC, ARSP_NR_017.TC
AR_STATUS.2 ARSP_NR_012 -- 015.TC
AR_STATUS.3 ARSP_RO_018 -- 021.TC
ATMOSPHERIC_TEMP.1 ASP_NR_001.TC

GSP_NR_001.TC
ATMOSPHERIC_TEMP.2 ASP_RO_009.TC

GSP_RO_003.TC
ATMOSPHERIC_TEMP.3 ASP_RO_008.TC

GSP_RO_002.TC
FRAME_BEAM_UNLOCKED.1 TDLRSP_NR_001.TC, TDLRSP_NR_003.TC, TDLRSP_NR_005.TC,

TDLRSP_NR_007 -- 021.TC,
FRAME_BEAM_UNLOCKED.2 TDLRSP_RO_022.TC
FRAME_BEAM_UNLOCKED.3 TDLRSP_RO_023.TC
FRAME COUNTER.1 TDLRSP_NR_001.TC, TDLRSP_NR_003.TC, TDLRSP_NR_005.TC,

TDLRSP_NR_007 -- 021.TC
FRAME COUNTER.2 TDLRSP_RO_024.TC
FRAME COUNTER.3 TDLRSP_RO_025.TC
FRAME_ENGINES_IGNITED.1 GP_NR_001-008.TC, GP_NR_053.TC,

AECLP_NR_001-012.TC
FRAME_ENGINES_IGNITED.2 AECLP_RO_056.TC
FRAME_ENGINES_IGNITED.3 AECLP_RO_057.TC
G_COUNTER.1 GSP_NR_001.TC
G_COUNTER.2 GSP_RO_007 -- 009.TC
G_COUNTER.3 GSP_RO_004 -- 006.TC
G_ROTATION.1 RECLP_NR_046,056--058,068.TC
G_ROTATION.2 RECLP_NR_039,040,048.TC

A-75

Table A.9-2 : (Continued)

Equivalence Class Name Test case(s)
G_ROTATION.3 RECLP_NR_015--017.TC

RECLP_NR_020,031,032,036,038,050,055.TC
G_ROTATION.4 RECLP_NR_023--026,033.TC
G_ROTATION.5 AECLP_NR_005--007.TC, AECLP_NR_011--012.TC

GP_NR_005--008.TC
RECLP_NR_003--006,011,012.TC

G_ROTATION.6 AECLP_NR_001--004.TC, AECLP_NR_008,010.TC
GP_NR_001--008.TC
RECLP_NR_001--059.TC, RECLP_NR_064-067.TC

G_ROTATION.7 RECLP_NR_022,027,028,034.TC
G_ROTATION.8 AECLP_NR_004,010.TC

GP_NR_001--004.TC
RECLP_NR_013,014,018,019.TC
RECLP_NR_021,029,030,035,037.TC

G_ROTATION.9 GP_NR_002--004.TC
RECLP_NR_010.TC, RECLP_NR_041--044.TC,
RECLP_NR_047,049,051.TC

G_ROTATION.10 AECLP_NR_005--007.TC
GP_NR_001.TC
RECLP_NR_001--059.TC, RECLP_NR_064-067.TC

G_ROTATION.11 RECLP_RO_060.TC,
GP_RO_069--071.TC, GP_RO_075--077.TC, GP_RO_081-083.TC

G_ROTATION.12 RECLP_RO_061.TC,
GP_RO_066--068.TC, GP_RO_072--074.TC, GP_RO_078--080.TC

GP_ALTITUDE.1 AECLP_NR_001--012.TC,
GP_NR_001--008.TC

GP_ALTITUDE.2 AECLP_RO_039,040,042,044,045,047.TC
GP_ALTITUDE.3 AECLP_RO_014.TC,

GP_RO_010.TC
GP_ALTITUDE.4 AECLP_RO_013.TC,

GP_RO_009.TC
GP_ATTITUDE.1 AECLP_NR_001--012.TC,

GP_NR_001--008.TC
GP_ATTITUDE.2 AECLP_RO_016.TC,

GP_RO_029.TC, GP_RO_031.TC, GP_RO_033.TC, GP_RO_035.TC, GP_RO_037.TC,
GP_RO_039.TC, GP_RO_041.TC, GP_RO_043.TC, GP_RO_045.TC

GP_ATTITUDE.3 AECLP_RO_015.TC,
GP_RO_030.TC, GP_RO_032.TC, GP_RO.034_TC, GP_RO_036.TC, GP_RO_038.TC,
GP_RO_040.TC, GP_RO_042.TC, GP_RO_044.TC, GP_RO_046.TC

GP_ROTATION.1 AECLP_NR_001--012.TC,
GP_NR_001--008.TC

GP_ROTATION.2 AECLP_RO_018.TC, AECLP_RO_020.TC
GP_ROTATION.3 AECLP_RO_017.TC, AECLP_RO_019.TC
GP_VELOCITY.1 AECLP_NR_001--012.TC,

GP_NR_001--008.TC
GP_VELOCITY.2 AECLP_R0_022.TC, AECLP_RO_024.TC, AECLP_RO_026.TC,

GP_RO_055.TC, GP_RO_057.TC, GP_RO_059.TC, GP_RO_60.TC, GP_RO_062.TC,
GP_RO_064.TC

GP_VELOCITY.3 AECLP_RO_021.TC, AECLP_RO_023.TC, AECLP_R0_025.TC,
GP_RO_O54.TC, GP_RO_056.TC, GP_RO_058.TC, GP_RO_061.TC, GP_RO_63.TC, GP_RO_65.TC

INTERNAL_CMD.1 AECLP_NR_004,008,009.TC
INTERNAL_CMD.2 AECLP_NR_001--007.TC
INTERNAL_CMD.3 AECLP_NR_055.TC
INTERNAL_CMD.4 AECLP_RO_049.TC, AECLP_RO_051.TC, AECLP_RO_053.TC
INTERNAL_CMD.5 AECLP_RO_048.TC, AECLP_RO_050.TC, AECLP_RO_052.TC
PE_INTEGRAL.1 AECLP_NR_001--012.TC
PE_INTEGRAL.2 AECLP_RO_028.TC

A-76

Table A.9-2 : (Continued)
Equivalence Class Name Test case(s)
PE_INTEGRAL.3 AECLP_RO_027.TC
SS_TEMP.1 TSP_NR_001.TC
SS_TEMP.2 TSP_NR_002.TC
SS_TEMP.3 TSP_NR_003.TC
SS_TEMP.4 TSP_RO_004.TC
SS_TEMP.5 TSP_RO_005.TC
TD_COUNTER.1 TDSP_NR_001.TC
TD_COUNTER.2 TDSP_NR_002.TC
TD_COUNTER.3 TDSP_NR_003.TC
TDLR_COUNTER.1 TDLRSP_NR_001.TC, TDLRSP_NR_003.TC, TDLRSP_NR_005.TC,

TDLRSP_NR_007 -- 021.TC,
TDLR_COUNTER.2 TDLRSP_RO_028.TC
TDLR_COUNTER.3 TDLRSP_RO_027.TC
TDLR_STATE.1 TDLRSP_NR_001.TC, TDLRSP_NR_007 -- 021.TC,
TDLR_STATE.2 TDLRSP_NR_005.TC, TDLRSP_NR_007 -- 021.TC,
TDLR_STATE.3 TDLRSP_RO_026.TC
TDLR_VELOCITY.1 GP_NR_001--008.TC
TDLR_VELOCITY.2 GP_RO_085.TC, GP_RO_087.TC, GP_RO_089.TC, GP_RO_091.TC, GP_RO_093.TC,

GP_RO_095.TC, GP_RO_097.TC, GP_RO_099.TC, GP_RO_101.TC
TDLR_VELOCITY.3 GP_RO_084.TC, GP_RO_086.TC, GP_RO_088.TC, GP_RO_090.TC, GP_RO_092.TC,

GP_RO_094.TC, GP_RO_096.TC, GP_RO_098.TC, GP_RO_100.TC
TDS_STATUS.1 TDSP_NR_001 -- 003.TC
TDS_STATUS.2 TDSP_NR_004 -- 006.TC
TDS_STATUS.3 TDSP_RO_007.TC
TE_INTEGRAL.1 AECLP_NR_001--012.TC
TE_INTEGRAL.2 AECLP_RO_30.TC
TE_INTEGRAL.3 AECLP_RO_029.TC
TE_LIMIT.1 AECLP_NR_005.TC, AECLP_RO_029,033.TC
TE_LIMIT.2 AECLP_NR_006-009.TC
TE_LIMIT.3 AECLP_RO_030,034.TC
TE_LIMIT.4 AECLP_RO_032.TC
TE_LIMIT.5 AECLP_RO_031.TC
THERMO_TEMP.1 TSP_NR_001.TC
THERMO_TEMP.2 TSP_NR_006.TC
THERMO_TEMP.3 TSP_NR_007.TC
THERMO_TEMP.4 TSP_NR_008.TC
THERMO_TEMP.5 TSP_NR_009.TC
THERMO_TEMP.6 TSP_RO_010.TC
THERMO_TEMP.7 TSP_RO_011.TC
THETA.1 RECLP_NR_010,011,019,020,027,034,035,037.TC

RECLP_NR_040,041,046,048,050-054,066.TC
THETA.2 RECLP_NR_006,007,026,030,031.TC
THETA.3 RECLP_NR_002,003,014,015,022,023,054,059.TC

RECLP_NR_064.TC
THETA.4 RECLP_NR_001,004,013,016,021,024,065,068.TC
THETA.5 RECLP_NR_005,008,028,029.TC
THETA.6 RECLP_NR_009,012,017,018,025,032,033,036.TC

RECLP_NR_038,039,042-045,047,049,055-058.TC
RECLP_NR_067.TC

THETA.7 RECLP_RO_062.TC
THETA.8 RECLP_RO.063.TC
VELOCITY_ERROR.1 AECLP_NR_001--012.TC
VELOCITY_ERROR.2 AECLP_RO_034.TC
VELOCITY_ERROR.3 AECLP_RO_033.TC
YE_INTEGRAL.1 AECLP_NR_001--012.TC
YE_INTEGRAL.2 AECLP_RO_036.TC
YE_INTEGRAL.3 AECLP_RO_035.TC

A-77

A.10 Traceability Matrix For Requirements-based Test Cases

Table A.10-1 is the Traceability Matrix with Requirements test cases filled in. It gives a
detailed listing of the GCS requirements and gives the test cases that test those requirements.
Note that cases listed fall into the normal range category as defined by DO-178B because they
verify that the software functions according to the GCS Specification. Since these cases are
requirements-based, this table is identical for both the Mercury and Pluto implementations.
Hence the information is placed here instead of in the results document.

Table A.10-1 : Traceability Matrix with Requirements -based Test cases

Functional Requirements TESTCASE NAME
0-1 Specify four separate, globally accessible data stores:
 EXTERNAL,
 GUIDANCE_STATE,
 RUN_PARAMETERS, and
 SENSOR_OUTPUT.

All Test Cases

2-1 Control flow of the frame processing.
2-1.1 The appropriate control flow for a frame is:
 1) call to GCS_SIM_RENDEZVOUS.
 2) Satisfy the Sensor Processing subframe requirements (2-2).
 3) Call to GCS_SIM_RENDEZVOUS.
 4) Satisfy Guidance Processing subframe requirements (2-3).
 5) Call to GCS_SIM_RENDEZVOUS
 6) Satisfy Control Law Processing subframe requirements (2-4)
 7) Terminate if GP_PHASE = 5 (2-1.2).

FRAME_001-009.TC

2-1.1-1 GP_PHASE transition from 1 to 2 FRAME_001.TC
2-1.1-2 GP_PHASE = 2, just before AE_TEMP transition FRAME_002.TC
2-1.1-3 AE_TEMP transitions from WARM to HOT and CHUTE_RELEASED

transitions from 0 to 1
FRAME_003.TC

2-1.1-4 GP_PHASE transitions from 2 to 3 FRAME_004.TC
2-1.1-5 CONTOUR_CROSSED transitions from 0 to 1 FRAME_005.TC
2-1.1-6 Frame after CONTOUR_CROSSED transitions FRAME_006.TC
2-1.1-7 CL = 2 FRAME_007.TC
2-1.1-8 GP_PHASE transitions from 3 to 4 FRAME_008.TC
2-1.2 The implementation is to terminate immediately upon completion of
the Control Law Processing subframe requirements during the frame in
which GP_PHASE is set to 5.

FRAME_009.TC

2-2 Sensor Processing subframe requirements.
2-2.1 Satisfy the TSP requirements (2.1.5) prior to fulfilling any of the
 other requirements in (2.1.1 and 2.1.4).

SP_001.TC

2-2.2 Satisfy all requirements in the sensor processing requirements
 hierarchy (2.1).

SP_001.TC

2-2.3 Satisfy all requirements in the communications processing
 requirements (2.4) upon satisfying 2-2.1.

SP_001.TC

2-2.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS
 specification.

SP_001.TC

2-3 The Guidance Processing subframe requirements.
2-3.1 Satisfy all requirements in the guidance processing requirements
 (2.2).

GPSF_001-008.TC

A-78

2-3.2 Satisfy all requirements in the communications processing
 requirements (2.4) upon satisfying 2-3.1.

GPSF_001-008.TC

2-4 The Control Law Processing subframe requirements.
2-4.1 Satisfy the AECLP requirements (2.3.1) prior to fulfilling any of the
 CRCP requirements (2.3.3).

CLP_001-014.TC

2-4.2 Satisfy all requirements in the control law processing requirements
 hierarchy (2.3).

CLP_001-014.TC

2-4.3 Satisfy all requirements in the communications processing
 requirements (2.4) upon satisfying 2-4.1.

CLP_001-014.TC

2-4.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS
 specification.

CLP_001-014.TC

2.1 SP -- Sensor Processing

2.1.1 ASP -- Accelerometer Sensor Processing

2.1.1-1 Rotate variables. ASP_NR_006-007.TC
2.1.1-2 Adjust gain for temperature. ASP_NR_001-005.TC

2.1.1-3 Remove characteristic bias. ASP_NR_001-005.TC

2.1.1-4 Correct for misalignment. ASP_NR_001-005.TC

2.1.1-5 Determine Accelerations.
2.1.1-5.1 Acceleration based on current A_COUNTER. ASP_NR_001.TC,

ASP_NR_003-005.TC
2.1.1-5.2 Acceleration based on mean of previous accelerations. ASP_NR_002.TC
2.1.1-6 Determine Accelerometer Status
2.1.1-6.1 A_STATUS = healthy ASP_NR_001.TC
2.1.1-6.2 A_STATUS = unhealthy ASP_NR_002.TC
2.1.2 ARSP -- Altimeter Radar Sensor Processing
2.1.2-1 Rotate variables. ARSP_NR_022-023.TC
2.1.2-2 Determine altitude when echo is received. (based on AR_COUNTER) ARSP_NR_016.TC,

ARSP_NR_017.TC,
ARSP_NR_022.TC

2.1.2-3 Determine altitude when echo is not received
2.1.2-3.1 Determine altitude based on third-order polynomial. ARSP_NR_011.TC
2.1.2-3.2 Determine altitude based on previous calculation. ARSP_NR_012-015.TC
2.1.2-4 Set altimeter radar status.
2.1.2-4.1 AR_STATUS = healthy ARSP_NR_022.TC
2.1.2-4.2 AR_STATUS = failed ARSP_NR_011.TC,

ARSP_NR_012.TC
2.1.2-5 Set values of K_ALT.
2.1.2-5.1 K_ALT = 1 ARSP_NR_011.TC
2.1.2-5.2 K_ALT = 0 ARSP_NR_012-015.TC
2.1.3 TDLRSP -- Touch Down Landing Radar Sensor Processing
2.1.3-1 Rotate variables TDLRSP_NR_001.TC
2.1.3-2 Determine state for each radar beam.
2.1.3-2.1 TDLR_STATE = unlocked. TDLRSP_NR_005.TC
2.1.3-2.2 TDLR_STATE = locked. TDLRSP_NR_001.TC
2.1.3-3 Determine Whether to set FRAME_BEAM_UNLOCKED
2.1.3-3.1 Set FRAME_BEAM_UNLOCKED to FRAME_COUNTER TDLRSP_NR_003.TC,

TDLRSP_NR_005.TC
2.1.3-3.2 Leave FRAME_BEAM_UNLOCKED unchanged TDLRSP_NR_001.TC
2.1.3-4 Calculate the beam velocities TDLRSP_NR_001.TC
2.1.3-5 Process beam velocities based on which beam(s) locked.

A-79

2.1.3-5.1 no beams locked TDLRSP_NR_005.TC
2.1.3-5.2 Beam1 locked TDLRSP_NR_007.TC
2.1.3-5.3 Beam2 locked TDLRSP_NR_008.TC
2.1.3-5.4 Beam3 locked TDLRSP_NR_009.TC
2.1.3-5.5 Beam4 locked TDLRSP_NR_010.TC
2.1.3-5.6 Beam1 & Beam2 locked TDLRSP_NR_011.TC
2.1.3-5.7 Beam1 & Beam3 locked TDLRSP_NR_012.TC
2.1.3-5.8 Beam1 & Beam4 locked TDLRSP_NR_013.TC
2.1.3-5.9 Beam2 & Beam3 locked TDLRSP_NR_014.TC
2.1.3-5.10 Beam2 & Beam4 locked TDLRSP_NR_015.TC
2.1.3-5.11 Beam3 & Beam4 locked TDLRSP_NR_016.TC
2.1.3-5.12 Beam1, Beam2, & Beam3 locked TDLRSP_NR_017.TC
2.1.3-5.13 Beam1, Beam2, & Beam4 locked TDLRSP_NR_018.TC
2.1.3-5.14 Beam1, Beam3, & Beam4 locked TDLRSP_NR_019.TC
2.1.3-5.15 Beam2, Beam3, & Beam4 locked TDLRSP_NR_020.TC
2.1.3-5.16 Beam1, Beam2, Beam3, & Beam4 locked TDLRSP_NR_001.TC,

TDLRSP_NR_021.TC
2.1.3-6 Convert to body velocities. TDLRSP_NR_001.TC
2.1.3-7 Set values in K_MATRIX.
2.1.3-7.1 Kx = 0 TDLRSP_NR_007-010.TC
2.1.3-7.2 Kx = 1 TDLRSP_NR_001.TC
2.1.3-7.3 Ky = 0 TDLRSP_NR_007-010.TC
2.1.3-7.4 Ky = 1 TDLRSP_NR_001.TC
2.1.3-7.5 Kz = 0 TDLRSP_NR_007-010.TC
2.1.3-7.6 Kz = 1 TDLRSP_NR_001.TC
2.1.3-8 Set TDLR_STATUS. TDLRSP_NR_001.TC
2.1.4 GSP -- Gyroscope Sensor Processing
2.1.4-1 Rotate variables. GSP_NR_001.TC
2.1.4-2 Determine the vehicle rotation rates along each of the vehicle's
 three axes.

2.1.4-2.1 Adjust gain. GSP_NR_001.TC
2.1.4-2.2 Convert G_COUNTER. GSP_NR_001.TC
2.1.4-3 Set gyroscope status to healthy. GSP_NR_001.TC
2.1.5 TSP -- Temperature Sensor Processing
2.1.5-1 Calculate solid state temperature TSP_NR_001-002.TC
2.1.5-2 Calculate Thermal Temperature TSP_NR_001.TC
2.1.5-3 Determine which Temperature to use (SS or Thermocouple)
2.1.5-3.1 Calculate the Thermo sensor upper limit TSP_NR_001-002.TC
2.1.5-3.2 Calculate the Thermo sensor lower limit TSP_NR_001-002.TC
2.1.5-4 Determine Atmospheric Temperature TSP_NR_001-002.TC
2.1.5-5 Set status to healthy. TSP_NR_001.TC
2.1.6 TDSP -- Touch Down Sensor Processing
2.1.6-1 Determine status of touch down sensor. TDSP_NR_001-003.TC
2.1.6-2 Determine whether touch down has been sensed. TDSP_NR_001-003.TC
2.2 GP -- Guidance Processing
2.2-1 Rotate variables. GP_NR_001-008.TC
2.2-2 Determine the attitude, velocities, and altitude.
2.2-2.1 Set up the GP_ROTATION matrix. GP_NR_001-008.TC
2.2-2.2 Calculate new values of attitude, velocity, and altitude. GP_NR_001-008.TC

A-80

2.2-3 Determine if the engines should be on or off.
2.2-3.1 Engines on GP_NR_003-008.TC
2.2-3.2 Engines off GP_NR_001-002.TC
2.2-4 Set FRAME_ENGINES_IGNITED GP_NR_002.TC
2.2-5 Determine velocity error. GP_NR_001-008.TC
2.2-6 Determine optimal velocity GP_NR_001-008.TC
2.2-7 Determine if contour has been crossed. GP_NR_001-008.TC
2.2-8 Determine guidance phase.
2.2-8.1 GP_PHASE = 1 GP_NR_001.TC
2.2-8.2 GP_PHASE = 2 GP_NR_001-004.TC
2.2-8.3 GP_PHASE = 3 GP_NR_004-008.TC
2.2-8.4 GP_PHASE = 4 GP_NR_008.TC
2.2-8.5 GP_PHASE = 5 GP_NR_102-106.TC
2.2-9 Determine which set of control law parameters to use.
2.2-9.1 CL = 1 GP_NR_001-008.TC
2.2-9.2 CL = 2 GP_NR_053.TC
2.3 CLP -- Control Law Processing
2.3.1 AECLP -- Axial Engine Control Law Processing
2.3.1-1 Generate the appropriate axial engine commands when
 AE_CMD=ON.

2.3.1-1.1 Determine engine temperature
2.3.1-1.1.1 AE_TEMP = COLD AECLP_NR_001-002.TC
2.3.1-1.1.2 AE_TEMP = WARM AECLP_NR_003.TC, AECLP_NR_010.TC
2.3.1-1.1.3 AE_TEMP = HOT AECLP_NR_004-009.TC,

AECLP_NR_011-012.TC
2.3.1-1.2 Compute limiting errors for pitch AECLP_NR_001-012.TC
2.3.1-1.3 Compute limiting error for yaw AECLP_NR_001-012.TC
2.3.1-1.4 Compute limiting error for thrust AECLP_NR_001-012.TC
2.3.1-1.5 Compute pitch, yaw, and thrust errors.
2.3.1-1.5.1 CHUTE_RELEASED = 1 AECLP_NR_004-009.TC,

AECLP_NR_011-012.TC
2.3.1-1.5.2 CHUTE_RELEASRD = 0 AECLP_NR_001-003.TC,

AECLP_NR_010.TC
2.3.1-1.5.3 CONTOUR_CROSSED = 1 AECLP_NR_005-009.TC,

AECLP_NR_012.TC
2.3.1-1.5.4 CONTOUR_CROSSED = 0 AECLP_NR_001-004.TC,

AECLP_NR_010-011.TC
2.3.1-1.6 Compute INTERNAL_CMD AECLP_NR_001-0012.TC,

AECLP_NR_055.TC
2.3.1-1.7 Compute axial engine valve settings (AE_CMD).
2.3.1-1.7.1 when INTERNAL_CMD < 0.0 AECLP_NR_004.TC
2.3.1-1.7.2 when 0.0 ≤ INTERNAL_CMD ≥ 1.0 AECLP_NR_001-003.TC,

AECLP_NR_006-012.TC
2.3.1-1.7.3 when 1.0 < INTERNAL_CMD AECLP_NR_055.TC
2.3.1-2 Generate the appropriate axial engine commands when
 AE_CMD=OFF.

2.3.1-2.1 Set AE_CMD = 0 AECLP_NR_054.TC
2.3.1-3 Set axial engine status to healthy. AECLP_NR_001-012.TC
2.3.2 RECLP -- Roll Engine Control Law Processing
2.3.2-1 Generate the appropriate roll engine command. RECLP_NR_001-059.TC,

RECLP_NR_064-068.TC

A-81

2.3.2-2 Set roll engine status to healthy. RECLP_NR_001-059.TC,
RECLP_NR_064-068.TC

2.3.3 CRCP -- Chute Release Control Processing
2.3.3-1 Determine appropriate parachute release command.
2.3.3-1.1 AE_TEMP = COLD CRCP_NR_001-002.TC
2.3.3-1.2 AE_TEMP = WARM CRCP_NR_003-004.TC
2.3.3-1.3 AE_TEMP = HOT CRCP_NR_005-006.TC
2.3.3-1.4 CHUTE_RELEASED = 0 CRCP_NR_001.TC, CRCP_NR_003.TC,

CRCP_NR_005.TC
2.3.3-1.5 CHUTE_RELEASED = 1 CRCP_NR_002.TC, CRCP_NR_004.TC,

CRCP_NR_006.TC
2.4 CP -- Communications Processing
2.4-1 Set communicator status to healthy. CP_NR_001-005.TC
2.4-2 Get synchronization pattern. CP_NR_001-005.TC
2.4-3 Determine sequence number. CP_NR_001-005.TC
2.4-4 Prepare sample mask.
2.4-4.1 Subframe 1 mask CP_NR_001.TC
2.4-4.2 Subframe 2 mask CP_NR_002.TC
2.4-4.3 Subframe 3 mask CP_NR_003.TC
2.4-5 Prepare data section.
2.4-5.1 Use subframe 1 data CP_NR_001.TC
2.4-5.2 Use subframe 2 data CP_NR_002.TC
2.4-5.3 Use subframe 3 data CP_NR_003.TC
2.4-2.5 Calculate checksum. CP_NR_001-005.TC

A.11 Test Case Summary

This section summarizes all the files used in GCS testing into 2 tables and is created for quick
referencing when carrying out procedures for generating test cases (section A.12) or executing
test cases (Test Case Execution Procedures). Files used for requirements-based testing are given
in Table A.11-1 and those for structural testing are given in Table A.11-2. Table A.11-1
organizes the files for requirements-based test cases by the four phases as described in the
Software Verification Plan . Structural test cases in Table A.11-2 are divided by the two
implementations because they are implementation specific. Both tables divide all files into 2
general groups:

1. the files used for generating the test-inputs and expected-values files on the SUN platform
2. the files used for executing the test cases on the VAX platform.

Files used for generating test cases are in a separate group because they are generated using
Mathematica (ref. A.7). For the GCS project, Mathematica is supplied for the SUN platform
only hence these files are effectively used only on that platform. These files are further divided
into three groups separated by vertical doted lines. Files specific to a functional unit are listed in
a row. Files containing actual test data are in the Data Files sub-column; files used in test case
generation are in the Support Files sub-column; finally, utility files are in their own sub-column.
The utility files are used throughout the test case generating process and are not specific to any
functional unit subframe or frame. Although some utility files are used by only a small subset of
cases, fetching them for other test cases will not hurt if they are not used. As stated in the Test
Cases Overview, the Data Files are used to generate the Test-Input and Expected-Values files
using the procedure in section A.12. It is the TC and EX files that are used in testing the

A-82

implementations. It should be noted that files for generating CP functional unit and trajectory test
cases are not list in the generating column but given in a special blocks in the executing column.
This is because trajectory test cases are generated on the VAX running the Venus prototype with
the GCS Simulator. CP test cases are generated on the VAX because CP is sensitive to the bit
representation of numerical values. CP_NR_xx.EX files are generated on the VAX from
CP_NR_xx.TC files. This is more apparent after reviewing the procedures for generating
trajectory and CP functional unit test cases in section A.12.

Files used for executing test cases on the VAX platform are also divided into 3 groups. The
first group are the Test-Inputs files (with “.tc” extension) and Expected-Values files (with “.ex”
or “.seed” extension). These ASCII files are the outputs of the test case generating process and
are transferred from the SUN. Samples of these files are given in section A.14. The second
group consists of files that facilitate test case execution. These files are sometime refered to as
test stubs or test drivers and an example is given in section A.15. They are, in general, VMS
FORTRAN files and VMS DCL files. The third group are again utility files used for different
phases of testing. This section of the table is referenced when carrying out test case execution
procedures.

A-83

Table A.11-1: File list for requirements-based test suites.
Test Phase Generating

Test Case Input and Expected Values files
(Using Mathematica on the SUN)

Executing
Test Cases with both implementations

(Using VAX Fortran Programming Environment)
 Data files

(Implementati
on

independent)

Support files
(Implementation

independent)

Utility Files
for

generating
test case
input and
expected

values files

Output files from
Mathematica
serve as input

files for test case
execution

Test execution
support files

(implementation
specific for all

test phases
except for

trajectory tests)

Utility Files
for executing test

cases

Functional
Units

NR = Normal
Range Test Case

RO =
Robustness Test

Case

arsp_nr_xxx.m
arsp_ro_xxx.m

asp_nr_xxx.m
asp_ro_xxx.m

gsp_nr_xxx.m
gsp_ro_xxx.m

tdlrsp_nr_xxx.
m
tdlrsp_ro_xxx.
m

tdsp_nr_xxx.m
tdsp_ro_xxx.m

tsp_nr_xxx.m
tsp_ro_xxx.m

gp_tc.xx

aeclp_tc.xx

crcp_tc.xx

reclp_tc.xx

arsp.m
run_arsp_tc.m

asp.m
run_asp_tc.m

gsp.m
run_gsp_tc.m

tdlrsp.m
run_tdlrsp_tc.m

tdsp.m
run_tdsp_tc.m

tsp.m
run_tsp_tc.m

gp.m
run_gp.xx

aeclp.m
run_aeclp.xx

crcp.m
run_crcp.xx

reclp.m
run_reclp.xx

input
namelist1
namelist_ex
write_nml.m
write_exnml.
m

arsp_nr_xxx.tc,
ex
arsp_ro_xxx.tc,
ex

asp_nr_xxx.tc, ex
asp_ro_xxx.tc, ex

gsp_nr_xxx.tc, ex
gsp_ro_xxx.tc, ex

tdlrsp_nr_xxx.tc,
ex
tdlrsp_ro_xxx.tc,
ex

tdsp_nr_xxx.tc,
ex
tdsp_ro_xxx.tc,
ex

tsp_ro_xxx.tc, ex
tsp_nr_xxx.tc, ex

gp_nr_xxx.tc, ex
gp_ro_xxx.tc, ex

aeclp_nr_xxx.tc,
ex
aeclp_ro_xxx.tc,
ex

reclp_nr_xxx.tc,
ex
reclp_ro_xxx.tc,
ex

crcp_nr_xxx.tc,
ex
crcp_ro_xxx.tc,
ex

cp_nr_xx.tc, ex

i_lnkarsp.com
i_test_arsp.for

i_lnkasp.com
i_test_asp.for

i_lnkgsp.com
i_test_gsp.for

i_lnktdlrsp.com
i_test_tdlrsp.for

i_lnktdsp.com
i_test_tdsp.for

i_lnktsp.com
i_test_tsp.for

i_lnkgp.com
i_test_gp.for

i_lnkaeclp.com
i_test_aeclp.for

i_lnkreclp.com
i_test_reclp.for

i_lnkcrcp.com
i_test_crcp.for

i_lnkcp.com
i_test_cp.for

(files for
generating CP
expected values)
common.inc
cp.for
cp.com

struct.for_inc
commons.for_inc
compare_external.fo
r
compare_guidance.f
or
compare_runpram.f
or
compare_sensor.for
read_tc.for
read_ex.for
i_tc_driver.com

name_list.inc
exname_list.inc

A-84

Subframe sp_001.m

gpsf_tc.xx

clp_tc.xx

arsp.m, asp.m
gsp.m, tsp.m
tdsp.m, tdlrsp.m

run_gpsf.xx
gp.m

run_clp.xx
aeclp.m
reclp.m
crcp.m

 sp_001.tc, ex

gpsf_xx.tc, ex

clp_xx.tc, ex

i_lnksp.com
i_test_sp.for
i_sp_driver.com

i_lnkgpsf.com
i_test_gpsf.for
i_gpsf_driver.co
m

i_lnkclp.com
i_test_clp.for
i_clp_driver,.com

cp_ex.for

Frame frame_xx.m frame.m
run_frame_tc.m
arsp.m, asp.m,
gsp.m, tsp.m,
tdsp.m, tdlrsp.m
gp.m, aeclp.m,
reclp.m,, crcp.m

 frame_xx.tc, ex i_lnkframe.com
i_test_frame.for
i_frame_driver.co
m

A-85

Table A.11-1 (continued): File list for requirements-based test suites.

Test Phase Generating
Test Case Input and Expected

Values files
(Using Mathematica on the

SUN)

Executing
Test Cases with both implementation.s

(Using VAX Fortran Programming Environment)

 Output files from
Mathematica

serve as input files
for test case
execution

Test execution
support files

(implementation
specific for all test
phases except for
trajectory tests)

Utility Files
for executing test cases

Trajectory Simulator Input and expected-
values files generated on the

VAX

traj_atm_ic_xx.tc
traj_atm_ud_xx.tc
traj_atm_xx.seed

traj_td_ic_xx.tc
traj_td_ud_xx.tc
traj_td_xx.seed

i_traj.com
i_run_traj.com
i_build.com

(files for creating
trajectory expected
values)
venusrs.exe
venus_runges
 _switches.dat
runsimi.com
do_assign.com
venus_traj.com
run_venus_traj.com

traj_sim.exe
page_align.opt
gcs_sim_rendezvous.obj
gcs_setup.obj
gcs_who_am_i.obj
gcs_list.dat
gcs_sim_switches.dat
tabular_data.dat
accuracy.dat
alternate_accuracy.dat
limits.dat

Table A.11-1 and A.11-2 are a handy quick references of all the files involved for any specific
test suite. For example, to regenerate test-input and expected-values files for the GP functional
unit, the tester may survey Table A.11-1 and see that gp_tc.xx data files are needed; gp.m, and
run_gp.xx support files are needed; and the utility files are needed.

File names in both Table A.11-1 and A.11-2 have been abbreviated to show only the group
names. Names given in the tables with “xx” and “xxx” in the name denote a group of files where
the specific file name can be derived by substituting the “x” with two or three digits. The full
unabbreviated list is given in the Test Case Overview. File names with “i_” in the execution
support file sub-column are implementation specific where the “i” is the initial of the
implementation. “P” for Pluto files and “M” for Mercury files.

A-86

Table A.11-2: File list for structural testing of Mercury and Pluto.

Test Phase
(Structural)

Generating
Test Case Input and Expected Values files

(Using Mathematica on the SUN)

Executing
Test Cases with both implementations.

(Using VAX Fortran Programming Environment)

 Data files

Support files

Utility Files
for generating
test case input
and expected
values files

Output files
from

Mathematica
serve as input

files for test case
execution

Test execution
support files

(implementatio
n specific for
all test phases

except for
trajectory tests)

Utility Files
for executing test

cases

Mercury m_aeclp_st.xx

m_gp_st.xx

m_reclp_st.xx

m_asp_st_xx.
m

m_arsp_st_xx.
m

m_tdlrsp_st_x
x.m

m_tsp_st_001.
m

m_run_aeclp_st.x
x

m_run_gp_st.xx

m_run_reclp_st.x
x

input
namelist1
namelist_ex
write_nml.m
write_exnml.m

m_aeclp_st.xx.tc,
ex

m_gp_st_xx.tc, ex

m_reclp_st_xx.tc,
ex

m_asp_st_xx.tc,
ex

m_arsp_st_xx.tc,
ex

m_tdlrsp_st_xx.tc,
ex

m_tsp_st_001.tc,
ex

m_lnkaeclp.com
m_test_aeclp.for

m_lnkgp.com
m_test_gp.for

m_lnkreclp.com
m_test_reclp.for

m_lnkasp.com
m_test_asp.for

m_lnkarsp.com
m_test_arsp.for

m_lnktdlrsp.com
m_test_tdlrsp.for

m_lnktsp.com
m_test_tsp.for

st_driver.com

struct.for_inc
commons.for_inc
compare_external.f
or
compare_guidance.f
or
compare_runpram.f
or
compare_sensor.for
read_tc.for
read_ex.for

Pluto aeclp_pst_xx.
m

asp_pst_xx.m

gp_pst_xx.m

reclp_pst_xx.
m

run_aeclp_pst.m

run_asp_pst.m

run_gp_pst.m

run_reclp_pst.m

gp_pst_st7_code.
m
write_nml_st7.m
write_exnml_st7.
m

aeclp_pst_xx. tc,
ex

asp_pst_xx. tc, ex

gp_pst_xx. tc, ex

reclp_pst_xx. tc,
ex

p_lnkaeclp.com
p_test_aeclp.for

p_lnkasp.com
p_test_asp.for

p_lnkgp.com
p_test_gp.for

p_lnkreclp.com
p_test_reclp.for

p_tc_driver.com

A-87

A.12 Procedure To Generate Test Cases

All test cases, except trajectory and CP are generated on the SUN platform due to available
licensing for Mathematica. The files generated on the SUN (the “.tc” and “.ex” files) are then
transferred to the VAX platform for use in executing the test case for each implementation. The
file naming convention for each step of the process is given in Tables G-1 and will be described
in the procedures where the files are used. For all functional units other than CP, a model is
created using Mathematica, before test cases are developed. Mathematica is a programming tool
that allows complex computations to be easily modeled.

Generating Functional Unit Requirements-based Test Cases

All test cases, except trajectory and CP are generated on the SUN platform due to available
licensing for Mathematica. The files generated on the SUN (files with “.tc” and “.ex” extensions)
are then transferred to the VAX platform for use in executing the test case for each
implementation. The file naming convention for each step of the process is given in Tables G-1
and will be described in the procedures where the files are used. For all functional units other
than CP, a model is created using Mathematica, before test cases are developed. Mathematica is
a programming tool that allows complex computations to be easily modeled. Then, based on the
input list given for a functional unit in the GCS Specification, relevant parameters are identified
for the test suite for each functional unit. The relevant parameters are all the variables in the
input list that are a part of the EXTERNAL, SENSOR_OUTPUT and GUIDANCE_STATE data
stores. Each test case is created by assigning relevant values to the selected parameters in a file to
be read by Mathematica -- the data files. These values are judiciously chosen based on the
coverage requirement that the test case is to fulfill. As stated in the Software Verification Plan ,
the number of cases in the test suite for each functional unit is minimized by selecting values that
can satisfy multiple coverage requirements. That is, selecting a particular value for a variable
may satisfy its valid equivalence class coverage and also satisfy a low-level requirement in the
traceability matrix. Additionally, Myers (ref. A.8) states that the valid equivalence class of
several variables can be combined in a single test. These two guidelines serve to significantly
reduce the number of requirements-based test cases needed to satisfy the coverage requirements
given in DO-178B.

The procedures for generating functional unit test-input and expected-values files are given
below for the functional unit ARSP. The procedure is the same for all functional units except the
file naming convention changes slightly. This procedure was used to generate the existing test
cases and only needs to be used if there is a change in the GCS requirements that necessitates a
change in the test data files or Mathematica models. The procedure presupposes that the user is
using a UNIX system which has Mathematica. Since the host system for development and
testing is a VAX system, it is assumed that the user has the capability to transfer files between the
two hardware platforms.

1) Create a working directory. All files fetched from CMS should be placed in this
directory.
2) Reserve the ARSP data and support files from CMS
 ARSP_NR_xxx.M
 ARSP_RO_xxx.M
 ARSP.M
 RUN_ARSP_TC.M

A-88

Note that files for functional units in the second and third subframe use a slightly
different naming convention. This procedure uses ARSP as an example, see Table A.1
for specific file names of other functional units.

3) Fetch all the utility files:
The specific file names are given in Table A.1 in the last column under the
GENERATING group. These files give background data for each test case and write the
actual test-input and expected-values files.

4) Apply any necessary changes to data and support files:
 ARSP.M models the calculations in ARSP. Should the GCS Specification change
for ARSP, then this file should be updated.
 ARSP_NR_xxx.M and ARSP_RO_xxx.M contain the data needed for
Mathematica to generate the respective test cases. If the test input data need to be
changed, these are the files to update or new files should be created with the same format
as those that currently exist. The easiest way to create new data files is to duplicate one
of the existing files and change the data. When new data files are added to the test suite,
the file that loads ARSP data files into Mathematica, RUN_ARSP_TC.M, must also be
updated. This is done by adding an entry into RUN_ARSP_TC.M specifying the name of
the new data file. Note that this example gives file names using the naming pattern for
functional units in the first subframe. Functional units in the second and third subframe
use the form functional_unit_TC.xx. If a new test data file is create for this case, a
corresponding support file must also be created. These support files have the naming
pattern: RUN_functional_unit.xx.

5) Run Mathematica:
Mathematica should be run in the same directory where all the files are placed. As
currently installed, this is done by the command:
 “math”

6) Run the data through the model to generate test-input and expected-values:
 For ARSP or any functional unit in the first subframe, use the command:
 <<run_arsp_tc.m
 For functional units in the second and third subframe, each test case must be individually

executed with:
 <<run_functional_unit.xx
7) This procedure will create a test-input (“.tc”) and expected-results(“.ex”) file for each

data file. These files following the same naming convention for all subframes and is as
follows:

 arsp_nr_xxx.tc or arsp_ro_xxx.tc
 arsp_nr_xxx.ex or arsp_ro_xxx.ex
8) Now the files can be replaced into CMS and fetched for test case execution.

Generating Functional Unit Structure Based Test Cases

As stated in the GCS Verification Plan, structural testing is performed only at the functional
unit level. These test cases are derived with the use of McCabe's ACT software. ACT is used to
generate a decision tree for each functional unit. These trees are in the Verification Results

A-89

document for each implementation. The decision trees are accompanied by tables indicating the
decision at each node and the test cases that test the true and false branch of the decision.

MC/DC is satisfied by performing the following. The verification analyst for each
implementation compares the test paths to the requirements-based test cases and list, in the tables,
all the requirements test cases that exercise the test paths in the tables. If there are any decisions
not exercised by the requirements-based test cases, then test cases are devised to exercise those
decisions. These cases will be documented in the same table. The process for regenerating the
test-input and expected-results for structure based cases will be identical to the process for the
requirements-based cases. The naming conventions for the test cases differ for each
implementation but the procedure will be the same for both implementations.

1) Create a working directory. All files fetched from CMS should be placed in this
directory.
2) Reserve data and support files:

Table A.2 gives the file names that need to be reserved for both implementations. Only
those functional units that currently need structural test cases are given. For any
functional unit, data and support files as given in Table A.2 should be reserved and
placed in the same directory.

3) Fetch all the utility files:
The specific file names are given in Table A.2 in the last group under the
GENERATING column. These files give background data for each test case and write
the actual test-input and expected-values files.

4) Applying any necessary changes to the data and support files:
Any changes to the structure of the code in a functional unit will require examining the
new structure to see if new test cases are necessary. For both implementations, this
entails regenerating the decision tree graph and modifying the decision tables to add or
delete decisions. Data files for the test suites (reserved in step 2) must also be updated to
agree with the new decision table.

5) Regenerating test-input and expected-values files:
This step requires launching Mathematica and running the appropriate support files. The
specific support files for a given functional unit of any implementation is given in Table
A.2. The procedure for launching Mathematica and running the support file is identical
to steps 5 and 6 of the functional unit procedure. The difference is the filenames used.

6) Now the files can be replaced into CMS and fetched for test case execution.

Generating CP Test Cases

The functional unit, CP, warrants some special considerations due to the nature of its task.
Unlike other functional units, CP's function is to create a transmission packet, containing packed
data and CRC-16 based checksum. Since the result of the checksum is dependent on the bit
ordering of the data in the packet, it is necessary to generate the expected-results file using the
same VMS platform that is to run the implementation. This is the only practical way to ensure
that the checksum generated for each expected-result file is valid. Additionally, since the VMS
platform provides an algorithm for calculating the checksum based on the CRC-16, a comparative
algorithm would not have to be devised. It is assumed, for the purposes of the GCS project, that
the CRC-16 checksum generator supplied by the VMS operating system is flight qualified. So to
generate the expected-results files for CP test cases, a VAX FORTRAN model is written to build
the packet and execute the VMS CRC algorithm.

A-90

CP expected-results are generated on the VAX that also runs the implementations. The
following procedure is used to generate the expected-results files for CP:

1) Create a working directory on the VAX. All files fetched from CMS should be placed in
this directory.

2) Reserve data files & fetching support and utility files:
Data files for CP are the same as the CP test-input files given in Table A.1.
 CP_NR_xxx.TC
Support files are also given in Table A.1 under the VAX support files. This is the group
at the bottom specially noted.
 COMMON.INC
 CP.FOR
 CP.COM
Utility files are listed in Table A.2 and also given below:
 NAME_LIST.INC
 EXNAME_LIST.INC

3) Apply any necessary changes to files:
Any changes to specific data items should be applied to the CP_NR_xxx.TC
Any changes to the functional specification for CP should be applied to CP.FOR
If new data files are added to the test suite, CP.COM should be changed to add the
command for generating expected-results files for the new test case.

4) Regenerating expected-results files:
 “@CP”
5) Now the files can be replaced into CMS and fetched for test case execution.

Generating Integration Level Test Cases

As stated above, integration testing takes place in three phases: subframe, frame, and
trajectory testing. In both the subframe and frame tests the expected values will be computed
using the same Mathematica models used in functional unit testing. Instead of operating
individually, these units are linked together to produce models of the subframe or frame. The
linked models will be used to generate the appropriate expected values for the subframes and
frames in a similar manner as for the functional units. The same comparison and pass/fail criteria
used in the functional unit testing will be used in the subframe and frame testing. As mentioned
in the Software Verification Plan, only requirements-based software integration testing will be
performed for GCS implementations. Hence integration test cases will be requirements-based
only. And, because the GCS Specification requires each implementation to use global data
stores, the DO-178B requirement to test for parameter passing errors is eliminated. Additionally,
since the software is not required to perform any kind of data initializations, the DO-178B
requirement to test for incorrect initializations is also eliminated. This greatly reduces the
number of test cases necessary during subframe and frame integration testing. The sections
below describe development of subframe, frame, and trajectory test cases.

A-91

Generating Subframe Test Cases

The overall purpose of integration testing at the subframe level is to ensure that functional
units within each subframe will inter-operate and that linking these units does not introduce
errors. Additional objectives are given in the test plan found in the Software Verification Plan.
For subframe integration tests, test cases are created to test subframe requirements as listed in the
Traceability Matrix. Additionally, cases will be selected from the functional unit tests that
exercise critical state transitions within a subframe. These cases are documented in the
Traceability Matrix in section A.6 and also listed in Table A.1. The procedure for generating
subframe test-inputs and expected-results are as follows:

1) Create a working directory on the UNIX environment. All files fetched from CMS
should be placed in this directory.

2) Depending on the subframe to regenerate, reserve the data and output files as given
below. Also fetch support and utility files as indicated below (These files are also given
in Table A.1) :

 Data files Support

Files
Utility Files Output Files

Subframe 1 SP_001.M ARSP.M
ASP.M
GSP.M
TSP.M
TDSP.M
TDLRSP.M

INPUT
WRITE_NML.M
WRITE_EXNML.
M

SP_001.TC
SP_001.EX

Subframe 2 GPSF_TC.xx RUN_GPSF.xx
GP.M

INPUT
NAMELIST1
NAMELIST_EX

GPSF_xxx.TC
GPSF_xxx.EX

Subframe 3 CLP_TC.xx RUN_CLP.xx
AECLP.M
RECLP.M
CRCP.M

INPUT
NAMELIST1
NAMELIST_EX

CLP_xxx.TC
CLP_xxx.EX

3) Apply any necessary changes to files:
As in the previous procedures, If test data needs to be modified, the data files should be
changed. If any of the functional unit models are modified, then this procedure must be
carried out to regenerate the subframe test cases.

4) Regenerating test-input and expected-values files:
 Run Mathematica from the directory where the files are located. Then
 for Subframe 1:
 “<<sp_001.m”
 for Subframe 2:
 “<<run_gpsf.xx” (Where the command has to be repeated for each test case

number xx.)
 for Subframe 3:
 “<<run_clp.xx” (Where the command has to be repeated for each test case
number xx.)
5) Now the files can be replaced into CMS and fetched for testing with the GCS
implementations.

A-92

Generating Frame Test Cases

The integration testing at the frame level is to ensure that the three subframes are independent
and that linking these subframes does not introduce errors. Enough cases will be selected so that
all state transitions will be tested as well as some random single frames. Multiple frame tests will
be covered in the Trajectory Testing.

The frame test case development process will closely follow the subframe process. That is,
the Mathematica models of all functional units are linked together to create the frame model
FRAME.M. This includes all functional units except for CP and Sim_Rendezvous. Like
subframe testing, test cases will be input into the model to generate the test case input files and
expected results files. The procedure for generating frame test-input and expected-values is
identical to that for the subframe except for the files involved:

1) Create a working directory on the UNIX environment. All files fetched from CMS
should be placed in this directory.

2) Reserve the output files and fetch the data, support, and utility files listed below:

Data files Support Files Utility Files Output Files

FRAME_XXX.M FRAME.M
RUN_FRAME_TC.M

ARSP.M
ASP.M
GSP.M
TSP.M

TDSP.M
TDLRSP.M

GP.M
AECLP.M
RECLP.M
CRCP.M

INPUT
WRITE_NML.M

WRITE_EXNML.M

FRAME_XXX.TC
FRAME_XXX.EX

3) Apply any necessary changes to files:
As in the previous procedures, If test data need to be modified, the data files
(FRAME_xxx.M) should be changed. If any of the functional unit models are modified,
then this procedure must be carried out to regenerate the frame test cases.

4) Regenerating test-input and expected-values files:
 Run Mathematica from the directory where the files are located. Then within
Mathematica enter the command:
 “<<run_frame_tc.m” (This command will regenerate all test frame test
cases.)
5) Now the files can be replaced into CMS and fetched for testing with the GCS
implementations.

Generating Trajectory Test Cases

As indicated in Table A.21, there are two input files for each trajectory test case. All files with
"IC" in the name correspond to the INITIAL_CONSTANTS.DAT file required by the simulator.
All files with the "UD" in the name correspond to the USAGE_DISTRIBUTIONS.DAT file used
by the simulator. The "ATM" and "TD" stand for the names of the respective groups. The files
are renamed by the test drivers to the appropriate names as required by the GCS Simulator prior

A-93

to simulator execution. These data files are created on the VAX system that will run the
simulator. As Table A.11-1 and Table A.21 indicates, there is also a “.SEED” file for every
trajectory test case. This is the expected-values file for each trajectory test. The “.SEED” files
are generated by running the simulator with the VENUS prototype of GCS. Hence the procedure
for generating trajectory expected-values files is similar to those for executing trajectory test
cases:

1) A directory structure similar to the one for trajectory test case execution must first be
created on the VAX.

2) Fetch the following from CMS and placed into the [TRAJ] directory
 a) Trajectory testing utility files as listed in Table A.1 except object files and

PAGE_ALIGN.OPT:
 ACCURACY.DAT
 ALTERNATE_ACCURACY.DAT
 GCS_LIST.DAT
 GCS_SIM_SWITCHES.DAT
 LIMITS.DAT
 TABULAR_DATA.DAT
 TRAJ_SIM.EXE
 b) The following files for the VENUS prototype:
 VENUSRS.EXE
 VENUS_RUNGES_SWITCHES.DAT
 RUNSIMI.COM
 DO_ASSIGN.COM
 VENUS_TRAJ.COM
 RUN_VENUS_TRAJ.COM
3) Fetch the following from CMS and place in the [ATM] directory:
 TRAJ_ATM_IC_xxx.TC
 TRAJ_ATM_UD_xxx.TC
 TRAJ_ATM_ xxx.SEED
4) Fetch the following from CMS and place in the [TD] directory:
 TRAJ_TD_IC_xxx.TC
 TRAJ_TD_UD_xxx.TC
 TRAJ_TD_ xxx.SEED
5) The “.SEED” files can then be generated by executing the following command from the

[TRAJ] directory at the operating system prompt:
 “@run_venus_traj”
6) Now the files can be replaced into CMS and fetched for testing with the GCS

implementations. Note that the “.SEED” files are spread between the [ATM] and [TD]
directories.

A.13 Mathematica Models

The following are the Mathematica models used to generate the expected results for each test
case. There is a model for each functional unit except for CP. CP test cases were created using

A-94

special procedures in place of the Mathematica model expected. These procedure are described
above in the section Special Procedures for Developing CP Test Cases. Not included in this
section are models for subframe and frame testing. Those models simply call the respective
functional unit models appropriate subframe and all the models for the frame.

All attempts have been made to keep the copies in this document current. If there are any
discrepancies, the version of the model in CMS should supersede the version of the model in this
document.

A-95

AECLP

(***)
(* Filename : aeclp.tc.code *)
(* *)
(* Description: *)
(* *)
(* This file contains the Mathematica code to calculate the expected values *)
(* for AECLP. *)
(* The following assumptions are made: *)
(* 1) the data related to the 4 GCS data stores are pre-loaded *)
(* 2) the specific data for a test case is also loaded *)
(***)

(* rotate the variables *)

GPALT0 = GPALT[[1]]
GPALT1 = GPALT[[2]]
GPALT2 = GPALT[[3]]
GPALT3 = GPALT[[4]]
GPALT4 = GPALT[[5]]

(* set up the GROT and GPROT arrays *)

q0 = QV
r0 = RV

Array [GPROT0, {3,3}]

GROT0 = N[{p0, q0, r0}, 30]
GPROT0 = N[{{0, r0, -q0}, {-r0, 0, p0}, {q0, -p0, 0}}, 30]
GROT1 = N[{p1, q1, r1}, 30]
GPROT1 = N[{{0, r1, -q1}, {-r1, 0, p1}, {q1, -p1, 0}}, 30]
GROT2 = N[{p2, q2, r2}, 30]
GPROT2 = N[{{0, r2, -q2}, {-r2, 0, p2}, {q2, -p2, 0}}, 30]
GROT3 = N[{p3, q3, r3}, 30]
GPROT3 = N[{{0, r3, -q3}, {-r3, 0, p3}, {q3, -p3, 0}}, 30]
GROT4 = N[{p4, q4, r4}, 30]
GPROT4 = N[{{0, r4, -q4}, {-r4, 0, p4}, {q4, -p4, 0}}, 30]

(* set up the matrix needed for INTERNAL_CMD calcualtion *)

MM1 = {{GP1, 0., 1.}, {GP2, -GPY, 1.}, {GP2, GPY, 1}}

(* set the local variables in the test case equal to the namelist variables *)

CHUTREL = CHUTR
CONTCROSSED = CONTC
ENGONALT = EOALT
FRAMECOUNTER = FRAMEC
FRMENGIGN = FRMEI
GPVEL0[[1,1]] = XDOT
GPVEL0[[2,1]] = YDOT
GPVEL0[[3,1]] = ZDOT

A-96

AACC0[[1,1]] = XDDOT
GROT0[[2]] = QV
GROT0[[3]] = RV

Print [ALPHA]

(* Compute Limiting error for Pitch and Yaw *)

If[AESWITCH != 0,
 FTIME = N[(FRAMEC - FRMEI)*DELT, 20];
 If[GPALT0 <= EOALT && AETEMP == 0 && FTIME < FULLUPT, AETEMP = 1];
 If[GPALT0 <= EOALT && AETEMP == 1 && FTIME >= FULLUPT, AETEMP = 2];

 PEI = N[PEI + DELT * ZDOT/Abs[XDOT], 20];
 YEI = N[YEI + DELT * YDOT/Abs[XDOT], 20];

 PEL = N[GQ[[CL]]*QV + GW[[CL]]*ZDOT/Abs[XDOT] + GWI[[CL]]*PEI];
 If[PEL < PEMIN[[CL]], PEL = PEMIN[[CL]]];
 If[PEL > PEMAX[[CL]], PEL = PEMAX[[CL]]];

 YEL = N[-GR[[CL]]*RV + GV[[CL]]*YDOT/Abs[XDOT] + GVI[[CL]]*YEI];
 If[YEL < YEMIN[[CL]], YEL = YEMIN[[CL]]];
 If[YEL > YEMAX[[CL]], YEL = YEMAX[[CL]]];

]

(* Compute Liniting Error for Thurst *)

If[CONTC != 0 && AESWITCH != 0,
 TEI = N[TEI + DELT * VELERR, 20];
 X = N[-GAX * (XDDOT + GRAVITY*GPATT0[[1,3]]) + GVE*VELERR + GVEI[[CL]]*TEI, 30];
 X1 = N[(X*GA)/OMEGA, 30];
 EOMEG = N[E^-(OMEGA*DELT), 30];
 TEL = N[X1 + (TEL - X1)*EOMEG, 30];
 If[TEL < TEMIN[[CL]], TEL = TEMIN[[CL]]];
 If[TEL > TEMAX[[CL]], TEL = TEMAX[[CL]]]
]

(* Compute Pitch, Yaw and Thrust errors *)

IA = {0., 0., 0.}

If[AESWITCH !=0,
 If[CHUTR == 1 && CONTC == 1, PE = N[PEL,30]];
 If[CHUTR == 1 && CONTC == 1, YE = N[YEL,30]];
 If[CHUTR == 1 && CONTC == 1, TE = N[TEL,30]];

 If[CHUTR == 1 && CONTC == 0, PE = N[PEL,30]];
 If[CHUTR == 1 && CONTC == 0, YE = N[YEL,30]];
 If[CHUTR == 1 && CONTC == 0, TE = N[TEDROP,30]];

 P1 = N[GQ[[CL]]*QV, 20];
 Y1 = N[-GR[[CL]]*RV, 20];

 If[CHUTR == 0, PE = P1];

A-97

 If[CHUTR == 0, YE = Y1];
 If[CHUTR == 0, TE = TEINIT];

 MM2 = {PE, YE, TE};

(* Print [StringForm["PE = ``", PE]]; *)
(* Print [StringForm["YE = ``", YE]]; *)
(* Print [StringForm["TE = ``", TE]]; *)

(* compute INTERNAL_COMMAND *)

 INTERCMD = N[MM1 . MM2, 20];

(* Print [StringForm["MM1 = ``", MM1]]; *)
(* Print [StringForm["MM2 = ``", MM2]]; *)
(* Print [StringForm["INTERCMD = ``", INTERCMD]]; *)

(* compute AE_CMD *)

IA = 127 INTERCMD;
 If[INTERCMD[[1]] < 0., IA[[1]] = 0.];
 If[INTERCMD[[1]] > 1., IA[[1]] = 127.];
 If[INTERCMD[[2]] < 0., IA[[2]] = 0.];
 If[INTERCMD[[2]] > 1., IA[[2]] = 127.];
 If[INTERCMD[[3]] < 0., IA[[3]] = 0.];
 If[INTERCMD[[3]] > 1., IA[[3]] = 127.]
]
AECMD = Round[IA]

(* ALPHA = "\nAECLP Test Outputs:\n" *)
(* Print [ALPHA] *)
(* Print [StringForm["AE_TEMP = ``", AETEMP]] *)
(* Print [StringForm["AE_STATUS = ``", AESTATUS]] *)
(* Print [StringForm["PE_INTEGRAL = ``", PEI]] *)
(* Print [StringForm["TE_INTEGRAL = ``", TEI]] *)
(* Print [StringForm["TE_LIMIT = ``", TEL]] *)
(* Print [StringForm["YE_INTEGRAL = ``", YEI]] *)
(* Print [StringForm["INTERNAL_CMD = ``", INTERCMD]] *)
(* Print [StringForm["AE_CMD = ``", Round[IA]]] *)

A-98

ARSP

(**)
(* Filename : arsp.m *)
(* Create Date : 6-27-94 *)
(* Description: *)
(* This file contains the Mathematica code to calculate expected values *)
(* for ARSP functional unit. The following assumotions are made: *)
(* 1) data related to the 4 GCS data stores are pre-loaded. *)
(* 2) the specific data for a test case is also loaded *)
(**)

(* Local variables added for readability *)
healthy = 0 (* used for AR_STATUS *)
failed = 1 (* used for AR_STATUS *)

(**** Rotate history variables ****)
(* AR_ALTITUDE *)
ARALT4 = ARALT3
ARALT3 = ARALT2
ARALT2 = ARALT1
ARALT1 = ARALT0

(* AR_STATUS *)
ARSTATUS4 = ARSTATUS3
ARSTATUS3 = ARSTATUS2
ARSTATUS2 = ARSTATUS1
ARSTATUS1 = ARSTATUS0

(* K_ALT *)
KALT4 = KALT3
KALT3 = KALT2
KALT2 = KALT1
KALT1 = KALT0

(**** Calculate AR_ALTITUDE ****)

If [ARCOUNTER > 0
 , ARALT0 = (ARCOUNTER 3 10^8) / (ARFREQ 2) (* echo received *)
 , IF [(ARSTATUS4 == healthy) (* echo not received *)
 && (ARSTATUS3 == healthy)
 && (ARSTATUS2 == healthy)
 && (ARSTATUS1 == healthy)
 , ARALT0 = 4 ARALT1 - 6 ARALT2 (* extimate w/ 3rd order poly *)
 + 4 ARALT3 - ARALT4
 , ARALT0 = ARALT1 (* set to previous value *)
]
]

(**** Set AR_STATUS and K_ALT ****)

If [ARCOUNTER > 0
 , ARSTATUS0 = healthy;
 KALT0 = 1

A-99

 , ARSTATUS0 = failed;
 IF [(ARSTATUS4 == healthy)
 && (ARSTATUS3 == healthy)
 && (ARSTATUS2 == healthy)
 && (ARSTATUS1 == healthy)
 , KALT = 1
 , KALT = 0]
]

A-100

ASP

(**
 Filename : asp.m
 Create Date : 6-27-94
 Description:
 This file contains the Mathematica code to calculate expected values
 for ASP functional unit. The following assumptions are made:
 1) data related to the 4 GCS data stores are pre-loaded.
 2) the specific data for a test case is also loaded
 History:
 V0: created (CCQ)
 V1: update to reflect GCS Spec Mod2.3-7 (CCQ)
 new IF block for determining ASTATUS
**)
debug = 1 (* set to 1 for status and debug messages *)

(* Local variables added for readability *)
 healthy = 0 (* used for A_STATUS *)
 failed = 1 (* used for A_STATUS *)

If [debug==1, Print["Rotate history..."]]
(**** Rotate history variables ****)
 (* A_ACCELERATION *)
 AACC4 = AACC3
 AACC3 = AACC2
 AACC2 = AACC1
 AACC1 = AACC0

 (* A_STATUS *)
 ASTATUS4 = ASTATUS3
 ASTATUS3 = ASTATUS2
 ASTATUS2 = ASTATUS1
 ASTATUS1 = ASTATUS0

If [debug==1, Print["Adjust G_GAIN..."]]
(**** Adjust A_GAIN() for temperature ****)
again = { N[AGAIN0[[1]] + G1 ATMTEMP + G2 ATMTEMP^2, 30]
 ,N[AGAIN0[[2]] + G1 ATMTEMP + G2 ATMTEMP^2, 30]
 ,N[AGAIN0[[3]] + G1 ATMTEMP + G2 ATMTEMP^2, 30]
 }

If [debug==1, Print["Remove Bias..."]]
(**** REMOVE CHARACTERISTIC BIAS ****)
aaccelm = { N[ABIAS[[1]] + again[[1]] ACOUNTER[[1]], 30]
 ,N[ABIAS[[2]] + again[[2]] ACOUNTER[[2]], 30]
 ,N[ABIAS[[3]] + again[[3]] ACOUNTER[[3]], 30]
 }

If [debug==1, Print["Correct misallignment..."]]
(**** Correct for Misalignment ****)
 (** NOTE: matrix multiply **)
aacc = N[ALPMAT . aaccelm, 30]
 (** NOTE: this is a reassignment to correct for the way AACC is declared in the INPUT file. **)

A-101

AACC0[[1,1]] = aacc[[1]]
AACC0[[2,1]] = aacc[[2]]
AACC0[[3,1]] = aacc[[3]]

If [debug==1, Print["determine acceleration..."]]
(**** Determine accelerations and accelerometer status ****)
(*************** V1 changes ***************)
(*-------- old code from V0 ---------*)
(* comments had to be removed from old code,
 Mathematica will not allow embeded comments.

For[axis=1, axis<=3, axis++,
 If [(ASTATUS3[[axis]] == healthy)
 && (ASTATUS2[[axis]] == healthy)
 && (ASTATUS1[[axis]] == healthy)
 ,
 mean = N[(AACC1[[axis,1]]
 +AACC2[[axis,1]]
 +AACC3[[axis,1]]) / 3, 30];
 std = N[Sqrt[(((AACC1[[axis,1]] - mean)^2
 +(AACC2[[axis,1]] - mean)^2
 +(AACC3[[axis,1]] - mean)^2
) / 3)
], 30];
 If [debug==1, Print["ax[[",axis,",1]]:: mean=",mean," & std=",std]];
 If [debug==1, Print["ax[[",axis,",1]]=",aacc[[axis]]]];
 If [debug==1, Print["Perform std-compare..."]];
 If [Abs[mean - AACC0[[axis,1]]] > (ASCALE std)
 , AACC0[[axis,1]] = N[mean,30];
 ASTATUS0[[axis]] = failed;
 If [debug==1, Print["axis[[",axis,",1]] = mean value"]]
 , ASTATUS0[[axis]] = healthy;
 If [debug==1, Print["axis[[",axis,",1]] = sensor value"]]
]
 ,
 If [debug==1, Print["In ELSE branch..."]];
 ASTATUS0[[axis]] = healthy
]
]

*)
(*-------- new code for V1 ---------*)
If [debug==1, Print["Start new code"]]
If [debug==1, Print[ASTATUS0]]
If [debug==1, Print[ASTATUS1]]
If [debug==1, Print[ASTATUS2]]
If [debug==1, Print[ASTATUS3]]
If [debug==1, Print[ASTATUS4]]
For[axis=1, axis<=3, axis++,
 ASTATUS0[[axis]] = healthy;
 If [debug==1, Print["ASTATUS0[[",axis,"]]",ASTATUS0[[axis]]]];
 If [debug==1, Print["a_status ="
 ,ASTATUS3[[axis]]
 ,ASTATUS2[[axis]]
 ,ASTATUS1[[axis]]

A-102

]];
 If [(ASTATUS3[[axis]] == healthy)
 && (ASTATUS2[[axis]] == healthy)
 && (ASTATUS1[[axis]] == healthy)
 ,(* check extreme values and set A_STATUS, & A_ACCELERATION *)
 If [(AACC1[[axis,1]] != AACC2[[axis,1]])
 ||(AACC1[[axis,1]] != AACC3[[axis,1]])
 , mean = N[(AACC1[[axis,1]]
 +AACC2[[axis,1]]
 +AACC3[[axis,1]]) / 3, 30]; (* 30 dig. accuracy *)
 std = N[Sqrt[(((AACC1[[axis,1]] - mean)^2
 +(AACC2[[axis,1]] - mean)^2
 +(AACC3[[axis,1]] - mean)^2
) / 3)
], 30]; (* 30 digits of accuracy *)
 If [debug==1,
 Print["ax[[",axis,",1]]:: mean=",mean," & std=",std];
 Print["ax[[",axis,",1]]=",aacc[[axis]]];
 Print["Perform std-compare..."]
];
 If [Abs[mean - AACC0[[axis,1]]] > (ASCALE std)
 , AACC0[[axis,1]] = N[mean,30]; (* eliminate outlier numbers *)
 ASTATUS0[[axis]] = failed;
 If [debug==1, Print["------axis[[",axis,",1]] = mean value"]]
]
] (* close second If statement *)
] (* close first If statement *)
] (* close for loop *)
If [debug==1, Print["After:"]]
If [debug==1, Print[ASTATUS0]]
If [debug==1, Print[ASTATUS1]]
If [debug==1, Print[ASTATUS2]]
If [debug==1, Print[ASTATUS3]]
If [debug==1, Print[ASTATUS4]]

If [debug==1, Print["Finninhed ASP !!"]]

A-103

GP

(***)
(* Filename : gp.m *)
(* *)
(* Description: *)
(* *)
(* This file contains the Mathematica code to calculate the expected values *)
(* for GP. *)
(* The following assumptions are made: *)
(* 1) the data related to the 4 GCS data stores are pre-loaded *)
(* 2) the specific data for a test case is also loaded *)
(***)

(* rotate the variables *)

GPATT4 = GPATT3
GPATT3 = GPATT2
GPATT2 = GPATT1
GPATT1 = GPATT0

GPVEL4 = GPVEL3
GPVEL3 = GPVEL2
GPVEL2 = GPVEL1
GPVEL1 = GPVEL0

GPALT4 = GPALT3
GPALT3 = GPALT2
GPALT2 = GPALT1
GPALT1 = GPALT0

(* Runga-Kutta *)

h = 2.*DELTAT

(* first estimates *)

k1 = N[h (GPROT2.GPATT2), 30]

Array[GPATI3, {3,1}]

GPATI3 = N[{{GPATT2[[1,3]]}, {GPATT2[[2,3]]}, {GPATT2[[3,3]]}}, 30]

Array [gprv, {3,1}]
Array [tdlgpv, {3,1}]
Array [l1, {3,1}]
Array [GPROT2, {3,3}]
Array [GPVEL2, {3,1}]

gprv = N[GPROT2.GPVEL2, 30]
tdlgpv = N[TDLRVEL2 - GPVEL2, 30]
Ktdlgpv = N[KMATRIX2 . tdlgpv, 30]

A-104

Print [ALPHA]

l1 = N[h (gprv + GRAVITY GPATI3 + AACC2 + Ktdlgpv), 30]

Array [GPATI1, {1,3}]
GPATI1 = N[{GPATT2[[1,3]], GPATT2[[2,3]], GPATT2[[3,3]]}, 30]
m =N[h (-GPATI1.GPVEL2 + KALT[[3]]*(ARALT2-GPALT2)), 30]
m1 = N[m[[1]], 30]

(* second estimates *)

K12 = N[.5 k1, 30]
L12 = N[.5 l1, 30]
M12 = N[.5*m1, 30]

GPATI = N[GPATT2 + K12, 30]
k2 = N[h (GPROT1.(GPATI)), 30]

Array [l2, {3,1}]

gprv = N[GPROT1.(GPVEL2+L12), 30]
tdlgpv = N[TDLRVEL1 - (GPVEL2+L12), 30]
Ktdlgpv = N[KMATRIX1 . tdlgpv, 30]

GPATI3 = N[{{GPATI[[1,3]]}, {GPATI[[2,3]]}, {GPATI[[3,3]]}}, 30]
l2 = N[h (gprv + GRAVITY GPATI3 + AACC1 + Ktdlgpv), 30]

GPATI1 = N[{GPATI[[1,3]], GPATI[[2,3]], GPATI[[3,3]]}, 30]
m =N[h (-GPATI1.(GPVEL2+L12) + KALT[[2]]*(ARALT1 - (GPALT2+M12))), 30]
m2 = N[m[[1]], 30]

(* third estimates *)

K22 = N[.5 k2, 30]
L22 = N[.5 l2, 30]
M22 = N[.5*m2, 30]

GPATI = N[GPATT2 + K22, 30]
k3 = N[h (GPROT1.(GPATI)), 30]

Array [l3, {3,1}]

gprv = N[GPROT1.(GPVEL2+L22), 30]
tdlgpv = N[TDLRVEL1 - (GPVEL2+L22), 30]
Ktdlgpv = N[KMATRIX1 . tdlgpv, 30]

GPATI3 = N[{{GPATI[[1,3]]}, {GPATI[[2,3]]}, {GPATI[[3,3]]}}, 30]
l3 = N[h (gprv + GRAVITY GPATI3 + AACC1 + Ktdlgpv), 30]

GPATI1 = N[{GPATI[[1,3]], GPATI[[2,3]], GPATI[[3,3]]}, 30]
m =N[h (-GPATI1.(GPVEL2+L22) + KALT[[2]]*(ARALT1 - (GPALT2+M22))), 30]
m3 = N[m[[1]], 30]

(* forth estimates *)

GPATI = N[GPATT2 + k3, 30]

A-105

k4 = N[h (GPROT0.(GPATI)), 30]

Array [l4, {3,1}]

gprv = N[GPROT0.(GPVEL2+l3), 30]
tdlgpv = N[TDLRVEL0 - (GPVEL2+l3), 30]
Ktdlgpv = N[KMATRIX0 . tdlgpv, 30]

GPATI3 = N[{{GPATI[[1,3]]}, {GPATI[[2,3]]}, {GPATI[[3,3]]}}, 30]
l4 = N[h (gprv + GRAVITY GPATI3 + AACC0 + Ktdlgpv), 30]

GPATI1 = N[{GPATI[[1,3]], GPATI[[2,3]], GPATI[[3,3]]}, 30]
m =N[h (-GPATI1.(GPVEL2+l3) + KALT[[1]]*(ARALT0 - (GPALT2+m3))), 30]
m4 = N[m[[1]], 30]

(* calculate new values of GP_ATTITUDE, GP_VELOCITY and GP_ALTITUDE *)

GPATT0 = N[GPATT2 + 1./6. (k1 + 2. (k2 + k3) + k4), 30]
GPVEL0 = N[GPVEL2 + 1./6. (l1 + 2. (l2 + l3) + l4), 30]
GPALT0 = N[GPALT2 + 1./6.*(m1 + 2.*(m2 + m3) + m4), 30]

(****************************)
(* *)
(* equation from table 5.9 *)
(* *)
(** Old code before V1 Spec. Mod. 2.3-7 requires this change **********)
(* X = N[2.*GRAVITY*GPALT0, 30] *)
(* DUM = N[Sqrt[X] + GPVEL0[[1,1]], 30] *)
(* X1 = N[DUM, 30] *)
(*--*)
(* New code for V1 - added Max function to avoid negative square root *)
 X = N[2. * GRAVITY * Max[GPALT0,0], 30]
 DUM = N[Sqrt[X] + GPVEL0[[1,1]], 30]
 X1 = N[DUM, 30]
(****************** end of mod for V1 *********************************)

(* This section implements table 5.9 *)
(* AE_SWITCH = 0, OFF *)
(* AE_SWITCH = 1, ON *)
(* TD_SENSED = 0, TD NOT SENSED *)
(* TD_SENSED = 1, TD SENSED *)

(* tengon is a local variable, it is only used to indicate that the engines *)
(* are off and will be turned on after GP is exited. This is a problem with *)
(* AE_SWITCH being turned on for the first time ... but the engines are still*)
(* off as far as the GP_PHASE condition meter is concerned *)

tengon = 0

If[AESWITCH == 1 && GPALT0 <= DROPHEIGHT && X1 <= MAXNORMVEL &&
 TDSENSED ==0,
 AESWITCH = 0;
 RESWITCH = 0
]

If[AESWITCH == 1 && TDSENSED == 1,

A-106

 AESWITCH = 0;
 RESWITCH = 0
]

If[AESWITCH == 0 && GPALT0 <= ENGONALT && TDSENSED ==0 && RESWITCH == 1,
 FRMENGIGN = FRAMECOUNTER;
 AESWITCH = 1;
 tengon = 1
]

(* DETERMINE OPT_VEL : Find the present altitude in CONTALT and locate the *)
(* corresponding velocity in CONTVEL. Interpolate if necessary *)

(* first put CONTALT and CONTVEL into the correct units *)

KCONTALT = N[1000. CONTALT]
KCONTVEL = N[1000. CONTVEL]

(* NOTE : fix this in case there are more than 18 values *)

ALTMIN = KCONTALT[[1]]
ALTMAX = KCONTALT[[2]]
VELMIN = KCONTVEL[[1]]
VELMAX = KCONTVEL[[2]]

Do[
 If[GPALT0 > KCONTALT[[i]],
 ALTMIN = KCONTALT[[i]];
 VELMIN = KCONTVEL[[i]];
 ALTMAX = KCONTALT[[i+1]];
 VELMAX = KCONTVEL[[i+1]];
], {i, 17}]

(* compute the optimal_velocity *)

OPTVEL = GPVEL0[[1,1]]

If[ALTMIN != ALTMAX,
 SLOPE = N[(VELMAX - VELMIN)/(ALTMAX - ALTMIN), 30];
 OPTVEL = N[SLOPE*(GPALT0 - ALTMIN) + VELMIN, 30]
]

(* Print [StringForm["OPTVEL = ``", OPTVEL]] *)

(* compute VELOCITY_ ERROR *)

DUM = N[GPVEL0[[1,1]] - OPTVEL, 30]
VELERR = N[DUM, 30]

(* CONT_CROSSED = 0, Contour not crossed *)
(* CONT_CROSSED = 1, Contour crossed *)

If[GPALT0 <= ENGONALT && CONTCROSSED == 0 && VELERR >= 0.,
 CONTCROSSED = 1]

(* Determine GP_PHASE *)

A-107

(* AE_SWITCH = 0, Engins OFF *)
(* AE_SWITCH = 1, Engins ON *)
(* TD_SENSED = 0, TD NOT SENSED *)
(* TD_SENSED = 1, TD SENSED *)
(* CONT_CROSSED = 0, Contour not crossed *)
(* CONT_CROSSED = 1, Contour crossed *)
(* CHUTE_REL = 0, Chute attached *)
(* CHUTE_REL = 1, Chute released *)

(* PHASE 2 *)

If[GPPHASE == 1 && GPALT0 <= ENGONALT
 ,GPPHASE = 2]

(*If[GPPHASE == 1, idum = 1] *)
(*If[GPALT0 <= ENGONALT && idum == 1, idum = 2] *)
(*Print [StringForm["idum = ``",idum]] *)
(*If[idum == 2, GPPHASE = 2] *)

(* PHASE 3 *)

If[GPPHASE == 2 && CHUTEREL ==1
 && AETEMP == 2
 ,GPPHASE = 3]

If[GPPHASE == 2 && TDSENSED == 1
 ,GPPHASE = 5]

(* PHASE 4 *)

If[GPPHASE == 3 && GPALT0 <= DROPHEIGHT
 && TDSENSED == 0
 && TDSSTATUS == 0
 && X1 <= MAXNORMVEL
 ,GPPHASE = 4]

If[GPPHASE == 3 && GPALT0 <= DROPHEIGHT
 && TDSSTATUS == 1
 ,GPPHASE = 5]

If[GPPHASE == 3 && TDSENSED == 1
 ,GPPHASE = 5]

If[GPPHASE == 4 && TDSENSED == 1
 ,GPPHASE = 5]

If[GPPHASE == 4 && TDSSTATUS == 1
 ,GPPHASE = 5]

(* Determine the value of CL *)

(* CL = 1: First *)
(* CL = 2: Second *)

(* The difference has to be used in for comparisons in Mathematica model. *)

A-108

(* because the model uses approximations upto 30 digits. *)
diff = .00000001

od = N[OPTVEL - DROPSPEED, 30]

Print [StringForm["od = ``", od]]
Print [StringForm["GPVEL0[[1,1]] = ``", GPVEL0[[1,1]]]]
Print [StringForm["OPTVEL = ``", OPTVEL]]
Print [StringForm["TEI = ``",TEI]]
Print [StringForm["DROPSPEED = ``", DROPSPEED]]

dum1 = DROPSPEED
dum1 = N[GPVEL0[[1,1]] - dum1, 30]
dum2 = 0.

Print [StringForm["dum1 = ``", dum1]]

If[CL == 1, Print [StringForm["test : cl = 1"]]]
If[(Abs[od] <= diff), Print [StringForm["test : Abs(od) <= diff"]]]
If[dum1 < dum2, Print [StringForm["(GPVEL0[[1,1]] < DROPSPEED)"]]]

If[CL == 1 && Abs[od] <= diff && dum1 < dum2,
 CL = 2;
 TEI = 0.0
]

Print [StringForm["od = ``", od]]
Print [StringForm["GPVEL0[[1,1]] = ``", GPVEL0[[1,1]]]]
Print [StringForm["OPTVEL = ``", OPTVEL]]
Print [StringForm["CL = ``", CL]]
Print [StringForm["TEI = ``",TEI]]

A-109

GSP

(**)
Filename : gsp.m
Create Date : 6-30-94
Description:
This file contains the Mathematica code to calculate expected values
for GSP functional unit. The following assumptions are made:
 data related to the 4 GCS data stores are pre-loaded.
 the specific data for a test case is also loaded
(**)

(* Local variables added for readability *)
healthy = 0 (* used for G_STATUS *)
failed = 1 (* used for G_STATUS *)

(**** Rotate history variables ****)
(* G_ROTATION *)
GROT4 = GROT3
GROT3 = GROT2
GROT2 = GROT1
GROT1 = GROT0

(**** Adjust A_GAIN() for temperature ****)
ggain = { GGAIN0[[1]] + G3 ATMTEMP + G4 ATMTEMP^2 (* x axis *)
,GGAIN0[[2]] + G3 ATMTEMP + G4 ATMTEMP^2 (* y axis *)
,GGAIN0[[3]] + G3 ATMTEMP + G4 ATMTEMP^2 (* z axis *)
}

(**** Convert G_COUNTER to G_ROTATION ****)
For[i=1, i<=3, i++,
If [(GCOUNTER[[i]] > 0) (* Get G_COUNTER sign *)
, sign = 1
, sign = -1
];
counter = sign Mod[GCOUNTER[[i]], 2^14]; (* Get lower 14 bits *)
GROT0[[i]] = GOFFSET[[i]] (* Calculate G_ROTATION *)
+ ggain[[i]] counter
]

(**** Set Gyroscope status to healthy ****)
GSTATUS = healthy

A-110

RECLP

(***)
(* Filename : reclp.tc.code *)
(* *)
(* Description: *)
(* *)
(* This file contains the Mathematica code to calculate the expected values *)
(* for RECLP. *)
(* The following assumptions are made: *)
(* 1) the data related to the 4 GCS data stores are pre-loaded *)
(* 2) the specific data for a test case is also loaded *)
(***)

Print [ALPHA]
GROT0[[1]] = GROT

GPALT0 = GPALT[[1]]
GPALT1 = GPALT[[2]]
GPALT2 = GPALT[[3]]
GPALT3 = GPALT[[4]]
GPALT4 = GPALT[[5]]

(* compute the new value of THETA *)

DG =N[DELT*GROT]
THETA = N[THETA + DG]

(* check for all areas *)

If[Abs[THETA] <= THETA1, ITH = 1, ITH = 0]
If[Abs[THETA] <= THETA2 && Abs[THETA] > THETA1, ITH = 2]
If[Abs[GROT] <= P1, IP = 1, IP = 0]
If[Abs[GROT] <= P2 && Abs[GROT] > P1, IP = 2]
If[Abs[GROT] <= P3 && Abs[GROT] > P2, IP = 3]
If[Abs[GROT] <= P4 && Abs[GROT] > P3, IP = 4]

If[GROT > 0. && IP == 1 && THETA > 0. && ITH == 1, IROLL = 1, IROLL = 0]
If[GROT > 0. && IP == 1 && THETA > 0. && ITH == 2, IROLL = 3]
If[GROT > 0. && IP == 1 && THETA > 0. && ITH == 0, IROLL = 7]
If[GROT > 0. && IP <= 3 && THETA < 0. && ITH == 0, IROLL = 6]
If[GROT > 0. && IP <= 3 && THETA < 0. && ITH != 0, IROLL = 1]

If[GROT > 0. && IP == 2 && THETA > 0. && ITH != 0, IROLL = 5]
If[GROT > 0. && IP == 2 && THETA > 0. && ITH == 0, IROLL = 7]

If[GROT > 0. && IP >= 3 && THETA > 0., IROLL = 7]

If[GROT > 0. && IP == 4 && THETA <= 0., IROLL = 1]

If[GROT > 0. && IP == 0, IROLL = 7]

If[GROT < 0. && IP <= 3 && THETA > 0. && ITH != 0, IROLL = 1]

A-111

If[GROT < 0. && IP <= 3 && THETA > 0. && ITH == 0, IROLL = 7]
If[GROT < 0. && IP == 1 && THETA < 0. && ITH == 1, IROLL = 1]
If[GROT < 0. && IP == 1 && THETA < 0. && ITH == 2, IROLL = 2]
If[GROT < 0. && IP == 1 && THETA < 0. && ITH == 0, IROLL = 6]

If[GROT < 0. && IP == 2 && THETA < 0. && ITH <= 2, IROLL = 4]
If[GROT < 0. && IP == 2 && THETA < 0. && ITH == 0, IROLL = 6]

If[GROT < 0. && IP >= 3 && THETA < 0., IROLL = 6]

If[GROT < 0. && IP == 4 && THETA > 0., IROLL = 1]

If[GROT < 0. && IP == 0, IROLL = 6]

If[THETA == 0. && IP != 0, IROLL = 1]
If[THETA == 0. && IP == 0 && GROT > 0., IROLL = 7]
If[THETA == 0. && IP == 0 && GROT < 0., IROLL = 6]

If[GROT == 0. && Abs[THETA] <= THETA2, IROLL = 1]
If[GROT == 0. && THETA > THETA2, IROLL = 7]
If[GROT == 0. && THETA < -THETA2, IROLL = 6]

A-112

TDLRSP

(**
 Filename : tdlrsp.m
 Create Date : 6-30-94
 Description:
 This file contains the Mathematica code to calculate expected values
 for TDLRSP functional unit. The following assumptions are made:
 1) data related to the 4 GCS data stores are pre-loaded.
 2) the specific data for a test case is also loaded
 History:
 6-30-94 V0 created
 3-30-95 V1 Removed the use of KonAxisOK varaible
**)
debug = 1 (* debug prints 1=on 0=0ff *)

(* Local variables added for readability *)
 healthy = 0 (* used for TDLR_STATUS *)
 failed = 1 (* used for TDLR_STATUS *)
 unlocked = 0 (* used for TDLR_STATE *)
 locked = 1 (* used for TDLR_STATE *)
 good = 1 (* used for deciding whether KonAxis is OK *)
 bad = 0 (* used for deciding whether KonAxis is OK *)

(**** Rotate history variables ****)
 (* TDLR_VELOCITY *)
 TDLRVEL4 = TDLRVEL3
 TDLRVEL3 = TDLRVEL2
 TDLRVEL2 = TDLRVEL1
 TDLRVEL1 = TDLRVEL0

 (* K_MATRIX *)
 KMATRIX4 = KMATRIX3
 KMATRIX3 = KMATRIX2
 KMATRIX2 = KMATRIX1
 KMATRIX1 = KMATRIX0

If [debug==1, Print["starting k_matrix = ",MatrixForm[KMATRIX0]]]

(**** Determine radar beam status ****)
If [debug==1, Print["--- evaluate beam ---"]]
For [i=1, i<=4, i++,
 If [debug==1, Print["TDLRSTATE[",i,"] = ",TDLRSTATE[[i]]]];
 If [debug==1, Print["TDLRCOUNT[",i,"] = ",TDLRCOUNT[[i]]]];
 If [debug==1, Print["FRBUNLOCK[",i,"] = ",FRBUNLOCK[[i]]]];
 If [debug==1, Print["FRAMECOUNTER = ", FRAMECOUNTER]];
 Which[
 (* Row 1 of table 5.11 *)
 (TDLRSTATE[[i]] == locked)
 && (TDLRCOUNT[[i]] == 0)
 , TDLRSTATE[[i]] = unlocked;
 FRBUNLOCK[[i]] = FRAMECOUNTER;
 If [debug==1, Print["Table 5.11 Row 1"]]
 (* Row 2 of table 5.11 *)

A-113

 , (TDLRSTATE[[i]] == unlocked)
 && (TDLRCOUNT[[i]] != 0)
 && ((DELTAT (FRAMECOUNTER - FRBUNLOCK[[i]])) >= TDLRLT)
 , TDLRSTATE[[i]] = locked;
 If [debug==1, Print["Table 5.11 Row 2"]]
 (* Row 3 of table 5.11 *)
 , (TDLRSTATE[[i]] == unlocked)
 && (TDLRCOUNT[[i]] == 0)
 && ((DELTAT (FRAMECOUNTER - FRBUNLOCK[[i]])) >= TDLRLT)
 , FRBUNLOCK[[i]] = FRAMECOUNTER;
 If [debug==1, Print["Table 5.11 Row 3"]]
];
 If [debug==1, Print["Frame_beam_unlocked[",i,"] = ",FRBUNLOCK[[i]]]]
]

If [debug==1, Print["at 2 k_matrix = ",MatrixForm[KMATRIX0]]]
(**** Determine beam velocity ****)
B = { N[(TDLROFF + TDLRGAIN TDLRCOUNT[[1]]),30]
 ,N[(TDLROFF + TDLRGAIN TDLRCOUNT[[2]]),30]
 ,N[(TDLROFF + TDLRGAIN TDLRCOUNT[[3]]),30]
 ,N[(TDLROFF + TDLRGAIN TDLRCOUNT[[4]]),30]
 }
If [debug==1, Print["B = ",B]]

If [debug==1, Print["at 3 k_matrix = ",MatrixForm[KMATRIX0]]]
(**** Process the beam velocities ****)
 (* NOTE: In Mathematica, the WHICH statement works like a Pascal CASE *)
BonAxis = { 0, 0, 0 } (* case where none or only 1 beam is locked *)
KonAxis = { 0, 0, 0 }
Which[TDLRSTATE[[1]] == TDLRSTATE[[2]] == TDLRSTATE[[3]]
 == TDLRSTATE[[4]] == locked
 , N[BonAxis[[1]] = (B[[1]] + B[[2]] + B[[3]] + B[[4]])/4, 30];
 N[BonAxis[[2]] = (B[[1]] - B[[2]] - B[[3]] + B[[4]])/4, 30];
 N[BonAxis[[3]] = (B[[1]] + B[[2]] - B[[3]] - B[[4]])/4, 30];
 KonAxis = { 1, 1, 1 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 16"]]
 ,TDLRSTATE[[2]] == TDLRSTATE[[3]] == TDLRSTATE[[4]] == locked
 , N[BonAxis[[1]] = (B[[2]] + B[[4]])/2, 30];
 N[BonAxis[[2]] = (B[[4]] - B[[3]])/2, 30];
 N[BonAxis[[3]] = (B[[2]] - B[[3]])/2, 30];
 KonAxis = { 1, 1, 1 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 15"]]
 ,TDLRSTATE[[1]] == TDLRSTATE[[3]] == TDLRSTATE[[4]] == locked
 , N[BonAxis[[1]] = (B[[1]] + B[[3]])/2, 30];
 N[BonAxis[[2]] = (B[[4]] - B[[3]])/2, 30];
 N[BonAxis[[3]] = (B[[1]] - B[[4]])/2, 30];
 KonAxis = { 1, 1, 1 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 14"]]
 ,TDLRSTATE[[1]] == TDLRSTATE[[2]] == TDLRSTATE[[4]] == locked
 , N[BonAxis[[1]] = (B[[2]] + B[[4]])/2, 30];
 N[BonAxis[[2]] = (B[[1]] - B[[2]])/2, 30];
 N[BonAxis[[3]] = (B[[1]] - B[[4]])/2, 30];
 KonAxis = { 1, 1, 1 };

A-114

(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 13"]]
 ,TDLRSTATE[[1]] == TDLRSTATE[[2]] == TDLRSTATE[[3]] == locked
 , N[BonAxis[[1]] = (B[[1]] + B[[3]])/2, 30];
 N[BonAxis[[2]] = (B[[1]] - B[[2]])/2, 30];
 N[BonAxis[[3]] = (B[[2]] - B[[3]])/2, 30];
 KonAxis = { 1, 1, 1 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 12"]]
 ,TDLRSTATE[[3]] == TDLRSTATE[[4]] == locked
 , N[BonAxis[[2]] = (B[[4]] - B[[3]])/2, 30];
 KonAxis = { 0, 1, 0 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 11"]]
 ,TDLRSTATE[[2]] == TDLRSTATE[[4]] == locked
 , N[BonAxis[[1]] = (B[[2]] + B[[4]])/2, 30];
 KonAxis = { 1, 0, 0 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 10"]]
 ,TDLRSTATE[[2]] == TDLRSTATE[[3]] == locked
 , N[BonAxis[[3]] = (B[[2]] - B[[3]])/2, 30];
 KonAxis = { 0, 0, 1 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 9"]]
 ,TDLRSTATE[[1]] == TDLRSTATE[[4]] == locked
 , N[BonAxis[[3]] = (B[[1]] - B[[4]])/2, 30];
 KonAxis = { 0, 0, 1 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 8"]]
 ,TDLRSTATE[[1]] == TDLRSTATE[[3]] == locked
 , N[BonAxis[[1]] = (B[[1]] + B[[3]])/2, 30];
 KonAxis = { 1, 0, 0 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 7"]]
 ,TDLRSTATE[[1]] == TDLRSTATE[[2]] == locked
 , N[BonAxis[[2]] = (B[[1]] - B[[2]])/2, 30];
 KonAxis = { 0, 1, 0 };
(* V1 KonAxisOK = good; *)
 If [debug==1, Print["Row 6"]]
]

If [debug==1, Print["at 4 k_matrix = ",MatrixForm[KMATRIX0]]]
(**** Convert to body velocities ****)
For[i=1, i<=3, i++, (* RAD angles *)
 TDLRVEL0[[i,1]] = N[(BonAxis[[i]] 1/N[Cos[TDLRANG[[i]]],30]),30]
]
If [debug==1, Print["tdlr_velocity = ",TDLRVEL0]]

(**** Set values in K_MATRIX ****)
(***************** old code from V0 ***************)
(*If [KonAxisOK *)
(* , KMATRIX0 = { {0,0,0}, {0,0,0}, {0,0,0} }; *)(* initialize K_MATRIX *)
(* KMATRIX0[[1,1]] = KonAxis[[1]]; *)
(* KMATRIX0[[2,2]] = KonAxis[[2]]; *)
(* KMATRIX0[[3,3]] = KonAxis[[3]] *)
(*] *)

A-115

(*---------------- new code for V1 ----------------*)
If [debug==1, Print["KonAxis = ",KonAxis]]
KMATRIX0 = { {0,0,0}, {0,0,0}, {0,0,0} } (* initialize K_MATRIX *)
KMATRIX0[[1,1]] = KonAxis[[1]]
KMATRIX0[[2,2]] = KonAxis[[2]]
KMATRIX0[[3,3]] = KonAxis[[3]]

(**)

If [debug==1, Print["k_matrix = ",MatrixForm[KMATRIX0]]]

(**** Set TDLR_STATUS to healthy ****)
For[i=1, i<=4, i++,
 TDLRSTATUS[[i]] = healthy
]

A-116

TDSP

(**
Filename : tdspsp.m
Create Date : 7-5-94
Description:
This file contains the Mathematica code to calculate expected values
for TDSP functional unit. The following assumptions are made:
 data related to the 4 GCS data stores are pre-loaded.
 the specific data for a test case is also loaded
**)

(* Local variables added for readability *)
healthy = 0 (* used for TDS_STATUS *)
failed = 1 (* used for TDS_STATUS *)
sensed = 1 (* used for TD_SENSED *)
notsensed = 0 (* used for TD_SENSED *)
allzeros = 0 (* used for TD_COUTNER *)
allones = 65536 (* used for TD_COUTNER *)

(**** Determine status of touch down sensor & whether it has been sensed ****)
If[(TDSSTATUS == healthy)
, Switch [TDCOUTNER
,allzeros, TDSENSED = notsensed
,allones, TDSENSED = sensed
,_, TDSENSED = notsensed;
TDSSTATUS = failed
]
, (* according to the Spec:
if TDS_STATUS failes, GP determins when touch down occures *)
]

A-117

TSP

(**
Filename : tsp.m
Create Date : 7-5-94
Description:
This file contains the Mathematica code to calculate expected values
for TSP functional unit. The following assumptions are made:
 data related to the 4 GCS data stores are pre-loaded.
 the specific data for a test case is also loaded
**)

(* Local variables added for readability *)
healthy = 0 (* used for TS_STATUS *)
failed = 1 (* used for TS_STATUS *)

(**** Calculate the solid state temperature ****)
SSslope = (T2 - T1) / (M2 - M1)
SSyint = T1 - (SSslope M1)
sst = (SSslope SSTEMP) + SSyint

(**** Determine upper and lower range of thermocouple temperature ****)
LowerLimit = M3 - (0.15 (M4 - M3)) (* lower bound for valid THERMO_TEMP *)
UpperLimit = M4 + (0.15 (M4 - M3)) (* upper bound for valid THERMO_TEMP *)
THslope = (T4 - T3) / (M4 - M3) (* THERMO_TEMP linear range slope *)
THyint = T3 - (THslope M3)
hL = M3 + (THslope/2)
kL = T3 + (THslope/2)^2
LowerParaTemp = - (LowerLimit - hL)^2 + kL
hU = M4 - (THslope/2)
kU = T4 - (THslope/2)^2
UpperParaTemp = (UpperLimit - hU)^2 + kU

(**** Determine which sensor to use, & calculate thermo-temp if necessary ****)
If[(sst < LowerParaTemp) || (sst > UpperParaTemp)
 , ATMTEMP = sst
 , Which[(THERMOTEMP >= M3) && (THERMOTEMP <= M4)
 ,ATMTEMP = (THslope THERMOTEMP) + THyint
 ,THERMOTEMP < M3
 ,ATMTEMP = - (THERMOTEMP - hL)^2 + kL
 ,THERMOTEMP > M4
 ,ATMTEMP = (THERMOTEMP - hU)^2 + kU
]
]

(**** Set both elements of TS_STATUS to healthy ****)
For[i=1, i<=2, i++,
TSSTATUS[[i]] = healthy
]

(* debug use only *)

A-118

(*
Print ["sstemp = ",sst]
Print ["UpperParaTemp = ",UpperParaTemp]
Print ["LowerParaTemp = ",LowerParaTemp]
Print ["Atm_Temp = ",ATMTEMP]
*)

A-119

A.14 Sample Test Case

This section contains an example of a test case input file and an expected values file. Both
are generated by Mathematica based on the inputs that the Verification Analyst selects for the
particular test case. Each of these files are simply a series of FORTRAN namelists that the Test
Case Driver will use as input. The full test case consists of a Test case file and an expected-
results file with the following naming convention:
 Test case input file: <functional unit name>_<NR or RO>_<a unique number>.TC
 Expected-results file: <functional unit name>_<NR or RO>_<a unique number>.EX
Both files are needed to run the test case. The NR designation indicates a “normal range” test of
all valid values, both input and output. The RO designation indicates a “robustness” test case.
These include those instances where the input is valid, but an invalid output occurs, as well as
invalid input cases. Each “robustness” test case tests only one invalid input, but a single invalid
input may produce several invalid outputs.

Note that this is a functional unit test case example only. The test case input files and
expected results files for CP are generated on the VAX and not by Mathematica. Additionally,
the subframe and frame test cases differ in that the expected values of the data element
"PACKET" is not generated until the test case is actually executed. The example follows:

Sample Test Case Input

* File: gp_nr_001.tcNull
* Date of Mathematica Model Run: 9-7-1994
* Time of Mathematica Model Run: 8:13:5
* Description:
* Tester: Debbie Taylor (CSC CORP)
* DATE: July 15, 1994
* Unit Test for Functional Unit GP
*
* Test case 1
* Initial GP Frame
* All valid inputs
*
* Tests Equivalence Classes: A_ACCELERATION.1
* GP_ALTITUDE.1
* GP_ATTITUDE.1
* GP_VELOCITY.1
* G_ROTATION.1
* TDLR_VELOCITY.1
*

A-120

$RUN_PARAMETERS_NML
A_BIAS = -20., -20., -20.,
A_GAIN_0 = 0.012, 0.012, 0.012,
A_SCALE = 1,
ALPHA_MATRIX =
 0, 0,
 1, 0,
 0, 1,
AR_FREQUENCY = 2.45e9,
COMM_SYNC_PATTERN = -9806,
CONTOUR_ALTITUDE = -0.01,
 0.003048, 0.018288, 0.019, 0.0196, 0.0225,
 0.02617, 0.03648, 0.0506, 0.06855, 0.0903,
 0.14542, 0.21583, 0.30145, 2., 0.,
CONTOUR_VELOCITY = 0.002,
 0.002, 0.002, 0.0031, 0.0035, 0.0046,
 0.00538, 0.01222, 0.0162, 0.0203, 0.0245,
 0.0333, 0.0427, 0.0528, 0.1225, 0.,
DELTA_T = 0.02,
DROP_HEIGHT = 1.,
DROP_SPEED = 2.,
ENGINES_ON_ALTITUDE = 1500.,
FULL_UP_TIME = 5.,
G1 = 6.67e-7,
G2 = 4.e-9,
G3 = 3.e-9,
G4 = 2.22e-11,
G_GAIN_0 = 0.0003, 0.0003, 0.0003,
G_OFFSET = 0., 0., 0.,
GA = 0.01,
GAX = 3.,
GP1 = 0.852,
GP2 = -0.426,
GPY = 0.892,
GQ = 3., 7.,
GR = 3.,7.,
GRAVITY = 3.75,
GV = 5.,7.,
GVE = 200.,
GVEI = 40.,20.,
GW = 5.,7.,
GWI = 0.5,1.,
M1 = 10000.,
M2 = 10040.,
M3 = 1000.,
M4 = 1010.,
MAX_NORMAL_VELOCITY = 3.35,
OMEGA = 1.,
P1 = 0.00354,
P2 = 0.00827,
P3 = 0.01,
P4 = 0.015708,
PE_MAX = 0.524,0.062,
PE_MIN = -0.524,-0.062,
T1 = -200.,
T2 = 200.,

A-121

T3 = -38.46,
T4 = 38.46,
TDLR_ANGLES = 0.361367,1.31812, 1.31812,
TDLR_GAIN = 0.015625,
TDLR_LOCK_TIME = 0,
TDLR_OFFSET = -100.,
TE_DROP = 0.1,
TE_INIT = 0.1,
TE_MAX = 0.9,0.498,
TE_MIN = 0.1,0.1,
THETA1 = 0.004363,
THETA2 = 0.006109,
YE_MAX = 0.524,0.042,
YE_MIN = -0.524,-0.042,
$end

$EXTERNAL_NML
A_COUNTER = 1665, 1524, 1524,
AE_CMD = 0, 0, 0,
AR_COUNTER = 24464,
FRAME_COUNTER = 1,
G_COUNTER = 292, 161, 7,
PACKET =
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
RE_CMD = 1,
SS_TEMP = 0.,
SUBFRAME_COUNTER = 1,
TD_COUNTER = 0,
TDLR_COUNTER = 9920, 9770, 9852, 10002,
THERMO_TEMP = 992,
$end

$SENSOR_OUTPUT_NML
A_ACCELERATION =
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
AR_ALTITUDE = 1497.79591836735, 1497.81166815946, 1497.81166815946, 1497.81166815946,
1497.81166815946,
ATMOSPHERIC_TEMP = -147.586,
G_ROTATION =
0.087614454, 0.0483079695, 0.0021003465,

A-122

0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
TD_SENSED = 0,
TDLR_VELOCITY =
58.2295430434468, 4.68750002153857, -2.56250001177442,
58.2371395855674, 58.2371395855674, 58.2371395855674,
58.2371395855674, 58.2371395855674, 58.2371395855674,
58.2371395855674, 58.2371395855674, 58.2371395855674,
58.2371395855674, 58.2371395855674, 58.2371395855674,
$end

$GUIDANCE_STATE_NML
A_STATUS =
 0, 0,
 0, 0,
 0, 0,
 0, 0,
AE_STATUS = 0,
AE_SWITCH = 0,
AE_TEMP = 0,
AR_STATUS = 0, 0, 0, 0, 0,
C_STATUS = 0,
CHUTE_RELEASED = 0,
CL = 1,
CONTOUR_CROSSED = 0,
FRAME_BEAM_UNLOCKED =
 0, 0, 0,
FRAME_ENGINES_IGNITED = 1,
G_STATUS = 0,
GP_ALTITUDE = 1497.81166815946, 1497.81166815946, 1497.81166815946, 1497.81166815946,
1497.81166815946,
GP_ATTITUDE =
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
GP_PHASE = 1,
GP_ROTATION =
 , -0.00210035, 0.0483079695,
0.0021003465, 0., -0.0876145,
-0.048308, 0.087614454, 0.,
GP_VELOCITY =
58.2371395855674, 4.67148327843904, -2.55368425934921,

A-123

58.2371395855674, 4.67148327843904, -2.5536842534921,
58.2371395855674, 4.67148327843904, -2.55368425934921,
58.2371395855674, 4.67148327843904, -2.55368425934921,
58.2371395855674, 4.67148327843904, -2.55368425934921,
INTERNAL_CMD = 0, 0, 0,
K_ALT = 1, 1, 1, 1, 1,
K_MATRIX =
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
PE_INTEGRAL = 0.,
RE_STATUS = 0,
RE_SWITCH = 1,
TDLR_STATE = 1, 1, 1, 1,
TDLR_STATUS = 0, 0, 0, 0,
TDS_STATUS = 0,
TE_INTEGRAL = 0.,
TE_LIMIT = 0.,
THETA = 0.00257,
TS_STATUS = 0, 0,
VELOCITY_ERROR = -43.348030923942914,
YE_INTEGRAL = 0.,
$END

A-124

Sample Expected Results

* File: gp_nr_001.exNull
* Date of Mathematica Model Run: 9-7-1994
* Time of Mathematica Model Run: 8:13:10
* Description:
* Tester: Debbie Taylor (CSC CORP)
* DATE: July 15, 1994
* Unit Test for Functional Unit GP
*
* Test case 1
* Initial GP Frame
* All valid inputs
*
* Tests Equivalence Classes: A_ACCELERATION.1
* GP_ALTITUDE.1
* GP_ATTITUDE.1
* GP_VELOCITY.1
* G_ROTATION.1
* TDLR_VELOCITY.1
*

$EX_RUN_PARAMETERS_NML
EX_A_BIAS = -20., -20., -20.,
EX_A_GAIN_0 = 0.012, 0.012, 0.012,
EX_A_SCALE = 1,
EX_ALPHA_MATRIX =
 0, 0,
 1, 0,
 0, 1,
EX_AR_FREQUENCY = 2.45e9,
EX_COMM_SYNC_PATTERN = -9806,
EX_CONTOUR_ALTITUDE = -10.,
 3.048, 18.288, 19., 19.6, 22.5,
 26.17, 36.48, 50.6, 68.55, 90.3,
 , 145.42, 215.83, 301.45, 2000., 0.,
EX_CONTOUR_VELOCITY = 2.,
 , 2., 2., 3.1, 3.5, 4.6,
 5.38, 12.22, 16.2, 20.3, 24.5,
 33.3, 42.7, 52.8, 122.5, 0.,
EX_DELTA_T = 0.02,
EX_DROP_HEIGHT = 1.,
EX_DROP_SPEED = 2.,
EX_ENGINES_ON_ALTITUDE = 1500.,
EX_FULL_UP_TIME = 5.,
EX_G1 = 6.67e-7,
EX_G2 = 4.e-9,
EX_G3 = 3.e-9,
EX_G4 = 2.22e-11,
EX_G_GAIN_0 = 0.0003, 0.0003, 0.0003,
EX_G_OFFSET = 0., 0., 0.,

A-125

EX_GA = 0.01,
EX_GAX = 3.,
EX_GP1 = 0.852,
EX_GP2 = -0.426,
EX_GPY = 0.892,
EX_GQ = 3., 7.,
EX_GR = 3.,7.,
EX_GRAVITY = 3.75,
EX_GV = 5.,7.,
EX_GVE = 200.,
EX_GVEI = 40.,20.,
EX_GW = 5.,7.,
EX_GWI = 0.5,1.,
EX_M1 = 10000.,
EX_M2 = 10040.,
EX_M3 = 1000.,
EX_M4 = 1010.,
EX_MAX_NORMAL_VELOCITY = 3.35,
EX_OMEGA = 1.,
EX_P1 = 0.00354,
EX_P2 = 0.00827,
EX_P3 = 0.01,
EX_P4 = 0.015708,
EX_PE_MAX = 0.524,0.062,
EX_PE_MIN = -0.524,-0.062,
EX_T1 = -200.,
EX_T2 = 200.,
EX_T3 = -38.46,
EX_T4 = 38.46,
EX_TDLR_ANGLES = 0.361367,1.31812, 1.31812,
EX_TDLR_GAIN = 0.015625,
EX_TDLR_LOCK_TIME = 0,
EX_TDLR_OFFSET = -100.,
EX_TE_DROP = 0.1,
EX_TE_INIT = 0.1,
EX_TE_MAX = 0.9,0.498,
EX_TE_MIN = 0.1,0.1,
EX_THETA1 = 0.004363,
EX_THETA2 = 0.006109,
EX_YE_MAX = 0.524,0.042,
EX_YE_MIN = -0.524,-0.042,
$end

$EX_EXTERNAL_NML
EX_A_COUNTER = 1665, 1524, 1524,
EX_AE_CMD = 0, 0, 0,
EX_AR_COUNTER = 24464,
EX_FRAME_COUNTER = 1,
EX_G_COUNTER = 292, 161, 7,
EX_PACKET =
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

A-126

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
EX_RE_CMD = 1,
EX_SS_TEMP = 0.,
EX_SUBFRAME_COUNTER = 1,
EX_TD_COUNTER = 0,
EX_TDLR_COUNTER = 9920, 9770, 9852, 10002,
EX_THERMO_TEMP = 992,
$end

$EX_SENSOR_OUTPUT_NML
EX_A_ACCELERATION =
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
1.63739825110955, -0.202263936687537, 1.99439462855677,
EX_AR_ALTITUDE = 1497.79591836735, 1497.81166815946, 1497.81166815946, 1497.81166815946,
1497.81166815946,
EX_ATMOSPHERIC_TEMP = -147.586,
EX_G_ROTATION =
0.087614454, 0.0483079695, 0.0021003465,
0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
0.0876579642295837, 0.0485167264938354, 0.00239650011062622,
EX_TD_SENSED = 0,
EX_TDLR_VELOCITY =
58.2295430434468, 4.68750002153857, -2.56250001177442,
58.2371395855674, 58.2371395855674, 58.2371395855674,
58.2371395855674, 58.2371395855674, 58.2371395855674,
58.2371395855674, 58.2371395855674, 58.2371395855674,
58.2371395855674, 58.2371395855674, 58.2371395855674,
$end

$EX_GUIDANCE_STATE_NML
EX_A_STATUS =
 0, 0,
 0, 0,
 0, 0,
 0, 0,
EX_AE_STATUS = 0,
EX_AE_SWITCH = 1,
EX_AE_TEMP = 0,
EX_AR_STATUS = 0, 0, 0, 0, 0,
EX_C_STATUS = 0,
EX_CHUTE_RELEASED = 0,
EX_CL = 1,
EX_CONTOUR_CROSSED = 0,
EX_FRAME_BEAM_UNLOCKED =
 0, 0, 0,

A-127

EX_FRAME_ENGINES_IGNITED = 1,
EX_G_STATUS = 0,
EX_GP_ALTITUDE = 1495.521749022006, 1497.81166815946, 1497.81166815946, 1497.81166815946,
1497.81166815946,
EX_GP_ATTITUDE =
-0.03979878822126675, 0.957525014194865, -0.2855904474112915,
-0.07660037852440182, 0.282052052010574, 0.956336249426609,
0.99626725253411, 0.05993736023322743, 0.06212144864759948,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
-0.0404392391645691, 0.958516512228094, -0.282153794448846,
-0.0747709982983742, 0.278690021002445, 0.957466015066395,
0.99638043223924, 0.0598161180598313, 0.0603992240926737,
EX_GP_PHASE = 2,
EX_GP_ROTATION =
 , -0.00210035, 0.0483079695,
0.0021003465, 0., -0.0876145,
-0.048308, 0.087614454, 0.,
EX_GP_VELOCITY =
58.45070383441093, 6.40601755948299, -0.3969432260435215,
58.2371395855674, 4.67148327843904, -2.55368425934921,
58.2371395855674, 4.67148327843904, -2.5536842534921,
58.2371395855674, 4.67148327843904, -2.55368425934921,
58.2371395855674, 4.67148327843904, -2.55368425934921,
EX_INTERNAL_CMD = 0, 0, 0,
EX_K_ALT = 1, 1, 1, 1, 1,
EX_K_MATRIX =
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
 , 0., 0.,
 , 1., 0.,
 , 0., 1.,
EX_PE_INTEGRAL = 0.,
EX_RE_STATUS = 0,
EX_RE_SWITCH = 1,
EX_TDLR_STATE = 1, 1, 1, 1,
EX_TDLR_STATUS = 0, 0, 0, 0,
EX_TDS_STATUS = 0,
EX_TE_INTEGRAL = 0.,

A-128

EX_TE_LIMIT = 0.,
EX_THETA = 0.00257,
EX_TS_STATUS = 0, 0,
EX_VELOCITY_ERROR = -43.34803091395316,
EX_YE_INTEGRAL = 0.,
$END

A.15 Sample Test Stub

The Test stubs are simply FORTRAN shells that will call the source code for each functional
unit. These shells are compiled and linked with the source code provided by the programmer.
The resulting executable code is then run at least once for each test case. The drivers compare the
data in the expected-results files to the actual data computed by the source code and prints out a
file that prints the discrepancies.

C**
C
C NAME: test_gp.for
C
C DATE: 12/29/94
C
C PURPOSE: Generic test driver for GCS Guidance Processing
C module. Reads in a test case data file, *.TC, executes
C the module to be tested, and compares the actual computed data to
C the expected data in file, *.EX
C
C***
 program test_gp

 include 'struct.for_inc'
 include 'commons.for_inc/nolist'
C
C List of module inputs

 namelist /EXTERNAL_NML/
 + A_COUNTER, AE_CMD, AR_COUNTER, FRAME_COUNTER,
 + G_COUNTER,PACKET, RE_CMD,SS_TEMP,SUBFRAME_COUNTER,
 + TD_COUNTER, TDLR_COUNTER, THERMO_TEMP
C
 namelist /SENSOR_OUTPUT_NML/
 + A_ACCELERATION, AR_ALTITUDE, ATMOSPHERIC_TEMP, G_ROTATION,
 + TD_SENSED, TDLR_VELOCITY
C
 namelist /GUIDANCE_STATE_NML/
 + A_STATUS, AE_STATUS, AE_SWITCH, AE_TEMP, AR_STATUS,
 + C_STATUS, CHUTE_RELEASED, CL, CONTOUR_CROSSED,
 + FRAME_BEAM_UNLOCKED, FRAME_ENGINES_IGNITED,
 + G_STATUS, GP_ALTITUDE, GP_ATTITUDE, GP_PHASE,
 + GP_ROTATION, GP_VELOCITY, INTERNAL_CMD, K_ALT,
 + K_MATRIX, PE_INTEGRAL, RE_STATUS, RE_SWITCH, TDLR_STATE,

A-129

 + TDLR_STATUS, TDS_STATUS, TE_INTEGRAL, TE_LIMIT, THETA,
 + TS_STATUS, VELOCITY_ERROR, YE_INTEGRAL
c
 namelist /RUN_PARAMETERS_NML/
 + A_BIAS, A_GAIN_0, A_SCALE, ALPHA_MATRIX, AR_FREQUENCY,
 + COMM_SYNC_PATTERN, CONTOUR_ALTITUDE, CONTOUR_VELOCITY,
 + DELTA_T, DROP_HEIGHT, DROP_SPEED, ENGINES_ON_ALTITUDE,
 + FULL_UP_TIME, G1, G2, G3, G4, G_GAIN_0, G_OFFSET, GA,
 + GAX, GP1, GP2, GPY, GQ, GR, GRAVITY, GV, GVE, GVEI, GVI,
 + GW, GWI, M1, M2, M3, M4, MAX_NORMAL_VELOCITY, OMEGA, P1,
 + P2, P3, P4, PE_MAX, PE_MIN, T1, T2, T3, T4, TDLR_ANGLES,
 + TDLR_GAIN, TDLR_LOCK_TIME, TDLR_OFFSET, TE_DROP, TE_INIT,
 + TE_MAX, TE_MIN, THETA1, THETA2, YE_MAX, YE_MIN

 namelist /EX_EXTERNAL_NML/
 + EX_A_COUNTER, EX_AE_CMD, EX_AR_COUNTER, EX_FRAME_COUNTER,
 + EX_G_COUNTER, EX_PACKET, EX_RE_CMD, EX_SS_TEMP,
 + EX_SUBFRAME_COUNTER,
 + EX_TD_COUNTER, EX_TDLR_COUNTER, EX_THERMO_TEMP
C
 namelist /EX_SENSOR_OUTPUT_NML/
 + EX_ A_ACCELERATION, EX_AR_ALTITUDE, EX_ATMOSPHERIC_TEMP,
 + EX_G_ROTATION,
 + EX_TD_SENSED, EX_TDLR_VELOCITY
C
 namelist /EX_GUIDANCE_STATE_NML/
 + EX_A_STATUS, EX_AE_STATUS, EX_AE_SWITCH, EX_AE_TEMP,
 + EX_AR_STATUS,
 + EX_C_STATUS, EX_CHUTE_RELEASED, EX_CL, EX_CONTOUR_CROSSED,
 + EX_FRAME_BEAM_UNLOCKED, EX_FRAME_ENGINES_IGNITED,
 + EX_G_STATUS, EX_GP_ALTITUDE, EX_GP_ATTITUDE, EX_GP_PHASE,
 + EX_GP_ROTATION, EX_GP_VELOCITY, EX_INTERNAL_CMD, EX_K_ALT,
 + EX_K_MATRIX, EX_PE_INTEGRAL, EX_RE_STATUS, EX_RE_SWITCH,
 + EX_TDLR_STATE,
 + EX_TDLR_STATUS, EX_TDS_STATUS, EX_TE_INTEGRAL, EX_TE_LIMIT,
 + EX_THETA,
 + EX_TS_STATUS, EX_VELOCITY_ERROR, EX_YE_INTEGRAL
c

C**** Begin execution

C Read in test case data
 call read_tc

C Execute gp
 type *, 'executing gp...'
 call gp

C Read in the expected results from the appropriate .EX file
 call read_ex

C Compare the expected results with the actual results
 type *, 'compare_guid...'
 call compare_guidance
 type *, 'compare_sensor...'
 call compare_sensor

A-130

 type *, 'compare_runparam...'
 call compare_runpram
 type *, 'compare_extern...'
 call compare_external

C**** end execution
 end

A.16 Test Case Results Log

Test Case Results Log

TEST CASE

NAME
EXECUTION

DATE
CODE

VERSION #
TEST CASE
VERSION #

RESULTS
(was .ANA file

generated Y or N?)

PR #

This log will trace the results of each implementation’s test runs. It serves as a history of test

cases executions for each implementation. Due to the large number of test cases, grouping them
logically is highly recommended. For example the Test Case Results Logs will be broken up into
15 different logs; one for each functional unit test suite, one for each subframe test suite and one
for the frame test suite. The title of the log will be modified to indicate which test suite and
which implementation is being logged. For example the Test Case Log for Mercury for AECLP
would be titled : MERCURY TEST CASE RESULTS LOG FOR AECLP.

Each of the fields in the log are described below:

 TEST CASE NAME: The name of the test case being logged
 DATE: The date the test case was run. This is used to distinguish

between multiple runs of the same test case.
 CODE UNIT VERSION #: The version of the code being tested. This is be used to

distinguish between multiple runs of the same test case.
 TEST CASE VERSION #: The version of the test case being tested. This is be used to

distinguish between multiple runs of the same test case.
 RESULTS: Was a .ANA file generated? If yes, a PR must be issued.
 PR #: The PR number generated as a result of a test failure.

A-131

A.17 References

A.1 Finelli, George B.: Results of Software Error-Data Experiments. In AIAA/AHS/ASEE
Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

A.2 "Software Considerations in Airborne Systems and Equipment Certification", Document
No. RTCA/DO-178B, Dec. 1992.

A.3 "Technical Assessment Procedure for Design Review and Assessment", SEES document
volume III.

A.4 Fagan, Michael E., "Design and Code Inspections to Reduce Errors in Program
Development", IBM Systems Journal, Volume 15, No. 3, 1976.

A.5 Withers, B. Edward, GCS_SIM User's Guide Guidance Control Software Release 1,
Research Triangle Institute.

A.6 Holmberg, Neil A. et al, Viking '75 Spacecraft Design and Test Summary, Vol. I - Lander
Design, NASA Reference Publication 1027.

A.7 Wolfram, Stephen,. Mathematica, A System for Doing Mathematics by Computer, Second
Edition. Addison-Wesley Publishing Company, Inc., 1991

A.8 Myers, Glenford J., The Art of Software Testing, ,Wiley-Interscience Pub. N.Y., N.Y.,
1979.

B-1

Appendix B: Software Verification Results for the PLUTO Implementation
of the Guidance and Control Software

Authors: Cuong C. Quach, NASA Langley Research Center

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

B-2

B. Contents

B.1 INTRODUCTION..B-5
B.2. REVIEW AND ANALYSIS RESULTS ..B-5

B.2.1 DESIGN REVIEW ..B-5
B.2.2 CODE REVIEW ...B-5

B.3. PLUTO TEST RESULTS ..B-5
B.3.1 REQUIREMENTS BASED FUNCTIONAL UNIT TESTING ..B-7
B.3.2 SUBFRAME TESTING ..B-19

B.3.2.1 SP Subframe ...B-19
B.3.2.2 GP Subframe...B-20
B.3.2.3 CLP Subframe...B-21

B.3.3 FRAME TESTING ..B-22
B.3.4 TRAJECTORY TESTING...B-23
B.3.5 STRUCTURAL ANALYSIS AND TESTING..B-24

B.3.5.1 ARSP Structural Analysis ...B-26
B.3.5.2 ASP Structural Analysis..B-28
B.3.5.3 ASP Structural Testing..B-30
B.3.5.4 GSP Structural Analysis ...B-31
B.3.5.5 TSP Structural Analysis ..B-33
B.3.5.6 TDSP Structural Analysis ...B-35
B.3.5.7 TDLRSP Structural Analysis ..B-37
B.3.5.8 CP Structural Analysis ...B-39
B.3.5.9 GP Structural Analysis ...B-42
3.5.10 GP Structural Testing ..B-44
B.3.5.11 AECLP Structural Analysis ..B-46
B.3.5.12 AECLP Structural Testing ..B-47
B.3.5.13 RECLP Structural Analysis ..B-48
B.3.5.14 RECLP Structural Testing ..B-49
B.3.5.15 CRCP Structural Analysis ..B-50
B.3.5.16 Utility Subroutines Structural Analysis ..B-51

B.4 TRACEABILITY MATRIX FOR PLUTO DESIGN AND CODE...B-52

B-3

B. List of Tables

TABLE B.1: DESCRIPTION OF PLUTO CODE COMPONENTS..B-6

TABLE B.2: ARSP CODE COMPONENTS. ...B-8

TABLE B.3: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE ARSP FUNCTIONAL UNIT.................................B-8

TABLE B.4: ASP CODE COMPONENTS. ..B-9

TABLE B.5: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE ASP FUNCTIONAL UNIT.B-9

TABLE B.6: GSP CODE COMPONENTS. ..B-10

TABLE B.7: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE GSP FUNCTIONAL UNIT.B-10

TABLE B.8: TSP CODE COMPONENTS. ..B-11

TABLE B.9: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE TSP FUNCTIONAL UNIT..................................B-11

TABLE B.10: TDSP CODE COMPONENTS...B-12

TABLE B.11: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE TDSP FUNCTIONAL UNIT.B-12

TABLE B.12: TDLRSP CODE COMPONENTS. ..B-13

TABLE B.13: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE TDLRSP FUNCTIONAL UNIT........................B-13

TABLE B.14: GP CODE COMPONENTS. ..B-14

TABLE B.15: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE GP FUNCTIONAL UNIT..................................B-14

TABLE B.16: AECLP CODE COMPONENTS..B-15

TABLE B.17: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE AECLP FUNCTIONAL UNIT.B-15

TABLE B.18: RECLP CODE COMPONENTS..B-16

TABLE B.19: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE RECLP FUNCTIONAL UNIT.B-16

TABLE B.20: CRCP CODE COMPONENTS. ...B-17

TABLE B.21: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE CRCP FUNCTIONAL UNIT.B-17

TABLE B.22: CP CODE COMPONENTS: ..B-18

TABLE B.23: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE CP FUNCTIONAL UNIT..................................B-18

TABLE B.24: SP CODE COMPONENTS..B-19

TABLE B.25: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE SP SUBFRAME...B-19

TABLE B.26: GP SUBFRAME CODE COMPONENTS. ..B-20

TABLE B.27: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE GPSF SUBFRAME..B-20

TABLE B.28: CLP SUBFRAME CODE COMPONENTS. ..B-21

TABLE B.29: SUMMARY OF REQUIREMENTS-BASED TESTING ON THE CLP SUBFRAME..B-21

TABLE B.30: FRAME CODE COMPONENTS...B-22

TABLE B.31: SUMMARY OF REQUIREMENTS-BASED TESTING ON FOR FRAME..B-22

TABLE B.32: TRAJECTORY TEST CODE COMPONENTS. ..B-23

TABLE B.33: SUMMARY OF REQUIREMENTS-BASED TRAJECTORY TESTING...B-23

TABLE B.34: ARSP DECISION TABLE - SEE FIGURE B.1 FOR CORRESPONDENCE..B-27

TABLE B.35: MC/DC PAIRS TABLE FOR DECISION NODE 4 OF ARSP: ..B-27

B-4

TABLE B.36: ASP DECISIONS TABLE - SEE FIGURE B.2 FOR CORRESPONDENCE ..B-29

TABLE B.37: MC/DC PAIRS TABLE FOR DECISION NODE 22 OF ASP: ..B-29

TABLE B.38: MC/DC PAIRS TABLE FOR DECISION NODE 23 OF ASP: ...B-29

TABLE B.39: SUMMARY OF STRUCTURAL TESTING FOR ASP FUNCTIONAL UNIT ..B-30

TABLE B.40: GSP DECISION TABLE -- SEE FIGURE B.3 FOR CORRESPONDENCE. ...B-32

TABLE B.41: TSP DECISION TABLE -- SEE TSP GRAPH FOR CORRESPONDENCE. ..B-34

TABLE B.42: MC/DC PAIRS TABLE FOR DECISION NODE 4 OF TSP: ...B-34

TABLE B.43: MC/DC ENTRY/EXIT REQUIREMENTS -- FOR MODULES INSIDE TSP.FOR: ...B-34

TABLE B.44: TDSP DECISIONS -- SEE FIGURE B.5 FOR CORRESPONDENCE. ...B-36

TABLE B.45: TDLRSP DECISIONS -- SEE TDLRSP GRAPH FOR CORRESPONDENCE. ..B-38

TABLE B.46: EXPANDED TABLE FOR DECISION 25. ..B-38

TABLE B.47: CP DECISIONS -- SEE CP GRAPH FOR CORRESPONDENCE. ..B-41

TABLE B.48: CRC16 DECISION..B-41

TABLE B.49: MC/DC ENTRY/EXIT REQUIREMENTS FOR MODULE INSIDE CP.FOR: ..B-41

TABLE B.50: GP DECISIONS -- SEE FIGURE B.9 FOR CORRESPONDENCE. ..B-43

TABLE B.51: MC/DC TABLE FOR DECISION 123. ...B-44

TABLE B.52: EXPANDED TABLE FOR GP_PHASE DECISION..B-44

TABLE B.53: MC/DC ENTRY/EXIT REQUIREMENTS FOR MODULE INSIDE GP.FOR: ..B-44

TABLE B.54: SUMMARY OF STRUCTURAL TESTING FOR GP FUNCTIONAL UNIT. ...B-45

TABLE B.55: AECLP DECISIONS -- SEE FIGURE B.10 FOR CORRESPONDENCE ...B-47

TABLE B.56: SUMMARY OF STRUCTURAL TESTING FOR AECLP FUNCTIONAL UNIT. ..B-47

TABLE B.57: RECLP DECISIONS -- SEE FIGURE B.11 FOR CORRESPONDENCE ..B-49

TABLE B.58: SUMMARY OF STRUCTURAL TESTING FOR RECLP FUNCTIONAL UNIT. ..B-49

TABLE B.59: CRCP DECISIONS -- SEE FIGURE B.12 FOR CORRESPONDENCE ..B-51

TABLE B.60: RANGE_CHECK SUBROUTINE DECISIONS: ..B-51

TABLE B.61: NEG_VALUE_CHECK SUBROUTINE DECISIONS:...B-51

TABLE B.62: ZERO_CHECK SUBROUTINE DECISIONS:..B-51

TABLE B.5-1: PLUTO TRACEABILITY MATRIX: ..B-52

B-5

B.1 Introduction

The purpose of this document, as described in Section 11.14 of DO-178B, is to provide details
about the results of software verification activities conducted for the PLUTO implementation of
the Guidance and Control Software (GCS). As stated in other documents, the GCS project
adheres to the DO-178B guidelines for Level A software. Accordingly, specific verification
activities have been described in the Software Verification Plan, and Software Verification Cases
and Procedures documents. This document gives the results of each of those activities as carried
out on the Pluto implementation.

As stated in the Software Verification Plan, verification activities conducted for Pluto
encompass two groups:

• Review and analysis of artifacts from the Design and Coding processes
• Development and execution of test cases

The review and analysis of the Pluto design and source code are performed following the
procedure established in the Software Verification Cases and Procedures document. Test case
development as well as test case execution are also performed in accordance with procedures
described in that document. The three sections below are the main thrust of this document and
describe the design review, code review, and test case execution results.

B.2. Review and Analysis Results

B.2.1 Design Review

Two reviews were held for the Pluto design. The first occurred between September 16, 1993
and October 15, 1993. Problem Reports (PR) 1 through 13 were issued based on deficiencies
found during this review. Before the second review, a modification to the specification (Spec.
Mod. 2.3-2) necessitated issuance of PR 14. On July 1, 1994 an overview meeting was held for
the Pluto design. The second design review was held twelve days later on July 13, 1994. This
review culminated with the issuance of PRs 15 through 19. During this review, the design
portion of the Traceability Matrix for Pluto given in section B.5 was completed. Shortly there
after, PR 20 was issued due to another change to the GCS Specification. There after, the Pluto
design was considered reviewed.

B.2.2 Code Review

Only one review was held for the Pluto code. An overview meeting occurred on October 26,
1994. The actual code review occurred November 16, 1995. Based on the code inspection, PR
21 through 23 were issued to correct deficiencies found. During the code review, modules of the
code were identified with their requirements in the Pluto Traceability Matrix, see section B.5.
The code was deemed ready for testing there after.

B.3. Pluto Test Results

DO-178B requires that test cases provide the coverage as stated in Section 6.4.2 and Table
B.5-7. As described in the Verification Cases document, test cases were developed to fulfill those
requirements. Testing Pluto with the those test cases will ensure that the coverage has been

B-6

satisfied for the implementation. Pluto testing proceeded in the order as specified in Software
Verification Cases and Procedures:

Requirements-based functional unit testing
• Requirements-based Subframe testing
• Requirements-based Frame testing
• Requirements-based Trajectory testing
• Structural analysis and testing of functional units

The output from each test phase was a series of test logs indicating when the test cases were
executed, and whether the test cases revealed any deficiencies. A condensed version of the test
logs are included in the following sections. Each section starts with a list of code components
tested and the test log for that functional unit. The test logs have been abbreviated here so that
only the naming pattern is entered in each entry of the log. Only those test cases that failed are
listed specifically. The full test log for each Pluto functional unit are stored and can be fetched
from the CMS library for this project. The same naming conventions are used in the logs as are
used in the Verification Cases document.

The Pluto code consists of 21 files, each termed a code component. A description of each
component is given in Table B.1.

Table B.1: Description of Pluto Code Components.

Pluto Code Component Functional Description
AECLP.FOR Implements the AECLP functional unit
ARSP.FOR Implements the ARSP functional unit
ASP.FOR Implements the ASP functional unit
CLPSF.FOR This implements the control law processing subframe
CP.FOR This implements the CP functional unit
CRCP.FOR This implements the CRCP functional unit.
EXTERNAL.FOR This is the include file for the External data store
GP.FOR Implements the GP functional unit
GPSF.FOR Implement the guidance processing subframe.
GSP.FOR Implements the GSP functional unit
GUIDANCE_STATE.FOR This component is an include file for the Guidance_State data store.
PLUTO.FOR Implements the high level interface into the Pluto code.
RECLP.FOR Implements the RECLP functional unit
RUN_PARAMETERS.FOR Include file for Run_Parameters data store
SENSOR_OUTPUT.FOR Include file for Sensor_Output data store
SPSF.FOR This routine implements the sensor processing subframe
TDLRSP.FOR Implements the TDLRSP functional unit
TDSP.FOR Implements the TDSP functional unit
TSP.FOR Implements the TSP functional unit
UTILITY.FOR This file contains routines that perform range checking, checking for zero, and

negative values. The routines are used in all functional units.

B-7

B.3.1 Requirements Based Functional Unit Testing

The following sections gives the results of the requirements-based test cases for the Pluto
implementation starting with the functional-unit level testing. A list of functional unit is given
below followed by the results of each functional unit.

Axial Engine Control Law Processing AECLP
Altimeter Radar Sensor Processing ARSP
Accelerometer Sensor Processing ASP
Communications Processing CP
Chute Release Control Processing CRCP
Guidance Processing GP
Gyroscope Sensor Processing GSP
Roll Engine Control Law Processing RECLP
Touch Down Landing Radar Sensor Processing TDLRSP
Touch Down Sensor Processing TDSP
Temperature Sensor Processing TSP

B-8

B.3.1.1 ARSP Functional Unit

Code components tested in this test suite are given in Table B.2. The test log for ARSP
requirements-based testing is summarized in Table B.3. The "xxx" notation used in Table B.3 as
well as other test log summaries in this document represent the test case number. Only test cases
that revealed anomalies in the code are specifically listed.

Table B.2: ARSP code components.

EXTERNAL.FOR ARSP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 9
Total number of robustness (RO) test cases: 14

Table B.3: Summary of Requirements-based Testing on the ARSP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

ARSP_RO_xxx 1/5/95 N Initial testing.

ARSP_NR_xxx N

ARSP_NR_017 Y/24

ARSP_NR_022 Y/24

ARSP_NR_023 Y/24

ARSP_RO_xxx 1/13/95 N Retesting because PR 24 changed

ARSP_NR_xxx N CONSTANT.FOR.

ARSP_RO_xxx 4/7/95 N Retest after Cases & Procedures

ARSP_NR_xxx N finalized.

Note: an analysis file (.ANA file) is only generated when the results of the test case does
not match the expected results. In the RESULTS column in Table B.3, a "Y" indicates
that the test cases miscompared generating an ANA file. "N" indicates cases that did not
have any miscompares.

B-9

B.3.1.2 ASP Functional Unit

Code components tested for this functional unit are given in Table B.4.

Table B.4: ASP code components.

EXTERNAL.FOR ASP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 8
Total number of robustness (RO) test cases: 36

Table B.5: Summary of Requirements-based Testing on the ASP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS .ANA
file/PR #

Reason for Test Run

ASP_NR_xxx 1/5/95 N Initial testing

ASP_RO_xxx N

ASP_NR_xxx 1/17/95 N Retesting because PR 24 changed

ASP_RO_xxx N CONSTANT.FOR.

ASP_NR_xxx 4/7/95 N Retest after Cases & Procedures

ASP_RO_xxx N finalized.

B-10

B.3.1.3 GSP Functional Unit

Code components tested in this test suite are given in Table B.6.

Table B.6: GSP code components.

EXTERNAL.FOR GSP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 8
Total number of robustness (RO) test cases: 36

Table B.7: Summary of Requirements-based Testing on the GSP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

GSP_NR_xxx 1/5/95 N Initial testing

GSP_RO_xxx N

GSP_NR_xxx 1/17/95 N Retesting because PR 24 changed

GSP_RO_xxx N CONSTANT.FOR.

GSP_NR_xxx 4/7/95 N Retest after Cases & Procedures

GSP_RO_xxx N finalized.

B-11

B.3.1.4 TSP Functional Unit

Code components tested in this suite are given in Table B.8.

Table B.8: TSP code components.

EXTERNAL.FOR TSP.FOR
RUN_PARAMETERS.FOR UTILITY.FOR
GUIDANCE_STATE.FOR CONSTANTS.FOR
SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 5
Total number of robustness (RO) test cases: 6

The first iteration of testing revealed some deficiencies in TSP. These were addressed in
Problem Report 24. The second iteration of testing shows that all deficiencies were corrected
except for TSP_RO_011 which still did not compare exactly for ATMOSPHERIC_TEMP. The
ANA file shows that Pluto computed ATMOSPHERIC_TEMP to be -0.1140537605916x1010
while the expected value is -0.1140537605916x1010. Recall from the pass/fail criteria discussion
in Software Verification Cases and Procedures that relative error is used as an accuracy check
when ATMOSPHERIC_TEMP exceeds 1. Accordingly, the absolute error is deduced to be .001
(since the number is not printed in the ANA file to the full precision); the relative error is
calculated to be (.001/114053760) 8.77x10-12. This is less than the d for
ATMOSPHERIC_TEMP given in Table 22 of Software Verification Cases and Procedures.
Hence this test case is considered passed. Note additionally that the value given for
ATMOSPHERIC_TEMP is also out of bounds. This is also acceptable because its a robustness
test case.

Table B.9: Summary of Requirements-based Testing on the TSP Functional Unit.

TEST CASE

NAME
EXECUTION

DATE
RESULTS

.ANA file/PR #
Reason for Test Run

TSP_NR_xxx 1/4/95 N Initial testing
TSP_RO_xxx N
TSP_NR_006.TC Y/24
TSP_NR_007.TC Y/24
TSP_RO_008.TC Y/24
TSP_RO_009.TC Y/24
TSP_RO_010.TC Y/24
TSP_RO_011.TC Y/24
TSP_NR_xxx 1/13/95 N Retesting due to PR 24 corrections.
TSP_RO_xxx N
TSP_RO_011.TC Y*
TSP_NR_xxx 4/7/95 N Retest after Cases & Procedures finalized
TSP_RO_xxx N
TSP_RO_011.TC Y*

B-12

B.3.1.5 TDSP Functional Unit

Code components tested for TDSP are given in Table B.10.

Table B.10: TDSP code components.

EXTERNAL.FOR TDSP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 3
Total number of robustness (RO) test cases: 4

Table B.11: Summary of Requirements-based Testing on the TDSP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

TDSP_NR_xxx 1/4/95 N Initial testing

TDSP_RO_xxx N

TDSP_NR_xxx 1/17/95 N Retesting because PR 24 changed

TDSP_RO_xxx N CONSTANT.FOR.

TDSP_NR_xxx 4/7/95 N Retest after Cases & Procedures

TDSP_RO_xxx N finalized.

B-13

B.3.1.6 TDLRSP Functional Unit

Code components tested for TDLRSP are given in Table B.12.

Table B.12: TDLRSP code components.

EXTERNAL.FOR TDLRSP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 18
Total number of robustness (RO) test cases: 10

The ANA file generated for TDLRSP_RO_026 involves a condition that is not specified in the

SPEC. Although the results of this test run does not agree with the expected values, the results
are just as valid because this robustness test case exercises a condition that is not defined in the
Specification. More specifically, a value of "2" is assigned to the variable TDLR_STATE.
Although a "2" is not defined as a legal value for this variable in the GCS Spec, it is a possible
value since the variable is ultimately implemented as an integer. For robustness test cases, DO-
178B requires only that the software not cause any detrimental effects to the system. For this
specific test case, the PLUTO code leaves the values of K_MATRIX unchanged. This will not
have a severe impact on the implementation's ability to deliver the required function for
TDLRSP.

Table B.13: Summary of Requirements-based Testing on the TDLRSP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS .ANA
file/PR #

Reason for Test Run

TDLRSP_NR_xxx 1/4/95 N Initial testing

TDLRSP_RO_xxx N

TDLRSP_RO_026 Y/24

TDLRSP_NR_xx 1/13/95 N Retesting due to PR 24.

TDLRSP_RO_xxx N

TDLRSP_RO_026 Y

TDLRSP_NR_xx 4/7/95 N Retest after Cases & Procedures

TDLRSP_RO_xxx N finalized.

TDLRSP_RO_026 Y

B-14

B.3.1.7 GP Functional Unit

Code components tested for GP are given in Table B.14.

Table B.14: GP code components.

EXTERNAL.FOR GP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 14
Total number of robustness (RO) test cases: 103

In the initial run of all the GP test cases, there were some errors in the algorithm for

calculating GP_ATTITUDE, GP_ALTITUDE, and GP_VELOCITY. This caused a mismatch
with the expected results for all the test cases. Problem Report 24 addressed this deficiency. As
indicated in the second iteration of tests, this deficiency has been eliminated. The third run of GP
test cases test a change to CONSTANT.FOR.

Table B.15: Summary of Requirements-based Testing on the GP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS .ANA
file/PR #

Reason for Test Run

GP_NR_xxx 1/4/95 Y/24 Initial testing

GP_RO_xxx 1/4/95 Y/24

GP_NR_xxx 1/13/95 N Retesting after PR 24 changes

GP_RO_xxx 1/13/95 N

GP_NR_xxx 3/1/95 N Retesting due to SDCR 15

GP_RO_xxx 3/1/95 N

GP_NR_xxx 4/7/95 N Retest after Cases & Procedures

GP_RO_xxx 4/7/95 N finalized.

B-15

B.3.1.8 AECLP Functional Unit

Code components tested for AECLP are given in Table B.16.

Table B.16: AECLP code components.

EXTERNAL.FOR AECLP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 14
Total number of robustness (RO) test cases: 43

There were three iterations of testing for this functional unit as can be seen from the test log.
Although all test cases passed in the first iteration, the second iteration was necessitated by a
change in the CONSTANTS.FOR documented in Problem Report #24.

Table B.17: Summary of Requirements-based Testing on the AECLP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS .ANA
file/PR #

Reason for Test Run

AECLP_NR_xxx 1/5/95 N Initial testing

AECLP_RO_xxx N

AECLP_NR_xxx 1/18/95 N Retesting because PR 24 changed

AECLP_RO_xxx N CONSTANT.FOR.

AECLP_NR_xxx 4/7/95 N Retest after Cases & Procedures

AECLP_RO_xxx N finalized.

B-16

B.3.1.9 RECLP Functional Unit

Code components tested for RECLP are given in Table B.18.

Table B.18: RECLP code components

EXTERNAL.FOR RECLP.FOR

RUN_PARAMETERS.FOR UTILITY.FOR

GUIDANCE_STATE.FOR CONSTANTS.FOR

SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 64
Total number of robustness (RO) test cases: 4

For the first round of testing, even though an analysis file (.ANA) was not generated for these
test cases, the limits checking prints messages to the screen for values of THETA that are in
bounds. Further observations revealed that the upper and lower bounds constants were reversed
in CONSTANTS.FOR. This has been addressed in Problem Report 24. Test cases were re-
executed after this was corrected. Note that neither the RECLP code or the test cases had to be
refetched. However, the CONSTANTS.FOR file was refetched and the code was recompiled to
generate a new executable incorporating new changes from CONSTANTS.FOR.

Table B.19: Summary of Requirements-based Testing on the RECLP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS .ANA
file/PR #

Reason for Test Run

RECLP_NR_xxx 1/5/95 N/24 Initial testing

RECLP_RO_xxx N/24

RECLP_NR_xxx 1/13/95 N Retesting because PR 24 changed

RECLP_RO_xxx N CONSTANT.FOR.

RECLP_NR_xxx 4/7/95 N Retest after Cases & Procedures

RECLP_RO_xxx N finalized.

B-17

B.3.1.10 CRCP Functional Unit

Code components tested for CRCP are given in Table B.20.

Table B.20: CRCP code components.

CRCP.FOR EXTERNAL.FOR

UTILITY.FOR RUN_PARAMETERS.FOR

CONSTANTS.FOR GUIDANCE_STATE.FOR

 SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 6
Total number of robustness (RO) test cases: 4

Table B.21: Summary of Requirements-based Testing on the CRCP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

CRCP_NR_xxx 1/5/95 N Initial testing

CRCP_RO_xxx N

CRCP_NR_xxx 1/17/95 N Retesting because PR 24 changed

CRCP_RO_xxx N CONSTANT.FOR.

CRCP_NR_xxx 4/7/95 N Retest after Cases & Procedure finalized.

CRCP_RO_xxx N

B-18

B.3.1.11 CP Functional Unit

Code components tested for CP are given in Table B.22.

Table B.22: CP code components:

CP.FOR EXTERNAL.FOR

UTILITY.FOR RUN_PARAMETERS.FOR

CONSTANTS.FOR GUIDANCE_STATE.FOR

 SENSOR_OUTPUT.FOR

Total number of normal range (NR) test cases: 5
Total number of robustness (RO) test cases: 0

Table B.23: Summary of Requirements-based Testing on the CP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

CP_NR_xxx 1/12/95 Y/25 Initial testing

CP_NR_xxx 1/19/95 N Retesting after PR 25 modifications

CP_NR_xxx 4/7/95 N Retest after Cases & Procedures finalized

B-19

B.3.2 Subframe Testing

While preparing the code for subframe and frame testing, errors were found that necessitated
issuance of PR 26.

B.3.2.1 SP Subframe

Code components tested for SP subframe are given in Table B.24.

Table B.24: SP code components.

TSP.FOR EXTERNAL.FOR

ARSP.FOR RUN_PARAMETERS.FOR

ASP.FOR GUIDANCE_STATE.FOR

GSP.FOR SENSOR_OUTPUT.FOR

TDLRSP.FOR CONSTANTS.FOR

TDSP.FOR UTILITY.FOR

CP.FOR

Total number of test cases: 1

Table B.25: Summary of Requirements-based Testing on the SP subframe.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

SP_001 3/6/95 N Initial testing

SP_001 4/7/95 N Retest after Cases & Procedures finalized

B-20

B.3.2.2 GP Subframe

Code components tested for GP subframe are given in Table B.26.

Table B.26: GP subframe code components.

GP.FOR EXTERNAL.FOR

CP.FOR RUN_PARAMETERS.FOR

UTILITY.FOR GUIDANCE_STATE.FOR

CONSTANTS.FOR SENSOR_OUTPUT.FOR

Total number of test cases: 8

Table B.27: Summary of Requirements-based Testing on the GPSF subframe.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

GPSF_xxx 3/6/95 N Initial testing

GPSF_xxx 4/7/95 N Retest after Cases & Procedures finalized

B-21

B.3.2.3 CLP Subframe

Code components tested for CLP subframe are given in Table B.28.

Table B.28: CLP subframe code components.

AECLP.FOR EXTERNAL.FOR

RECLP.FOR RUN_PARAMETERS.FOR

CRCP.FOR GUIDANCE_STATE.FOR

CP.FOR SENSOR_OUTPUT.FOR

UTILITY.FOR CONSTANTS.FOR

Total number of test cases: 14

Table B.29: Summary of Requirements-based Testing on the CLP subframe.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

CLP_xxx 3/6/95 N Initial testing

CLP_xxx 4/7/95 N Retest after Cases & Procedures finalized

B-22

B.3.3 Frame Testing

Code components tested during Frame testing are given in Table B.28.

Table B.30: Frame code components.

TSP.FOR CRCP.FOR

ARSP.FOR CP.FOR

ASP.FOR UTILITY.FOR

GSP.FOR EXTERNAL.FOR

TDLRSP.FOR RUN_PARAMETERS.FOR

TDSP.FOR GUIDANCE_STATE.FOR

GP.FOR SENSOR_OUTPUT.FOR

AECLP.FOR CONSTANTS.FOR

RECLP.FOR

Total number of test cases: 9

Table B.31: Summary of Requirements-based Testing on for Frame.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

FRAME_xxx 3/6/95 N Initial testing

FRAME_xxx 4/7/95 N Retest after Cases & Procedures finalized

B-23

B.3.4 Trajectory Testing

Code components tested during trajectory testing are in Table B.32.

Table B.32: Trajectory test code components.

PLUTO.FOR AECLP.FOR

SPSF.FOR RECLP.FOR

GPSF.FOR CRCP.FOR

CLPSF.FOR CP.FOR

TSP.FOR UTILITY.FOR

ARSP.FOR EXTERNAL.FOR

ASP.FOR RUN_PARAMETERS.FOR

GSP.FOR GUIDANCE_STATE.FOR

TDLRSP.FOR SENSOR_OUTPUT.FOR

TDSP.FOR CONSTANTS.FOR

GP.FOR

Total number of test cases: 34

Table B.33: Summary of Requirements-based Trajectory Testing

TEST CASE NAME EXECUTION
DATE

FAILED
FRAME

NUMBER
MATCHES

FAILED
GP_PHASE
MATCHES

Reason for Test Run

TRAJ_ATM_UD/IC_xx
x

3/6/95 N N Initial testing

TRAJ_TD_UD/IC_xxx N N

TRAJ_TD_UD/IC_019 Y/27 N

TRAJ_TD_UD/IC_021 N Y/27

TRAJ_ATM_UD/IC_xx
x

4/7/95 N N Retesting after PR 27 modifications.

TRAJ_TD_UD/IC_xxx N N

B-24

B.3.5 Structural Analysis and Testing

Structural analysis of Pluto source code was performed with the aid of the ACT software.
ACT was used to derive a decision tree for each functional unit code. These trees are included
with their respective decision tables. Decision tables were then created to match test cases to the
specific decisions in the code. Each decision entry in a table has a true and false test case to test
the respective outcome for that decision. To assist in building the decision tables, ACT is also
used to generate annotated listings that indicate the FORTRAN decisions associated with the
node numbers in the trees and listed in the tables.

The objective of structural analysis is to ensure that DO-178B's required Modified
Condition/Decision Coverage (MC/DC) has been met for the Pluto code. As stated in Software
Verification Cases and Procedures, four conditions must be satisfied to provide coverage. This
structural analysis has satisfied those four conditions in the following ways:

 1) "Each decision takes on every possible outcome at least once."
This is satisfied by the primary decision tables for each functional unit and subroutine.
The primary table contains a TRUE and FALSE column for each decision -- a test case
is given for each. Test cases followed by an "*" indicate that there are multiple
requirements-based test cases that satisfy the specific decision. Subroutines that do not
contain any decisions will not have a primary decision table, because any test case that
enters the routine will exercise all the statements in the routine. Those test cases are
just listed in the Entry/Exit tables to avoid duplication.

 2) "Each condition in each decision takes on every possible outcome at least once."
This is demonstrated in the pairs table given for each decision that has multiple
conditions. Each pairs table has extra columns to the right of the test case column
showing cases where the condition is tested at each possible out come value.

 3) "Each entry and exit point is invoked at least once."
This is demonstrated in the Entry/Exit tables for subroutines in each functional unit.

 4) "Each condition is shown to independently effect the decision outcome."
This is also demonstrated in the pairs table for each decision with multiple conditions.
The independent impact of each condition on the final decision outcome is shown in
the independence columns (e.g. "Ind. of con 1") to the right of the test case column.
The "*" in the column give test cases in which the value of the condition drives the
outcome of the decision.

Much of the Pluto code structure was already tested by the requirements coverage test cases.

Structural test cases are created for only those conditions not covered by the requirements based
test cases. Since complete path coverage is not an objective in MC/DC requirement, the
decisions involving a loop counter that is not manipulated or calculated are not tested since any
test case reaching that point will exercise the loop entirely. These decisions are appropriately
denoted in the decision tables.

In the following structural analysis of the Pluto implementation, a section is dedicated for each
functional unit with the last section for the utility subroutines that are used by all functional unit.
For each functional unit, a decision tree is first given. The decision tree is generated using the
ACT software as prescribed in the Verification Cases and Procedures Document. The decision
tree shows all the branching that occurs in the functional unit and assigns a number for each
branch. These numbers are used in the decision table to identify the decision being made. The

B-25

decision tree is followed by one or more tables listing the decision made at the node and the test
cases that exercise the decision.

The first table in each section is the primary decision table that lists all decisions occurring in
the code for the functional unit. Decisions with multiple conditions have a separate pairs table for
each. Where applicable, Entry/Exit tables are given for subroutines used in a functional unit.
Decision tables for utility routines specific to each functional unit are placed in the same sections
as the corresponding functional units.

B-26

B.3.5.1 ARSP Structural Analysis

Figure B.1: ARSP Decision Tree:

B-27

Table B.34: ARSP Decision Table - see Figure B.1 for correspondence.

Graph Node
Number

ARSP Decisions TRUE
output test cases

FALSE
output test case

1 (AR_COUNTER .NE. -1) ARSP_NR_017 ARSP_NR_012*
4 ((AR_STATUS(1) .EQ. K$FAILED) .OR.

 (AR_STATUS(2) .EQ. K$FAILED) .OR.
 (AR_STATUS(3) .EQ. K$FAILED) .OR.
 (AR_STATUS(4) .EQ. K$FAILED))

See ARSP MC/DC table
for decision node 4

Table B.35: MC/DC Pairs table for decision node 4 of ARSP:

AR_STATUS(1)
.EQ.

K$FAILED
(Con 1)

AR_STATUS(2)
.EQ.

K$FAILED
(Con 2)

AR_STATUS(3)
.EQ.

K$FAILED
(Con 3)

AR_STATUS(4)
.EQ.

K$FAILED
(Con 4)

Final
Decision

Test Case Ind.
of

Con 1

Ind.
of

Con 2

Ind.
of

Con 3

Ind.
of

Con 4
0 0 0 0 0 ARSP_NR_011 * * * *

0 0 0 1 1 ARSP_NR_015 *

0 0 1 0 1 ARSP_NR_014 *

0 1 0 0 1 ARSP_NR_013 *

1 0 0 0 1 ARSP_NR_012 *

0 = FALSE value for the condition
1 = TRUE value for the condition

No structural test cases were developed for ARSP functional unit. The requirements based
cases adequately tested the code structure.

B-28

B.3.5.2 ASP Structural Analysis

Figure B.2: ASP Decision Tree:

B-29

Table B.36: ASP Decisions Table - see Figure B.2 for correspondence

Graph
Node

Number

ASP Decisions TRUE
output test

cases

FALSE
output test case

20 I in range (loop based on I) Not a calculated loop counter;
Testing not required

22 ((A_STATUS(I,1) .EQ. K$HEALTHY) .AND.
 (A_STATUS(I,2) .EQ. K$HEALTHY) .AND.
 (A_STATUS(I,3) .EQ. K$HEALTHY))

See ASP MC/DC pairs table for
Node 22

23 (A_ACCELERATION(I,1) .NE.
A_ACCELERATION(I,2)) .AND.
(A_ACCELERATION(I,1) .NE.
A_ACCELERATION(I,3))

See ASP MC/DC pairs table for
Node 23

29 temp .GT. A_SCALE * SD ASP_NR_002 ASP_PST_002

Table B.37: MC/DC Pairs table for decision node 22 of ASP:

A_STATUS(I,1
) .EQ.

K$HEALTHY
(Con. 1)

A_STATUS(I,2
) .EQ.

K$HEALTHY
(Con. 2)

A_STATUS(I,3
) .EQ.

K$HEALTHY
(Con. 3)

Final
Decision

Test Case Ind.
of

Con 1

Ind.
of

Con 2

Ind.
of

Con 3

1 1 0 0 ASP_NR_005 *

1 0 1 0 ASP_NR_004 *

0 1 1 0 ASP_NR_003 *

1 1 1 1 ASP_NR_001 * * *

0 = FALSE value for the condition
1 = TRUE value for the condition

Table B.38: MC/DC Pairs table for decision node 23 of ASP:

(A_ACCELERATION(I,1
)

 .NE.
A_ACCELERATION(I,2)

)
(Con. 1)

(A_ACCELERATION(I,1
)

.NE.
A_ACCELERATION(I,3)

)
(Con. 2)

Final
Decision

Test Case Ind.
of

Con 1

Ind.
of

Con 2

0 0 0 ASP_PST_001 * *

0 1 1 ASP_PST_003 *

1 0 1 ASP_PST_004 *

0 = FALSE value for the condition
1 = TRUE value for the condition

B-30

B.3.5.3 ASP Structural Testing

Code components tested in ASP structural testing are in Table B.4. Recall from the
Verification Cases & Procedures document that structural-based test are setup and executed in the
same manner as requirements-based functional unit tests. Hence the code components tested in
structural-based testing are also identical. Table B.39 gives the summary log of ASP structural
testing. There are 4 structural test cases for ASP.

Table B.39: Summary of Structural Testing for ASP Functional Unit

TEST CASE

NAME
EXECUTION

DATE
RESULTS

.ANA file/PR #
Reason for Test Run

ASP_PST_xxx 4/11/95 N Initial testing

B-31

B.3.5.4 GSP Structural Analysis

Figure B.3: GSP Decision Tree:

B-32

Table B.40: GSP Decision Table -- see Figure B.3 for correspondence.

Graph
Node

Number

GSP Decisions TRUE
output test cases

FALSE
output test case

2 I in range (loop based on I) Not a calculated loop counter; Testing not required

5 BTEST(G_COUNTER(I), 15) .EQ. .TRUE. GSP_NR_001 GSP_NR_004*

No structural test cases were developed for GSP functional unit. The requirements based

cases adequately tested the code structure.

B-33

B.3.5.5 TSP Structural Analysis

Figure B.4: TSP Decision Tree:

B-34

Table B.41: TSP Decision Table -- see TSP graph for correspondence.

Graph
Node

Number

TSP Decisions TRUE
output test cases

FALSE
output test case

4 (SOLID_STATE_TEMP .LT.
LOWER_PARABOLIC_TEMP_LIMIT) .OR.

(SOLID_STATE_TEMP .GT.
UPPER_PARABOLIC_TEMP_LIMIT)

TSP_NR_002* TSP_NR_001*

6

THERMO_TEMP .LT. M3 TSP_NR_006 TSP_NR_001

9 THERMO_TEMP .GT. M4 TSP_NR_007 TSP_NR_001

Table B.42: MC/DC Pairs table for decision node 4 of TSP:

SOLID_STATE_TEMP
 .LT.

LOWER_PARABOLIC_TEMP_LIMI
T

(Con 1)

SOLID_STATE_TEMP
.GT.

UPPER_PARABOLIC_TEMP_LIMIT
(Con 2)

Final
Decision

Test Case Ind.
of

Con 1

Ind.
of

Con 2

0 0 0 TSP_NR_001* * *

0 1 1 TSP_NR_003 *

1 0 1 TSP_NR_002 *
0 = FALSE value for the condition
1 = TRUE value for the condition

Table B.43: MC/DC Entry/Exit requirements -- for Modules inside TSP.FOR:

Module Test Case

LOWER_PARABOLIC_FUNCTION TSP_NR_001*

UPPER_PARABOLIC_FUNCTION TSP_NR_001*

No structural test cases were developed for TSP functional unit. The requirements based cases
adequately tested the code structure.

B-35

B.3.5.6 TDSP Structural Analysis

Figure B.5: TDSP Decision Tree:

B-36

Table B.44: TDSP Decisions -- see Figure B.5 for correspondence.

Graph Node
Number

TDSP Decisions TRUE

output test cases

FALSE

output test case

1 TDS_STATUS .EQ. K$HEALTHY TDSP_NR_001* TDSP_NR_004

2 TD_COUNTER .EQ. 0 TDSP_NR_001 TDSP_NR_002

4 TD_COUNTER .EQ. -1 TDSP_NR_002 TDSP_NR_003

No structural test cases were developed for TDSP functional unit. The requirements based
cases adequately tested the code structure.

B-37

B.3.5.7 TDLRSP Structural Analysis

Figure B.6: TDLRSP Decision Tree:

B-38

Table B.45: TDLRSP Decisions -- see TDLRSP graph for correspondence.

Graph Node
Number

TDLRSP Decisions TRUE
output test cases

FALSE
output test case

1 I in range (loop based on I) Not a calculated loop counter;
Testing not required

2 TDLR_COUNTER(I) .EQ. 0 TDLRSP_NR_003* TDLRSP_NR_001*
3 TDLR_STATE(I) .EQ. K$BEAM_LOCKED TDLRSP_NR_005 TDLRSP_NR_003
5 TDLR_STATE(I) .EQ. K$BEAM_UNLOCKED TDLRSP_NR_003 TDLRSP_RO_026
7 ELAPSED_TIME .GE. TDLR_LOCK_TIME TDLRSP_NR_003 TDLRSP_RO_004

12 TDLR_STATE(I) .EQ. K$BEAM_UNLOCKED TDLRSP_NR_001 TDLRSP_RO_006
14 ELAPSED_TIME .GE. TDLR_LOCK_TIME TDLRSP_NR_021 TDLRSP_RO_002
21 I in range (loop based on I) Not a calculated loop counter;

Testing not required
25 This is a CASE statement implemented in VMS

FORTRAN as a computed GOTO
See Table on Decision 25

Table B.46: Expanded table for Decision 25.

TDLR_STATE(1) +
2*TDLR_STATE(2) +
4*TDLR_STATE(3) +

8*TDLR_STATE(4) + 1

Test
Case

1 TDLRSP_NR_005
2 TDLRSP_NR_007
3 TDLRSP_NR_008
4 TDLRSP_NR_011
5 TDLRSP_NR_009
6 TDLRSP_NR_012
7 TDLRSP_NR_014
8 TDLRSP_NR_017
9 TDLRSP_NR_010

10 TDLRSP_NR_013
11 TDLRSP_NR_015
12 TDLRSP_NR_018
13 TDLRSP_NR_016
14 TDLRSP_NR_019
15 TDLRSP_NR_020
16 TDLRSP_NR_021

Out of range TDLRSP_RO_026

No structural test cases were developed for TDLRSP functional unit. The requirements based
cases adequately tested the code structure.

B-39

B.3.5.8 CP Structural Analysis

Figure B.7: CP Decision Tree.

B-40

Figure B.8: CRC16 Decision Tree:

B-41

Table B.47: CP Decisions -- see CP graph for correspondence.

Graph
Node

Number

CP Decisions TRUE

output test cases

FALSE

output test case

2 SUBFRAME_COUNTER .EQ. 1 CP_NR_001 CP_NR_002*

5 SUBFRAME_COUNTER .EQ. 2 CP_NR_002 CP_NR_003

Table B.48: CRC16 Decision.

Module Test Case

I in range (loop based on I) Not a calculated loop counter;

Testing not required.

Table B.49: MC/DC Entry/Exit requirements for Module inside CP.FOR:

Module Test Case

CRC16 CP_NR_001*

No structural test cases were developed for CP functional unit. The requirements based cases
adequately tested the code structure.

B-42

B.3.5.9 GP Structural Analysis

Figure B.9: GP Decision Tree:

B-43

Table B.50: GP Decisions -- see Figure B.9 for correspondence.

Graph
Node

Number

GP Decisions TRUE
output test cases

FALSE
output test case

63 I in range (loop based on I) Not a calculated loop counter;
Testing not required

64 J in range (loop based on I) Not a calculated loop counter;
Testing not required

72 I in range (loop based on I) Not a calculated loop counter;
Testing not required

79 I in range (loop based on I) Not a calculated loop counter;
Testing not required

80 J in range (loop based on I) Not a calculated loop counter;
Testing not required

86 I in range (loop based on I) Not a calculated loop counter;
Testing not required

92 AE_SWITCH .EQ. K$AXIAL_ENGINES_ARE_OFF GP_NR_001* GP_NR_003*

93 RE_SWITCH .EQ. K$ROLL_ENGINES_ARE_ON GP_NR_001* GP_NR_105*

94 TD_SENSED .EQ. K$TOUCH_DOWN_NOT_SENSED GP_NR_001* GP_PST_001

95 GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE GP_PST_003 GP_PST_002

100 TD_SENSED .EQ. K$TOUCH_DOWN_SENSED GP_NR_003* GP_NR_102*

102 GP_ALTITUDE(0) .LE. DROP_HEIGHT GP_NR_007* GP_NR_003*

106 SQRT(TEMP)+GP_VELOCITY(1,0) .LE. MAX_NORMAL_VELOCITY GP_PST_004 GP_NR_007

112 I in range (loop based on I) Not a calculated loop counter;
Testing not required

113 CONTOUR_ALTITUDE(I) .EQ. CUR_ALTITUDE GP_PST_006 GP_PST_005

116 CONTOUR_ALTITUDE(I) .GT. CUR_ALTITUDE GP_PST_005 GP_PST_007

117 I .GT. 1 GP_PST_005 GP_PST_008

123 (CONTOUR_ALTITUDE(I) .EQ. 0) .OR. (I .EQ. 100) See MC/DC table for decision 123

132 GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE GP_PST_009 GP_PST_010

133 CONTOUR_CROSSED .EQ. K$CONTOUR_NOT_CROSSED GP_PST_012 GP_PST_009

134 VELOCITY_ERROR .GE. 0 GP_PST_012 GP_PST_011

139-145 GOTO statement based on GP_PHASE See Table based on GP_PHASE Decision

147 GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE GP_NR_001* GP_RO_107

151 TD_SENSED .EQ. K$TOUCH_DOWN_SENSED GP_NR_102 GP_NR_002*

153 AE_TEMP .EQ. K$HOT GP_NR_004 GP_NR_003

154 CHUTE_RELEASED .EQ. K$CHUTE_RELEASED GP_NR_004 GP_RO_110

160 TD_SENSED .EQ. K$TOUCH_DOWN_SENSED GP_NR_104 GP_NR_005*

162 GP_ALTITUDE(0) .LE. DROP_HEIGHT GP_NR_007* GP_NR_008

163 TDS_STATUS .EQ. K$FAILED GP_NR_006 GP_NR_008

168 SQRT(TEMP)+GP_VELOCITY(1,0) .LE.
MAX_NORMAL_VELOCITY

GP_NR_008 GP_NR_007

175 TD_SENSED .EQ. K$TOUCH_DOWN_SENSED GP_NR_105 GP_PST_013

177 TDS_STATUS .EQ. K$FAILED GP_PST_014 GP_PST_013

182 CL .EQ. K$FIRST GP_NR_001* GP_NR_007*

183 OPTIMAL_VELOCITY .EQ. DROP_SPEED GP_PST_015 GP_PST_019

184 GP_VELOCITY(1, 0) .LT. DROP_SPEED GP_PST_016 GP_PST_015

"*" is used in the above table to indicate that there are more test cases that satisfy this decision branch but only one is listed for
brevity.

B-44

Table B.51: MC/DC table for Decision 123.

CONTOUR_ALTITUDE(I) .EQ. 0
(Con. 1)

(I .EQ. 100)
(Con. 2)

Final
Decision

Test Case Ind. of
Con 1

Ind. of
Con 2

0 0 0 GP_PST_007A * *

0 1 1 GP_PST_007A *

1 0 1 GP_PST_017 *
0 = FALSE value for the condition
1 = TRUE value for the condition
A: Test case GP_PST_007 iterates through decision-123 100 times. The first 99 iterations will exercise the 0,0
combination while the 100th iteration will exercise the 0,1 combination of the decision.

Table B.52: Expanded table for GP_PHASE Decision.

GP_PHASE Test Case

1 GP_NR_001*
2 GP_NR_002*
3 GP_NR_005*
4 GP_NR_105
5 GP_PST_010

Out of range GP_PST_020

Table B.53: MC/DC Entry/Exit requirements for Module inside GP.FOR:

Module Test Case
DERIV_ATT GP_NR_001*
DERIV_VEL GP_NR_001*
DERIV_ALT GP_NR_001*
MULT_ATT GP_NR_001*
MULT_VEL GP_NR_001*
AVG_ATT GP_NR_001*
AVG_VEL GP_NR_001*

3.5.10 GP Structural Testing

Code components tested for GP structural -based testing are identified in Table B.14. There
are 21 test structure-based test cases. Only 20 are used to test GP code stricture. GP_PST_018 is
not used for GP structural analysis because it test the same condition as GP_PST_007. It should
also be noted that GP_PST_021 is used to test the ZERO_CHECK routine in the UTILITY.FOR
file. This test case forces a negative-square-root to occur in the GP functional unit and is
expected to cause a core dump. Hence even though an expected-values file is provided, it is not
needed.

B-45

Table B.54: Summary of Structural Testing for GP Functional Unit.

TEST CASE

NAME
EXECUTION

DATE
RESULTS

.ANA file/PR #
Reason for Test Run

GP_PST_xxx 4/11/95 N Initial testing.

B-46

B.3.5.11 AECLP Structural Analysis

Figure B.10: AECLP Decision Tree

B-47

Table B.55: AECLP Decisions -- see Figure B.10 for correspondence

Graph
Node

Number

AECLP Decisions TRUE
output test cases

FALSE
output test case

1 AE_SWITCH .EQ. K$AXIAL_ENGINES_ARE_OFF AECLP_NR_008* AECLP_NR_001*

4 GP_ALTITUDE(0) .LE. ENGINES_ON_ALTITUDE AECLP_NR_001* AECLP_RO_044*

5 AE_TEMP .EQ. K$COLD AECLP_NR_001* AECLP_NR_003*

6 (FRAME_COUNTER - FRAME_ENGINES_IGNITED) * DELTA_T
.LT.

FULL_UP_TIME

AECLP_NR_001* AECLP_RO_41*

9 AE_TEMP .EQ. K$WARMING_UP AECLP_NR_003* AECLP_NR_005*

10 (FRAME_COUNTER - FRAME_ENGINES_IGNITED) * DELTA_T
.GE.

FULL_UP_TIME

AECLP_NR_003* AECLP_RO_043*

24 PITCH_ERROR_LIMIT .LT. PE_MIN(CL) AECLP_RO_027 AECLP_NR_001*

26 PITCH_ERROR_LIMIT .GT. PE_MAX(CL) AECLP_RO_028 AECLP_NR_001*

37 YAW_ERROR_LIMIT .LT. YE_MIN(CL) AECLP_RO_035 AECLP_NR_001*

39 YAW_ERROR_LIMIT .GT. YE_MAX(CL) AECLP_RO_036 AECLP_NR_001*

43 CONTOUR_CROSSED .EQ. K$CONTOUR_CROSSED AECLP_RO_005* AECLP_NR_001*

50 OMEGA .NE. 0 AECLP_RO_005* AECLP_PST_001

55 TE_LIMIT .LT. TE_MIN(CL) AECLP_RO_029 AECLP_NR_001*

57 TE_LIMIT .GT. TE_MAX(CL) AECLP_RO_030 AECLP_NR_001*

62 CHUTE_RELEASED .EQ. K$CHUTE_RELEASED AECLP_NR_004* AECLP_NR_001*

63 CONTOUR_CROSSED .EQ. K$CONTOUR_NOT_CROSSED AECLP_NR_004 AECLP_NR_005

72 I IN RANGE Not a calculated loop counter;
Testing not required

73 INTERNAL_CMD(I) .LT. 0 AECLP_NR_054 AECLP_NR_001*

75 INTERNAL_CMD(I) .LE. 1 AECLP_NR_001* AECLP_NR_055

B.3.5.12 AECLP Structural Testing

Code components tested in AECLP structural testing are given in Table B.14. The results of
structural testing is given in Table B.56. There are only two test cases in this suite.
AECLP_PST_001 tests a decision in the AECLP functional unit. AECLP_PST_002 is designed
to test the ZERO_CHECK subroutine in the UTILITY.FOR file. It forces a divide-by-zero to
occur and is expected to cause a core dump. An expected values file is provided for this test case
but is unnecessary. The objective of the test is to ensure that the exception message is displayed
or printed. Hence this test case is not expected to run to completion.

Table B.56: Summary of Structural Testing for AECLP Functional Unit.

TEST CASE
NAME

EXECUTION
DATE

RESULTS
.ANA file/PR #

Reason for Test Run

AECLP_PST_001 4/11/95 N Initial testing
AECLP_PST_002 N Initial testing

B-48

B.3.5.13 RECLP Structural Analysis

Figure B.11: RECLP Decision Tree:

B-49

Table B.57: RECLP Decisions -- see Figure B.11 for correspondence

Graph Node
Number

RECLP Decisions TRUE
output test cases

FALSE
output test case

1 RE_SWITCH .EQ.
K$ROLL_ENGINES_ARE_OFF

RECLP_PST_003 RECLP_NR_001*

6 THETA .EQ. 0 RECLP_NR_059 RECLP_NR_001*

7 G_ROTATION(1, 0) .GT. P4 RECLP_NR_064 RECLP_NR_065

9 G_ROTATION(1, 0) .LT. -P4 RECLP_PST_011 RECLP_NR_065

14 THETA .GT. 0 RECLP_NR_001* RECLP_NR_066*

15 THETA .LE. THETA1 RECLP_NR_001* RECLP_NR_005

16 G_ROTATION(1, 0) .GT. P2 RECLP_NR_013* RECLP_NR_001*

18 G_ROTATION(1, 0) .GT. P1 RECLP_PST_001 RECLP_NR_001*

20 G_ROTATION(1, 0) .GE. -P4 RECLP_NR_001 RECLP_PST_002

26 THETA .LE. THETA2 RECLP_NR_005* RECLP_NR_009

27 G_ROTATION(1, 0) .GT. P2 RECLP_PST_004 RECLP_NR_005*

29 G_ROTATION(1, 0) .GT. P1 RECLP_NR_021 RECLP_NR_005*

31 G_ROTATION(1, 0) .GT. 0.0 RECLP_NR_008 RECLP_NR_005*

33 G_ROTATION(1, 0) .GE. -P4 RECLP_NR_005 RECLP_NR_043

40 G_ROTATION(1, 0) .GT. -P3 RECLP_NR_012* RECLP_NR_039

42 G_ROTATION(1, 0) .GE. -P4 RECLP_NR_039 RECLP_PST_005

49 THETA .GE. -THETA1 RECLP_NR_002 RECLP_NR_063

50 G_ROTATION(1, 0) .GT. P4 RECLP_PST_006 RECLP_NR_002*

52 G_ROTATION(1, 0) .GE. -P1 RECLP_NR_002 RECLP_PST_007

54 G_ROTATION(1, 0) .GE. -P2 RECLP_PST_007 RECLP_PST_008

60 THETA .GE. -THETA2 RECLP_NR_006 RECLP_NR_010

61 G_ROTATION(1, 0) .GT. P4 RECLP_PST_009 RECLP_NR_006

63 G_ROTATION(1, 0) .GE. 0.0 RECLP_NR_007 RECLP_NR_006

65 G_ROTATION(1, 0) .GE. -P1 RECLP_NR_006 RECLP_NR_023

67 G_ROTATION(1, 0) .GE. -P2 RECLP_NR_023 RECLP_PST_010

74 G_ROTATION(1, 0) .GT. P4 RECLP_RO_063 RECLP_NR_010

76 G_ROTATION(1, 0) .GE. P3 RECLP_NR_010 RECLP_NR_011

B.3.5.14 RECLP Structural Testing

Table B.18 gives the code components tested by RECLP structural testing. The results are
summarized in Table B.58 below. There are 11 test structure-based test cases in this suite.

Table B.58: Summary of Structural Testing for RECLP Functional Unit.

TEST CASE

NAME
EXECUTION

DATE
DATE CODE

FETCHED
DATE TEST

CASE
FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

RECLP_PST_xxx 4/11/95 4/6/95 4/10/95 N

B-50

B.3.5.15 CRCP Structural Analysis

Figure B.12: CRCP Decision Tree

B-51

Table B.59: CRCP Decisions -- see Figure B.12 for correspondence

Graph
Node

Number

CRCP Decisions TRUE

output test cases

FALSE

output test case

1 CHUTE_RELEASED .EQ.
K$CHUTE_ATTACHED

CRCP_NR_001* CRCP_NR_002*

2 AE_TEMP .EQ. K$HOT CRCP_NR_005 CRCP_NR_001*

No structure-based test cases are needed for CRCP.

B.3.5.16 Utility Subroutines Structural Analysis

Utility routines are used throughout the various functional units for range checking, as well as
checking for negative and zero numbers. These test cases are executed along with the functional
units.

Table B.60: RANGE_CHECK Subroutine Decisions:

Graph Node
Number

RANGE_CHECK Decisions TRUE
output test cases

FALSE
output test case

 source .LT. lower_bound GSP_RO_002* ASP_NR_001*

 source .GT. upper_bound GP_RO_003 ASP_NR_001*

Table B.61: NEG_VALUE_CHECK Subroutine Decisions:

Graph Node
Number

NEG_VALUE_CHECK Decisions TRUE
output test cases

FALSE
output test case

 source .LT. 0 GP_PST_021 GP_NR_007

Table B.62: ZERO_CHECK Subroutine Decisions:

Graph Node
Number

ZERO_CHECK Decisions TRUE
output test cases

FALSE
output test case

 source .EQ. 0 AECLP_PST_002 AECLP_NR_001

B-52

B.4 Traceability Matrix for Pluto Design and Code

This section gives the traceability matrix to match Pluto design and code elements to the GCS
requirements.

Table B.4-1: Pluto Traceability Matrix

Functional Requirements DESIGN CODE
0-1 Specify four separate, globally accessible
data stores:
 EXTERNAL,
 GUIDANCE_STATE,
 RUN_PARAMETERS, and
 SENSOR_OUTPUT.

DFD 1
DFD 2
DFD 3

Guidance_state.for
Run_Parameters.for
Sensor_output.for
External.for

2-1 Control flow of the frame processing.
2-1.1 The appropriate control flow for a frame is:
 call to GCS_SIM_RENDEZVOUS.
 Satisfy the Sensor Processing subframe requirements (2-2).
 call to GCS_SIM_RENDEZVOUS.
 Satisfy Guidance Processing subframe requirements (2-3).
 call to GCS_SIM_RENDEZVOUS
 fulfill Control Law Processing subframe requirements (2-4) or
 terminate (2-1.2).

PAT 0-s1
PAT 1-s1
PAT 2-s1
PAT 3-s1

Program Pluto
Subroutine SPSF
Subroutine GPSF
Subroutine CLPSF

2-1.2 The implementation is to terminate immediately upon completion of the
Control Law Processing subframe requirements during the frame in which GP_PHASE is
set to 5.

DFD 2
P_Spec. 2.2
PAT 0-s1

Program Pluto

2-2 Sensor Processing subframe requirements.
2-2.1 Satisfy the TSP requirements (2.1.5) prior to fulfilling any of the other
requirements in (2.1.1 and 2.1.4).

PAT 1-s1 Subroutine SPSF

2-2.2 Satisfy all requirements in the sensor processing requirements hierarchy (2.1). PAT 1-s1 Subroutine SPSF
2-2.3 Satisfy all requirements in the communications processing requirements
(2.4) upon satisfying 2-2.1.

PAT 1-s1
P_Spec. 1.8

Subroutine SPSF
Subroutine CP

2-2.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS
 specification.

PAT 0-s1 Subroutine SPSF

2-3 The Guidance Processing subframe requirements.
2-3.1 Satisfy all requirements in the guidance processing requirements
(2.2).

PAT 2-s1 Subroutine GPSF

2-3.2 Satisfy all requirements in the communications processing requirements
(2.4) upon satisfying 2-3.1.

PAT 2-s1
P_Spec. 2.3

Subroutine GPSF
Subroutine CP

2-4 The Control Law Processing subframe requirements.
2-4.1 Satisfy the AECLP requirements (2.3.1) prior to fulfilling any of the
CRCP requirements (2.3.3).

PAT 3-s1 Subroutine CLPSF
Subroutine AECLP

2-4.2 Satisfy all requirements in the control law processing requirements
hierarchy (2.3).

PAT 3-s1 Subroutine CLPSF

2-4.3 Satisfy all requirements in the communications processing requirements
(2.4) upon satisfying 2-4.1.

PAT 3-s1
P_Spec. 3.5

Subroutine CLPSF
Subroutine CP

2-4.4 Adhere to the functional unit scheduling in Table 4.3 of the GCS
 specification.

PAT 3-s1 Subroutine CLPSF

2.1 SP -- Sensor Processing

2.1.1 ASP -- Accelerometer Sensor Processing

2.1.1-1 Rotate variables. P_Spec 1.3 (step 1) Subroutine ASP

2.1.1-2 Adjust gain for temperature. P_Spec 1.3 (step 3) Subroutine ASP

2.1.1-3 Remove characteristic bias. P_Spec 1.3 (step 3) Subroutine ASP

2.1.1-4 Correct for misalignment. P_Spec 1.3 (step 3) Subroutine ASP

2.1.1-5 Determine Accelerations.
2.1.1-5.1 Acceleration based on current A_COUNTER. P_Spec 1.3 (step 3) Subroutine ASP
2.1.1-5.2 Acceleration based on mean of previous accelerations. P_Spec 1.3 (step 3) Subroutine ASP
2.1.1-6 Determine Accelerometer Status
2.1.1-6.1 A_STATUS = healthy P_Spec 1.3 (step 2) Subroutine ASP
2.1.1-6.2 A_STATUS = unhealthy P_Spec 1.3 (step 2) Subroutine ASP
2.1.2 ARSP -- Altimeter Radar Sensor Processing
2.1.2-1 Rotate variables. P_Spec 1.2 (step 1) Subroutine ARSP
2.1.2-2 Determine altitude when echo is received. (based on AR_COUNTER) P_Spec 1.2 (step 3A) Subroutine ARSP
2.1.2-3 Determine altitude when echo is not received
2.1.2-3.1 Determine altitude based on third-order polynomial. P_Spec 1.2 (step 2B) Subroutine ARSP
2.1.2-3.2 Determine altitude based on previous calculation. P_Spec 1.2 (step 2C) Subroutine ARSP

B-53

2.1.2-4 Set altimeter radar status.
2.1.2-4.1 AR_STATUS = healthy P_Spec 1.2 (step 2) Subroutine ARSP
2.1.2-4.2 AR_STATUS = failed P_Spec 1.2 (step 2) Subroutine ARSP
2.1.2-5 Set values of K_ALT.
2.1.2-5.1 K_ALT = 1 P_Spec 1.2 (step 2) Subroutine ARSP
2.1.2-5.2 K_ALT = 0 P_Spec 1.2 (step 2) Subroutine ARSP
2.1.3 TDLRSP -- Touch Down Landing Radar Sensor Processing
2.1.3-1 Rotate variables P_Spec 1.5 (step 1) Subroutine TDLRSP
2.1.3-2 Determine state for each radar beam.
2.1.3-2.1 TDLR_STATE = unlocked. P_Spec 1.5 (step 3A) Subroutine TDLRSP
2.1.3-2.2 TDLR_STATE = locked. P_Spec 1.5 (step 3A) Subroutine TDLRSP
2.1.3-3 Determine Whether to set FRAME_BEAM_UNLOCKED
2.1.3-3.1 Set FRAME_BEAM_UNLOCKED to FRAME_COUNTER P_Spec 1.5 (step 3A) Subroutine TDLRSP
2.1.3-3.2 Leave FRAME_BEAM_UNLOCKED unchanged P_Spec 1.5 (step 3A) Subroutine TDLRSP
2.1.3-4 Calculate the beam velocities P_Spec 1.5 (step 3B) Subroutine TDLRSP
2.1.3-5 Process beam velocities based on which beam(s) locked.
2.1.3-5.1 no beams locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.2 Beam1 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.3 Beam2 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.4 Beam3 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.5 Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.6 Beam1 & Beam2 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.7 Beam1 & Beam3 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.8 Beam1 & Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.9 Beam2 & Beam3 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.10 Beam2 & Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.11 Beam3 & Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.12 Beam1, Beam2, & Beam3 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.13 Beam1, Beam2, & Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.14 Beam1, Beam3, & Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.15 Beam2, Beam3, & Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-5.16 Beam1, Beam2, Beam3, & Beam4 locked P_Spec 1.5 (step 3C) Subroutine TDLRSP
2.1.3-6 Convert to body velocities. P_Spec 1.5 (step 3D) Subroutine TDLRSP
2.1.3-7 Set values in K_MATRIX.
2.1.3-7.1 Kx = 0 P_Spec 1.5 (step 4) Subroutine TDLRSP
2.1.3-7.2 Kx = 1 P_Spec 1.5 (step 4) Subroutine TDLRSP
2.1.3-7.3 Ky = 0 P_Spec 1.5 (step 4) Subroutine TDLRSP
2.1.3-7.4 Ky = 1 P_Spec 1.5 (step 4) Subroutine TDLRSP
2.1.3-7.5 Kz = 0 P_Spec 1.5 (step 4) Subroutine TDLRSP
2.1.3-7.6 Kz = 1 P_Spec 1.5 (step 4) Subroutine TDLRSP
2.1.3-8 Set TDLR_STATUS. P_Spec 1.5 (step 2) Subroutine TDLRSP
2.1.4 GSP -- Gyroscope Sensor Processing
2.1.4-1 Rotate variables. P_Spec 1.4 (step 1) Subroutine GSP
2.1.4-2 Determine the vehicle rotation rates along each of the vehicle's three
axes.

2.1.4-2.1 Adjust gain. P_Spec 1.4 (step 3) Subroutine TDLRSP
2.1.4-2.2 Convert G_COUNTER. P_Spec 1.4 (step 3) Subroutine TDLRSP
2.1.4-3 Set gyroscope status to healthy. P_Spec 1.4 (step 2) Subroutine TDLRSP
2.1.5 TSP -- Temperature Sensor Processing
2.1.5-1 Calculate solid state temperature P_Spec 1.7 (step 2A) Subroutine TSP
2.1.5-2 Calculate Thermal Temperature P_Spec 1.7 (step 2C) Subroutine TSP
2.1.5-3 Determine which Temperature to use (SS or Thermocouple)
2.1.5-3.1 Calculate the Thermo sensor upper limit P_Spec 1.7 (step 2B) Function

UPPER_PARABOLIC
_FUNCTION

2.1.5-3.2 Calculate the Thermo sensor lower limit P_Spec 1.7 (step 2B) Function
LOWER_PARABOLIC
_FUNCTION

2.1.5-4 Determine Atmospheric Temperature P_Spec 1.7
(step 2B & 2C)

Subroutine TSP

2.1.5-5 Set status to healthy. P_Spec 1.7 (step 1) Subroutine TSP
2.1.6 TDSP -- Touch Down Sensor Processing
2.1.6-1 Determine status of touch down sensor. P_Spec 1.6 (step 1) Subroutine TDSP
2.1.6-2 Determine whether touch down has been sensed. P_Spec 1.6 (step 2) Subroutine TDSP
2.2 GP -- Guidance Processing
2.2-1 Rotate variables. P_Spec 2.2 (step 1) Subroutine GP
2.2-2 Determine the attitude, velocities, and altitude.
2.2-2.1 Set up the GP_ROTATION matrix. P_Spec 2.2 (step 2) Subroutine

DERIV_ATT

B-54

2.2-2.2 Calculate new values of attitude, velocity, and
 altitude.

P_Spec 2.2 (step 2) Subroutine:
GP
DERIV_ATT
DERIV_VEL
DERIV_ATT
MULT_ATT
MULT_VEL
MULT_ATT

2.2-3 Determine if the engines should be on or off.
2.2-3.1 Engines on P_Spec 2.2 (step 3) Subroutine GP
2.2-3.2 Engines off P_Spec 2.2 (step 3) Subroutine GP
2.2-4 Set FRAME_ENGINES_IGNITED P_Spec 2.2 (step 3) Subroutine GP
2.2-5 Determine velocity error. P_Spec 2.2 (step 4) Subroutine GP
2.2-6 Determine optimal velocity P_Spec 2.2 (step 4) Subroutine GP
2.2-7 Determine if contour has been crossed. P_Spec 2.2 (step 5) Subroutine GP
2.2-8 Determine guidance phase.
2.2-8.1 GP_PHASE = 1 P_Spec 2.2 (step 6) Subroutine GP
2.2-8.2 GP_PHASE = 2 P_Spec 2.2 (step 6) Subroutine GP
2.2-8.3 GP_PHASE = 3 P_Spec 2.2 (step 6) Subroutine GP
2.2-8.4 GP_PHASE = 4 P_Spec 2.2 (step 6) Subroutine GP
2.2-8.5 GP_PHASE = 5 P_Spec 2.2 (step 6) Subroutine GP
2.2-9 Determine which set of control law parameters to use.
2.2-9.1 CL = 1 P_Spec 2.2 (step 7) Subroutine GP
2.2-9.2 CL = 2 P_Spec 2.2 (step 7) Subroutine GP
2.3 CLP -- Control Law Processing
2.3.1 AECLP -- Axial Engine Control Law Processing
2.3.1-1 Generate the appropriate axial engine commands when AE_CMD=ON.
2.3.1-1.1 Determine engine temperature
2.3.1-1.1.1 AE_TEMP = COLD P_Spec 3.2 (step 2A) Subroutine AECLP
2.3.1-1.1.2 AE_TEMP = WARM P_Spec 3.2 (step 2A) Subroutine AECLP
2.3.1-1.1.3 AE_TEMP = HOT P_Spec 3.2 (step 2A) Subroutine AECLP
2.3.1-1.2 Compute limiting errors for pitch P_Spec 3.2 (step 2B) Subroutine AECLP
2.3.1-1.3 Compute limiting error for yaw P_Spec 3.2 (step 2C) Subroutine AECLP
2.3.1-1.4 Compute limiting error for thrust P_Spec 3.2 (step 2D) Subroutine AECLP
2.3.1-1.5 Compute pitch, yaw, and thrust errors.
2.3.1-1.5.1 CHUTE_RELEASED = 1 P_Spec 3.2 (step 2E) Subroutine AECLP
2.3.1-1.5.2 CHUTE_RELEASED = 0 P_Spec 3.2 (step 2E) Subroutine AECLP
2.3.1-1.5.3 CONTOUR_CROSSED = 1 P_Spec 3.2 (step 2E) Subroutine AECLP
2.3.1-1.5.4 CONTOUR_CROSSED = 0 P_Spec 3.2 (step 2E) Subroutine AECLP
2.3.1-1.6 Compute INTERNAL_CMD P_Spec 3.2 (step 2F) Subroutine AECLP
2.3.1-1.7 Compute axial engine valve settings (AE_CMD).
2.3.1-1.7.1 when INTERNAL_CMD < 0.0 P_Spec 3.2

(step 2G)
Subroutine AECLP

2.3.1-1.7.2 when 0.0 £ INTERNAL_CMD ≥ 1.0 P_Spec 3.2
(step 2G)

Subroutine AECLP

2.3.1-1.7.3 when 1.0 < INTERNAL_CMD P_Spec 3.2
(step 2G)

Subroutine AECLP

2.3.1-2 Generate the appropriate axial engine commands when AE_CMD=OFF.
2.3.1-2.1 Set AE_CMD = 0 P_Spec 3.2 (step 2) Subroutine AECLP
2.3.1-3 Set axial engine status to healthy. P_Spec 3.2 (step 1) Subroutine AECLP
2.3.2 RECLP -- Roll Engine Control Law Processing
2.3.2-1 Generate the appropriate roll engine command. P_Spec 3.4 (step 2) Subroutine RECLP
2.3.2-2 Set roll engine status to healthy. P_Spec 3.4 (step 1) Subroutine RECLP
2.3.3 CRCP -- Chute Release Control Processing
2.3.3-1 Determine appropriate parachute release command.
2.3.3-1.1 AE_TEMP = COLD P_Spec 3.3 Subroutine CRCP
2.3.3-1.2 AE_TEMP = WARM P_Spec 3.3 Subroutine CRCP
2.3.3-1.3 AE_TEMP = HOT P_Spec 3.3 Subroutine CRCP
2.3.3-1.4 CHUTE_RELEASED = 0 P_Spec 3.3 Subroutine CRCP
2.3.3-1.5 CHUTE_RELEASED = 1 P_Spec 3.3 Subroutine CRCP
2.4 CP -- Communications Processing
2.4-1 Set communicator status to healthy. P_Spec 1.8 (step 1) Subroutine CP
2.4-2 Get synchronization pattern. P_Spec 1.8 (step 2A) Subroutine CP
2.4-3 Determine sequence number. P_Spec 1.8 (step 2B) Subroutine CP
2.4-4 Prepare sample mask.
2.4-4.1 Subframe 1 mask P_Spec 1.8 (step 2C) Subroutine CP
2.4-4.2 Subframe 2 mask P_Spec 1.8 (step 2C) Subroutine CP
2.4-4.3 Subframe 3 mask P_Spec 1.8 (step 2C) Subroutine CP
2.4-5 Prepare data section.
2.4-5.1 Use subframe 1 data P_Spec 1.8 (step 2D) Subroutine CP
2.4-5.2 Use subframe 2 data P_Spec 1.8 (step 2D) Subroutine CP
2.4-5.3 Use subframe 3 data P_Spec 1.8 (step 2D) Subroutine CP
2.4-2.5 Calculate checksum. P_Spec 1.8 (step 2E) Function CRC16

C-1

Appendix C: Review Records for the Pluto Implementation of the
Guidance and Control Software

Author: Kelly J. Hayhurst, NASA Langley Research Center

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

C-2

C. Contents

C.1 PLUTO PRELIMINARY DESIGN REVIEW..C-3
C.1.1 REVIEW NOTES FROM PRELIMINARY DESIGN REVIEW ..C-3
C.1.2 REVIEW LOGS FROM PRELIMINARY DESIGN REVIEW ..C-12

Review Log from System Analyst ...C-12
Review Log from Verification Analyst ...C-66

C.2 PLUTO DESIGN REVIEW..C-73
C.2.1 REVIEW NOTES FROM DESIGN REVIEW...C-73
C.2.2 REVIEW LOGS FROM DESIGN REVIEW...C-77

Review Log from System Analyst ...C-77
Review Log from Verification Analyst ...C-93

C.3 PLUTO CODE REVIEW ...C-96
C.3.1 REVIEW NOTES FROM CODE REVIEW ..C-96
C.3.2 REVIEW LOGS FROM CODE REVIEW ..C-99

Review Log from System Analyst ...C-99
Review Log from Verification Analyst ...C-110

C-3

C.1 Pluto Preliminary Design Review

Attendees: Kelly Hayhurst (SQA representative/Moderator)
 Rob Angellatta (Verification Analyst/Recorder, Inspector)
 Paul Carter (Programmer/Reader, Inspector)
 Bernice Becher (System Analyst/Inspector)

C.1.1 Review Notes from Preliminary Design Review

Session 1: 9/16/93 9:30 a.m. - 11:30 p.m.

Reviewed Design Review procedures and roles prior to starting review

High-Level Structured Analysis Diagrams

Context diagram

B - 1 -- Initialization Data not used exactly as in spec; also mix of control and data flow

 INIT_RUN_GCS does not show AE_SWITCH and RE_SWITCH as outputs (should)

B - 50 -- FRAME_COUNTER and SUBFRAME_COUNTER not shown as input from

GCS_SIM

INIT_RUN_GCS

B-78, R-4 -- INIT_GCS -- no need for design to redo initialization

B-16 -- problems with data stores RUN_PARAMETERS, GUIDANCE_STATE, and

SENSOR_OUTPUT

B-52 -- complete set of flows into and out of EXTERNAL are missing

 problem with the external data flow -- not consistent with spec

B-81 -- problem with raw sensor data

 GENERATE_SEQUENCE_PARAMS -- need algorithmic solution -- more detail

B-109, R-6 -- problem with order of activation

-------------------------------- END OF SESSION 1 -------------------------------------

C-4

Session 2: 9/17/93 9:30 a.m. - 11:30 a.m.

High Level Diagrams

B-119, R-7 -- unclear how RENDEZVOUS is invoked

B-73 -- unclear function of RENDEZVOUS_CNTL and RENDEZVOUS_CNTL_STORE

B-98 -- unclear need of P-Spec COPY_CONTROL_DATA -- need to clarify and justify

B-100, B-125 -- copying and use of SUBFRAME_COUNTER is unclear

B-81 -- unclear function/need for STORE_RAW_SENSOR_DATA

B-84 -- unclear function/need for INIT_RUN_PARAM_STORE

B-86 -- unclear function/need of INIT_GUIDANCE_STATE_STORE

B-92, B-6, R10 -- TS_STATUS is not an input to TSP

B-96, B-108, B-21 -- inconsistent use of labels for bubbles for the functional units

PAT for RUN_GCS

B-70 -- PAT seems to be changing SUBFRAME_COUNTER -- but should not

B-71 -- some processes that should be activated are not activated when ITH_FRAME_2 and

ITH_FRAME_5

B-72 -- some processes which should be activated are not from line 3 of PAT

P_Spec INIT_GCS

B-74 -- used same label for stores and processes

B-75 -- ambiguous notation

B-76, B-79 -- problem with copying group flow names

-------------------------------- END OF SESSION 2 -------------------------------------

C-5

Session 3: 9/20/93 1:00 p.m. - 3:00 p.m.

TSP

B-7, B-19 -- what is need/function of Data Expand and Data Compress? -- appears that process is

trying to manipulate names (same is true for ARSP, B-19; TDSP, B-140; TDLRSP, B-
29; RECLP, B-226; GP, B-170; GSP, B-140; CRCP, B-193; CP, B-230; ASP, B-148;
AECLP, B-198)

B-11-12 -- need more explanation of approach to determine solid state temperature

 implicit assumption in the spec that M4>M3 and T4>T3 --> MAY WANT TO MOD

SPEC

B-135 -- TS_STATUS has not been checked for limits violations --> MAY NEED TO

REWORD SPEC ON EXCEPTION HANDLING

B-8 -- problem with conditions involving THERMO_TEMP for setting ATMOSPHERIC_TEMP

-- may have introduced a condition that is not necessary

 all locals are real*4 as opposed to real*8 -- where all reals in spec are real*8 --> MAY

WANT TO MOD SPEC WITH REGARD TO PRECISION

ARSP

B-20, R-13 -- need to provide more data for Shift Data and clarify
 need to consistently notate comments

B-22 -- problem with rotating/shifting data at right time -- need to correct

B-23, R-14 -- notation “.*” is confusing/inconsistent

B-121, B-15 -- notation “.[previous value]” also confusing

B-134 -- Is it necessary to check all history variables; not clear which variables are being checked
 --> MAY NEED TO MOD SPEC

B24 -- AR_FREQUENCY does not have 0 in the valid range -- no need to check this variable

since it is a RUN_PARAMETER

B25 -- need to make sure AR_FREQUENCY*2 is in denominator -- with given notation, it is not

clear

B-15, R-18 -- problem with first step in Newton Divided Differences -- need to specify order

B-105 -- need to specify order of subtraction

R-19 -- need to clarify references to indexes so that they are consistent -- consistency between

using “last” and “most recent”

C-6

R20 --is AR_ALTITUDE checked for limit exceeded where it needs to be?

B-82 -- check on consistency of applying limit checks

-------------------------------- END OF SESSION 3 -------------------------------------

Session 4: 9/23/93 9:30 a.m. - 11:30 a.m.

TDLRSP

R-25 -- reference to TDLR_VELOCITYV seems to be a typo

B-32 -- seems that things are being rotated twice as often as necessary

B-130-131 -- not clear which time history is being checked for TDLR_STATE,

FRAME_BEAM_UNLOCKED

B-33, R-26 -- FRAME_BEAM_UNLOCKED is not supposed to be changed (see line 2 Table

5.11)

B-34 -- FRAME_BEAM_UNLOCKED needs to be set as per line 3 Table 5.11 -- but it is not

B-136 -- some confusion about processing a table --> MAY WANT TO MOD SPEC

B-32, R-27 -- insufficient detail provided for calculating average beam velocities -- need to give

equations (also reference to table should be corrected)

B-28 -- TDLR_STATUS is shown as input to TDLRSP - but it should not be

B-126 -- not clear where control loops must be

TDSP

B-141 -- extra functionality present by having statement “TDS_STATUS has bad value ...”

-------------------------------- END OF SESSION 4 -------------------------------------

Session 5: 9/30/93 9:30 a.m. - 11:00 a.m.

ASP

B-156, R30 -- locals are declared just as real -- when some are real*8

B-158 -- no apparent reason to make assignment of ATMOSPHERIC_TEMP

C-7

B-159, R32 -- when calculating abbreviations accel.* -- it is not clear there is a matrix
multiplication

B-161 -- need to check limits for A_ACCELERATION; also problem when all accelerations are

equal when you go to calculate standard deviation

GSP

R-34 -- G_STATUS is not an input

B-162 -- there is no limit check for G_STATUS

-------------------------------- END OF SESSION 5 -------------------------------------

Session 6: 10/6/93 9:30 a.m. - 11:30 a.m.

GP

B-180 -- variable END_GCS is missing from the output section

 some control signals are being used in high-level diagrams -- but they have not been seen

at the lower-level p-specs. Why are some set and others not?

 not clear what is a comment and what is pseudo-code -- the design should have a

convention for comments and pseudo-code

B-175 -- need to use the simultaneous Runge Kutta method (Current design uses a sequential

approach)

B-176 -- GP_ROTATION matrix is not handled properly.

B-179, B59 -- combined tables 5.9 and 5.10 into 1 algorithm -- but it is not done correctly.

B-184, R-50 -- CONTOUR_VELOCITY array -- this is not the right array to be searched. Also,

numerous ambiguities in the description of the search

B-186 -- the computation of VELOCITY_ERROR is done conditionally in the design -- but

should be done unconditionally

B-188, R-52 -- velocity error is not being calculated correctly

B-189 -- in determining contour crossed -- in the conditional expression GP_ALTITUDE <=

ENGINES_ON_ALTITUDE and VELOCITY_ERROR . 0 -- this is not correct

B-192 -- the term optimal velocity is not explained

B-190 -- references to GP at 2.7 should be 2.6

C-8

B-178 -- the term “tnow” has not been defined

B-181, R45-46, R-48 -- problem with limit checks

B-191 -- in the description of doing Runge Kutta -- the equations for the derivatives do not

provide sufficient detail to be translated into code

CRCP

general comments -- Expand/Compress functions not needed and title consistency

-------------------------------- END OF SESSION 6 -------------------------------------

Session 7: 10/12/93 9:30 a.m -- 11:30 a.m.

AECLP

B-197, R-53 -- not clear how to determine axial engine temperature

B-215, R-60 -- conditional (page 6) dealing with AE_TEMP appears to be added functionality

B-200, R-54 -- problem with dimensions of arrays

B-209, R-57 -- check for upper bound of CONTOUR_CROSSED is not correct; also general

problems with limit checks

B-201, R-55-56 -- need absolute values in calculating THETA

B-212 -- THETA is declared as a local variable -- but THETA is in a global data store

B-202 -- calculation of limiting pitch error is unnecessarily broken down into 2 steps

B-204 -- equation for Q_TEMP is incorrect

B-205, R-58 -- error in calculating TE_LIMIT -- does not properly reflect bounding process

B-214 -- the nested Ifs may not be verifiable/modifiable

B-206 -- problem with correctly giving error messages (unnecessary duplication of error

messages)

B-216 -- 3 variable, PITCH_ERROR, YAW_ERROR, and THRUST_ERROR are needlessly set

there -- but not used

B-210 -- introduces INT_CMD -- not necessary

C-9

B-211 -- need to show derivation of TE_LIMIT

B-207 -- does not show rounding of AE_CMD

RECLP

R-61 -- RE_STATUS is shown as an input - but should not be

B-220 -- problem with notation of G_ROTATION

B-222, R-62 -- need additional detail in determining roll engine command

B-224 -- PI is not defined

B-225 -- problems with limit checking regarding THETA and missing for RE_CMD,

RE_STATUS

B-221 -- reference to Fig 5.1 pg 60 is not correct

B-223 00 need to define term “lowest bit” (need more precise description)

B-219 -- duplication of giving error message

-------------------------------- END OF SESSION 7 -------------------------------------

Session 8: 10/14/93 1:30 p.m. -- 3:30 p.m.

CP

B-254 -- remove stuff (like end of CP P-spec) that is not necessary

B-232 -- ITH_FRAME_2 and ITH_FRAME_5, and NBYTES and BYTE_PACKET are missing

from input/output section

B-249 -- BYTE_PACKET is not accurately defined in data dictionary

B-259 -- need to define notation “B” used in defining INIT_SAMPLE_MASK

B-240 -- GP_ROTATION and K_MATRIX are missing from the packet variables table

B-243 -- K_ALT and K_MATRIX are missing from the list of variables for sample mask when

ITH_FRAME_2 is true and ITH_FRAME_5 is false

B-244, B-252-253 -- the variables to be loaded are ambiguously described

B-251 -- bits for K_ALT and K_MATRIX are missing

C-10

B-255 -- uses SUB_FRAME_COUNTER -- which is not defined -- should be
SUBFRAME_COUNTER

B-245 -- insufficient detail in determining the total number of bytes

B-242, B-257 -- comment refers to “lower” 16 bits of CHECKSUM -- but CHECKSUM has only

16 bits -- comment needs to be more precise

B-258 -- the action to set C_STATUS to healthy is not done to calculating CHECKSUM and

loading BYTE_PACKET

B-246 -- when K_MATRIX and/or GP_ROTATION are loaded -- these are supposed to be stated

in a special way and the design does not address this -- but need to

B-247 -- the design is not specific about which history variables are being loaded

B-248 -- need a better explanation of getting masks and packets

R-63 -- several variables are shown as input on the CFD/DFD but are not shown in the spec as

input

 should not have 2 different P-Specs for Expand (it appears that one is never called)

B-238 -- CFD/DFD does not show packet going into GUIDANCE_STATE

CRC

B-264, R-73 -- need to reference or derive the CRC-16 algorithm

 the statement that says that CRC-16 must be calculated at each call is false -- it should be

removed

B-262 -- need to define “logical shift”

B-263-264 -- need to make description of forming CRC more precise

B-261 -- need more precision in the description of forming the table -- spell out all steps

-------------------------------- END OF SESSION 8 -------------------------------------

Session 9: 10/15/93 8:30 a.m. - 10:30 a.m.

IMPORTANT NOTE: DESIGN DOES NOT BALANCE.
According to the Software Development Standards for the Design Process, the Design should
have been balanced prior to bringing it to Design Review. This, of course, explains the many
many problems we have found.

Data Dictionary

B-12 -- EXTERNAL data store not consistent with spec

C-11

B-11 -- GUIDANCE_STATE is missing from the data dictionary

B-14 -- RUN_PARAMETERS and SENSOR_OUTPUT are missing from the data dictionary

Lots of miscellaneous stuff:
B-102, 268, 166, 228-229, 164-165, 238 -- See inspection logs for individual entries with

problems

Introduction

B-39 -- in the top level description, the term “four phases” is not accurate

B-41 -- need to improve clarity of Module Descriptions

B-43 -- need to state which version of the spec this design complies with

B-103 -- clarify statement “code of the design”

B-104 -- need to refer to spec and mods appropriately

B-45 -- do not need a status section

B-47, B49, B122 -- need to clean up notation

B-111 -- need to include a description of the call structure

B-112 -- need to include an overview of scheduling procedures

B-116 -- need a section describing the syntax for the pseudocode

C-12

C.1.2 Review Logs from Preliminary Design Review

Review Log from System Analyst

Individual Inspection Preparation Log #1 (page 1)

Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

INDEX

 Introduction

 Structured Analysis Diagrams

 Data Dictionary

 INIT_GCS, P-Spec 1

 AECLP, P-Spec 2.1

 ARSP, P-Spec 2.2

 ASP, P-Spec 2.3

 CP, P-Spec 2.4

 CRCP, P-Spec 2.5

 GSP, P-Spec 2.6

 GP, P-Spec 2.7

 RECLP, P-Spec 2.8

 TDLRSP, P-Spec 2.9

 TDSP, P-Spec 2.10

 TSP, P-Spec 2.11

 Miscellaneous P-Specs (not the eleven functional units)

 Miscellaneous

 Typographic Errors, Style, Grammar

 Suggestions for the Future

C-13

Individual Inspection Preparation Log #1 (Page 2)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

INTRODUCTION
Introduction, page 1 40
 1.1 Top-Level Description, all items with "*)"
 Question: What does "*)" mean?
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction, page 1 39
 1.1 Top-Level Description, first "*)" item "four phases" is not accurate.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 (see Software Requirements Figure 1.2 and Table 5.10)

 Introduction, page 2 41
 1.3 Module Descriptions, third paragraph. Question: What does "empirical notations" mean?
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction, page 3 43
 2.4 Transition History, second statement.
This statement does not include the fact that the code of the design should conform to the GCS Software

Requirements document 2.2 and all existing formal modifications (1-26) to the Software Requirements
document.

*Requirement: Reference: Software Develpment Standards, "Software Design Standards", "Design
Documentation", "III Transition History", "If changes, additions, or deletions are made in response to a
formal modification, the formal modification number should be referenced." *Requirement:
Completeness (Reference: DO-178B 11.0b)

 Introduction, page 3 103
 2.4 Transition History, second statement. Question: What does "code of the design" mean?
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction, page 3 117
 2.4 Transition History
No mention was made of changes to the design to comply with the Software Development Standards.

Were there any changes to the design made in response to this requirement? If so, they should be
mentioned in the transition history, as per this requirement.

*Requirement: Software Development Standards, "Instructions to Programmers Regarding the Transitional
Design Phase", #1, "Modifying the orignial design...so that the new detailed design meets...the
standards set forth in this document in the chapter "Software Design Standards"".

 Introduction, page 4 104
 2.6 References
The reference "GCS Development specifications" is not the correct name for the specification document

and does not include the version number of the document. In addition, this statement does not include
the numbers of all existing formal modifications (1-26) to the Software Requirements document.

*Requirement: Completeness (Reference: DO-178B 11.0b)
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-14

Individual Inspection Preparation Log #1 (Page 3)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 Introduction, page 5 45
 3. Status of Pluto GCS Design, first paragraph
 "The pluto version ... has the GCS modification number 1 to the 2.1 Release...incorporated into it."
 The meaning of this statement is not clear.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction, page 5 46
 3. Status of Pluto GCS Design, second paragraph

The reference "version 2.2 of the GCS Development specifications" is not the correct name for the
specification document. In addition, this statement does not include the fact that the design should
have been modified to also incorporate all existing formal modifications (1-26) to the Software
Requirements document.
*Requirement: Completeness (Reference: DO-178B 11.0b)
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction, Pages 6-7: 47
 4. Notation in Pluto Version of GCS Design
 It is not clear what the following mean:
 "the * oldest",
 "the * FIFO",
 "does * not"
 "noun * indicates"
 "body * axis"
 "performed * three"
 "an array * with"
 "performed * four times"
 "array, * independently"
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction, pages 6-7 49
 4. Notation in Pluto Version of GCS Design

Page 6, last comment box, and page 7, first and last comment box It seems the design is using
one notation, namely ".*" to mean two different things (3 lander body axes as well as three
independent calculations). Is this what was intended? Also, is "three times on each of the three
elements in the vector..." intended to mean nine times? Is "four times on each of the four
elements in the array" intended to mean sixteen times? That's probably not the intention, but is
the meaning.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction, page 6 122
 4. Notation in Pluto Version of GCS Design
 Page 6, last comment box "Also, anIndividual element of a vector can be referenced using the

following notation: GP_VELOCITY.x " Problem: It is not clear what this notation means. Does
".x" mean ".x" or ".y" or ".z", and if so, exactly what does each represent?

*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-15

Individual Inspection Preparation Log #1 (Page 4)

Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 Introduction 111
 Description of Call Structure
 The software structure needed to implement the requirements is missing from the design document.

Even though some of the software structure is implicit in the DFDs and the PATs, a description as
described in the reference below is missing.

 *Requirement: Reference: Software Development Standards, "Software Design Standards", "II. Design
Structure", "a)Description of Call Structure".

 *Requirement: Reference:DO-178B, 11.10b

 Introduction 112
 Scheduling
 An overview of the scheduling procedures is not contained in the design document. Even though the

scheduling is implicit in the DFDs and PATs, the overview is missing. *Requirement:
Reference:Software Development Standards, "Software Design Standards", "II. Design Structure", "d)
Scheduling".

 *Requirement: Reference:DO-178B, 11.10f

 Introduction 123
 An overview of the flow of control for any given frame is not contained in the design document. Even

though this flow of control is implicit in the DFDs and PATs, the overview is missing. What is
especially needed is a discussion of the invocation of the Individual subframes, the invocation of
rendezvous, and the ending of GCS. *Requirement: Reference:DO-178B, 11.10f

 Introduction 115
 Comments on Method
 Discussion is missing concerning which structured analysis/design method was used. *Requirement:

Follow a particular design method (References: Software Development Standards,"Software Design
Standards", "Design Methods, Rules, and Tools", "...using the structured analysis ...by Hatley and
Pirbhai or...", and "Design Documentation", "...document should follow...GCS specification or the
Hatley book...")

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Introduction 116
 Syntax for Pseudocode
 An explanation of the syntax used in the pseudocode in the P-Specs is not present in the design. It is

not important what type of pseudocode or structured English is used, but it is very important that the
pseudocode be completely unambiguous. The inspection of the design is hampered unless the syntax
is unambiguous.

 In order to insure that the pseudocode is unambiguous, the design should supply either a reference to a

source which describes the syntax in detail, or should itself supply a detailed description of the syntax.
This design has not done so. The designer, during the overview meeting, stated that the pseudocode
followed Fortran 77, and in some cases it does, but unfortunately there are exceptions:

C-16

Individual Inspection Preparation Log #1 (Page 5)

Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 1. The design frequently uses the construct which is not strictly FORTRAN 77:
 if (expression
) statement
 statement
 statement
 endif

 2. The design uses "==" which is not FORTRAN syntax.

 3. In some cases, as for example in P-Spec 2.2.3, page 3, the design uses plain Engish text in the

middle of a nested if.

 4. The design stretches nested ifs over several pages, which is difficult to follow.

 5. It is not always clear what is a comment and what is actually part of the design. Sometimes,

the comments are boxed in with *, but sometimes they are not. An example of this is
TDLRSP, P-Spec 2.9.2, pages 3 and 4. The design seems to use single asterisks for
comments sometimes but never explicitly states the syntax for a comment. Sometimes a
comment is the only entry inside an else or else if clause, and it is not completely clear if
this means the clause is null.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-17

Individual Inspection Preparation Log #1 (Page 6)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

STRUCTURED ANALYSIS DIAGRAMS
 Context Diagram GCS and Data Dictionary entries for 1
 INITIALIZATION_DATA and for INIT_END_GCS

 In the context diagram there is a solid arc labeled INITIALIZATION_DATA. This element has the

same name as a data flow name in the Software Requirements document. There is some confusion
because the data flow name in the design includes "INIT_END_GCS" which is not in the Software
Requirements document. This in itself may not be a requirement violation, but it is confusing. There
is, however, another problem. INIT_END_GCS is listed in the dictionary as a control flow. It is
included in the group flow name INITIALIZATION_DATA which is a data flow name and appears on
the GCS Context Diagram as a data flow. The control flow INIT_END_GCS should not be included
on a solid data flow line.

 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Context Diagram GCS 2
 The bubble INIT_RUN_GCS does not show as input the variables FRAME_COUNTER and

SUBFRAME_COUNTER coming from GCS_SIM. These need to be shown as input for every frame
and subframe after the initialization frame and subframe because the simulator updates them after each
frame/subframe respectively. (see Software Requirements document, Figure 2.2)

 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Completeness (Reference: DO-178B 11.0b)

 Context Diagram GCS 3
 The bubble INIT_RUN_GCS does not show the variables AE_SWITCH and RE_SWITCH as output to

the engines. These variables control the turning on/off of the axial engines and the turning off of the
roll engines. (see Software Requirements document, Figure 2.3)

 *Requirement: Completeness (Reference: DO-178B 11.0b)

*Addition 09/22/93 (revised 9/27/93)
 Context Diagram GCS and DFD/CFD INIT_RUN_GCS 167
 (see #3 and #51)
It turns out that AE_SWITCH and RE_SWITCH do not need to appear on the context diagram at all

because they are in not in the EXTERNAL data store. They are merely used internally in the GCS
software; therefore #3 and #51 can be canceled.

 DFD/CFD INIT_RUN_GCS 50
 The bubble RUN_GCS does not show the variables FRAME_COUNTER and

SUBFRAME_COUNTER as input coming from GCS_SIM. These need to be shown as input for
every frame and subframe after the initialization frame and subframe because the simulator updates
them after each frame/subframe respectively.

 *Requirement: Completeness (Reference: DO-178B 11.0b)

 DFD/CFD INIT_RUN_GCS 51
 The bubble RUN_GCS does not show the variables AE_SWITCH and RE_SWITCH as output to the

engines. These variables control the turning on/off of the axial engines and the turning off of the roll
engines.

 *Requirement: Completeness (Reference: DO-178B 11.0b)

C-18

Individual Inspection Preparation Log #1 (Page 7)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 DFD/CFD INIT_RUN_GCS 16
 The data stores RUN_PARAMETERS, GUIDANCE_STATE and SENSOR_OUTPUT and the flows

into and out of them are missing from this diagram. These stores should appear because the data
moves from INIT_GCS to RUN_GCS through these data stores. (see Requirements document, Figures
2.4 and 2.5)

 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Completeness (Reference: DO-178B 11.0b)

 DFD/CFD INIT_RUN_GCS 52
 Data flows into and out of the EXTERNAL store are missing. (see Software Requirements document,

Figures 2.4 and 2.5)
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Completeness (Reference: DO-178B 11.0b)

 DFD/CFD INIT_RUN_GCS 124
 The solid arc labeled RAW_SENSOR_DATA should not flow directly from outside to RUN_GCS. (see

Requirements document, Figures 2.4 and 2.5)
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Completeness (Reference: DO-178B 11.0b)

 PAT INIT_RUN_GCS 17
 Second line of table: "START_GCS INIT_DONE RUN_DONE 1 3 2"
 Question: Since this is merely the line that lists the input names, what is the meaning of the right side of

the second line with " 1 3 2"?
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 PAT INIT_RUN_GCS 109
 Fifth line of table: ""TRUE" "TRUE" "FALSE" 0 1 1"
 Problem: This line shows that the order of activation of GENERATE_SEQUENCE_PARMS and

RUN_GCS doesn't matter; however, the INIT_END_GCS DFD shows that for a given frame,
GENERATE_SEQUENCE_PARMS must be executed before RUN_GCS because the variables
ITH_FRAME_2 and ITH_FRAME_5 flow from GENERATE_SEQUENCE_PARMS to RUN_GCS.

 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 DFD/CFD RUN_GCS 67
 On this diagram, SUBFRAME_COUNTER appears as a control flow as input and output to the cspec

and as input to SUBFRAME_COUNTER_STORE. Problem: In the data dictionary,
SUBFRAME_COUNTER is a data flow.

 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 DFD/CFD RUN_GCS 98
 It is not clear what is the purpose of the process "COPY CONTROL DATA" or whether it is actually

needed at all. If it is the case that it has a function, it is not clear whether that function is traceable to
the Software Requirements document.

*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

C-19

Individual Inspection Preparation Log #1 (Page 8)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 DFD/CFD RUN_GCS 81
 The top left-hand bubble labeled "STORE RAW SENSOR DATA" seems to perform no useful function.

The raw sensor data is included in the group flow INITIALIZATION_DATA which means it is initialized
by the simulator. In addition, in the Software Requirements document, Figure 2.2, it is shown that the raw
sensor data comes into GCS from the external sensors. There is therefore no requirement for GCS to put
the raw sensor values into any data store, as they are already in the global data store EXTERNAL at the
beginning of each frame.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DFD/CFD RUN_GCS 84
 The top middle bubble labeled "INIT RUN PARAM STORE"seems to perform no useful function. The run

parameter data is included in the group flow INITIALIZATION_DATA which means it is initialized by the
simulator. In addition, in the Software Requirements document, Figure 2.4, it is shown that the run
parameter data is put into the store RUN_PARAMETERS by INIT_GCS which (according to the LEVEL 2
SPECIFICATION in the Software Requirements document) is "actually a part of
GCS_SIM_RENDEZVOUS"). Figure 2.4 also shows that RUN_GCS does not store into the data store
RUN_PARAMETERS. There is therefore no requirement for GCS to put the run parameter data into any
data store, as they are already in the global data store RUN_PARAMETERS at the beginning of each
frame.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DFD/CFD RUN_GCS 86
 The top right-hand bubble labeled "INIT GUIDANCE STATE STORE" seems to perform no useful

function. The guidance state data (with the exception of INTERNAL_CMD which is not used as an input)
is included in the group flow INITIALIZATION_DATA which means it is initialized by the simulator. In
each frame, all of the data in the GUIDANCE_STATE store will be output by GCS. There is therefore no
requirement for GCS to put the guidance state data into any data store as they are already in the global data
store GUIDANCE_STATE at the beginning of each frame.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DFD/CFD RUN_GCS 92
 Input to TSP from GUIDANCE_STATE store with group flow name TEMP_GS_IN (which is element

TS_STATUS) is incorrect. TS_STATUS is not an input to TSP.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 DFD/CFD RUN_GCS 96
 The labels on the eleven bubbles which represent the eleven functional units in the Software

Requirements document are not exactly the same as the labels on the DFD/CFDs one level down,
and this causes confusion. For example, the bubble for P-Spec 2.2 is "ARSP ALTIMETER
RADAR", while the name one level down is "ARSP - Altimeter Radar Data Expand and
Compress". The names for TDLRSP and TSP also do not match the names ones level down.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

* DFD/CFD RUN_GCS 166

The two bubbles at the bottom of the page, namely SEND CHUTE RELEASE COMMAND and SEND
ENGINE DATA do not seem to perform any function.
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

C-20

Individual Inspection Preparation Log #1 (Page 9)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

*Addition 09/22/93 (DELETED 9/27/93 - NEED REVISION TO SPEC - PUT

CHUTE_RELEASED INTO EXTERNAL DATA STORE)

 DFD/CFD RUN_GCS 168
 It may be that CHUTE_RELEASE in the left-hand bottom corner should not appear on the diagram at

all because it is in the GUIDANCE_STATE store rather than in the EXTERNAL store.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

* DFD/CFD RUN_GCS 169
 Question: In the bottom left-hand corner, the input to SEND ENGINE DATA is AE_RE_CMDS,

while the output is ENGINE_DATA. Both flows contain the same data. Why are two different names
used?

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

* DFD/CFD RUN_GCS 144
 Input to GSP from GUIDANCE_STATE store with group flow name GYRO_GS_IN (which is element

GS_STATUS) is incorrect because GS_STATUS is not an input to GSP.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

* PAT RUN_GCS 229
 There doesn't seem to be any mechanism for the eleven functional units to signal when they have

finished executing activating continuously once they have been activated once.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 PAT RUN_GCS 97
 The process "COPY CONTROL DATA" which appears on the DFD/CFD for RUN_GCS is missing

from this PAT, and therefore its order of activation is unknown.
 *Requirement: Completeness (Reference: DO-178B 11.0b)

 PAT RUN_GCS 68
 Problem: In the first subframe (the first four lines of the table), this PAT has imposed an order of

activation on the processes that is not stated in the Software Requirements document. The Software
Requirements document does not state any specific order of activation for ARSP, TDLRSP, TDSP,
ASP, or GSP with respect to each other; however, the PAT imposes an arbitrary order of activation.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)
 **Software Requirements 2.2 with Mods 1-26 Reference: Chapter 4, Level 3 Flow Diagrams and C-

Specs, Scheduling

 PAT RUN_GCS 69
 Problem: In the third subframe (the last two lines of the table), this PAT has imposed an order of

activation on the processes that is not stated in the Software Requirements document. The Software
Requirements document does not state any specific order of activation for AECLP and RECLP with
respect to each other; however, the PAT imposes an arbitrary order of activation.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)
 **Software Requirements 2.2 with Mods 1-26 Reference: Chapter 4, Level 3 Flow Diagrams and C-

Specs, Scheduling

C-21

Individual Inspection Preparation Log #1 (Page 10)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

PAT RUN_GCS 70
 Problem: The variable SUBFRAME_COUNTER appears in the output section of this PAT, and its

value is therefore changed by the c-spec. This is not permitted. The Software Requirements document
states in the section labeled LEVEL 2 SPECIFICATION that SUBFRAME_COUNTER will be
initialized by INIT_GCS which is actually a part of GCS_SIM_RENDEZVOUS. The Software
Requirements document also states in Chapter 4. LEVEL 3 FLOW DIAGRAMS AND C-SPECS,
under SCHEDULING, that "On the first, and subsequent, calls to GCS_SIM_RENDEZVOUS,
FRAME_COUNTER and SUBFRAME_COUNTER will be returned to the implementation
containing the correct values for operation. There is no requirement anywhere in the Software
Requirements document that the GCS software should change the value of SUBFRAME_COUNTER.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)
 **Software Requirements 2.2 with Mods 1-26 Reference: Chapter 4, Level 3 Flow Diagrams and C-

Specs,

 PAT RUN_GCS 125
 Problem: The use of the name "SUBFRAME_COUNTER" is ambiguous because it appears in the

stores EXTERNAL_OLD, SUBFRAME_COUNTER_STORE, and in the global store EXTERNAL
(defined in the Software Requirements document but not in the store EXTERNAL in this design
document). One can look at the RUN_GCS DFD and deduce that the intention is to store into
SUBFRAME_COUNTER_STORE, but the P-Spec itself should be self-contained.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)
 **Software Requirements 2.2 with Mods 1-26 Reference: Chapter 4, Level 3 Flow Diagrams and C-

Specs,

 PAT RUN_GCS 71
 The first line of the table, where ITH_FRAME_2 IS F and ITH_FRAME_5 is F:
 Problem: Some processes which should be activated are not activated.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Chapter 4, Level 3 Flow Diagrams and C-

Specs,

 PAT RUN_GCS 72
 The third line of the table, where ITH_FRAME_2 IS F and ITH_FRAME_5 is "TRUE":
 Problem: Some processes which should be activated are not activated.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Chapter 4, Level 3 Flow Diagrams and C-

Specs,

 PAT RUN_GCS 73
 It is unclear, looking at the input and output columns for RENDEZVOUS_CNTL, how it functions.
 Question: How does the functioning of RENDEZVOUS_CNTL work? if WAITING= rendezvous

was called, then what does RUNNING mean?
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-22

Individual Inspection Preparation Log #1 (Page 11)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

*PAT RUN_GCS 228
 Under output column, "GP_HAS_RUN", the value "DONT CARE" appears. This is not feasible.

Normally "DONT CARE" represents any value for an input (it is not an actual value to be set on
output). Note that the data dictionary only shows two values, namely "TRUE", and "FALSE" for
GP_HAS_RUN.

 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 *PAT RUN_GCS 164
 There doesn't seem to be any mechanism for keeping the eleven functional unit processes

from activating continuously once they have been activated once. There does not seem to be
a way that they signal when their execution has completed so that they can be deactivated.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

* PAT RUN_GCS 165
 The processes "SEND CHUTE RELEASE COMMAND" and "SEND ENGINE DATA" do not seem

to be traceable to the specification. (see #138) (see specification Figure 2.4 which shows data going
off page)

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

* DFD/CFD GSP 143
 Input to TDSP with group flow name GYRO_GS_IN (which is element GS_STATUS) is incorrect

because G_STATUS is not an input to GSP.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

* DFD/CFD CP 234
 The following show as inputs to CP P-Spec 2.4.2, but are not actually inputs:
 AE_SWITCH
 C_STATUS
 RE_SWITCH
 TDLRSP_SWITCH
 TDSP_SWITCH
 TE_LIMIT THETA
 FRAME_BEAM_UNLOCKED
 FRAME_ENGINES_IGNITED
 INTERNAL_CMD CL
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

* DFD/CFD CP, and DFD/CFD RUN_GCS 238
 The variable PACKET is shown correctly as an output from CP, but the fact that it is also an output that

goes into the GUIDANCE_STATE data store has not been shown on the diagrams.
 *Requirement: Completeness (Reference: DO-178B 11.0b)

* DFD/CFD CP, and DFD/CFD RUN_GCS 239
 The variable SUBFRAME_COUNTER is shown correctly as an input to CP, but the fact that it is also

an input that comes from the EXTERNAL data store has not been shown on the diagrams.
 *Requirement: Completeness (Reference: DO-178B 11.0b)

C-23

Individual Inspection Preparation Log #1 (Page 12)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

DATA DICTIONARY

 DATA DICTIONARY 12
 EXTERNAL

The actual data elements and order of the data elements in the store EXTERNAL do not agree with
those in the Software Requirements document. Question: Why are the elements repeated several
times? *Requirement: Fullfillment of requirements in Software Requirements document (References:
DO-178B 6.3.2a and 11.10a)
**Software Requirements 2.2 with Mods 1-26 Reference: Introduction, under Requirements, under
Global Data Store Organization.
*Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 DATA DICTIONARY 11
 GUIDANCE_STATE

The store named GUIDANCE_STATE is missing from the data dictionary, even though it does appear
on the RUN_GCS DFD/CFD, and descriptions of some elements in the design data dictionary state
that they are in this store. It is therefore not possible for the inspector to check whether the data in this
store is of the right data type and dimension, or whether the elements occur in the proper order.
*Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)
**Software Requirements 2.2 with Mods 1-26 Reference: Introduction, under Requirements, under
Global Data Store Organization.
*Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 DATA DICTIONARY 14
 RUN_PARAMETERS

The store named RUN_PARAMETERS is missing from the data dictionary, even though it does
appear on the RUN_GCS DFD/CFD, and descriptions of some elements in the design data dictionary
state that they are in this store. It is therefore not possible for the inspector to check whether the data
in this store is of the right data type and dimension, or whether the elements occur in the proper order.
*Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)
**Software Requirements 2.2 with Mods 1-26 Reference: Introduction, under Requirements, under
Global Data Store Organization.
*Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 DATA DICTIONARY
 SENSOR_OUTPUT

The store named SENSOR_OUTPUT is missing from the data dictionary, even though it does appear
on the RUN_GCS DFD/CFD, and descriptions of some elements in the design data dictionary state
that they are in this store. It is therefore not possible for the inspector to check whether the data in this
store is of the right data type and dimension, or whether the elements occur in the proper order.
*Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)
**Software Requirements 2.2 with Mods 1-26 Reference: Introduction, under Requirements, under
Global Data Store Organization.
*Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

C-24

Individual Inspection Preparation Log #1 (Page 13)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns
DATA DICTIONARY
 Use of Design-defined Control Stores 102
The following control stores (which are not defined in the Software Requirements document data

dictionary) appear in the design data dictionary:
 *END_GCS_STORE
 EXTERNAL_OLD
 GENERATE_SEQUENCE_PARMS
 *GP_HAS_RUN_STORE
 GUIDANCE_STATE_OLD
 INIT_GCS
 *RENDEZVOUS_CNTL_STORE
 RUN_GCS
 RUN_PARAMETERS_OLD
 SENSOR_OUTPUT_OLD
 *SUBFRAME_COUNTER_STORE
 * = used in design

Problem 1: Only four of the above (END_GCS_STORE, GP_HAS_RUN_STORE,

RENDEZVOUS_CNTL_STORE, and SUBFRAME_COUNTER_STORE) appear on the structured analysis
diagrams in the design. It is not clear why these four stores are needed and exactly how they are used.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

Problem 2: It seems that the seven stores listed above which are not used at all should not be in the data
dictionary. *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY 268
 The following entries are not used:
AECLP_DONE
ARSP_DONE
ASP_DONE
CLP_DONE
CP_DONE
CRCP_DONE
GP_DONE
GSP_DONE
RECLP_DONE
RENDEZVOUS
SP_DONE
TDLRSP_DONE
TDSP_DONE
TSP_DONE

 DATA DICTIONARY 269
 TDLR_ANGLES and THETA
 In RANGE, "PI" is not defined.

 DATA DICTIONARY
 AR_FREQUENCY 267
 RANGE upper value "2.45**9" is incorrect.

C-25

Individual Inspection Preparation Log #1 (Page 14)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns
DATA DICTIONARY 195
 AX_ENG_GS_IN

GP_ATTITUDE is an input to AECLP but is missing from AX_ENG_GS_IN. AE_STATUS is
not an input to AECLP and therefore should not be included in AX_ENG_GS_IN.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 DATA DICTIONARY 196
 AX_ENG_RP_IN

DELTA_T is an input to AECLP, but is missing from AX_ENG_RP_IN. GRAVITY is an input to
AECLP, but is missing from AX_ENG_RP_IN.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 DATA DICTIONARY
 AX_ENG_RP_IN 55

Doesn't state whether control or data flow
*Requirement: Completeness (Reference: DO-178B 11.0b)

 DATA DICTIONARY
 BYTE_PACKET 56

BYTE_PACKET is defined to be 188 of integer*1 which does not match the global data store
variable PACKET which is 256 of integer*2. Also there is no type integer*1 in Fortran.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 CHECKSUM 57

The only attribute is the data type. More information is needed for understanding. *Requirement:
Completeness (Reference: DO-178B 11.0b)

* DATA DICTIONARY (and Context Diagram GCS, DFD/CFD INIT_RUN_GCS, DFD/CFD 197
 RUN_GCS, DFD/CFD CRCP)
 CHUTE_RELEASE

 The name CHUTE_RELEASE is the same as CHUTE_RELEASED (except the first is a control
flow and the second is a data flow).
 Question: Why are they both required?

* DATA DICTIONARY 235
 COMM_EXT_IN SUBFRAME_COUNTER is missing

* DATA DICTIONARY 236
 COMM_EXT_OUT

This entry seems to be unnecessary as it does not appear to be used anywhere.
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

* DATA DICTIONARY 237
 COMM_GS_IN

The variables C_STATUS and CL should not be included.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).

C-26

Individual Inspection Preparation Log #1 (Page 15)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

* DATA DICTIONARY 233
 ROL_ENG_GS_IN

The variable RE_STATUS is not an input to RECLP, but it has been included in ROL_ENG_GS_IN.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 DATA DICTIONARY
 EXTERNAL_DATA 58

This is equivalent to FRAME_COUNTER only. It seems misleading to name it
EXTERNAL_DATA and equate it to FRAME_COUNTER. What is its purpose?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).
*Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY
 FRAME_COUNTER 54

The attribute is data but it is shown as "data/control flow". Why is this? It does not appear on
any diagrams as control.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 DATA DICTIONARY
 GENERATE_SEQUENCE_PARMS (store) 60

"*not-defined*"
Question: What does "not-defined" mean, and why is this element in here?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY 211
 GUIDE_SO_IN

ATMOSPHERIC_TEMP is not and input to GP, and therefore should not be included in
GUIDE_SO_IN

 DATA DICTIONARY 212
 GUIDE_GS_OUT

TE_INTEGRAL and CL are outputs from GP, but are missing from GUIDE_GS_OUT.

 DATA DICTIONARY 90
 GUIDANCE_STATE_DATA and INIT_GS_OUT

Question: What is the reason for having two group flow names which contain exactly the same
elements? It seems to overly complicate the design and make it more difficult to understand.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 INIT_END_GCS 4

This element has only one entry in the dictionary, namely "FALSE". The dictionary does not state
what this entry is or what it means. It does not have brackets around it. Is it the range, or the
initial value, or a constant? Can it assume only one value?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-27

Individual Inspection Preparation Log #1 (Page 16)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 DATA DICTIONARY
 INIT_EXT_OUT 61

"*not-defined*"
Question: What does "not-defined" mean, and why is this element in here?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY
 INIT_GCS 62

"*not-defined*"
Question: What does "not-defined" mean, and why is this element in here?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY 91
 INIT_GS_OUT

This group flow name contains two element names which are not in the data dictionary, namely
TDLRSP_SWITCH and TDSP_SWITCH. It also is missing one data flow name, namely CL.
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)
*Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 DATA DICTIONARY
 ITH_FRAME_2 and ITH_FRAME_5

Question: What is the meaning for "TRUE/FALSE"?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 NBYTES 65

"*integer*"
No information is given other than "*integer*". What is this element for?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY 83
 RAW_SENSOR_DATA and RAW_SENSOR_EXT_OUT

Question: What is the reason for having two group flow names which contain exactly the same
elements? It seems to overly complicate the design and make it more difficult to understand.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 RENDEZVOUS_CNTL 120

Some description of the meaning of this variable is needed.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

* DATA DICTIONARY 218
 ROL_ENG_GS_OUT

The variable RE_SWITCH is not an output from RECLP, but it has been included in
ROL_ENG_GS_OUT

C-28

Individual Inspection Preparation Log #1 (Page 17)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 DATA DICTIONARY
 RUN_GCS 66

"*not-defined*"
What does "not-defined" mean, and why is this element in here?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY 89
 RUN_PARAMETER_DATA and INIT_RP_OUT

Question: What is the reason for having two group flow names which contain exactly the same
elements? It seems to overly complicate the design and make it more difficult to understand.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 START_GCS 5

The dictionary gives the values FALSE, TRUE, and DONT_CARE but does not give the
meanings for these. This causes confusion in understanding INIT_RUN_GCS PAT. It is not clear
until one studies INIT_RUN_GCS PAT whether TRUE means that GCS is to be activated or
whether it means that it has already been activated. By deduction, it appears to mean that it should
be activated.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 SUBFRAME_COUNTER_STORE 101

This is a data store which contains the element named SUBFRAME_COUNTER. The global data
store defined in the Software Requirements document as EXTERNAL contains a data element
named SUBFRAME_COUNTER. This duplication of names causes ambiguity. (see P-Spec 2.18)
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 TD_LND_RAD_RP_IN 95

This group flow name appears on the RUN_GCS DFD/CFD as input to TDLRSP. The group
name incorrectly includes K_MATRIX and TDLR_STATE which are inputs to TDLRSP, but are
not in the RUN_PARAMETERS store but rather in the GUIDANCE_STATE store. (K_MATRIX
has already been correctly included in the group flow name TD_LND_RAD_GS_IN)
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY
 TD_LND_RAD_GS_IN 94

This group flow name appears on the RUN_GCS DFD/CFD as input to TDLRSP. The group
name incorrectly includes TDLR_STATUS which is not an input to TDLRSP.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY
 TD_LND_RAD_GS_IN 127

TDLR_STATE is missing from this list of inputs from GUIDANCE_STATE to TDLRSP.

C-29

Individual Inspection Preparation Log #1 (Page 18)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 DATA DICTIONARY, pages 31 and 32 9
 TDLRSP_SWITCH

TDLRSP_SWITCH is not a GCS common store variable and is not in the Data
Dictionary but is listed under GUIDANCE_STATE_DATA and under
GUIDANCE_STATE_OLD.(SEE FORMAL MODIFICATION 2.2-24.5)
*Requirement: Follow a particular design method (References: Software Development
Standards,"Software Design Standards", "Design Methods, Rules, and Tools", "...using
the structured analysis ...by Hatley and Pirbhai or...", and "Design Documentation",
"...document should follow...GCS specification or the Hatley book...")
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and
11.0f)

 DATA DICTIONARY, pages 31 and 32 10
 TDSP_SWITCH

TDSP_SWITCH is not a GCS common store variable and is not in the Data Dictionary
but is listed under GUIDANCE_STATE_DATA and under
GUIDANCE_STATE_OLD.(SEE FORMAL MODIFICATION 2.2-24.6)
*Requirement: Follow a particular design method (References: Software Development
Standards,"Software Design Standards", "Design Methods, Rules, and Tools", "...using
the structured analysis ...by Hatley and Pirbhai or...", and "Design Documentation",
"...document should follow...GCS specification or the Hatley book...")
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and
11.0f)

 DATA DICTIONARY
 TEMP_GS_IN 93

This control flow name is not required. TS_STATUS is not an input to TSP (as is
incorrectly shown on the RUN_GCS DFD (see # 92)
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a,

 DATA DICTIONARY 139
 The primitive elements which are in the design data dictionary but are not in the Software

Requirements data dictionary in general do not contain enough information for their meaning
and use to be unambiguous. Each should contain as a minimum a general description, the
units, the name of the control store (if any) in which it appears, and if logical or boolean the
meaning of the values. It would also be helpful to have the "USED IN" item, and the data
type.

C-30

Individual Inspection Preparation Log #1 (Page 19)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

INIT_GCS P-Spec 1
 INIT_GCS, P-Spec 1, and Data Store INIT_GCS 74
 There is confusion regarding the fact that there is a process named INIT_GCS and a data store named

INIT_GCS (which is not used anywhere). *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 INIT_GCS, P_Spec 1, page 1, middle of page 75
 "copy INITIALIZATION_DATA.RUN_PARAMETER_DATA.* to RUN_PARAMETER_DATA.*"
 "copy INITIALIZATION_DATA.GUIDANCE_STATE_DATA.* to GUIDANCE_STATE_DATA.*"
 Problem:The notation INITIALIZATION_DATA.RUN_PARAMETER_DATA,

INITIALIZATION_DATA.GUIDANCE_STATE_DATA, is not defined or explained anywhere.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 INIT_GCS, P_Spec 1, page 1, middle of page 76
 "copy INITIALIZATION_DATA.RUN_PARAMETER_DATA.* to RUN_PARAMETER_DATA.*"
 "copy INITIALIZATION_DATA.GUIDANCE_STATE_DATA.* to GUIDANCE_STATE_DATA.*"

 Problem: Neither one of these statements is feasible.
 INITIALIZATION_DATA, RUN_PARAMETER_DATA, and GUIDANCE_STATE_DATA are

merely group flow names. None of them is a data store, so how can any data be copied?
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 INIT_GCS, P_Spec 1, page 1, middle of page 77
 "copy INITIALIZATION_DATA.RUN_PARAMETER_DATA.* to RUN_PARAMETER_DATA.*"
 "copy INITIALIZATION_DATA.GUIDANCE_STATE_DATA.* to GUIDANCE_STATE_DATA.*"
 Problem: The copying of INITIALIZATION_DATA (the group flow name from the
 Software Requirements document) is not a function which can be traced to the Software Requirements

document.
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 INIT_GCS, P_Spec 1, page 1, middle of page 78
 "* Turn on Roll Engine *" through and including
 "EXTERNAL_DATA.FRAME_COUNTER = INITIALIZATION_DATA.FRAME_COUNTER":
 and
 "*Initialize SUBFRAME_COUNTER *
 INIT_SUBFRAME_COUNTER = 1"

 Problem: All of the initialization of the global control store variables is to be performed by GCS_SIM,

as stated in the Software Requirements document in Chaper 3. LEVEL 2 SPECIFIICATION.
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 INIT_GCS, P_Spec 1, page 1, middle of page 79
 "* Turn on Roll Engine *" through and including
 "EXTERNAL_DATA.FRAME_COUNTER = INITIALIZATION_DATA.FRAME_COUNTER":
 Problem: These statements are not feasible because GUIDANCE_STATE_DATA and

EXTERNAL_DATA are group data flow names rather than control store names, so how can any data
be copied?

 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

C-31

Individual Inspection Preparation Log #1 (Page 20)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

AECLP, P-Spec 2.1

 AECLP, P-Specs 2.1.1 and 2.1.3 (AECLP_EXPAND and AECLP_COMPRESS) 198
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group
names to element names and back, which is not an actual function. Why would there be a P- Spec with
no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 AECLP P-Spec 2.1.2, page 1, TITLE 199
 "AECLP - Axial Engine Contrl Law Processing (P-Spec 2.3.1)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.1.2 which is

the correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.3.1
which is probably from the Software Requirements document. There needs to be some clarification
here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 AECLP P-Spec 2.1.2 212
 Top of Page 3:
 "real*8 theta"
 Middle and bottom of Page 4:
 "theta = ..." "PE_INTEGRAL = PE_INTEGRAL + theta * DELTA_T"
 Top of Page 5:
 "theta = ..." "YE_INTEGRAL = YE_INTEGRAL + theta * DELTA_T"
 Problem: According to the specification, THETA is a global data store variable in the

GUIDANCE_STATE data store. In FORTRAN, the same name cannot be used as a local variable.
This is an implementation detail, but since it has entered the design, it is a problem.

 AECLP P-Spec 2.1.2, bottom of page 3 and top of page 4: 197
 "First: determine the axial engines' temperature (AE_TEMP), as follows:.."
 Problem: It is not made clear which (if any) column in the table at the top of page 4 actually represents

the new value for AE_TEMP.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 AECLP P-Spec 2.1.2, pages 4-5
 Problem: There are instances where a global variable which has a time history subscript appears

without any index for the time history. This leads to ambiguity. These instances are:
 1. Top of page 4, within table:
 "GP_ALTITUDE <= ..." (occurs in two places) 200
 2. Middle of page 4:
 "if (GP_VELOCITY(1) == 0)..."
 "..= GP_VELOCITY(3) / GP_VELOCITY(1)"
 3. Page 5:
 "...= GP_VELOCITY(2) / GP_VELOCITY(1)"
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-32

Individual Inspection Preparation Log #1 (Page 21)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

AECLP P-Spec 2.1.2, pages 4-5 201
 Middle of page 4:
 "theta = GP_VELOCITY(3) / GP_VELOCITY(1)"
 Top of page 5:
 "theta = GP_VELOCITY(2) / GP_VELOCITY(1)"

 Problem: In each case for the denominator, the specification uses an absolute value, but the design

doesn't.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 "Software Requirements Reference: AECLP, COMPUTE LIMITING ERROR FOR PITCH and

COMPUTE LIMITING ERROR FOR YAW

 AECLP P-Spec 2.1.2, 202
 Bottom of page 4 and middle of page 5:
 Problem: The calculation for limiting_pitch_error and limiting_yaw_error seem to impose a two-step

implementation for no other reason than to avoid a continuation line.
 Question: Is there some other reason for this?
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 AECLP P-Spec 2.1.2, top of page 6: 203
 Question: The possibility of a divide-by-zero can be avoided here if the design supplies a special

solution for the differential equation for the case where OMEGA = 0. The specification does not,
however, state this explicitly. Suggestion: perhaps modify the specification but do not cite a problem
for the design now.

 AECLP P-Spec 2.1.2, pages 6-7 215
 Top of page 6:
 "if (AE_TEMP == cold or AE_TEMP == WARMING_UP)
 te_limit_temp = 0.
 TE_LIMIT = 0.
 else if (AE_TEMP == hot)"
 Middle of page 7:
 "end if * (AE_TEMP == ?) *"
 Problem: This conditional dealing with AE_TEMP is added functionality because there is no such

requirement in the specification.
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 AECLP P-Spec 2.1.2, top of page 7 204
 "q_temp = -GAX(... * GP_ALTITUDE(1,3,0)...VELOCITY_ERROR
 + GVEI(CL * TE_INTEGRAL
 q_over_omega = (GA * (q_temp + GVEI(CL) * TE_INTEGRAL)) / OMEGA"

 Problem 1: In the equation for q_temp, the term "GP_ALTITUDE(1,3,0)" is incorrect.
 Problem 2: In the equation for q_temp, the parentheses are unbalanced, thereby making the equation

ambiguous.

C-33

Individual Inspection Preparation Log #1 (Page 22)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 Problem 3: After both of these equations are executed, the term q_over_omega will be

incorrect because the term " GVEI(CL) * TE_INTEGRAL" will have been added in twice.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 AECLP P-Spec 2.1.2, top of page 7 211
 The design has not shown the derivation of the equation used to solve the differential equation

for TE_LIMIT.

 AECLP P-Spec 2.1.2, bottom of page 7 216
 "pitch_error = 0.
 yaw_error = 0.
 thrust_error = 0."
 Problem: These statements represent added functionality. In the case where AE_SWITCH is

off, there is no requirement to set anything except AE_CMD and AE_STATUS, which is
being done. In this case, pitch_error, yaw_error, and thrust_error will not be used.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 AECLP, P-Spec 2.1.2, pages 3-7 214
 In the pseudocode, nested if's spanning many pages makes the logic extremely difficult to

follow and may lead to an error-prone inspection. In this P-Spec, one nested if begins on page
3, nests to a depth of four, and does not terminate until page 7. The problem is that it is very
difficult to see the matching parts of each if block and therefore difficult to follow the logic.

 AECLP P-Spec 2.1.2, pages 7-9 205
 The variable TE_LIMIT may be in error (depending on the actual values) when this P-Spec is

finished executing because it will not include the processing that took place during the
bounding process using TE_MAX and TE_MIN.

 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Fullfillment of requirements in Software Requirements document (References:

DO-178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: AECLP, COMPUTE LIMITING

ERROR FOR THRUST

 AECLP P-Spec 2.1.2, pages 7-8 206
 Problem: In each of four different places, an error message is given if the variable is outside

its acceptable range. In three of the cases, the exception condition has already been handled
in a previous place, and therefore this is added functionality. The places where this occurs
are:

 Middle of page 7, "Give error message." (for AE_SWITCH)
 Middle of page 8, "Give error message." (for CONTOUR_CROSSED)
 Middle of page 8, "Give error message." (for CHUTE_RELEASED)
 Top of page 9, "Give error message." (for AE_SWITCH)
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

C-34

Individual Inspection Preparation Log #1 (Page 23)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

AECLP P-Spec 2.1.2, top of page 9 207
 "else if (int_cmd >= 0.0 & int_cmd <= 1.0) AE_CMD(i) = 127 * int_cmd"
 Problem: The specification states that "Each value for AE_CMD is to be rounded to the

nearest integer, where rounding is defined...". The design does not show that the value for
AE_CMD is to be rounded.

 *Requirement: Fullfillment of requirements in Software Requirements document
(References: DO-178B 6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: AECLP, COMPUTE AXIAL
ENGINE VALVE SETTINGS.

 AECLP P-Spec 2.1.2, pages 3-9 209
 Limit Checking:
 1. Bottom page 5:
 The upper limit check for CONTOUR_CROSSED is incorrect.

 2. Bottom page 6:
 "if (GP_ALTITUDE(1,3,0) < ..."
 "else if (GP_ALTITUDE(1,3,0) > ..."
 Problem: GP_ALTITUDE only has one dimension, but the design uses three.

 4. The following input variables to this P-Spec are not checked at all for limit violations:
 GP_ATTITUDE, CL, GP_VELOCITY

 5. The following output variables to this P-Spec are not checked at all for limit violations:
 AE_CMD, AE_STATUS

 AECLP P-Spec 2.1.2, pages 3-9 217
 Problem: The fact that most of the limit checking is done inside nested if-then statements

seriously obscures the flow of control of the P-Spec, and makes it difficult to check if limit
checking has been done correctly.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 AECLP P-Spec 2.1.2, bottom page 8, and top page 9 210
 "int_cmd = INTERNAL_CMD(I)"
 "if (int_cmd < ..."
 "else if (int_cmd > 1.7..." etc. etc.
 Problem: The use of the local variable int_cmd seems to serve no function and introduces

added complexity.
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

C-35

Individual Inspection Preparation Log #1 (Page 24)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

ARSP, P-Spec 2.2.2

 ARSP P-Specs 2.2.1 and 2.2.3 (ARSP_EXPAND and ARSP_COMPRESS) 19
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group names to
element names and back, which is not an actual function. Why would there be a P- Spec with no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 ARSP P-Spec 2.2.2, page 1, TITLE 21
 "ARSP - Altimeter Radar Sensor Processing (P-Spec 2.1.2)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.2.2 which is the

correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.1.2 which
is probably from the Software Requirements document. There needs to be some clarification here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 ARSP P-Spec 2.2.2, page 1, bottom of page: 20
 "Shift Data in AR_ALTITUDE, AR_STATUS..."

Problem: More detail is needed.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).
*Requirement: Translatability to source code (Reference: Software Development Standards,
Software Design Standards, "The low level requirements should be directly translatable into
source code, with no further decomposition required.")

 ARSP P-Spec 2.2.2, page 2, top of page: 22
 "if (FRAME_COUNTER == even)
 AR_ALTITUDE.* = AR_ALTITUDE.[previous value]
 AR_STATUS.* = AR_STATUS.[previous value]
 K_ALT.* = K_ALT.[previous value]"
 Problem: The step before this in the design was to rotate these same variables unconditionally. These

three assignments will cause a second rotation, which is incorrect.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: ARSP, Rotate Variables

 ARSP P-Spec 2.2.2, page 2, top of page: 23
 "AR_ALTITUDE.* = AR_ALTITUDE.[previous value]
 AR_STATUS.* = AR_STATUS.[previous value]
 K_ALT.* = K_ALT.[previous value]"
 Problem: The notation ".*" is confusing here. Pages 6 and 7 of the design says this refers to

independent iteration over 3 axes, or to three independent axes, but there are no axes involved here. It
seems what is intended is rotation, but this rotation is ambiguous.
*Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B
6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: ARSP, Rotate Variables
*Requirement: Translatability to source code (Reference: Software Development Standards, Software
Design Standards, "The low level requirements should be directly translatable into source code, with
no further decomposition required.")

C-36

Individual Inspection Preparation Log #1 (Page 25)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 ARSP P-Spec 2.2.2, page 2, top of page: 121
 "AR_ALTITUDE.* = AR_ALTITUDE.[previous value]
 AR_STATUS.* = AR_STATUS.[previous value]
 K_ALT.* = K_ALT.[previous value]"

 Problem: The notation ".[previous value]" has not been explained prior to its use.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 ARSP P-Spec 2.2.2, page 2, middle of page: 134
 Limit checks for AR_ALTITUDE, AR_STATUS, and K_ALT:

 Problem 1: In each case, the notation ".*" is used; however in each case, the element is a scalar, except

for the time history. Are all elements of the time history to be checked? (Note that on the page 3 limit
check, only AR_ALTITUDE.[0] is checked (which is correct)).

 Problem 2: The rotations have been done, but the new values have not been calculated, so which history

value is being checked?

 ARSP P-Spec 2.2.2, page 3, top of page: 24
 "if (AR_FREQUENCY == 0)..."

 Problem: AR_FREQUENCY does not contain zero in its valid range.
 Problem: In the case where an echo is not received, AR_FREQUENCY is not used, but this check is

made whether or not an echo is received.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: ARSP, Determine Altitude
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 ARSP P-Spec 2.2.2, page 3, top of page: 25
 "AR_ALTITUDE.[0] = (AR_COUNTER * 3 * 10**8) / AR_FREQUENCY * 2 "

 Problem: In the overview meeting, the designer stated that the syntax for the pseudocode was

FORTRAN 77. If that is the case, then, due to the hierarchy of operations in FORTRAN, " /
AR_FREQUENCY * 2 " means that AR_FREQUENCY is part of the numerator, which is incorrect.

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: ARSP, Determine altitude if echo received

ARSP P-Spec 2.2.2, page 3, top of page: 26
 Problem: A lower limit check is made for AR_ALTITUDE(0), but the upper limit check is not made.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling, Upper

Limit Exceeded

C-37

Individual Inspection Preparation Log #1 (Page 26)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

ARSP P-Spec 2.2.2, page 3, middle of the page 15
 Starts with "Construct a table of divided differences....":

 "1. The first column of the table holds the four previous altitudes."

Problem: The design does not state the specific order for the four previous altitudes, that is, is the
entry in the first row the most recent or the oldest altitude? This order must be stated because it
will affect the result.
 *Requirement: Fullfillment of requirements in Software Requirements document (References:
DO-178B 6.3.2a and 11.10a)
**Software Requirements 2.2 with Mods 1-26 Reference: ARSP, Determine Altitude if all
previous values of AR_STATUS are healthy, by fitting a polynomial and then evaluating it.

 ARSP P-Spec 2.2.2, page 3, middle of the page 105
 Starts with "Construct a table of divided differences....":
 "2. The 2nd column holds the differences between..."
 Problem: The design does not state the order for the subtraction, i.e., is it:
 diff = element in row i - element in row i+1, or
 diff = element in row i+1 - element in row i?

 The order must be stated because it will affect the result.
*Requirement: Fullfillment of requirements in Software Requirements document (References:
DO-178B 6.3.2a and 11.10a)
**Software Requirements 2.2 with Mods 1-26 Reference: ARSP, Determine Altitude if all
previous values of AR_STATUS are healthy, by fitting a polynomial and then evaluating it.

 ARSP P-Spec 2.2.2, page 3, middle of the page 106
 Starts with "Construct a table of divided differences....":
 Question:

Is it possible to give a reference for this method? I have found several texts which present this
method, but only show the equation for the coefficients of the interpolating polynomial. The step
which is missing is going from the polynomial to the direct evaluation at the current point by
doing the summation. I have convinced myself that the resulting evaluation is exactly equivalent
to the Lagrange method, and therefore am convinced this method is correct, but would like to see
the reference text or the derivation, if possible.
*Requirement: Fullfillment of requirements in Software Requirements document (References:
DO-178B 6.3.2a and 11.10a)
**Software Requirements 2.2 with Mods 1-26 Reference: ARSP, Determine Altitude if all
previous values of AR_STATUS are healthy, by fitting a polynomial and then evaluating it.

ARSP P-Spec 2.2.2, page 4, middle of page: 27
 "AR_ALTITUDE.* = AR_ALTITUDE.[previous value]"
 Problem: The "*" notation is used here but there are no axes involved.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 ARSP P-SPEC 2.2.2 82
 The variables AR_STATUS and K_ALT are checked for limits exceeded in the case where

FRAME_COUNTER is even, but they are not checked for limits exceeded in the case where
FRAME_COUNTER is odd.

C-38

Individual Inspection Preparation Log #1 (Page 27)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

ASP, P-Spec 2.3.2

 ASP, P-Specs 2.3.1 and 2.3.3 (ASP_EXPAND and ASP_COMPRESS) 148
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group
names to element names and back, which is not an actual function. Why would there be a P- Spec with
no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 ASP P-Spec 2.3.2, page 1, TITLE 153
 "ASP - Accelerometer Sensor Processing (P-Spec 2.1.1)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.3.2 which is

the correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.1.1
which is probably from the Software Requirements document. There needs to be some clarification
here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 ASP P-Spec 2.3.2, page 2, middle of page: 149
 "Shift Data the A_ACCELERATION.* AND..."
 Problem 1: More detail is needed.
 Problem 2: ".*" notation
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Translatability to source code (Reference: Software Development Standards, Software

Design Standards, "The low level requirements should be directly translatable into source code, with
no further decomposition required.")

 ASP P-Spec 2.3.2, page 1, bottom of page: 156
 "BEGIN LOCAL TYPE DEFS
 real a_gain.*
 .
 .
 real hold
 END LOCAL TYPE DEFS"
 Question: Is there any special significance here when "real" is used, while most other P-Specs use

"real*8" or "real*4"?
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 ASP P-Spec 2.3.2, pages 1-3 157
 Problem: The "*." notation used throughout the entire P-Spec is very confusing and ambiguous.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 ASP P-Spec 2.3.2, pages 1 and 2 158
 "real at"
 "at = "ATMOSPHERIC_TEMP"
 Question: What is the purpose for this step? It doesn't seem to accomplish anything.
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

C-39

Individual Inspection Preparation Log #1 (Page 28)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

ASP P-Spec 2.3.2, page 3, top of page 159
 "accel.* = ALPHA_MATRIX.*.* * accel.*"
 Problem: This is supposed to be a matrix multiplication, but as stated here it appears to be a

scalar multiplication.
 *Requirement: Fullfillment of requirements in Software Requirements document (References:

DO-178B 6.3.2a and 11.10a)
 *Software Requirements Document, ASP, CORRECT FOR MISALIGNMENT

 ASP P-Spec 2.3.2, page 3 160
 "if [A_STATUS.*.[all 1..3]..."
 Problem: The notation ".[all 1..4] is explained but not ".[all 1..3]"
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 ASP P-Spec 2.3.2 161
 Question: This P-Spec does not provide special handling for the case where all three values

of A_ACCELERATION are exactly equal, in order to avoid roundoff and a possible negative
square root error later in the standard deviation. I don't really believe this is required, but it
was brought up in a previous meeting of the GCS team.

 ASP P-Spec 2.3.2 163
 The variable A_ACCELERATION has not been checked for limits exceeded.
 **Software Requirements 2.2 with Mods 1-26 Reference:

C-40

Individual Inspection Preparation Log #1 (Page 29)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

CP, P-Spec 2.4

 CP, P-Specs 2.4.1 and 2.4.3 (CP_EXPAND and CP_COMPRESS) 230
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group
names to element names and back, which is not an actual function. Why would there be a P- Spec with
no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 CP P-Spec 2.4.2, page 1, TITLE 231
 "CP - Communications Processing (P-Spec 2.4)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.4.2 which is

the correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.4
which is probably from the Software Requirements document. There needs to be some clarification
here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 CP P-Spec 2.4.2 232
 INPUT/OUTPUT Section:
 1. The control flows ITH_FRAME_2 and ITH_FRAME_5 which are shown on the CP DFD/CFD

diagram and which are used as inputs to this P-Spec, are missing from the INPUT/OUTPUT section.
 2. The data flows NBYTES and BYTE_PACKET both of which appear on the CP DFD/CFD as

outputs from CP to CALCULATE CRC-16, are missing from the INPUT/OUTPUT section.
 3. The data flow CHECKSUM which appears on the CP DFD/CFD as an input to CP from

CALCULATE CRC-16 is missing from the INPUT/OUTPUT section. *Requirement:Completeness
(Reference: DO-178B 11.0b)

 CP P-Spec 2.4.2 249
 See #56 in DATA DICTIONARY problems for BYTE_PACKET.

 CP P-Spec 2.4.2, page 3 259
 Definitions for init_sample_mask_sub_fr_1 and 2 and 3:
 Problem: Since the notation "B'...' " is not FORTRAN notation, it is ambiguous.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 CP P-Spec 2.4.2, bottom half of page 3 and top half of page 4 240
 This table which unfortunately spans two pages and shows the variable names vertically is in such a

format that it is virtually impossible to read and interpret, and some variables (eg. GP_ROTATION
and K_MATRIX) are missing. This table is important and should be presented in an easily
understandable format, eg, horizontally.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 CP P-Spec 2.4.2, bottom page 4 243
 "Set bits for AR_ALTITUDE...every other frame:"
 1. The variables K_ALT and K_MATRIX are missing from this list.

C-41

Individual Inspection Preparation Log #1 (Page 30)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 CP P-Spec 2.4.2, bottom page 4
 1. Bottom of page 4: 244
 "Starting with byte eight, load BYTE_PACKET alphabetically with (subframe 1 variables,

AR_ALTITUDE,...TS_STATUS)."...TDLR_VELOCITY, and TS_STATUS)."
 2. Top of page 5: "Starting with byte eight, load ...TDS_STATUS and TD_SENSED)."
 3. Middle of page 5: "Starting with byte eight...subframe 1 variables, and...TS_STATUS)."
 4. Bottom of page 5: "Starting...with subframe 1 data:...G_STATUS."

Problem: In each one of these cases for subframe 1, the design is attempting to state which
variables must be loaded into the data section of the packet.
1. There is some ambiguity in the statement of exactly which variables are to be loaded.
There is a comment above describing "Subframe one's variables", but this is merely a
comment and not a strict definition (see #250) as part of the design. In addition the
statement of which variables to load(except for #4 above) does not include the word
"and" or any synonym for "and", and thus one could be misled into thinking that the
variables listed in the load statement are the only variables to be loaded, which would be
incorrect.
2. #4 above uses the term "subframe 1 data" which in this case actually means the
variable names that follow, which lends to even more confusion.
3. It would be significantly more clear if for each case, the design would state
alphabetically in one list all the variables to be loaded for that case.

 CP P-Spec 2.4.2, bottom page 4
 1. Top of page 6: 252

"Starting with byte eight, load BYTE_PACKET alphabetically with subframe two's
data."

Problem: For subframe 2, the design is attempting to state which variables must be
loaded into the data section of the packet. There is some ambiguity in the statement of
exactly which variables are to be loaded. There is a comment above describing
"Subframe two's data", but this is merely a comment and not a strict definition (see
#250) as part of the design.

 CP P-Spec 2.4.2, bottom page 4 253
 1. Bottom of page 6:

"Starting with byte eight, load BYTE_PACKET alphabetically with (subframe three's
variables and CHUTE_RELEASED)." "Starting with byte eight, load BYTE_PACKET
alphabetically with subframe three's variables."

Problem: For subframe 3, the design is attempting to state which variables must be
loaded into the data section of the packet. There is some ambiguity in the statement of
exactly which variables are to be loaded. There is a comment above describing
"Subframe three's variables ", but this is merely a comment and not a strict definition
(see #250) as part of the design. It would be significantly more clear if for each case, the
design would state alphabetically in one list all the variables to be loaded for that case.

C-42

Individual Inspection Preparation Log #1 (Page 31)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 CP P-Spec 2.4.2, pages 4 - 6: 242
 The terms "first", "lowest", and "last" are used in many places, but are ambiguous. More specific

wording is needed. Some examples of occurrences are:
Top of page 4: "Load the MSB of COMM_SYNC_PATTERN first."
Top of page 4: "Load the lowest 8 bits..."
Bottom of page 4: "Copy sample_mask's LSB first and its MSB last.
Bottom of page 4: "their MSB first and their LSB last."
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 CP P-Spec 2.4.2, pages 4 - 6 250
 1. Middle of page 4: "* Subframe one's variables consist...values described *"
 2. Bottom of page 5 to top of page 6: "Subframe two's data...VELOCITY_ERROR"
 3. Middle of page 6: "Subframe three's variable's ...YE_INTEGRAL"

Problem: All of the above are formatted as comments but in reality apparently were actually
intended to be part of the design. See Problem # 244.

 CP P-Spec 2.4.2, middle of page 5: 251
 "Set bits 3, 5, 6, 7...28, and 29...sample_mask."
 Problem: The bits for K_ALT and K_MATRIX are missing.

 CP P-Spec 2.4.2, pages 4 - 6 255
 "if (sub_frame_counter == 1)"
 "else if (sub_frame_counter == 2)"
 "else if (sub_frame_counter == 3)"

Problem: The variable name "sub_frame_counter" is not correct.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 CP P-Spec 2.4.2, bottom page 4 through bottom of page 6 245
 "Set NBYTES with the total number of bytes stored in BYTE_PACKET."

Problem: The statement above occurs seven times. In each case, the design has not provided the
actual number of bytes, nor has it provided an algorithm for obtaining this number.
*Requirement: Translatability to source code (Reference: Software Development Standards,
Software Design Standards, "The low level requirements should be directly translatable into
source code, with no further decomposition required.")

 CP P-Spec 2.4.2, page 7, and DFD/CFD for CP. 256
 "call CALCULATE CRC-16...CHECKSUM)"
 Problem: The issue of one P-Spec calling another and how this is to be treated on the DFD/CFD at this
point is unresolved.

 CP P-Spec 2.4.2, page 7 257
 "Store lower 16 bits of CHECKSUM in BYTE_PACKET in locations NBYTES+1 AND NBYTES+2"

Problem 1: Since CHECKSUM is only 16 bits, why the statement "lower 16 bits"?
Problem 2: In what order are the two bytes to be stored?

C-43

Individual Inspection Preparation Log #1 (Page 32)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

CP P-Spec 2.4.2, page 7 258
 "Set CSTATUS to healthy"
 Problem: This step must be done at any point prior to calculating the CHECKSUM and prior to loading

C_STATUS into BYTE_PACKET and PACKET.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: CP, SET COMMUNICATOR STATUS TO

HEALTHY."

 CP P-Spec 2.4.2, top of page 7 254
 "Give error '(CP...value"
 Problem: This represents added functionality. There is no requirement for checking the

limits on SUBFRAME_COUNTER because it is in EXTERNAL data store.

 CP P-Spec 2.4.2 246
 General:
 There are several places in this P-Spec where the variables K_MATRIX and/or GP_ROTATION are

loaded into the packet, but nowhere is it stated that the constant terms (the off-diagonal elements of
K_MATRIX and the diagonal elements of GP_ROTATION) should not be loaded.

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: CP, PREPARE DATA SECTION.

 CP P-Spec 2.4.2 247
 General:
 The design has not stated that only current history variables should be loaded into the packet.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: CP, PREPARE SAMPLE MASK

 CP P-Spec 2.4.2 248
 General:
 For each particular unique mask and packet, the design needs to explain how it was derived, i.e.,

specifically which modules are executing for that case.

. CP, P-Spec 2.4.2 266
 General:
 No limit checking is done in this P-Spec, which actually is as it should be; however it might

be a good idea to modify the specification to explicitly state this.

. CALCULATE CRC-16, P-Spec 2.4.5, bottom page 1 261
 "For each of the 16 integer*4 entries in the table, store the zero-origin index (0 throught 15) into a

temporary variable."
Problem: The intent here is that all the steps beginning with "store the zero-origin index..." through
and including "When 1) through 3)...(table index)." be done for each of the 16 integer*4 entries in the
table; however what has been stated is that only the very first step be done for all 16 entries.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-44

Individual Inspection Preparation Log #1 (Page 33)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 CALCULATE CRC-16, P-Spec 2.4.5, bottom page 1 262
 Bottom of page 1: "2. "Logically shift the temporary variable...right."
 Middle of page 2: "2. Shift the crc right four bits, using a logical shift."

Problem: The terms "logically shift" and "shift...using a logical shift" should be precisely
defined. Specifically, what rule is used to fill in the bits vacated on the left?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

. CALCULATE CRC-16, P-Spec 2.4.5, middle page 2 263
 "1. Exclusive-or the first byte in BYTE_PACKET into the lower eight bits of the crc."
 Problem 1: "first" is not an accurate description of which byte is to be used on any except the
first iteration.
 Problem 2: This sentence does not state with what data the byte in BYTE_PACKET is to be
exclusive-ored.
 *Requirement: Completeness (Reference: DO-178B 11.0b)

. CALCULATE CRC-16, P-Spec 2.4.5, middle page 2 264
 "3. Using the four bits...Exclusive-or the indexed table entry with the results of the shifted
crc."
 Problem: This sentence does not state where the new exclusive-ored value is to be placed.
 *Requirement: Completeness (Reference: DO-178B 11.0b)

. CALCULATE CRC-16, P-Spec 2.4.5 265
 The design should provide either a derivation or a reference to the derivation of the

algorithms used to create the table and then to use the table to calculate the crc.

CRCP, P-Spec 2.5

 CRCP, P-Specs 2.5.1 and 2.5.3 (CRCP_EXPAND and CRCP_COMPRESS) 193
 These P-Specs do not appear to have any useful function. A P-Spec should perform some

function that converts its input elements to its outputs. These P-Specs seem to convert from
control flow group names to element names and back, which is not an actual function. Why
would there be a P- Spec with no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 CRCP P-Spec 2.5.2, page 1, TITLE 194
 "CRCP - Chute Release Control Processing(P-Spec 2.3.3)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.5.2

which is the correct P-Spec number for this design. The title, on the other hand, contains P-
Spec number 2.3.3 which is probably from the Software Requirements document. There
needs to be some clarification here.

*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-45

Individual Inspection Preparation Log #1 (Page 34)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

GSP, P-Spec 2.6.2
GSP, P-Specs 2.6.1 and 2.6.3 (GSP_EXPAND and GSP_COMPRESS) 140
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group
names to element names and back, which is not an actual function. Why would there be a P- Spec with
no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 GSP P-Spec 2.10.2, page 1, TITLE 151
 "GSP - Gyroscope Sensor Processing (P-Spec 2.1.4)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.6.2 which is the

correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.1.4 which
is probably from the Software Requirements document. There needs to be some clarification here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 GSP P-Spec 2.10.2, page 1 155
 "real*4 at
 real*4 g_gain.*
 Problem: Precision will be lost because of the data type "real*4". Requirement: ???

 GSP P-Spec 2.6.2, page 2, top of page: 145
 "Shift Data in G_ROTATION..."
 Problem: More detail is needed.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Translatability to source code (Reference: Software Development Standards, Software

Design Standards, "The low level requirements should be directly translatable into source code, with
no further decomposition required.")

 GSP, P-Spec 2.6.2 146
 page 1:
 "real*4 g_gain.*"
 "real*4 count.*"
 page 2:
 "g_gain.* = ..." through "write (6,99) "G_ROTATION.*", G_ROTATION.*"
 The ".*" notation is ambiguous.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 GSP, P-Spec 2.6.2, page 1 and page 2, middle and end of page 147
 "real*4 at"
 "at = "ATMOSPHERIC_TEMP"
 Question: What is the purpose for this step? It doesn't seem to accomplish anything.

GSP, P-Spec 2.6.2 162
 The variable G_STATUS (in GUIDANCE_STATE) has not been checked for limits exceeded.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling, Upper or

Lower Limit Exceeded

C-46

Individual Inspection Preparation Log #1 (Page 35)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

GP, P-Spec 2.7

GP, P-Specs 2.7.1 and 2.7.3 (GP_EXPAND and GP_COMPRESS) 170
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group
names to element names and back, which is not an actual function. Why would there be a P- Spec with
no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a,
 6.3.2a, and 11.0f)

 GP P-Spec 2.7.2, page 1, TITLE 171
 "GP - Guidance Processing (P-Spec 2.2)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.7.2 which is

the correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.2
which is probably from the Software Requirements document. There needs to be some clarification
here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 GP, P-Spec 2.7.2, pages 1-2, INPUT/OUTPUT section. 180
 The variable END_GCS which is an output has been omitted from this section.
 *Requirement: Completeness (Reference: DO-178B 11.0b)

 GP, P-Spec 2.7.2, page 2, bottom of page: 173
 "BEGIN LOCAL TYPE DEFS
 real interpolated_velocity
 .
 real new_gp_attitude.*.*
 END LOCAL TYPE DEFS"
 Problem: Precision may be lost if real (default real*4) is used.

 GP, P-Spec 2.7.2, page 3, middle of page: 172
 "Shift Data in the GP_VELOCITY...during this time step
 Problem: More detail is needed.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Translatability to source code (Reference: Software Development Standards, Software

Design Standards, "The low level requirements should be directly translatable into source code, with
no further decomposition required.")

 GP, P-Spec 2.7.2, Notation Problems: 174
 Pages 2 and 3: The ".*" and ".*.*" notation throughout these pages is ambiguous.
 Page 8, middle of page:
 "GP_VELOCITY.[1]..."
 Pages 9 - 11:
 "alpha.[n], beta.[n], correction_term[n]", where n = 0 or 1 or 2, are ambiguous.
 Pages 2-11:
 It is not always clear what is a comment and what is pseudocode. Also there are random "*" in some

of the comments.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-47

Individual Inspection Preparation Log #1 (Page 36)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 GP, P-Spec 2.7.2, page 3: 175
 "Calculate new attitude.*.*" through "Calculate new altitude:..."
 This design calculates completely all the attitude values, then calculates completely all the

velocity values, and then calculates completely all the altitude values. The specification says
to calculate all three (attitude, velocity, and altitude) simultaneously.

 *Requirement: Fullfillment of requirements in Software Requirements document (References:
DO-178B 6.3.2a and 11.10a)

 *Software Requirements Document Reference: APPENDIX C, first paragraph, "If the Runge-
Kutte method is used, it is required that the three equations be solved as a set of simultaneous
equations.

 GP, P-Spec 2.7.2, pages 3 and 9: 176
 Problem: The set up of the GP_ROTATION MATRIX is not handled properly.
 The only information given regarding the GP_ROTATION matrix is given at the top of page 9.

This is neither a correct nor a sufficient explanation for setting up or for the use of the matrix.
The specification states that one should "...use a temporary variable during calculation to hold
the time histores of GP_ROTATION or to use elements directly from G_ROTATION;
however, GP_ROTATION does describe...should contain the correct values for the present
time step." All of this statement is being violated by this design. In addition, the correct setup
must be done during or before the Runge-Kutte method is executed (on page 3)

 *Requirement: Fullfillment of requirements in Software Requirements document (References:
DO-178B 6.3.2a and 11.10a)

 *Software Requirements Document Reference: GP, SET UP THE GP_ROTATION MATRIX.

 GP, P-Spec 2.7.2 181
 Limit Checking, pages 4 - 8

 1. The lower limit used for GP_ALTITUDE is incorrect.
 2. The lower limit used for FRAME_ENGINES_IGNITED is incorrect.
 3. There is no limit check for the upper bound on AE_TEMP.
 4. The following input/output variables to this P-Spec are not checked at all for limit

violations:
 GP_ATTITUDE, A_ACCELERATION, K_ALT, AE_SWITCH, AR_ALTITUDE,
 CONTOUR_CROSSESD, G_ROTATION, K_MATRIX, RE_SWITCH,
 VELOCITY_ERROR, TE_INTEGRAL, GP_ROTATION
5. The following variables are only checked for one case, namely the case where

GP_PHASE = 1, and GP_ALTITUDE <= ENGINES_ON_ALTITUDE:
FRAME_ENGINES_IGNITED, AE_TEMP, BHUTE_RELEASED, TDS_STATUS,
GP_VELOCITY, TD_SENSED

*Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 GP, P-Spec 2.7.2, page 4, bottom 178
 "if (GP_PHASE == one and GP_ALTITUDE[tnow] <= ENGINES_ON_ALTITUDE"

The term "tnow" has not been defined or explained.
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-48

Individual Inspection Preparation Log #1 (Page 37)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

* GP, P-Spec 2.7.2, page 4, bottom through page 7,top 179
 Algorithm for determining GP_PHASE, AE_SWITCH, RE_SWITCH, FRAME_ENGINES_IGNITED,

and END_GCS:
 Begins "if (GP_PHASE==one", ends with "end if"
 Note on Notation: Let SQT represent sqrt (2 x GRAVITY X GP_ALTITUDE) + x component of

GP_VELOCITY

 Problems:

1. "hold = (2*GRAVITY*GP_ALTITUDE+GP_VELOCITY.[1])" "result =
sqrt(2*GRAVITY*GP_ALTITUDE+GP_VELOCITY.[1])"

 Problem: Both of these statements incorrectly include the term "+GP_VELOCITY.[1]"
2. The case where GP_PHASE = 2 and AE_TEMP = hot and TDS_STATUS = healthy should not be

setting GP_PHASE to 5. (line 3)
3. The case GP_PHASE = 3 and GP_ALTITUDE <= DROP_HEIGHT and TDS_STATUS is healthy

should not be setting GP_PHASE to 4 or turning off engines without checking SQT and
TD_SENSED. (line 4)

4. The two places under GP_PHASE == three that have the conditional: "else if (GP_ALTITUDE
== DROP_HEIGHT and TDS_STATUS = failed"

 Problem 1: There is no reason to make of special case for GP_ALTITUDE exactly equal to
DROP_HEIGHT since the specification doesn't make it a special case.

 Problem 2: Control will never reach the second conditional, and so it will never be executed. There
is a contradiction in that these are the same conditionals yet call for two different types of
processing to take place.

 Problem 3: It is not clear if control can ever reach the first conditional because it is actually a subset
of the conditional that is executed before it, namely:

 "else if (GP_ALTITUDE <= DROP_HEIGHT and TDS_STATUS == failed"
 Problem 4: Under the second conditional is another contradiction. It contains the conditional:
 "if (result <= MAX_NORMAL_VELOCITY and TDS_STATUS == healthy"
 Control would never have reached here unless TDS_STATUS were failed, so this conditional can

never be true.
5. The case where GP_PHASE = 3 and GP_ALTITUDE = DROP_HEIGHT, is not turning the

engines off or setting END_GCS to TRUE. In fact, this case has already been treated correctly for
GP_ALTITUDE <= DROP_HEIGHT and did not need to be handled again. (line 7)

6. The case where GP_PHASE=4 and TDS_STATUS = healthy and TD_SENSED is not sensed,
should not be setting END_GCS to TRUE. (line 12)

7. At the top of page 7, " else (GP_PHASE == ?)" is ambiguous. (line 13)
8. Middle of page 6:
 "GP_STATUS = five"
 GP_STATUS is not a defined variable. (line 7)
9. The terms GP_ALTITUDE and GP_VELOCITY are used many time throughout these pages

without any subscripts. This is ambiguous.
10. Middle of page 6:
 "result = ..GP_VELOCITY.[1]"
 This notation is not clear.,
11, "and TDS_STATUS = failed"
 All other places use "==". Is this a typo, or does it have a different meaning.

C-49

Individual Inspection Preparation Log #1 (Page 38)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 Conclusions: This design has attempted to include the processing for Tables 5.9 and 5.10 into one large

multi-page nested if-then-elseif statement. The merging of the two tables, and the many errors and
inconsistencies make the design very confusing and very difficult to understand. The approach is so
complicated, and there are enough errors in the control-handling logic, that it is impossible at this stage
of the review to be certain that all the cases have been handled correctly. In fact, it seems that it would
not be feasible to modify/maintain this particular design with an acceptable degree of accuracy.

 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 GP, P-Spec 2.7.2, middle page 7 182
 "This process would normally be done only once at initialization time;"

Question: what does this mean?
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 GP, P-Spec 2.7.2, middle page 7 184
 "This process would normally be done...
 Search the CONTOUR_VELOCITY array for a zero value... index value...while accessing the zero
value."

 Problem 1: "Search the CONTOUR_VELOCITY array for a zero value..."
 Problem: The variable name here is incorrect.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 Problem 2: The comments do not state explicitly of what we are attempting to find the size.
 Problem 3: It is not impossible to determine the algorithm implied here,
 but the language used is imprecise and could lead to ambiguity. It is not
 an algorithmic solution.
 Problem 4: "If off end of array, set size...if zero value is found, set size..."

Problem: There is no local variable named "size". In addition, there is no place in the
pseudocode where "size" is explicitly used.

*Requirement: Nonambiguity (Reference: DO-178B 11.0a).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a,
 6.3.2a, and 11.0f)

 GP, P-Spec 2.7.2, middle page 7 186
 "if (GP_ALTITUDE <= ENGINES_ON_ALTITUDE)"

Problem: According to the specification, the determination of the VELOCITY_ERROR is
unconditional: therefore, this conditional is incorrect and introduces additional functionality.
*Requirement: Accuracy (Reference: DO-178B 6.3.2b).
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 GP, P-Spec 2.7.2, middle page 7 187
 "Do a binary search in the...spurious results in his case."
 Problem: The procedures for doing a binary search, interpolation and
 extrapolation are not explained in sufficient detail to represent an
 actual algorithmic solution.
 *Requirement: Translatability to source code (Reference: Software
 Development Standards, Software Design Standards, "The low level requirements should be
 directly translatable into source code, with no further decomposition required.")

C-50

Individual Inspection Preparation Log #1 (Page 39)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

GP, P-Spec 2.7.2, bottom page 7 188
 "hold = ((GP_VELOCITY.x) ^ 2 + ... - interpolated velocity"
 Problem 1: The specification states to use the x component of GP_VELOCITY. The design is using the

magnitude of GP_VELOCITY.
 Problem 2: The design is checking for an exceptional condition on a term which is not really the

argument of the square root. (this problem may go away when problem 1 is fixed.)

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 *Software Requirements Reference: GP, DETERMINE VELOCITY ERROR

 GP, P-Spec 2.7.2, top page 8 189
 "if GP_ALTITUDE <= ENGINES_ON_ALTITUDE
 and
 VELOCITY_ERROR > 0 ..."

 Problem: The relational operator ">" in the phrase VELOCITY_ERROR > 0" is incorrect.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 *Software Requirements Reference: GP, DETERMINE IF CONTOUR HAS BEEN CROSSED

 GP, P-Spec 2.7.2, middle page 8 192
 "if (CL = first and optimal_velocity == ..."
 Problem: The term "optimal_velocity" is not defined nor explained in this design and is therefore

ambiguous.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 GP, P-Spec 2.7.2, top page 9 190
 "...the definitions of these terms given in section 2.7 GP..."
 Problem: GP is no longer section 2.7 in the specification.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 GP, P-Spec 2.7.2, bottom of page 8 through end of page 11 191
 "NOTES:..."
 Problem 2: The equations given for the derivatives do not provide sufficient detail to be translatable

into code. TheIndividual matrix equation for the derivative of each of attitude, velocity, and altitude,
should be explicity given. In each equation, it should be made completely clear which time history
value or calculated value should be used for any of the three variables GP_ATTITUDE,
GP_VELOCITY, and/or GP_ALTITUDE, as well as which time history values should be used for the
sensor variables (G_ROTATION, A_ACCELERATION, K_MATRIX, TDLR_VELOCITY, K_ALT,
and/or AR_ALTITUDE) which appear in that particular equation. The derivative equations being
referenced here are:

 d/dt(Vbl.[2])
 d/dt(Vbl.[1]est_A)
 d/dt(Vbl.[1]est_B)
 d/dt(Vbl.[0]est_C)
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-51

Individual Inspection Preparation Log #1 (Page 40)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

RECLP, P-Spec 2.8

 RECLP, P-Specs 2.8.1 and 2.8.3 (RECLP_EXPAND and RECLP_COMPRESS) 226
 These P-Specs do not appear to have any useful function. A P-Spec should perform some

function that converts its input elements to its outputs. These P-Specs seem to convert from
control flow group names to element names and back, which is not an actual function. Why
would there be a P- Spec with no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a,
 6.3.2a, and 11.0f)

 RECLP P-Spec 2.8.2, page 1, TITLE 227
 "RECLP - Roll Engine Contrl Law Processing (P-Spec 2.3.2)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.8.2

which is the correct P-Spec number for this design. The title, on the other hand, contains P-
Spec number 2.3.2 which is probably from the Software Requirements document. There
needs to be some clarification here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 RECLP P-Spec 2.8.2 220
 Middle of page 2: "if (G_ROTATION.x < -1"
 Bottom of page 2: "x_roll_rate = G_ROTATION.x"
 Problem: The variable G_ROTATION is a history variable, but no history subscript is

indicated here.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 RECLP P-Spec 2.8.2, bottom of page 2 224
 "if (THETA < PI)"
 "else if (THETA > PI)"
 Problem: No definition has been given for "PI".
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 RECLP P-Spec 2.8.2 225
 Limit Checking
 1. Bottom page 2:
 The lower and upper limit checks for THETA taken together imply that THETA must be

exactly equal to some number PI, which is not correct according to the Data Dictionary of the
specification.

 2. Limit checks are missing for the following output variables: RE_CMD, RE_STATUS, THETA
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 *Requirement: Completeness (Reference: DO-178B 11.0b)

 RECLP P-Spec 2.8.2, bottom of page 2 221
 "* Determine which region of the graph (Figure 5.10 pg 60 of spec..."
 Problem: Neither the Figure Number nor the page number is correct.

*Requirement: Accuracy (Reference: DO-178B 6.3.2b).

C-52

Individual Inspection Preparation Log #1 (Page 41)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

RECLP P-Spec 2.8.2, bottom of page 2 and top of page 3 222
 "Use "if" statments constructed using...command should be used."
 Problem: This description of how to find the correct region is inadequate and does not

provide enough detail to be an algorithmic solution which can be translated to code. There is
nothing in this description to even indicate which variables (other than the
RUN_PARAMETER variables) are involved in finding the region nor how they are to be
used.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Translatability to source code (Reference: Software
 Development Standards, Software Design Standards, "The low level requirements should be

directly translatable into source code, with no further decomposition required.")

 RECLP P-Spec 2.8.2, page 3 223
 Problem: The term "lowest bit(s)" is used in three different places. It needs a precise
definition.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 RECLP P-Spec 2.8.2, middle of page 3 219
 "Give error message."

The variable RE_SWITCH has already been checked and handled properly for values
outside its acceptable range. This error message represents added functionality which
cannot be traced to the specification.
*Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and
11.0f)

C-53

Individual Inspection Preparation Log #1 (Page 42)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TDLRSP, P-Spec 2.9.2

 TDLRSP DFD 28
 TDLR_STATUS appears as an input to P-Spec 2.9.2. It is not an input to TDLRSP.(also see #94) (SEE

FORMAL MODIFICATION 2.2-16.2)
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 TDLRSP P-Specs 2.9.1 and 2.9.3(TDLRSP_EXPAND and TDLRSP_COMPRESS) 29
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group
names to element names and back, which is not an actual function. Why would there be a P- Spec with
no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 TDLRSP P-Spec 2.9.2, page 1, TITLE 107
 "TDLRSP - Touch Down Lander Radar Sensor Processing (P-Spec 2.1.3)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.9.2 which is

the correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.1.3
which is probably from the Software Requirements document. There needs to be some clarification
here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TDLRSP P-Spec 2.9.2, page 2, TOP of page: 30
 "Shift the data in the FIFOS: TDLR_VELOCITY.#..."
 Problem: More detail is needed.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: TDLRSP, Rotate Variables
 *Requirement: Translatability to source code (Reference: Software Development Standards, Software

Design Standards, "The low level requirements should be directly translatable into source code, with
no further decomposition required.")

 TDLRSP P-Spec 2.9.2, page 2 128
 "if (TDLR_VELOCITY.x < -100)"
 "else if (TDLR_VELOCITY.x > 100)"
 Problem 1: It is not clear exactly what the notation ".x" means (see #122). If it refers to just the first

element, why is an additional check being made for all elements at the bottom of page 4?
 Problem 2: It is not clear which elements in the time history are being checked. If the most recent are

implied, then there is a problem because the rotation has already taken place but the new element has
not yet been calculated..

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling, Upper or
Lower Limit Exceeded

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-54

Individual Inspection Preparation Log #1 (Page 43)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TDLRSP P-Spec 2.9.2, page 2 129
 "if (K_MATRIX.*<0)"
 "else if (K_MATIX.* > 1)"
 Problem 1: K_MATRIX has three dimensions. It's not clear here which dimensions are being checked.
 Problem 2: It is not clear which elements in the time history are being checked. If the most recent are

implied, then there is a problem because the rotation has already taken place but the new elements have
not yet been calculated.

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling, Upper or
Lower Limit Exceeded

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TDLRSP P-Spec 2.9.2, page 2, MIDDLE of page: 31
 "if (FRAME_COUNTER == even)
 set TDLR_VELOCITY.* to previous value of TDLR_VELOCITY.*
 set K_MATRIX.* to previous value of K_MATRIX.*
 exit..."
 Problem: The step before this in the design was to rotate these same variables unconditionally. These

assignments will cause a second rotation, which is incorrect.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: TDLRSP, PERFORM ALTERNATE

PROCESSING IF THIS IS AN EVEN-NUMBERED FRAME

 TDLRSP P-Spec 2.9.2, page 2 130
 "if (TDLR_STATE<0)"
 "else if (TDLR_STATE > 1)"
 Problem: It is not clear which element in the time history is being checked. If the most recent is

implied, then there is a problem because the rotation has already taken place but the new elements have
not yet been calculated.

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling, Upper or
Lower Limit Exceeded

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TDLRSP P-Spec 2.9.2, page 3 131
 "if (FRAME_BEAM_UNLOCKED<0)"
 "else if (TDLR_STATE > 1)"
 Problem 1: It is not clear which element in the time history is being checked.
 Problem 2: The variable FRAME_BEAM_UNLOCKED should also be set later on this page (see #34);

therefore, this is either the incorrect place to check for limits or else they must also be checked
elsewhere in addition.

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)

C-55

Individual Inspection Preparation Log #1 (Page 44)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

**Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling,

Upper or Lower Limit Exceeded
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TDLRSP P-Spec 2.9.2, page 3, MIDDLE of page: 33
 "Test to determine if a beam has locked again:"

 "The beam can now be used *
 TDLR_STATE.# = locked
 FRAME_BEAM_UNLOCKED.# = 0"
 Problem: In the Software Requirements document, Table 5.11, line 2, FRAME_BEAM_UNLOCKED

is not supposed to be changed, but the design does change it in this case.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: TDLRSP, DETERMINE RADAR BEAM

STATES

 TDLRSP P-Spec 2.9.2, page 3, MIDDLE of page: 34
 "Test to determine if a beam has locked again:"
 "The beam can now be used *
 ...
 else
 *Beam is unlocked and remains unlocked *
 endif
 Problem: In the Software Requirements document, Table 5.11, line 3, FRAME_BEAM_UNLOCKED

should be set to the value of FRAME_COUNTER, but in this case (between the "else" and the "endif")
it is not being changed.

 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-
178B 6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: TDLRSP, DETERMINE RADAR BEAM STATES

 TDLRSP P-Spec 2.9.2, page 3, most of page: 136
 The design checks for conditions in line 1 of Table 5.11 (in specification) and then even if it has found

and processed the conditions in line 1, it goes on to check and process for conditions for lines 2 and 3.
The intention in the specification was to only process one line of the table. It is possible that line 1
would be processed, setting TDLR_STATE to locked, and then line 3 could also be processed. This
would not cause a problem in this case, but this was not the intent of the specification. Perhaps a
modification to the specification is required.

TDLRSP P-Spec 2.9.2 32
 Page 3, bottom of page:
 "Average(resolve)...using the table named AVERAGING DOPPLER RADAR BEAMS IN LOCK..."
 Page 4, middle of page, under CLASS 2, CLASS 3, and CLASS 4:
 In each case it states to calculate average_velocity, but does not give the particular equations. One can

deduce by going back to the comment quoted above from page 3, that one is to use the equations in the
table, but the comment is not specific enough and has an incorrect table name and does not give the
table number. In any case, neither the table reference nor the actual equation is given in the design
body on page 4.

C-56

Individual Inspection Preparation Log #1 (Page 45)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 *Requirement: Fullfillment of requirements in Software Requirements document (References:

DO-178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: TDLRSP, PROCESS THE BEAM

VELOCITIES
 *Requirement: Translatability to source code (Reference: Software Development Standards,

Software Design Standards, "The low level requirements should be directly translatable into
source code, with no further decomposition required.")

 TDLRSP P-Spec 2.9.2, page 4 132
 "if (TDLR_VELOCITY.* < -100)"
 "else if (TDLR_VELOCITY.* > 100)"
 Problem 1: It is not clear which elements in the time history are being checked.
 Problem 2: Why is one element being checked on page 2 and all elements being checked on

page 4?
 *Requirement: Fullfillment of requirements in Software Requirements document (References:

DO-178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling,

Upper or Lower Limit Exceeded
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TDLRSP P-Spec 2.9.2 133
 TDLR_STATUS has not been checked for limits exceeded.
 *Requirement: Fullfillment of requirements in Software Requirements document (References:

DO-178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling,

Upper or Lower Limit Exceeded
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TDLRSP P-SPEC 2.9.2, pages 3 and 4 126
 The notation ".#"

Problem 1: Because of this notation, it is not clear where the control loops must be, or, if
in fact it makes any difference where the loops are.

Problem 2: The Averaging of the beams beginning at the bottom of page 3 and
continuing to page 4 cannot be done until all the steps through "Calculate all four
RADAR beam velocities" has been completed (for all four beams). Because of the
confusion due to ".#" over where the loops must be, the above fact stated in the previous
sentence may not be explicitly clear.

C-57

Individual Inspection Preparation Log #1 (Page 46)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TDSP, P-Spec 2.10.2

 TDSP, P-Specs 2.10.1 and 2.10.3 (TDSP_EXPAND and TDSP_COMPRESS) 140
 These P-Specs do not appear to have any useful function. A P-Spec should perform some

function that converts its input elements to its outputs. These P-Specs seem to convert from
control flow group names to element names and back, which is not an actual function. Why
would there be a P- Spec with no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 TDSP P-Spec 2.10.2, page 1, TITLE 150
 "TDSP - Touch Down Sensor Processing (P-Spec 2.1.6)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.10.2

which is the correct P-Spec number for this design. The title, on the other hand, contains P-
Spec number 2.1.6 which is probably from the Software Requirements document. There
needs to be some clarification here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TDSP, P-Spec 2.10.2, page 2, middle of page 141
 "else
 Give message "TDS_STATUS has bad value..."

 Problem: The only way control could get here is for TDS_STATUS to have a value outside

of its range. This problem would have already been handled by the exception handling on
page 1, so this pseudocode represents additional functionality over what the specification has
required.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 TDSP, P-Spec 2.10.2, page 1 and page 2 142
 Question: Why is the TDS_STATUS limit check made before the variable is set, while the

TD_SENSED limit check is made after the variable is set.
 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

C-58

Individual Inspection Preparation Log #1 (Page 47)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TSP, P-Spec 2.11.2

 TSP 2.11 DFD 6
 TS_STATUS shows as input to TSP, but it is not an input to TSP. It also incorrectly appears as

"TEMP_GS_IN" (see #93). (See Formal Modification 2.2-17.2).
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 TSP P_Spec 2.11.1 and 2.11.3 (Data Expand and Data Compress) 7
 These P-Specs do not appear to have any useful function. A P-Spec should perform some function that

converts its input elements to its outputs. These P-Specs seem to convert from control flow group
names to element names and back, which is not an actual function. Why would there be a P- Spec with
no body?

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 TSP P-Spec 2.11.2, page 1, TITLE 108
 "TSP - Temperature Sensor Processing (P-Spec 2.1.5)"
 Problem: There is some confusion about the P-Spec number. At the top of the page is 2.11.2 which is

the correct P-Spec number for this design. The title, on the other hand, contains P-Spec number 2.1.5
which is probably from the Software Requirements document. There needs to be some clarification
here.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 TSP P-Spec 2.11.2, page 4 8
 "Determine which expression to use to calculate THERMOCOUPLE temperature:"

 "if (THERMO_TEMP >= lo_meas_limit_tc
 and
 THERMO_TEMP < M3..." ...
 .
 .
 "ELSE IF (THERMO_TEMP > m4
 AND
 THERMO_TEMP <= hi_meas_limit_tc)"

Problem: In the first conditional, the first relational expression is unnecessary, and in the second
conditional the second relational expression is unnecessary. It is conceivable that these expressions
could cause a problem. It has previously been determined that the thermocouple sensor should be
used, and therefore we should not exit from this section without setting ATMOSPHERIC_TEMP to
some value base on THERMO_TEMP. Since there may be a roundoff in the calculations of
lo_meas_limit_tc and/or hi_meas_limit_tc, it is possible these unnecessary expressions might cause the
"if" to yield "false" where it might otherwise yield "true", and the result would be an undefined value
for ATMOSPHERIC_TEMP.

*Requirement: Fullfillment of requirements in Software Requirements document (References: DO-178B
6.3.2a and 11.10a)

 **Software Requirements 2.2 with Mods 1-26 Reference: TSP, Calculate the Thermocouple
Temperature, "Use the value of THERMO_TEMP to determine whether the temperature lies in the
thermocouple linear or the upper parabolic or the lower parabolic region."

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

C-59

Individual Inspection Preparation Log #1 (Page 48)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TSP P-Spec 2.11.2 135
 The variable TS_STATUS has not been checked for upper/lower limit exceeded.
 *Requirement: Fullfillment of requirements in Software Requirements document (References: DO-

178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling, Upper or

Lower Limit Exceeded

* TSP P-Spec 2.11.2, page 1 154
 "BEGIN LOCAL TYPE DEFS" real*4 ell . . real*4 hold
 END LOCAL TYPE DEFS"

MISCELLANEOUS P-Specs (not the eleven functional units)

 GENERATE_SEQUENCE_PARMS (store) and GENERATE_SEQUENCE_PARMS P-Spec

2.18 118
 The fact that GENERATE_SEQUENCE_PARMS is used as the name for a data store and as the name

for a process is confusing. Since the store is "not- defined", and since it doesn't appear as a store on
any of the DFD/CFD diagrams, it's not clear what is its function, if any. (see #60)

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 COPY CONTROL DATA, P-SPEC 2.18, page 1 (see #98 also) 100
 "Copy INIT_SUBFRAME_COUNTER to SUBFRAME_COUNTER"
 There are several problems with this statement.

 Problem: It seems there is no reason to copy SUBFRAME_COUNTER to anywhere since it already

exists in the global data store EXTERNAL. Why is this being done, and what is the purpose for the
store "SUBFRAME_COUNTER_STORE

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 Problem: INIT_SUBFRAME_COUNTER is a control flow, while SUBFRAME_COUNTER is a data

flow.
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Problem: The use of the name "SUBFRAME_COUNTER" is ambiguous because it appears in the

stores EXTERNAL_OLD, SUBFRAME_COUNTER_STORE, and in the global store EXTERNAL
(defined in the Software Requirements document but missing from the store EXTERNAL in this
design document). One can look at the RUN_GCS DFD to see that the intention is to store into
SUBFRAME_COUNTER_STORE, but the P-Spec itself should be self-contained.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 Potential Problem: If it is intended that SUBFRAME_COUNTER in the store EXTERNAL is to be

changed, then this would be a violation of the requirements because in the Software Requirements
document, SUBFRAME_COUNTER is not an output for any functional unit.

 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a,

C-60

Individual Inspection Preparation Log #1 (Page 49)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 Miscellaneous P-Specs with no body 138
 INIT EXTERNAL STORE (P-SPEC 2.12)
 STORE RAW SENSOR DATA (P-SPEC 2.13)
 INIT RUN PARM STORE (P-Spec 2.14)
 INIT GUIDANCE STATE STORE (P-Spec 2.15)
 SEND CHUTE RELEASE COMMAND (P-Spec 2.16)
 SEND ENGINE DATA (P-Spec 2.17)

 It is not immediately clear what is the function of these P-Specs.
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

* Miscellaneous P-Specs with no body 196
 The design states that "This P-Spec exists because Teamwork cannot send data flows off page

(so an intervening bubble is required)" ; however, this seems to be contradicted by Figures
2.4 and 2.5 in the Specification. Could this be looked into?

 *Requirement: Completeness (Reference: DO-178B 11.0b)

Miscellaneous

 Invocation of Rendezvous 119
 There is nothing in the design which states exactly how and when to invoke the rendezvous

routine.
 *Requirement: Fullfillment of requirements in specification (References: DO-178B 6.3.2a

and 11.10a; Software Requirements 2.2 with Mods 1-26:
 *Requirement: Reference: Software Requirements 2.2 with Mods 1-26, Appendix B,

"Process", "The calling convention for this GCS_SIM provided support utility is as follows:
9 GCS_SIM_RENDEZVOUS (requires no parameters) "

 Teamwork Balancing 137
 Question: Has the Teamwork balancing been done? Should this be included in the design?

 General 213
 There are many places in the design where the name of a variable which contains a time

history is used with no history subscript. An example is GP, P-Spec 2.7.2 where
GP_ALTITUDE and GP_VELOCITY are used with no history subscripts.The design should
find some method for removing this type of ambiguity.

 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).

C-61

Individual Inspection Preparation Log #1 (Page 50)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

Typographic Errors, Style, and Grammar

 Introduction
 2.5 Revision History, second statement. Grammar: It's not considered a good practice to use

the pronoun "I" in a technical document.

 Introduction
 2.4 Transition History, second statement. Clarity: This is not a correct grammatical sentence

as it has no subject.

 P-Spec 2.11.2
 "SERSOR'S" should be "SENSOR'S"

 P-Spec 2.2.2
 "reciept" should be "receipt"

 P-Spec 2.9.2
 "TDLR_VELOCITYV" should be "TDLR_VELOCITY"

 P-Spec 2.4.5, bottom of page 1
 "accesed" should be "accessed"

 Data Dictionary
 A_COUNTER: "accelerating" should be "accelerations"

 Data Dictionary
 A_SCALE: "RUN_PAREMETERS" should be "RUN_PARAMETERS"

 Data Dictionary
 ALPHA_MATRIX: "rea*8" should be "real*8"

 DATA DICTIONARY GUIDE_SO_IN "ATMOSPHEREIC_TEMP" should be

"ATMOSPHERIC_TEMP"

 DATA DICTIONARY TDLR_ANGLES "y;" should be "gamma;"

C-62

Individual Inspection Preparation Log #1 (Page 51)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

Suggestions for the Future

 It would be helpful if the entire design document were numbered sequentially from beginning
to end.
 There doesn't seem to be an attempt on part of the designer to simplify equations. (see TSP
equations for parabola. see eqn for note 1 m3 - m_lo = m3 - [m3...]). Perhaps we could request
this.

 Constants used for limit checking make modification difficult and error- prone.

 In the pseudocode, nested if's spanning many pages makes the logic extremely difficult to
follow and may lead to an error-prone inspection. As an example, see AECLP, P-Spec 2.1.2,
where one nested if begins on page 3, nests to a depth of four, and does not terminate until page
7. The suggestion is that the standards require that any time an if statement spans more than one
page, that the if, else, elseif, and endif (or whatever syntax is used) be meticulously labeled in all
places so that the scope of each "if" is immediately obvious.

 It would be very helpful if the designer, when using an algorithm that is not in the specification,
gave either a text reference or the derivation of the algorithm and well as an explanation as to
how it is being applied to GCS.

 The SA charts and tables and entries in the Data Dictionary seem overly complicated and
difficult to follow. Is there any way we can ask for simplicity of design? We might want to
simplify the structured analysis diagrams in the specification (minimize the use of control flows).

 It would be helpful if the titles for diagrams could say what that diagram is, eg, DFD/CFD, PAT
etc

 Is there some way we can add something to the standards to keep designers/coders from using
code that is completely superfluous?

 Can we add something to the standards to force the designer to be explicit about what is a
comment and what is actual pseudocode/structured English?

 Can we add something to the standards to force the designer to use very specific non-
ambiguous language?

 Require that a Teamwork Balance Report (with no errors) be included as part of the design.

C-63

Individual Inspection Preparation Log #1 (Page 52)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

QUESTIONABLE ITEMS

 Introduction 48
 4. Notation in Pluto Version of GCS Design Page 6, middle paragraph "Another syntax..."

There is no statement about whether the array under discussion for the current subframe has
been rotated or is about to be rotated
*Requirement: Nonambiguity (Reference: DO-178B 11.0a).

 DATA DICTIONARY
 INIT_RP_OUT 88
 The intention here seems to be to duplicate the data flow names in RUN_PARAMETERS

data store. If this is the case, then MAX_NORMAL_VELOCITY has been omitted.
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).

 DATA DICTIONARY
 F 59

This has one value, "FALSE". It seems to be a misuse of the Data Dictionary to put a
constant into it. It is supposed to be used for data flows, control flows and/or data conditions.
*Requirement: Follow a particular design method (References: Software Development
Standards,"Software Design Standards", "Design Methods, Rules, and Tools", "...using the
structured analysis ...by Hatley and Pirbhai or...", and "Design Documentation", "...document
should follow...GCS specification document or the Hatley book...")

 DATA DICTIONARY
 INIT_RENDEZVOUS_CNTL 63

"RUNNING"
Question: This element is a constant. Why is it in the data dictionary?
*Requirement: Follow a particular design method (References: Software Development
Standards,"Software Design Standards", "Design Methods, Rules, and Tools", "...using
the structured analysis ...by Hatley and Pirbhai or...", and "Design Documentation",
"...document should follow...GCS specification or the Hatley book...")

 DATA DICTIONARY
 INIT_SUBFRAME_COUNTER 64

"1"
Question: This element is a constant. Why is it in the data dictionary?
*Requirement: Follow a particular design method (References: Software Development
Standards,"Software Design Standards", "Design Methods, Rules, and Tools", "...using
the structured analysis ...by Hatley and Pirbhai or...", and "Design Documentation",
"...document should follow...GCS specification or the Hatley book...")

C-64

Individual Inspection Preparation Log #1 (Page 53)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

NOT USED

 DATA DICTIONARY 126
 TD_LND_RAD_GS_IN TDLR_STATUS is not an input from GUIDANCE_STATE store to
TDLRSP.

 STORE RAW SENSOR DATA, P-Spec 2.13 82
 This P-Spec does not perform any function traceable to the Software Requirements document.
(see #81)
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 INIT RUN PARM STORE, P-Spec 2.14 85
 This P-Spec does not perform any function traceable to the Software Requirements document.
(SEE #84)
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 INIT GUIDANCE STATE STORE, P-Spec 2.15 87
 This P-Spec does not perform any function traceable to the Software Requirements document.
(SEE #86)
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)

 DATA DICTIONARY, pages 18 and 19 113
 The element EXTERNAL is defined as a store but yet is shown as a group flow name. This is
not consistent.
 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)

 DATA DICTIONARY, pages 18 and 19 114
 The element EXTERNAL is shown as a group flow name; however, some of the primitive

elements in the group (e.g. AE_CMD, FRAME_COUNTER) are repeated several times in the
list).

 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a,

 DATA DICTIONARY,page 43 18

 Introduction
 CALLING STRUCTURE (reword???) 110

The calling structure, especially in terms of rendezvous, is not shown directly.

 Introduction 38
 1.1 Top-Level Description, first paragraph

The wording "touch-down switch" is not an accurate description.
* Requirement: Accuracy (DO-178B 6.3.2 b)

C-65

Individual Inspection Preparation Log #1 (Page 54)
Name:________ Bernice Becher____ Date Log Submitted: October 15, 1993
Implementation:___Pluto ___________ Date of Inspection October 15, 1993
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

1
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
2
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
3
 *Requirement: Follow a particular design method (References: Software Development

Standards,"Software Design Standards", "Design Methods, Rules, and Tools", "...using the
structured analysis ...by Hatley and Pirbhai or...", and "Design Documentation", "...document
should follow...GCS specification or the Hatley book...")

4
 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)
5
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a, 6.3.2a, and 11.0f)
6
 *Requirement: Translatability to source code (Reference: Software Development Standards,

Software Design Standards, "The low level requirements should be directly translatable into
source code, with no further decomposition required.")

8
 *Requirement: Completeness (Reference: DO-178B 11.0b)
10
 *Requirement: Fullfillment of requirements in Software Requirements document (References:

DO-178B 6.3.2a and 11.10a)
11
 *Requirement: Fullfillment of requirements in Software Requirements document (References:

DO-178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction, Exception Handling,

Upper or Lower Limit Exceeded
===

Added since last design review of 10/15/93

 Two typos were by mistake in the data dictionary. They were moved to the
 typos.

 A suggestion was added to require that the design include a balancing report.

C-66

Review Log from Verification Analyst

Individual (Design) Inspection Log 10/15/93 (Final) Page 1 of _7__
Rob Angellatta
Pluto

General Deficiencies

 The overall quality of the Pluto design is disappointing. Listed below are several general comments supporting
this opinion. Preparing a problem report for the listed items is probably unnecessary, however some feedback on the
“sloppiness" of the design may prove beneficial.

 o The syntax for referencing array data as described on page 6 of the "Design Description Document - Pluto" is

confusing and inconsistently followed. For example, as found on page 6, "The '.*' in equations following a
variable name or comment indicates independent iteration over each of the 3 lander body axis directions: x, y,
& z." P-Spec 2.2.2 ARSP contains the following operation: "AR_ALTITUDE.* = ..." The data element
AR_ALTITUDE is an array and represents history data, not vehicle axial data. Thus, the reference is
inconsistent with the defined usage. Additionally, also in P-Spec 2.2.2 ARSP, the current value of the vehicle
altitude is referenced in one location as AR_ALTITUDE.[0], and in another location referenced as
AR_ALTITUDE.*, providing another example of inconstant (and incorrect) use of the defined syntax.

 o There are several instances where the design should contain a brief description of the designer's intentions.

For instance, in P-Spec 2.11.2 TSP several operations are presented for computing the temperature from the
solid-state temperature sensor. A brief narration of the intent of the operations is in order.

 o And then, there are several instances where a description of a solution is provided, but no algorithm for

implementing the solution is presented. For instance, in P-Spec 2.2.2 ARSP a thorough (although incorrect)
description of the Newton Divided Difference Method for extrapolation is provided, but no algorithm for
implementing the method is presented. This example is poignant because the description of the method is
flawed. So the question arises, does the designer really understand the method (and its application) merely
mistaken in the explanation or does the designer not really understand the method? An algorithm
implementing the solution would certainly provide the necessary insight into the designers understanding of
the problem and the proposed solution.

 o At the design level of abstraction a data element of type "logical" can assume one of two values, namely

"TRUE" or "FALSE." The Pluto design contains many references to data element of type logical assigning
values of "0", "1", "healthy", "failed", and so forth. Technically, it is incorrect to refer to a "logical" data type
as any value other than "TRUE" or "FALSE." I do not attribute this deficiency to the Pluto design so much as
to the GCS Programming Specification. The spec is full of such references and it is this type of mistake
which significantly contributes to the "sloppiness" and "amateur" appearance of both the programming
specification and the Pluto design.

 o A comparison of the Pluto data dictionary entries (DDE) with the DDE's of the programming specification

uncovers defects for the following entries:

 o A_COUNTER -- A typo in the "description" field.
 o COMM_SYNC_PATTERN -- The value specified in the "range" field is ambiguous. The value is

apparently a bit pattern, however the chosen syntax for expressing this value does not make this fact
clear. This defect also appears in the programming specification.

 o GP_DONE -- Missing the field "data type."
 o K_MATRIX -- The value of the field "accuracy" is inconsistent with the programming spec.
 o THETA1 -- The field "data store location" does not exist.

C-67

Individual (Design) Inspection Log Page 2 of _7__
Rob Angellatta
Pluto

Defects/Clarity Problems/Concerns

 Location Description

1 EXTERNAL The Pluto design contains a data store labeled
 data store "EXTERNAL." However, Pluto's "EXTERNAL" data store is inconsistent with the

programming specification (missing data elements "PACKET" and "SUBFRAME COUNTER") . (Note,
Pluto's "EXTERNAL_OLD" data store is consist with the programming specifications "EXTERNAL" data
store.) See the SPEC pgs. 13-14 for requirements and table 6.2 on page 98 for data store description.

2 GUIDANCE STATE The Pluto design contains a data store labeled
 data store "GUIDANCE STATE." However, Pluto's "GUIDANCE STATE" data store is inconsistent

with the programming specification (contains additional data elements "TDLRSP_SWITCH" and
"TDSP_SWITCH"). See the SPEC pgs. 13-14 for requirements and table 6.1 on page 97 for data store
description.

3 SENSOR_OUTPUT The Pluto design does not contain the required
 data store data store labeled "SENSOR_OUTPUT." However, Pluto's "SENSOR_DATA" data store

appears to be consistent with the programming specification for the data store "SENSOR_OUTPUT." See
the SPEC pgs. 13-14 for requirements and table 6.3 on page 98 for data store description.

4 P-Spec 1, INIT_GCS The low-level specifications for this process should not be specified in the

Pluto design. The programming spec, page 31 "LEVEL 2 SPECIFICATION" , clearly states,
"INIT_GCS ... are not the responsibility of the programmer."

5 P-Spec 3,
 GENERATE_SEQUENCE_PARAMS Missing algorithms. Insufficient detail is specified as to how to

determine the state of theredata elements "ITH_FRAME_2" and "ITH_FRAME_5." It is not clear weather
or not the designer truly understands which frames are the "ith_frame_2s" and which frames are
"ith_frame_5s." Assume that the Pluto design description was given to a programmer for code
implementation. Would the programmer clearly understand which frames to designate "ith_frame_2" and
which frames to designate "ith_frame_5" from this description?

6 P-Spec 0-s1, RUN_GCS PAT Inconsistent with P-Spec 2.s1. The PAT appear to specify that the

order of process execution for the processes "RUN_GCS" and "GENERATE_SEQUENCE_PARMS" is
insignificant. However, P-Spec 2.s1 which controls the processing within the process RUN_GCS clearly
depends upon the value of the data elements "ITH_FRAME_2" and "ITH_FRAME_5" which are updated
in the process "GENERATE_SEQUENCE_PARMS."

7 ?? GCS_SIM_RENDEZVOUS ?? There is an obvious absence of the process

GCS_SIM_RENDEZVOUS. The programming spec page 31, LEVEL 2 SPECIFICATION clear states
"There should be a call to GCS_SIM_RENDEZVOUS, prior to executing each subframe."

8 P-Spec 2, RUN_GCS There are a number of control signals defined, data elements like

"AECLP_DONE", "ASP_DONE" and so forth. Where are these control signals set/reset? I can not find
any evidence to suggest these signals are properly manipulated? It's frustrated -- we "know" how they are
supposed to be manipulated, but how would a programmer "know" from just the design?

C-68

Individual (Design) Inspection Log Page 3 of ___7__
Rob Angellatta
Pluto

Defects/Clarity Problems/Concerns

 Location Description

9 P-Spec 2.11.2;10 TSP The design assumes that (M3,T3) < (M4,T4). This is a valid assumption only

because figure 5.4 implies this is true. Other then figure 5.4, the spec is not clear on this
point.

10 P-Spec 2.11.2;10 TSP ??? Inconsistency. The data element "TS_STATUS" is designated Input/output on

the bubble diagram 2.11. The data element "TS_STATUS" is designated output in the P-
Spec 2.11.2;10. The programming specification lists "TS_STATUS" as output.

11 P-Spec 2.11.2;10 TSP I believe that the method for computing the temperature from the solid state

temperature sensor requires an explanation, some narration.

12 P-Spec 2.11.2;10 TSP The method for computing the upper and lower limits of the thermocouple

temperature sensor range most definitely requires an explanation, some narration.

13 P-Spec 2.2.2;22 ARSP

14 P-Spec 2.2.2;22 ARSP The syntax AR_ALTITUDE.*, AR_STATUS.*, and K_ALT.* is inconsistent with

the definition of ".*" as specified in the "Design Description Document -- Pluto" page 7.

15 P-Spec 2.2.2;22 ARSP There are several instances where a data element is assigned a previously computed

value of a data element, denoted by the expression "[previous value." In these instances,
four previously computed values are available for the assignment. The intent is to assign
the most recently computed value, not just any previously computed value. Thus, in these
instances the design is ambiguous as to which previously computed value is used for the
assignment operation.

16 P-Spec 2.2.2;22 ARSP When computing the altitude in the case where an echo is received, a check for the

exception condition "upper limit exceeded" is absent.

17 P-Spec 2.2.2;22 ARSP The description of the Newton Dividend Difference method for extrapolation -- I

expect to see this description in the "Design Description Document." However, here in the
design itself, I expect to see an algorithm implementing this method. Thus, I believe that
the design provides insufficient detail.

18 P-Spec 2.2.2;22 ARSP The description of the Newton Dividend Difference method for extrapolation --

The first step under "construct a table of divided differences" states "The first column of
the table holds the four previous altitudes." The ordering of the four previous value is
significant, however the ordering of the four previous values if unspecified. Thus, the
statement is ambiguous.

19 P-Spec 2.2.2;22 ARSP The second, third, and forth steps under "build a polynomial" state "... the first

(most recent) index in column ... " These references are inconsistent with step one where
the most recent value is located in the last element of the column.

C-69

Individual (Design) Inspection Log Page 4 of _7__
Rob Angellatta
Pluto

Defects/Clarity Problems/Concerns

 Location Description

20 P-Spec 2.2.2;22 ARSP When computing the altitude in the case where a value must be extrapolated from

the previous computations, there is an absence of checks for the exception conditions
"lower limit exceeded" and "upper limit exceeded."

21 P-Spec 2.2.2;22 ARSP When reporting the altitude as the most recent previously reported value, the

statement "AR_ALTITUDE.* = AR_ALTITUDE.[previous value" is deficient. First, the
syntax is "AR_ALTITUDE.* " is inconsistent with with the definition of ".*" as specified
in the "Design Description Document -- Pluto" page 7. This is really sloppy as the
appropriate syntax is used earlier in the P-Spec. Second, the statement "[previous value"
is ambiguous.

22 P-Spec 2.9.2;17 TDLRSP Rotate Variables -- Insufficient detail in description of the proposed method. The

phase "shift the data" is ambiguous.

23 P-Spec 2.9.2;17 TDLRSP The syntax "TDLR_VELOCITY.*" and "K_MATRIX.*" is inconsistent with the

definition of ".*" as specified in the "Design Description Document -- Pluto" page 7.

24 P-Spec 2.9.2;17 TDLRSP The statements "set ... to previous value of ..." are ambiguous.

25 P-Spec 2.9.2;17 TDLRSP Typo. "TDLR_VELOCITYV.*"

26 P-Spec 2.9.2;17 TDLRSP Questionable assignment: "FRAME_BEAM_UNLOCKED.# = 0." Technically,

table 5.11 (case 2) on page 69 of the programming specification clearly indicates that this
assignment should not be made. However, I don't really see a problem with this action

27 P-Spec 2.9.2;17 TDLRSP Insufficient detail. There is a thorough description of processing the beam

velocities. However, the description is merely a prose version of the programming
specifications table 5.12. Reference is made to "calculating average velocities," but a
description of how to calculate average velocities is noticeably absent. An algorithm
implementing the solution is in order (or merely a reference to table 5.12 may suffice).

28 P-Spec 2.10.2;12 TDSP COSMETIC. Valid values for the status of the touchdown are healthy (0) and

failed (1). The P- Spec references the failed status as "unhealthy." This inconsistency with
the programming specification is potentially confusing.

29 P-Spec 2.10.2;12 TDSP SYNTAX. The local integer constant "all_ones" has a value of -1. An assumption

is made that integers will be represented in two's complement -- thus in a 16-bit value of -1
all 16 bits are set (ie. '1'). I question the validity of this assumption. Note, P-Spec 2.2.2;22
ARSP declares a similiar constant using a preferred syntax.

30 P-Spec 2.3.2;21 ASP QUESTION? When declaring the 'local type defs' should these variable have type

real*8? what precision is required?

31 P-Spec 2.3.2;21 ASP INSUFFICIENT DETAIL. The description for "rotating the variables" is

ambiguous. The phase "shift data" is ambiguous.

C-70

Individual (Design) Inspection Log Page 5 of _7__
Rob Angellatta
Pluto

Defects/Clarity Problems/Concerns
 Location Description

32 P-Spec 2.3.2;21 ASP INSUFFIECENT DETAIL. When "correcting for misalignment of the accels" it is

not clear if a matrix multiplication is specified.

33 P-Spec 2.3.2;21 ASP AMBIGUITY. When computing the standard deviation the syntax of the

mathimatical operation is not clear.

34 P-Spec 2.6;1 GSP dfd DEVIATION FROM SPEC. The data element G_STATUS apears as input to GSP.

35 P-Spec 2.6.2;9 GSP INSUFFICIENT DETAIL. The description for "rotating the variables" is ambiguous.

The phase "shift data" is ambiguous.

36 P-Spec 2.6.2;9 GSP QUESTION. The local data element "at" is used to buffer the value found in the

element "atmospheric_temp." Note, "at" is of type real*4 while "atmospheric_temp" is of
type real*8. Is the lost of numeric precision acceptable? How about the precesion of the
other local data elements?

37 P-Spec 2.6.2;9 GSP QUESTION. The use of the operator "IAND." Is this acceptable and what is the

operation? This is not provided in FORTRAN-88.

38 P-Spec 2.6.2;9 GSP ????? When converting to twos-comp, the then case -- The proposed solution is not a

twos-comp function.

39 P-Spec 2.6.2;9 GSP ????? When converting to twos-comp, the "else" case is not necessary.

40 P-Spec 2.7.2;29 GP INSUFFICIENT DETAIL. The description for "rotating the variables" is ambiguous.

The phase "shift data" is ambiguous.

41 P-Spec 2.7.2;29 GP AMBIGUITY. The ".*" syntax is not used as defined in the document description

documentation.

42 P-Spec 2.7.2;29 GP AMBIGUITY. There are several reference to a one diminsional data element

GP_VELOCITY, GP_ALTITUDE, and GP_ATTITUDE.

43 P-Spec 2.7.2;29 GP AMBIGUITY. When computing the current values of the vehicle altitude, velocity,

and altitude, the assignment statements are inconsist with the assignment operator "=".

44 P-Spec 2.7.2;29 GP AMBIGUITY. The data element "tnow" is used but not defined.

45 P-Spec 2.7.2;29 GP DEVIATION FROM SPEC. The lower limit of GP_ALTITUDE is incorrectly

evaluated with the value -1.

46 P-Spec 2.7.2;29 GP DEVIATION FROM SPEC. The lower limit of FRAME_ENGINE_IGNITED is

incorrectly evaluated with the value -1.

47 P-Spec 2.7.2;29 GP ??????? The statemant "else if (FRAME_ENGINES_IGNITED > 2**31-1)" is not

valid (or necessary). The data element FRAME_ENGINES_IGNITED is specd as
Integer*4. The maximum value for this data type is 2**(31-1).

C-71

Individual (Design) Inspection Log Page 6 of _7__
Rob Angellatta
Pluto

Defects/Clarity Problems/Concerns

 Location Description

48 P-Spec 2.7.2;29 GP DEVIATION FROM SPEC. The data element AE_TEMP is not examined

for exceeding the upper limit.

49 P-Spec 2.7.2;29 GP I have some difficulty following the determination of the current phase.

Some portions are clearly incorrect.

50 P-Spec 2.7.2;29 GP INSUFFICIENT DETAIL. Need some algorithms for interpolation and

extraplolation for computing the velocity error.

51 P-Spec 2.7.2;29 GP AMBIGUITY. The data element "second" is referenced, but not defined.

52 P-Spec 2.7.2;29 GP DEVIATION FROM SPEC. The appearant computation of the velocity

error is incorrect.

53 P-Spec 2.1.2;31 AECLP In the section "determining the axial engines' temperature -- is this the

algorithm or a comment? I do not see the actual data assignment.

54 P-Spec 2.1.2;31 AECLP AMBIGUITY -- There are references to a one diminsional array data

element GP_VELOCITY. "the" GP_VELOCITY is a two diminsional array data
element.

55 P-Spec 2.1.2;31 AECLP DEVIATION FROM SPEC. When computing the PE_INTEGRAL,

there is a noticable absence of the abs functions for the GP_VELOCITY(1) term
when computing the local data element theta.

56 P-Spec 2.1.2;31 AECLP DEVIATION FROM SPEC. When computing the YE_INTEGRAL,

there is a noticable absence of the abs functions for the GP_VELOCITY(1) term
when computing the local data element theta.

57 P-Spec 2.1.2;31 AECLP DEVIATION FROM SPEC. The upper bounds check of the data

element CONTOUR_CROSSED is flawed.

58 P-Spec 2.1.2;31 AECLP DEVIATION FROM SPEC. The data element TE_LIMIT is not

updated with the proper value.

59 P-Spec 2.1.2;31 AECLP DEVIATION FROM SPEC. Page 7, "if (AE_SWITCH == off)"

condition, the processing is not defined in the spec. Is it appropriate?

60 P-Spec 2.1.2;31 AECLP

61 DFD 2.8;4 RECLP The data element RE_STATUS is displayed as an input to the process

RECLP.

62 P-Spec 2.8.2;13 RECLP INSUFFICIENT DETAIL. When determining the roll engine command

from the graph.

C-72

Individual (Design) Inspection Log Page 7 of _7__
Rob Angellatta
Pluto

Defects/Clarity Problems/Concerns

 Location Description

63 DFD 2.4;16 CP DEVIATION FROM SPEC. There are a number of data elements displayed

as input to CP which as not specified in the spec. AE_SWITCH, RE_SWITCH,
TDLRSP_SWITCH, TDSP_SWITCH, TE_LIMIT, THETA,
FRAME_BEAM_UNLOCKED, FRAME_ENGINES_IGNITED,
INTERNAL_CMD, CL.

64 DFD 2.4;16 CP DEVIATION FROM SPEC. The control signal SUBFRAME_COUNTER

appears as input to the process CP.

65 P-Spec 2.4.2;25 CP DEVIATION FROM SPEC. "subframe 1, ith_frame_2 and not

ith_frame_5" (class f) processing -- the comments do not refer to the data
elements K_ALT and K_MATRIX bits as set in the sample mask. Then, the
K_ALT bit is set, however the K_MATRIX bit is not set.

66 P-Spec 2.4.2;25 CP DEVIATION FROM SPEC. Class F processing -- the data element

K_MATRIX is not loaded into the packet correctly.

67 P-Spec 2.4.2;25 CP DEVIATION FROM SPEC. subframe 1, not ith_frame_2 and ith_frame_5

(class G) processing -- when accually loading the data elements into the data
buffer, the following data elements are not loaded: A_ACCELERATION,
A_STATUS, C_STATUS, G_ROTATION, and G_STATUS.

68 P-Spec 2.4.2;25 CP DEVIATION FROM SPEC. "subframe 1, ith_frame_2, ith_frame_5" (class

A) processing -- the data elements K_ALT and K_MATRIX bits are not set in the
sample mask.

69 P-Spec 2.4.2;25 CP DEVIATION FROM SPEC. Class A processing -- when actually loading

the data elements into the data buffer, the following data elements are not loaded:
A_ACCELERATION, A_STATUS, C_STATUS, G_ROTATION, G_STATUS,
K_ALT, and K_MATRIX.

70 P-Spec 2.4.2;25 CP DEVIATION FROM SPEC. subframe 2, (Class B) -- the data element

GP_ROTATION is not loaded into the packet correctly.

71 P-Spec 2.4.2;25 CP AMBIGUITY. The calling syntax and argument usage of the process

CRC-16 is not clear

72 P-Spec 2.4.2;25 CP The data elements BYTE_PACKET, NBYTES, and CHECKSUM are

reference but never defined.

73 P-Spec 2.4.5;8 CRC-16 ?????? It is not clear how the algorithm for computing the CRC operates.

Some narration and/or reference is required.

C-73

C.2 Pluto Design Review

Attendees: Kelly Hayhurst (SQA representative/Moderator)
 Patrick Quach (Verification Analyst/Recorder, Inspector)
 Rob Angellatta (Programmer/Reader, Inspector)
 Bernice Becher (System Analyst/Inspector)

C.2.1 Review Notes from Design Review

Pluto Design Review

July 13, 1994

Session 1: 9:30 a.m. - 11:30 p.m.

High-Level Structured Analysis Diagrams

Context diagram:

Telemetry packet flow not illustrated. Need modify to include

DFD GCS Level 0 specification
B - 358 -- Lower level diagrams should reflect changes for telemetry packet

DFD GCS Level 1 specification
B - 354 -- Unlabeled data flows to and from GCS_SIM_RENDEZVOUS - comment to be added

in introduction

DFD GCS Level 2 specification
B - 355 -- Bubbles .1 & .3 should reference their counter part in DFD 1.

DFD GCS Level 3 specification
B - 356.3 - INTERNAL_CMD not shown as input into AECLP. Need to add to the Dataflow.

GCS_SIM_RENDEZVOUS

B - 342 - Extra unnecessary comment using personal pronoun. - To be deleted

Altimeter Radar Sensor Processing (ARSP)

B - 318, P-1 -- FRAME_COUNTER is not an input to ARSP -- should be removed

B - 319 -- Syntax problem -- The use of E in the constant for the transmission speed (if

FORTRAN notation is going to be used -- should use D instead of E for accuracy)

B - 316.2, P-2 -- Problem with limit checks for AR_ALTITUDE - Limit checking missing for

AR_ALTITUDE before using for extrapolation

C-74

Accelerometer Sensor Processing (ASP)

B - 307, B - 316, P - 3 -- Limits checking for A_ACCELERATION -- -- need to check for

negative square root
 Question: Does the range checking have to be performed on A_ACCELERATION

before it is used to calculate the mean and standard deviation for each axis. It is a real*8
from SENSOR_OUTPUT data store.

Gyroscope Sensor Processing (GSP)

B - 308 -- problem with whether G_COUNTER(I) has a negative sign -- current syntax may not

be appropriate.

Temperature Sensor Processing (TSP)

P-7 -- Lower parabolic function (pg. 3):
 There appears to be a typo in the substitution of "h" into the parabolic equation. Either

there is an extra set of parentheses or the sign after the M3 should be a "+"

B - 313 -- Incorrect term in the comments in upper parabolic function derivation. The first

equation should be y = (1/4*p) * (x - h)^2 + k

Touch Down Landing Radar Processing (TDLRSP)

B - 320 -- The total number of radar beams is not explicitly expressed in the P-Spec. Only

implicit in the table. The same indication should be used for maximum number of axis
in other P-Spec.

B - 322, P-4 -- Concerning the set of IF statements for determining radar beam states (Table 5.11)
 The design meets all the requirements but has extra branches that are not specified in the

Requirements.

B - 323 -- case 15 while computing “b” there is an incorrect operator; in equation for “pbvY”,

there is an incorrect operator

B - 321 -- elapsed time calculation should not be within comments

P-6 -- problem with range for TDLR_ANGLES in Data Dictionary

B - 309, P-5 -- should off-diagonal elements of K_MATRIX be set?

Touch Down Sensor Processing (TDSP)

No Problems
--------------------------- END OF SESSION 1 ---

C-75

Session 2: July 13, 1994 1:00 p.m. - 3:00 p.m.

Guidance Processing (GP)

B - 328 -- TE_INTEGRAL not an input for GP

B - 330 -- Comment and Pseudo-code not clearly delineated

B - 331 -- The algorithm does not specify which history variable to use when calculating the

altitude (need more detail) -- current pseudocode not directly translatable to source

B - 303 -- The derivation for GP_VELOCITY uses GP_ROTATION, but no explanation is given

on how its derived from G_ROTATION

B - 332, P-9 -- wrong history variable is used in setting up GP_ROTATION (pg. 5):
 Question: Should the most recent values for G_ROTATION be used to build

GP_ROTATION?

B - 333 -- Negative square-root check not performed in the "if" statement on page 7

B - 335 -- Divide by zero check -- there is added information in the exception handling messages.

B - 336, P-9 -- The Else branch for "CONTOUR_ALTITUDE(i) < cur_altitude" (pg. 8):
 The index is missing from the first part of the IF condition. It should be

"CONTOUR_ALTITUDE(i)".

B - 338 -- The END_GCS signal should not appear in the P-Spec if its not implemented. Use

GP_PHASE instead.

B - 316.4 - missing range checking for variables used in the RK method.

Axial Engine Control Law Processing (AECLP)

B - 301 -- problem with order of execution of operators

P-16 -- problem with <=

B - 304, P-15 -- value of e is not correct

P-12 -- an extra check is made for divide-by-zero

B- - 302, P-13 -- problem with computation of yaw_error_limit -- it contains an incorrect term

P-14 -- problem with process step enumeration.

Roll Engine Control Law Processing (RECLP)

B - 311, P-11 -- there are 3 cases where RE_CMD is not set correctly
B - 312 -- in the "else" statement for deriving roll engine command, the sign of THETA2 is

incorrect

C-76

Chute Release Control Processing (CRSP)

B - 339 -- problem with “released” (released not used in this process
B - 340, P - 17 -- problem with limit checks -- format statements not needed

Communications Processing (CP)

B - 400 -- presentation of crc table -- need more detail
B - 401 -- subscript incorrect in K_MATRIX
B - 402.1 -- syntax problems -- use of "^" for pointers
B - 402.2 -- need to note number of bits in CRC
B - 402 3 -- In the looping through bytes, the byte order is not specified.
B - 403 - The XOR operation is does not specify specifically that the lower byte of the CRC is to

be used

Data Dictionary

B - 345 - Order within data stores needs to be explicitly stated.
B - 349-352, P-21-29 -- several elements have problems: AE_TEMP, CL,

CONTOUR_CROSSED, DROP_HEIGHT, G1, G2, GVEI, K_MATRIX,
TDLR_ANGLES, TE_DROP, GP_GS_IN

General

B - 325 - use of "RETURN" at the end of some P-Specs should be consistent (Is use of RETURN

appropriate in a P-Spec?).

--------------------------- END OF SESSION 2 ---

C-77

C.2.2 Review Logs from Design Review

Review Log from System Analyst

Individual Inspection Preparation Log #1 (Page 1)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

INDEX

 General Problems

 Limit Checks

 Introduction

 High-Level Structured Analysis Diagrams

 ARSP, P-Spec 1.2

 ASP, P-Spec 1.3

 GSP, P-Spec 1.4

 TDLRSP, P-Spec 1.5

 TDSP, P-Spec 1.6

 TSP, P-Spec 1.7

 GP, P-Spec 2.2

 AECLP, P-Spec 3.2

 RECLP, P-Spec 3.4

 CRCP, P-Spec 3.3

 CP, P-Spec 1.8, 2.3, 3.5

 GCS_SIM_RENDEZVOUS, P-Specs 1.1, 2.1, and 3.1

 Data Dictionary

 Typographic Errors

 Suggestions for the Future

C-78

Individual Inspection Preparation Log #1 (Page 2)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
 Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

General Problems
 NOTATION 306
 "^" is used in ASP, page 3, first equation, and in other places without
 being explained.
 "==" is used without being explained.
 *Requirement: nonamb

 PSEUDOCODE SYNTAX 359
 The pseudocode syntax used in the P-Specs has not been described.

 GLOBAL DATA STORES 317
 The design does not give instructions for a FORTRAN program for declaring the four global

data stores as labeled common blocks and how to name them.
 Even though this is a coding detail, it is given in the specification.
 *Requirement: comp, nonamb

 GCS_SIM_RENDEZVOUS 327
 The design does not state that in the code, this process must actually be called by the name

GCS_SIM_RENDEZVOUS. Even though this is a coding detail, it is stated in the
specification.

 *Requirement: comp, nonamb

 "return" in P-Specs 325
 Several of the P-Specs contain a "return" before the "END P_SPEC". Since "return" is really a

coding entity, it does not seem appropriate in a P-Spec. The processes which contain this are:
 ASP
 ARSP
 GSP
 RECLP
 TDLRSP
 TDSP
 TSP
 GP

 *Requirement: trace

 ARRAY NOTATION(nnp) 329
 In most (or all) cases (see eg, GP, TDLRSP) where a rotation is to be done, the array notation

does not use variable indices. This cannot be considered an error; however if this notation
were to be carried over into the implementation into code, it would be quite error-prone,
difficult to check for errors, difficult to maintain in the case of changes to the requirements,
and involves many more lines of code than would otherwise be necessary. This notation is
also used in other places besides rotation, as for example in AECLP where
INTERNAL_CMD is converted to AE_CMD.

 *Requirement: modif

C-79

Individual Inspection Preparation Log #1 (Page 3)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

Limit Checks

 GENERAL LIMIT CHECKING: 315

 In each case in which the design says to produce limit checking output, it
 uses the term "display-error" which does not seem to be defined anywhere.
 Specifically, the information missing in the design is the output logical
 unit number and the formats for FORTRAN code. Even though these are coding
 details, they are stated in the specification. It is not necessary to give
 this information for each incidence of a limit check, but it could be done at
 least once.

 *Requirement: trans, comp
 (Reference: Software Development Standards, Software Design Standards,
 "The low level requirements should be directly translatable into source
 code, with no further decomposition required.")

 SPECIFIC LIMIT CHECKING PROBLEMS 316

 2. Limit check for AR_ALTITUDE is not being done in the first subframe before
 it is used to fit a polynomial.

 3. In CRCP, the variables CHUTE_RELEASED and AE_TEMP are being subjected to
 limit checks, but neither of these is of type real*8.

 4. The following variables are not being checked for limits in the second
 subframe before being used in the Runge-Kutte calculations:

 A_ACCELERATION
 AR_ALTITUDE
 GP_ALTITUDE
 GP_ATTITUDE
 GP_VELOCITY
 G_ROTATION
 TDLR_VELOCITY

 *Requirement: spec

C-80

Individual Inspection Preparation Log #1 (Page 4)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

INTRODUCTION

 Derivation Notes

 Abbreviations 343
 Any abbreviations used in any of the notes on derivations should be
 precisely defined. Some examples are GRAV, VEL_ERROR, ATT.

 AECLP, Derivation of Solution for Differential Equation 305

 Problem 1: On the second page, there is an equation which is not correct, namely TE_LIMIT =
Q/OMEGA + C

 Problem 2: On the second page, it is not clear at all how one goes from the equation

 TE_LIMIT = Q/OMEGA + C x Q x e-Wt

 to the final equation for TE_LIMIT. (specifically, how does one solve for C?)

 *Requirement: acc, nonamb, comp

 GP notes, Derivation for interpolation/extrapolation 344
 1. The second paragraph which begins "Given the point..." has omitted some important
defining information, namely:
 x0 < x < x1 ("which is less than the desired point" is not specific")
 x0 and x1 are contiguous points in the table
 xi represents altitude; f(xi) represents desired velocity at xi

 2. (not an error) The discussion has not included the case where x = xi (even though it is
handled in the p-spec).

 3. (not an error) The text does not note that all three equations are exactly the same (which
could make the GP p-spec simpler and more straightforward).
 *Requirement: nonamb, modif, comp

 GP notes, Derivation for attitude, velocity, and altitude:
 1. The equation for the derivative of GP_VELOCITY has the order of
 GP_VELOCITY and GP_ROTATION reversed in the matrix multiplication.
 2. ACCEL is not a 1 x 3 matrix.
 3. Coding syntax, such as the do loop on page 2, is not appropriate for a derivation.
 4. The equations for the derivatives of GP_ATTITUDE, GP_VELOCITY, and
GP_ALTITUDE, are given on page 2 and then are repeated on page 5-6 (with the
GP_ATTITUDE equation incorrect on page 5).
 *Requirement: spec, acc, modif

C-81

Individual Inspection Preparation Log #1 (Page 5)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

STRUCTURED ANALYSIS DIAGRAMS

 GCS Context Diagram 353
 PACKET does not appear on any flow going out from the bubble GCS to the telemetry
external sink.

 GCS DFD/CFD 358
 PACKET does not appear on flows coming from each of the three subframe bubbles and going
off-page.

 Sensor Processing Subframe DFD/CFD 354
 1. It has not been made clear that the data flows going out from GCS_SIM_RENDEZVOUS to

GUIDANCE_STATE, RUN_PARAMETERS, and SENSOR_OUTPUT are actually valid only for
the first frame.

 2. The data flow coming out of GCS_SIM_RENDEZVOUS and going to EXTERNAL
 indicates that all variables in that store are on the flow, but this is not correct.

 3. PACKET does not appear on a flow out from GCS_SIM_RENDEZVOUS to off-page.

 Guidance Processing Subframe DFD/CFD 355
 1. PACKET does not appear on a flow out from GCS_SIM_RENDEZVOUS to off-page.

 optional
 2. The bubble 2.1 does not contain "(1.1)" inside, and the bubble 2.3 does not contain "(1.8)" inside. See

Hatley, page 143 regarding notation for multiple use of one process.

 3. The data flow coming out of GCS_SIM_RENDEZVOUS and going to EXTERNAL
 indicates that all variables in that store are on the flow, but this is not correct.

 4. There should be no flows from GCS_SIM_RENDEZVOUS to GUIDANCE_STATE,
 SENSOR_OUTPUT, or RUN_PARAMETERS.

 Control Law Processing Subframe DFD/CFD 356
 1. PACKET does not appear on a flow out from GCS_SIM_RENDEZVOUS to off-page.

 2. The bubble 3.1 does not contain "(1.1)" inside, and the bubble 3.5 does not contain "(1.8) inside". See

Hatley, page 143 regarding notation for multiple use of one process.

 3. (nnp)The data flow coming from GUIDANCE_STATE to AECLP does not include

INTERNAL_CMD, but it is an input to AECLP. (Note: this is a result of Formal Modification 2.3-
3.2).

 4. The data flow coming out of GCS_SIM_RENDEZVOUS and going to EXTERNAL
 indicates that all variables in that store are on the flow, but this is not correct.

 5. There should be no flows from GCS_SIM_RENDEZVOUS to GUIDANCE_STATE,
 SENSOR_OUTPUT, or RUN_PARAMETERS.

C-82

Individual Inspection Preparation Log #1 (Page 6)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

ARSP, P-Spec 1.2

 ARSP, INPUT/OUTPUT Section 318
 FRAME_COUNTER is not an input to this process. This is probably due to an
 error in the specification, which will be modified.
 *Requirement: acc, trace

 ARSP, first line of page 3: 319
 It is not necessary to use FORTRAN floating point notation for a constant in
 the design, but if it is used, the "D" format rather than the "E" format
 should be used for accuracy.
 *Requirement: acc

ASP, P-Spec 1.3

 ASP P-Spec 2.3, page 4 307
 Problem: Even though a check is being made for all accelerations being equal,
 it is still required that a check be made for a negative argument for the
 square root, as all equals may not be the only case with a roundoff problem.
 *Requirement: spec, Reference: introduction, exception handling

GSP, P-Spec 1.4

 GSP, P-Spec 1.4, top of page 3 308
 "if ((G_COUNTER(I) & 0x8000 == 1)"
 Problem: The intent here is to determine whether G_COUNTER(I) has a negative
 sign. The partial statement above will not work because if the sign is
 negative, the resulting "anded" value is not equal to 1.
 *Requirement: spec, acc

C-83

Individual Inspection Preparation Log #1 (Page 7)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TDLRSP, P-Spec 1.5

 TDLRSP, P-Spec 1.5, page 4, top of page and bottom of page also: 320
 "do (for each radar beam i)"
 Problem: The design has not explicitly stated the number of radar beams.
 *Requirement: comp, nonamb

 TDLRSP, P-Spec 1.5, page 4, top of page: 321
 Problem: The equation for elapsed_time is not given in the pseudocode itself, but only in a
comment.
 *Requirement: comp, nonamb

 TDLRSP, P-Spec 1.5, page 4, middle of page: 322
 LINE NUMBER
 "if (elapsed_time >= TDLR_LOCK_TIME 1
 tdlr_state(i)= 0 /*set unlocked */ 2
 FRAME_BEAM_UNLOCKED(i) = FRAME_COUNTER 3

 else /* the sensor has not recovered */ 4
 TDLR_STATE(i) = 0 /*set unlocked */ 5
 endif 6
 endif 7
 else /* the sensor measurement != 0 */ 8

 if (TDLR_STATE(i) == 1 /* beam was locked */ 9
 TDLR_STATE(i) = 1 /* set locked */ 10
 else /* beam was unlocked */ 11

 if (elapsed_time >= TDLR_LOCK_TIME) 12
 TDLR_STATE(i) = 1 /* set locked */ 13
 else /* the sensor has not recovered */ 14
 TDLR_STATE(i) = 0 /* set unlocked */ 15

Problem 1: Line #2 is not traceable to any requirement
Problem 2: Lines 4 and 5 are not traceable to any requirement
Problem 3: Line 10 is not traceable to any requirement
Problem 4: Lines 14 and 15 are not traceable to any requirement

 *Requirement: spec

 TDLRSP, P-Spec 1.5, top of page 5 309
 The setting of the off-diagonal elements of K_MATRIX to zero is not a requirement in the
specification. (the spec may require a formal mod to make this unambiguous).
 *Requirement: trace

C-84

Individual Inspection Preparation Log #1 (Page 8)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 TDLRSP, P-Spec 1.5, Equation for pbvY: 323

 Problem 1: Page 5, comments at bottom of page:
 In the equation for "b", the operator in front of the term b(4) is incorrect.

 Problem 2: Page 7, in case # 15:
 In the equation for "pbvY", the operator in front of the term b(4) is
 incorrect.

 *Requirement: acc, spec

 TDLRSP, P-Spec 1.5 324
 "where cos represents the cosine function"
 Problem: This statement has not been marked as a comment.
 *Requirement: nonamb

TDSP, P-Spec 1.6

TSP, P-Spec 1.7

 TSP, P-Spec 1.7, middle of page 2 326
 "Implementation note, if M1=M2 a divide by zero exception must be handled.

 Problem 1: The divide-by-zero exception handling should happen prior to the
 divide.
 *Requirement: spec

 Problem 2: (nnp)While this cannot really be considered an error, the syntax
 and content for this exception is not presented in a consistent manner with
 the rest of the exception handling in this design. This looks like a comment
 but is actually pseudocode.
 *Requirement: con

 TSP P-Spec 2.11, middle of page 3 314
 In the calculation for lower-parabolic-function, there is a division by
 (M4 - M3), but there is no provision for a check for divide-by zero in case
 M4 = M3.
 *Requirement: spec, INTRODUCTION, Exception Handling

 TSP P-Spec 2.11, 10th line from bottom of page 3 313
 "y = 4*p..."
 Problem: "4*p" is not correct
 *Requirement: acc, nonamb

C-85

Individual Inspection Preparation Log #1 (Page 9)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

GP, P-Spec 2.2

 GP, P-Spec 2.2, INPUT/OUTPUT section: 328
 TE_INTEGRAL is not an input to this process.
 *Requirement: acc, spec

GP, P-Spec 2.2, middle of page 4 through middle of page 5: 330

Application of Runge-Kutte:

 In the text which describes the method for calculating attitude, velocity, and altitude, beginning
with "A five step implentation of the RK method..." and ending with step 5, the comments are not
clearly delineated from the pseudocode.
 *Requirement: nonamb, comp, spec

 GP, P-Spec 2.2, middle of page 4 through middle of page 5: 331

Application of Runge-Kutte:

 Problem: In general, the pseudocode given is not directly translatable into souce code. More
specifically: In each of the four parts labeled "A)":

 Problem 1: It is not stated for any of the three derivatives which history values are to be used
for the "sensor" variables.

 Problem 2: In the case of the derivative of the velocity, it is not stated which values are to be
used for the attitude.

 Problem 3: In the case of the derivative of the altitude, it is not stated which values are to be
used for the attitude or for the velocity.

 Problem 4: The equations for the derivatives have not been included in the pseudocode.

 GP, P-Spec 2.2 303
 Problem: GP_ROTATION may not be used as an input to GP, yet it appears in the design's
equations for the derivatives of GP_ATTITUDE and GP_VELOCITY. (see specification, page
130, under Notation)
 *Requirement: req, comp

 GP, P-Spec 2.2, bottom of page 5: 332
 In the setting of the GP_ROTATION matrix, the wrong history subscript is being used for the
G_ROTATION elements.
 *Requirement: spec, acc

 GP, P-Spec 2.2, second line of page 7, and fourth line of page 10:: 333
 In each case there is no check for a negative argument before the square root is taken.
 *Requirement: spec

C-86

Individual Inspection Preparation Log #1 (Page 10)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

GP, P-Spec 2.2, page 7 through 8: 334
 (nnp)In several places " i = 101 " is used as a "coding" method for exiting the loop. While this

is
 not an error, it would be adequate (and preferable) in the design to state "exit the loop".

 GP, P-Spec 2.2, page 7 and page 8: 335
 In three separate places there is a check for divide-by-zero. In each case
 if there is an exception, the text "COMPUTATION OF OPTIMAL VELOCITY" is
 produced, which is not a requirement in the specification.
 *Requirement: trace

 GP, P-Spec 2.2, middle of page 8: 336
 "if ((CONTOUR_ALTITUDE == 0) .or. (index == 100)) then

 Problem 1: CONTOUR_ALTITUDE is a vector but has no subscript.
 Problem 2: "index" is undefined.

*Requirement: nonamb, comp,acc, spec

 GP, P-Spec 2.2, bottom of page 10: 338
 (nnp)The designer stated at the overview that "END_GCS would not be
 implemented". If that is the case, it should not be set inside a process.
 *Requirement: trans, trace

AECLP, P-Spec 2.1

 AECLP P-Spec 2.1, top of page 4: 301
 "if (FRAME_COUNTER - FRAME_ENGINES_IGNITED * DELTA_T <... {4}"
 .
 .
 .
 "if (FRAME_COUNTER - FRAME_ENGINES_IGNITED * DELTA_T >=... {4}"

 Problem: In each of these statements, assuming the FORTRAN precedence rules,
 the order of execution of the operators is not correct.
 *Requirement: acc, req

 AECLP P-Spec 2.1, middle of page 7: 302
 "yaw_error_limit = -GQ(CL) * GP_ROTATION(1,2) + ..."

 Problem: This partial statement contains an incorrect term.
 *Requirement: acc, req

 AECLP P-Spec 2.1, top of page 9: 304
 "let e = 2.718........"
 Problem: This value given for e is not correct (it is not really necessary to define e).
 *Requirement: acc

C-87

Individual Inspection Preparation Log #1 (Page 11)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

RECLP, P-Spec 3.4

 RECLP P-Spec 2.8, pages 3&4, deriving roll engine command: 311
 Problem: There are three specific cases for which the value set for RE_CMD
 is not correct. These cases are as follows: (LET P = G_ROTATION(1,0)
 1. THETA = 0 and P > P2 and P <= P4
 2. THETA = 0 and P <= P2 and P > P1
 3. THETA < 0 and THETA >= -THETA1 and P < -P2
 4. THETA < 0 and THETA >= -THETA1 and P = -P2
 *Requirement: spec, acc

 RECLP P-Spec 2.8, page 4, middle of page, deriving roll engine command: 312
 "else if (THETA >= THETA2) then {3}"
 Problem: The sign of THETA2 is not correct.
 *Requirement: spec, acc

CRCP, P-Spec 3.3

CRCP, P-Spec 3.3, page 1, top of page 339
 "log*1 released = 1"
 Problem: "released" is not used in this process.
 Problem: (nnp)While not an error, the declaration of local constants is not
 consistent with the syntax in the rest of the design.
 *Requirement: trace, con

 CRCP, P-Spec 3.3, page 1, middle of page 340
 The three format statements are not needed (see limits section).
 *Requirement: trace

 CRCP, P-Spec 3.3, page 1, bottom of page 341
 "IF (CHUTE_RELEASED == not_released)"
 (nnp)Not an error, but why not used "chute attached" for consistency?
 *Requirement: con

C-88

Individual Inspection Preparation Log #1 (Page 12)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

CP

 CP, P-Spec 2.4 400
 Problem with presentation of crc table (for purposes of verification by
 inspectors) (designer may include algorithm for table)

 CP, P-Spec 2.4, PAGE 7 401
 "DATA_PACKET.data.sp.k_matrix(3) =..."
 Problem: first subscript for K_MATIRX is incorrect

 CP, P-Spec 2.4 402
 Ambiguitie
 1. Page 5, "var data_packet:.....
 = PACKET"

 2. Page 9:
 1. Is table to be read column first or row first?
 2. How many bits are in the CRC?
 3. In loops for bytes, start with first or last byte? ie, definition of
 next_byte?

 CP, P-Spec 2.4 403
 Page 9
 "index = crc XOR next_byte"

 Problem: Design has not stated that only the low-order byte of crc is to be
 used.

GCS_SIM_RENDEZVOUS, P-Specs 1.1, 2.1, and 3.1

 GCS_SIM_RENDEZVOUS, P-Specs 1.1, 2.1, and 3.1 342
 In the body of the P-Spec is the statement ", it is not our responsibility."
 This is not an appropriate statement to be inside a P-Spec, since the
 function of a P-Spec is merely to state the transformation from the inputs to
 the outputs.
 *Requirement: trace

C-89

Individual Inspection Preparation Log #1 (Page 13)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

DATA DICTIONARY

 Four Global Data Stores and Ordering with "+" Notation 345
 Hatley (page 101) states that the "+" notation "does not imply order. If
 ordering is required, it is specified by a comment in the dictionary or
 PSPEC"; therefore, for the global data stores, there should be some such
 explicit statement.

 Data Conditions (not an error) 346
 All variables in the data dictionary that are listed with attribute of "data
 condition" could be changed to "data" (with the exception of GP_PHASE and
 CHUTE_RELEASED).

 Notation 347
 Hexadecimal notation is used in, for example, COMM_SYNC_PATTERN, but the
 syntax for the notation is given inside pspecs, for example, TDSP. The
 notation should be given in some central place, such as, for example, the
 data dictionary or the introduction.

 END_GCS 348
 This is a primitive data element but has no description at all.

 G1 349
 The units are not correct.

 GP_GS_IN 350
 This group flow includes TE_INTEGRAL which is not an input to GP.

 K_MATRIX 351
 The Accuracy is incorrect.

 TDLR_ANGLES 352
 In the range, the value PI/2 should not be included.

C-90

Individual Inspection Preparation Log #1 (Page 14)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

Typographic Errors

 GSP, page 1, comments at bottom of page:
 "diminsion" should be "dimension"

 GSP, page 3, comment at top of page:
 "hexidecimal" should be "hexadecimal"

 ASP, page 3: "hexidecimal" should be "hexadecimal"

 TDSP, page 1: In comment near bottom of page, "hexidecimal" should be
 "hexadecimal"

 GP, bottom of page 8 to top of page 9
 A line has been split in two.

 GP, bottom of page 9
 Should "=<" be "<=" ?

 GP, page 8, in two different comments:
 "Exapolation" and "Exapolate" should be "Extrapolation" and "Extrapolate"

 ASP, page 4, comment at top of page:
 "seperate" should be "separate"

 Notes on high-level design, page 1:
 Third paragraph: "have to input or output" should be "have no input or
 output"

 Fourth paragraph, last sentence: "with of off_page" should be "with off-page"

 Last paragraph: should "deficients" be "deficiencies"?

 Data Dictionary

 G2, in the units is "degree*"

 TE_DROP, the last word of the description, namely "intersected" was cut off.

C-91

Individual Inspection Preparation Log #1 (Page 15)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

Suggestions for the Future

 It would be helpful if the entire design document were numbered sequentially
 from beginning to end.

 Constants used for limit checking make modification difficult and error-
 prone.

 Can we add something to the standards to force the designer to be explicit
 about what is a comment and what is actual pseudocode/structured English?

 Can we add something to the standards to force the designer to use very
 specific non-ambiguous pseudocode syntax?

 Require that a Teamwork Balance Report (with no errors) be included as part
 of the design.

C-92

Individual Inspection Preparation Log #1 (Page 16)
Name:___________Bernice Becher____ Date Log Submitted:___July 12, 1994
Implementation:___Pluto ___________ Date of Inspection:___July 7, 1994
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

 1
 *Requirement: Accuracy (Reference: DO-178B 6.3.2b).
 2
 *Requirement: Nonambiguity (Reference: DO-178B 11.0a).
 3
 *Requirement: Follow a particular design method (References: Software
 Development Standards,"Software Design Standards", "Design Methods, Rules,
 and Tools", "...using the structured analysis ...by Hatley and Pirbhai
 or...", and "Design Documentation", "...document should follow...GCS
 specification or the Hatley book...")
 4
 *Requirement: Consistency (DO-178B 5.2.2a, 6.3.2b, and 11.0d)
 5
 *Requirement: Traceability (References: DO-178B 5.2.2a, 5.5b, 6.1b, 6.2a,
 6.3.2a, and 11.0f)
 6
 *Requirement: Translatability to source code (Reference: Software
 Development Standards, Software Design Standards, "The low level
 requirements should be directly translatable into source code, with no
 further decomposition required.")
 8
 *Requirement: Completeness (Reference: DO-178B 11.0b)
 10
 *Requirement: Fullfillment of requirements in Software Requirements
 document (References: DO-178B 6.3.2a and 11.10a)
 11
 *Requirement: Fullfillment of requirements in Software Requirements
 document (References: DO-178B 6.3.2a and 11.10a)
 **Software Requirements 2.2 with Mods 1-26 Reference: Introduction,
 Exception Handling, Upper or Lower Limit Exceeded

 *Requirement: acc
 *Requirement: nonamb
 *Requirement: des
 *Requirement: con
 *Requirement: trace
 *Requirement: trans
 *Requirement: comp
 *Requirement: spec
 *Requirement: modif

C-93

Review Log from Verification Analyst

Pluto Individual Inspection Log
Inspector: Patrick Quach

Date: July 11, 1994

 The following is a list of deficiencies or possible deficiencies found in the Pluto design
document. The comments are grouped under the heading of the P-Spec. or configuration item to
which they pertain. No deficiencies were discovered in any DFD's or PAT's.

ARSP (P-Spec 1.2)

1. I/O Section

FRAME_COUNTER is an unnecessary input to ARSP because it is not used in the P-
Spec. It is, however, listed as an input in the Requirements Document. This may be a
left over from the Spec. Mod. 2.3-3.3

2. Limits checking for AR_ALTITUDE
Question: Does the range checking have to be performed on AR_ALTITUDE before
using it in the Divided Difference Method. It is a real*8 from SENSOR_OUTPUT data
store.
CITATION: Spec. --- Exception Condition (pg. 16)

ASP (P-Spec 1.3)

3. Limits checking for A_ACCELERATION

Question: Does the range checking have to be performed on A_ACCELERATION before
it is used to calculate the mean and standard deviation for each axis. It is a real*8 from
SENSOR_OUTPUT data store.
CITATION: Spec. --- Exception Condition (pg. 16)

TDLRSP (P-Spec 1.5)

4. Concerning the set of IF statements for determining radar beam states (pg. 4)

The design meets all the requirements but has extra branches that are not specified in the
Requirements. However, these branches are innocuous and do not change any values. It
may not be worth the risk to alter the design since it may introduce some logic errors.
CITATION: Spec --- Use of Tables (pg. 15)

5. Concerning the table for setting K_MATRIX (pg. 5-7)

The table uses the X, Y, Z indexes for the elements of K_MATRIX while the case
statement uses the actual numerical indexes. It may be useful to clarify this in the text of
the explanation.
CITATION: 178B --- Non-Ambiguity (pg. 47 11.0A)

6. Divide by zero check(pg. 8)
Question: In step 3D, should a divide by zero check (on the COS[TDLR_ANGLES]) be
performed before TDLR_VELOCITY is computed.

C-94

TSP (P-Spec 1.7)

7. Lower parabolic function (pg. 3):

There appears to be a typo in the substitution of "h" into the parabolic equation. Either
there is an extra set of paren. or the sign after the M3 should be a "+"
CITATION: 178B --- Non-Ambiguity (pg. 47 11.0A)

GP (P-Spec 2.2)

8. GP Algorithm notes (pg. 1)

Typo on first word of second paragraph.

9. Setting up GP_ROTATION (pg. 5):

Question: Should the most recent values for G_ROTATION be used to build
GP_ROTATION.

10. The Else branch for "CONTOUR_ALTITUDE(i) < cur_altitude" (pg. 8):
The index is missing from the first part of the IF condition. It should be
"CONTOUR_ALTITUDE(i)".
CITATION: 178B --- Non-Ambiguity (pg. 47 11.0A)

RECLP (P-Spec 3.4)

11. The If statement for determining roll engine intensity & direction (pg. 4)

Typo in the case where:
 THETA >= -THETA & G_ROTATION < -P2,
 the value of RE_CMD should be:
 RE_CMD = 6 + 0.
CITATION: 178B --- Non-Ambiguity (pg. 47 11.0A)

AECLP (P-Spec 3.2)

12. Divide-by-zero check (pg. 6)

Question: Why is there an extra Divide-by-zero check in the yaw error limit calculation.
The check was performed previously in the pitch error limit calculation?

13. Yaw_error_limit equation (pg. 7)
Typo in the yaw_error_limit equation; the first gain should be "GR" instead of "GQ".
CITATION: Compliance (pg. 27 6.3.2a)

14. Processing step enumeration (pg. 7-10)
The enumeration of step "2C" on the middle of page 7 duplicates the previous
numbering. This step should be "2D", Subsequent steps are also off by 1 letter.
CITATION: 178B --- Non-Ambiguity (pg. 47 11.0A)

15. The value of "e" (pg. 9)
Typo in the value of "e" e = 2.718281828459045235360.......
CITATION: 178B --- Accuracy (pg. 27 6.3.2b)

16. Concerning setting of AE_CMD from INTERNAL_CMD (pg. 11)
Typo in second branch of all 3 "If" statements; should read: "(INTERNAL_CMD(i)
<= 1)"
CITATION: 178B --- Non-Ambiguity (pg. 27 6.3.2b)

C-95

CRCP (P-Spec 3.3)

17. Limit checking (pg. 1)

Limits checking is not necessary for CHUTE_RELEASED and AE_TEMP.
CITATION: Spec. --- Exception Condition (pg. 16)

18. Local variable definition (pg. 1)
Defining the local variable "hot" as an "int*2" is more accurate but does not agree with the
Requirements.
CITATION: 178B --- Non-Ambiguity (pg. 27 6.3.2b). See also Data Dictionary citation for
AE_TEMP

19. Concerning the variable assignment (pg. 1)

Typo in assignment for CHUTE_RELEASED.
CITATION: 178B --- Non-Ambiguity (pg. 27 6.3.2b)

Data Dictionary

Open Issue: The Specification does not give the required accuracy for many data elements. Hence this
field is also "TBD" in many instances in the Design Data Dictionary. Will this be determined
before coding, before testing, or left to the programmer and tester's discretion?

CITATION: 178B --- Verifiability (pg. 27 6.3.1d)

AE_TEMP This element is specified as a "LOGICAL-1". In general, logical variables can have only 2

values, but this one has more. An enumerated type is more correct. The Requirements
Data Dictionary also has this defined as a LOGICAL-1

CITATION: 178B --- Non-Ambiguity (pg. 27 6.3.1b & 6.3.2b)

CL Question: Should the range for this data element correspond with the TeamWork usage?
CITATION: 178B --- Non-Ambiguity (pg. 27 6.3.2b)

CONTOUR_CROSSED Typo in DESCRIPTION field: "velocity_altitude" should be "velocity-contour"
CITATION: 178B --- Non-Ambiguity (pg. 27 6.3.2b)

DROP_HEIGHT Typo in ACCURACY field: extra period

G1 Typo in UNITS field: should be "(meters/sec^2)/(degree_C)"
CITATION: Compliance (pg. 27 6.3.2a)

G2 Typo in UNITS field: should be "(meters/sec^2)/degree_C^2"
CITATION: Compliance (pg. 27 6.3.2a)

GVEI Typo in UNITS field: unit should be "/sec^2"
CITATION: Compliance (pg. 27 6.3.2a)

K_MATRIX Typo in ACCURACY field: does not agree with Specification. Spec. has "N/A".
CITATION: Compliance (pg. 27 6.3.2a)

TDLR_ANGLES Typo in DESCRIPTION: the "y" should be "gamma"
CITATION: 178B --- Non-Ambiguity (pg. 27 6.3.2b)
Typo in RANGE field: PI/2 should be excluded from the range according to the Spec.
CITATION: Compliance (pg. 27 6.3.2a)

TE_DROP Format error in DESCRIPTION field: missing last part of explanation

C-96

C.3 Pluto Code Review

Attendees: Kelly Hayhurst (SQA representative/Moderator)
 Patrick Quach (Verification Analyst/Recorder, Inspector)
 Philip Morris (Programmer/Reader, Inspector)
 Bernice Becher (System Analyst/Inspector)

C.3.1 Review Notes from Code Review

Pluto Code Review

Session 1: 11/16/94 9:30 a.m. - 11:30 p.m.

Reviewed Comments on Design before examining Code

Design Issues

B-1 -- “RETURNS” should be removed from the design

B-18 -- need to correct statement about data and control flows

 Need to include balance report as part of design documentation

B-2, B-3W -- P-Spec ASP: problem with computing standard deviation and comments about it
 --> Related to Spec Mod 2.3-4.2

B-15 -- P-Spec CP: problem with type of SUBFRAME_T

B-18 -- P-Spec CP: problem with GP_ROTATION and GP_VELOCITY -- they need subscripts

 P-Spec CP: typos, need] instead of) on page 7 of data packet stuff

B-17 -- P-Spec CP: need to define specify order for next_byte (not a code problem)

B-7 -- P-Spec GP: problem with equations of att_k2, vel_k2, alt_k2 and ... att_k3, vel_k3, alt_k3
 --> Problem is also in Code -- see B-42 in code review log

B-8 -- P-Spec GP: extra range check after END_P_SPEC

B-11, B-4, P-12 -- P-Spec GP: need to comment a “where” statement

B-6 -- Data Dictionary: problem with attribute of “data condition” for several variables (not a

code problem)

B-14 -- Data Dictionary: CHUTE_RELEASED -- should be in the EXTERNAL data store
 --> Related to Spec Mod 2.3-4 (should have been corrected in PR #20)
-------------------------------- END OF SESSION 1 -------------------------------------

C-97

Session 2: 11/16/94 1:00 p.m. - 3:00 p.m.

Code Issues:

B-36 -- ADD TO DEVELOPMENT STANDARDS: require P-Spec numbers in part of module

headers

B-35, B-36 -- floating point constants should all be double precision to avoid precision problems

B-56 -- DEVELOPMENT STANDARDS Bernice would like the list of arguments in the module

header to include whether each argument is on input, output, or both

B-58 -- might want to consider deleting the requirement to note configuration date in the

Development Standards

B-30 -- EXTERNAL.FOR: problem with clp_data_t -- data type is incorrect
 --> SEE SPEC MOD 2.3-2 ?

NOTE: Want to require that inspection logs have all items uniquely ordered (to make notes

easier to follow)

B-32 -- PLUTO.FOR -- check for termination should be done after subframe 3 -- not subframe 2
 --> see Spec Mod 2.3-2.1

B-33 -- PLUTO.FOR: “go to 100” -- no unconditional gotos (this one is not justified)

B-34 -- AECLP.FOR -- need to check for divide-by-zero for OMEGA (both design and code need

change)

NOTE: Require that listing file be turned in for review sessions

B-40 -- CRC16.FOR: generator polynomial is not correct -- chould also note that the bits are

reversed

B-57 -- CRC16.FOR: in module header -- should say that it is returning checksum

B-41 -- GP: when calling mult_vel -- should be sending vel_k1 ... not att_k1

B-43 -- GP: the last argument for deriv_vel is incorrect

B-44 -- GP: unconditional go tos -- not justified

B-45, P-11 -- GP: problem with relational operator -- “.GE.” is not correct (design is correct)

 Need range check for VELOCITY_ERROR in code (design is correct)

B-46, B-50 -- go to is okay -- but need safety net -- same as in TDLRSP

B-47 -- problem with EQUIVALENCE statement and the variables pv, qv, rv -- problem is in

both DERIV_ATT and DERIV_VEL

C-98

P-8 -- MULT_ATT: problem in matrix multiplication

B-51 -- TDLRSP: missing go to statement

P-6 -- GSP: “counter” is mistyped -- it should be an integer

B-52 -- LOWER_PARABOLIC_FUNCTION.FOR -- problem in calculation of

LOWER_PARABOLIC_FUNCTION -- term “M3 + half_slope” is incorrect (design is
okay)

B-53 -- UPPER_PARABOLIC_FUNCTION: problem in calculation of upper parabolic function

B-55 -- UTILITY.FOR: problem with format statement 30

P-2 -- CONSTANTS.FOR -- AE_TEMP is mistyped --
 --> See Spec Mod

C-99

C.3.2 Review Logs from Code Review

Review Log from System Analyst

Individual Inspection Preparation Log #1 (Page 1)

Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

PLUTO DESIGN LOG III

GENERAL ISSUES

1 "Return" in P-Specs
Several of the P-Specs contain a "return" before the "END P_SPEC". Since "return" is
purely a coding function, it is not appropriate in a P-Spec and in addition accomplishes
no function with respect to how the inputs of the process are converted to its outputs.
The processes which contain "return" are:

+CRCP (added since design review but not mentioned in action item 16)
+AECLP (added since design review but not mentioned in action item 16)
*ASP
*ARSP *TDLRSP
*GSP *TDSP
*RECLP *TSP
*GP (4 separate returns)

*=remains in from before design review
+=was added since design review

 *Requirement: traceability

INTRODUCTION

13N It is difficult to refer to text because the pages of the introduction are not numbered.
 *Requirement: modifiability

5W Section 1.3, Design Syntax Specifications, fourth paragraph.

It does not seem that the indirection symbol and Modula-2 record syntax were really
needed, when the FORTRAN record structure syntax would have been adequate (and in
fact was used in the code). It seems that the indirection added an unnecessary level of
complication in the design, and was not used at all in the code.

 *Requirement: traceability

18 Section 2.2, Data and Control Flows, fifth paragraph:

"...the consequence of this action will result in approximately 80 data flows requiring off-
page connections..."

C-100

Individual Inspection Preparation Log #1 (Page 2)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

It is not clear that this statement is entirely correct. It would seem that approximately 18
group-flows would be required, and they would not need to be off-page connectors.
Perhaps a statement saying that the number of data flows would increase would be more
accurate.

 *Requirement: accuracy

STRUCTURED ANALYSIS CHARTS

9 PAT 0

• There is an empty input cell under the heading GP_PHASE. There should either be
an entry in this cell or some explanation as to the meaning of an empty cell.

 *Requirement: nonambiguity

• There is no explanation for what will happen in terms of activation when GP_PHASE
has not yet been defined, which is the case before the first activation of
GCS_SIM_RENDEZVOUS.

 *Requirement: nonambiguity

• The statement " "GP_PHASE" is initialized to "1" during initialization" is not correct.
It is possible that it might be initialized to any value from 1 to 5. The specification states
that it will be initialized but does not state the initial value.

 *Requirement: accuracy

19I Teamwork Balancing Report

Should a balancing report be included in the design document?
 *Requirement: completeness

P-SPECS

ASP(1.3)

2 Page 4, comment at bottom of page:
 "identical values" should be "identical or nearly identical values"
 *Requirement: accuracy
 *Requirement: completeness

3W Calculation of standard deviation (sd)
 Design, Page 4, bottom, and page 5: :

The specification has been modified (mod 2.3-4.2) to give a formula for the standard
deviation which cannot yield a negative square root. This design does not use the new
formula and hence can produce a negative square root, for which a check is being
made. The negative square root problem could be eliminated and there would be no
need for a square root check if the formula in the Specification were used. Is the design
OK as stands?

(affected code: lines 831 through 837
 *Requirement: specification

C-101

Individual Inspection Preparation Log #1 (Page 3)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

CP (1.8)

15 Page 5, bottom of page: (not a code problem)

"type subframe_t = (subframe_t, gp_data_t, clp_data_t)"
Problem: "subframe_t" ,on the right hand side of the assignment, is incorrect.

 *Requirement: accuracy
 *Requirement: specification

18 Page 8, top

In each of the assignment statements for GP_ROTATION and GP_VELOCITY, there is
no subscript on the left hand side.

 *Requirement: nonambiguity
 *Requirement: specification

17 Page 9, bottom:

"do for each byte in the message next_byte"

"next_byte" is ambiguous in that it doesn't specify the order, i.e., first-to-last byte or vice
versa.(not a code problem) (was #402)

 *Requirement: nonambiguity

GP(2.2)

7 Page 6, top :

In each of the equations for att_k2, vel_k2, alt_k2, att_k3, vel_k3, and alt_k3, the right
parenthesis preceding the term "/2" is not in the correct place., and thus the attitude,
velocity, and altitude arguments for the derivative routines are not correct.

 *Requirement: accuracy
 *Requirement: specification

8 Page 14, middle

A range check for altitude follows "END P_SPEC" but has already been done where
needed.

 *Requirement: translatability

10I Page 8, top and page 11, middle:
Is check for negative square root really necessary, given that a valid GP_ALTITUDE(0)
will be positive, and that GP_ALTITUDE(0) has been checked earlier and then not
changed.

C-102

Individual Inspection Preparation Log #1 (Page 4)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

11 Page 13, middle:

The following statements are comments and should be designated as such. In addition,
there is some confusion because they appear in the middle of an equation.
"where
 pv :=...

 rv :=... "

 *Requirement: nonambiguity

TDLRSP(1.5)

4 Page 7, bottom (previous #324):
 "where cos represents the cosine function"
 Problem: This statement has not been marked as a comment.
 *Requirement: nonambiguity

DATA DICTIONARY

6 (previous number: 346) (not a code problem)

There are several elements in the data dictionary whose ATTRIBUTE is listed as "data
condition". In fact, in the SA/SD charts, none of these is ever used as anything except a
data flow. These elements are:

 AE_SWITCH
 AE_TEMP
 CONTOUR_CROSSED
 RE_SWITCH
 TD_SENSED
 TDLR_STATE

 *Requirement: accuracy
 *Requirement: consistency
 *Requirement: nonambiguity

14 Element CHUTE_RELEASED (not a code problem)

The DATA STORE section says GUIDANCE_STATE, but according to Formal
Modification 3.2.4-4, it should be EXTERNAL. Problem Report 20 states this has been
changed, but it hasn't been.
This oversight causes one to wonder why there is not some type of error produced by
Teamwork, because now all the DFDs show CHUTE_RELEASED coming from and
going to EXTERNAL, while the data dictionary states that it is in GUIDANCE_STATE.

 *Requirement: accuracy
 *Requirement: consistency

C-103

Individual Inspection Preparation Log #1 (Page 5)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TYPOS

INTRODUCTION, Section 1.3, fourth paragraph:
 "previous chosen to signify" should be "previously chosen to signify"
ARSP (1.2), page 2, bottom
 "recieved" should be "received"

DATA DICTIONARY
 COMM_SYNC_PATTERN
 In the RANGE, "hexidecimal" should be "hexadecimal"

TDSP, page 1
 "hexidecimal" should be "hexadecimal"

Introduction, Section 2.3, Module Description, discussion about GP_VELOCITY:
 "oincide" should be "coincide"

Introduction, Section 2.3, Module Description, AECLP equations:

The entire discussion uses a Greek capital symbol for X double dot (acceleration), while
the very last equation for Q reverts to the small x for acceleration.

ARSP, page 2, bottom:
 "recieved" should be "received"

CP, page 2:
 In comments, "consist of" should be "consists of"

CP, page 3:
 Comment which gives total no of bytes for sensor processing, "127" should be "129"
CP, page 4:
 In comments, "returns and integer" should be "returns an integer"

GP, page 9:
 "Exapolation" should be ""Extrapolation" in two places
 "Exapolate" should be "Extrapolate"

GP, page 10:
 "range check the current altitude" should be "range check the VELOCITY_ERROR"

GP, page 11
 "GP_ALTITUDE[0] =<" should be "GP_ALTITUDE[0] <=" for consistency

C-104

Individual Inspection Preparation Log #1 (Page 1)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

PLUTO CODE LOG I

GENERAL ISSUES

36 All Modules
The correspondence between P-Specification number in the design and FORTRAN modules
is not given

 *Requirement: nonambiguity
 *Requirement: traceability
 *Requirement: completeness

37W Using enumeration of all combinations of subscripts vs. using DO loops:

In many cases where a rotation is to be done, or where range-checking is to be done for an
array, loops with variable indices are not used, but rather a separate assignment statement is
given for each element of the array. This cannot be considered an error; however, in the code
it is quite error-prone, difficult to verify, difficult to maintain in the case of changes to the
requirements, and involves many more lines of code than would otherwise be necessary. (see
e.g., GP, lines 728-888; TDLRSP, lines 711-764)

 *Requirement: verifiability
 *Requirement: modifiability

35W Constants

Many of the floating point constants used in the code have not been written in a format which
explicitly declares them as double precision constants. Whether this will cause a loss of
precision seems to depend on other factors such as the use of parentheses and the order in
which the operations are done. In some cases, it is clear from experience that there is
definitely a problem, and in some cases, there is the potential for a problem. Also, many of
the constants in floating point expressions are written without decimal points (which probably
will not cause a problem).
Some particular cases noticed are:

AECLP.FOR:
None of the constants from lines 974 through 978 is explicitly declared as double
precision. The one which is specifically in question in terms of possible precision
problems is "0.5".

ASP.FOR
Lines 818 and 837, constant is 3.0

GP.FOR

Lines 995, 1007, and 1017, constant is 6.0
Lines 993, 1006, 1017, constant is 2.0
Line 1086, constant is 1000.0

C-105

Individual Inspection Preparation Log #1 (Page 2)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

TDLRSP.FOR

Lines 925, 935, 948, 959, etc., constant is 2.0

TSP.FOR
Lines 738 AND 749, constant is 0.15

LOWER_PARABOLIC_FUNCTION.FOR

Line 178, constant is 2.0

UPPER_PARABOLIC_FUNCTION.FOR

Line 178, constant is 2.0

CONSTANTS.DAT
All of the upper and lower bounds.
K$THETA$UB and K$THETA$LB

 *Requirement: accuracy
 *Requirement: nonambiguity
 *Requirement: specification

56H Modules with Arguments:

The Software Standards state that each module should list its arguments, and the Pluto
modules do this. It would be very helpful if a comment would state for each argument
whether it is an input, output or both. The modules in question are:
CRC16, DERIV_ATT, DERIV_VEL, DERIV_ALT, MULT_ATT, MULT_VEL,
(AVG_ATT), (AVG_VEL), RANGE_CHECK, NEG_VALUE_CHECK, and
ZERO_CHECK.

 *Requirement: nonambiguity
 *Requirement: completeness

58 All Modules

The Software Standards state that each module header should include the "DATE FIRST
SUBMITTED FOR CONFIGURATION MANAGEMENT". The Pluto modules do not
appear to have this date, as 15-Sep-1994 is not the configuration management date, which
apparently is 26-Sep-1994.

 *Requirement: Software Standards

SPECIFIC PROBLEMS IN MODULES

30 EXTERNAL.FOR

Under "structure /clp_data_t/", the data type for ae_temp is incorrect.
 *Requirement: accuracy
 *Requirement: consistency

C-106

Individual Inspection Preparation Log #1 (Page 3)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

32 PLUTO.FOR

The check for whether to terminate is being done at the end of the second subframe.
Formal Modification 2.3-2.1 (Scheduling Section) states that this check should be done
"immediately after executing the Control Law Processing subframe".

 *Requirement: specification

33I PLUTO.FOR
The statement near the end of the loop, namely "go to 100" is an unconditional GO TO
which is not permitted according to the Software Standards.

 *Requirement: Software Standards

34 AECLP.FOR, between lines 895 and 897:

A divide-by-zero check is required for the variable OMEGA.
 *Requirement: specification

36 ARSP.FOR:

Line 746: The constant "3E08" is not explicitly double precision and may cause a loss of
precision.

 *Requirement: specification

38W CRC.FOR, lines 41 through 136

Warning: The "data" statements used to initialize the array "table" are very tedious to
check and the check may be prone to error.

 *Requirement: verifiability

40 CRC.FOR
In line 37, the hexadecimal constant given for the CRC-16 generator polynomial is not
correct.

 *Requirement: accuracy

57 CRC16
In the section "Returns", it states that CRC16 is "the CRC-16" of the specified message."
The "CRC-16 is a bit ambiguous, as it does not explicitly state it is the checksum or error
code.

 *Requirement: nonambiguity

41 GP.FOR

In line 909, the first argument , namely "att_k1", is incorrect.
 *Requirement: accuracy

C-107

Individual Inspection Preparation Log #1 (Page 4)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

42 GP.FOR

Lines 921 & 922, 925 & 926, 929, 939 & 940, 943 & 944, and 947 are not correct.

The subroutines avg_att and avg_vel are performing an incorrect function, and thus the
second argument for each derivative call is incorrect. These problems directly relate to
design problem #7

 *Requirement: accuracy
 *Requirement: traceability
 *Requirement: specification

43 GP.FOR

In line 970, the last argument for deriv_vel, namely "1", is not correct.
 *Requirement: accuracy
 *Requirement: traceability
 *Requirement: specification

44 GP.FOR

Lines 1095, 1114, 1132, 1156, 1203, 1224, and 1256 are unconditional "GO TOs, which
are prohibited by the Software Standards, and which also differ from the design p-spec.

 *Requirement:Software Standards

45 GP.FOR
In line 1178, the relational operator, namely ".GE.", is not correct.

 *Requirement: specification
 *Requirement: accuracy

46I GP.FOR

In line 1190, a computed GO TO (which is a variant of unconditional GO TO) is used. Is
this permitted?
If it is permitted, then a fall-through statement may be needed in the case where
GP_PHASE is not 1,2,3,4, or 5 (in which case no action should be taken as opposed to
the action for GP_PHASE = 1).

 *Requirement: accuracy
 *Requirement: traceability
 *Requirement: completeness
 *Requirement: specification

47 DERIV_ATT.FOR

In lines 72-74, it was intended that the variables pv, qv, and rv will yield the appropriate
values of G_ROTATION. The EQUIVALENCE statements do not accomplish what was
intended, and therefore, lines 78 through 88 will yield incorrect results.

 *Requirement: accuracy
 *Requirement: specification

C-108

Individual Inspection Preparation Log #1 (Page 5)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

47 DERIV_VEL.FOR
In lines 297-299, it was intended that the variables pv, qv, and rv will yield the
appropriate values of G_ROTATION. The EQUIVALENCE statements do not
accomplish what was intended, and therefore, lines 309, 316, AND 323 will yield
incorrect results.

 *Requirement: accuracy
 *Requirement: specification

48 AVG_ATT.FOR

This subroutine is performing a function which is not required at all. This problem is
related to design problem #7 and to code problem #42.

 *Requirement: traceability

49 AVG_VEL.FOR
This subroutine is performing a function which is not required at all. This problem is
related to design problem #7 and to code problem #42.

 *Requirement: traceability

50 TDLRSP.FOR

In lines 906 through 909, a computed GO TO is used. Is this permitted?
If it is permitted, then a fall-through statement may needed in the case where the
computed expression is less than 1 or greater than 15.

 *Requirement: accuracy
 *Requirement: traceability
 *Requirement: completeness
 *Requirement: specification

51 TDLRSP.FOR

Following line 963, there is no control statement, and so control will pass to line 967,
which is not correct.

 *Requirement: accuracy
 *Requirement: traceability
 *Requirement: specification

52 LOWER_PARABOLIC_FUNCTION.FOR

In line 181, the addition operator in the term "...M3 + half_slope..." is incorrect.
 *Requirement: accuracy
 *Requirement: specification

53 UPPER_PARABOLIC_FUNCTION.FOR

In line 181, both arithmetic operators immediately preceding "half_slope" (namely "-"
and then "+") are incorrect.

 *Requirement: accuracy
 *Requirement: specification

C-109

Individual Inspection Preparation Log #1 (Page 6)
Name:________ Bernice Becher____ Date Log Submitted: 11/15/94
Implementation:___Pluto ___________ Date of Inspection 11/16/94
Role:___________ Inspector_________

Defects/Clarity Problems/Concerns

54I UTILITY.FOR (subroutine RANGE_CHECK)

The specification states to "...display the name of the data element in question"...
In the case of an array, this implementation displays the name of the array, but not the
subscript(s) of the element in question. Two issues arise: Should it be required that the
subscripts be displayed? Should the specification be reworded?

 *Requirement: completeness

55 UTILITY.FOR (subroutines RANGE_CHECK, NEG_VALUE_CHECK, and
ZERO_CHECK)
In each of the three subroutines, FORMAT statement 30 is missing "x," immediately
before the "I4".

 *Requirement: accuracy
 *Requirement: specification

TYPOS

EXTERNAL.FOR
 Heading: "Originial" should be "Original"

ASP.FOR, page 6, comment on line 970:
 "convertion" should be "conversion"

GP.FOR, page 9, lines 1125, 1141, and 1149:
 "exapolat..." should be "extrapolat..."

C-110

Review Log from Verification Analyst

The following are deficiencies discovered in the Pluto code during the code review process. The
list is organized by file name and in alphabetical order.

Reviewer: Cuong C. Quach

ARSP.FOR

1) Typo in the comment for step 3 C). ..
 "...mostly recently..."
 Citation: Typographical error.

CONSTANTS.FOR

1) AE_TEMP constants are of incorrect type. Should be Integer*2, not Logical*1
 Citation: Specification not followed.

CP.FOR
1) The variable name "PACKET.DATA_MASK" used to build the packet for subframe 1 is

typographically different from the same variable used to build the packet for the other two
subframes.

 Citation: Coding clarity is compromised.

2) The assignment of the sequence field directly from the MOD intrinsic function is

erroneous. The MOD function returns a integer quantity but its assigned to a logical.
 Citation: Fortran syntax violated.

EXTERNAL.FOR
1) In the structure declaration for "clp_data_t", the element ae_temp is not declared correctly

according to the Specification.
 Citation: Specification not followed.

GSP.FOR
1) The local variable "counter" is typed as a "real*8" when it should be an "integer*2"
 Citation: Specification not followed.

TDLRSP.FOR
1) In the table look-up scheme for obtaining beam velocities. The initial computation is offset

by 1. This would cause selection of beam processing not to agree with the specification.
 Citation: Specification not followed.

C-111

GP.FOR
1) In the MULT_ATT subroutine, the second index, of the array element to be multiplied with

the "factor", is incorrect for the following elements
 att(1,2)
 att(1,3)
 att(2,2)
 att(2,3)
 att(3,2)
 att(3,3)
 Citation: Specification not followed as a result of typographical error.

2) In the DERIV_VEL subroutine, the index for "temp(1)" is incorrect for the following

statements:
 temp(1) = TDLR_VELOCITY(2,index) - vel(2)
 temp(1) = TDLR_VELOCITY(3,index) - vel(3)
 Citation: Specification not followed as a result of typographical error.

3) In GP, at step 4 of the RK-method where vel_k4 is calculated, the wrong history index is

passed into the "deriv_vel" derivative routine.
 Citation: Specification not followed as a result of typographical error.

4) In step 5 - determining if contour-altitude has been crossed, the first if comparison should

be ".LE."
 Citation: Specification not followed.

PLUTO.FOR
1) The third subframe is not executed when GP_PHASE =5. this is incorrect.
 Citation: Specification not followed.

D-1

Appendix D: Test Results Logs for the Pluto Implementation of the Guidance
and Control Software

Author: Cuong C. Quach, NASA Langley Research Center

This document was produced as part of Guidance and Control Software (GCS) Project conducted at
NASA Langley Research Center. Although some of the requirements for the Guidance and Control
Software application were derived from the NASA Viking Mission to Mars, this document does not
contain data from an actual NASA mission.

D-2

D. Contents

D.1 PLUTO TEST CASE RESULTS LOG FOR AECLP ... D-3
D.2 PLUTO TEST CASE RESULTS LOG FOR ARSP .. D-8
D.3 PLUTO TEST CASE RESULTS LOG FOR ASP... D-10
D.4 PLUTO TEST CASE RESULTS LOG FOR CP ... D-14
D.5 PLUTO TEST CASE RESULTS LOG FOR CRCP ... D-15
D.6 PLUTO TEST CASE RESULTS LOG FOR GP... D-16
D.7 PLUTO TEST CASE RESULTS LOG FOR GSP... D-27
D.8 PLUTO TEST CASE RESULTS LOG FOR RECLP ... D-28
D.9 PLUTO TEST CASE RESULTS LOG FOR TDLRSP... D-33
D.10 PLUTO TEST CASE RESULTS LOG FOR TDSP .. D-36
D.11 PLUTO TEST CASE RESULTS LOG FOR TSP ... D-37
D.12 PLUTO TEST CASE RESULTS LOG FOR SP SUBFRAME... D-38
D.13 PLUTO TEST CASE RESULTS LOG FOR GP SUBFRAME.. D-38
D.14 PLUTO TEST CASE RESULTS LOG FOR CLP SUBFRAME ... D-39
D.15 PLUTO TEST CASE RESULTS LOG FOR FRAME.. D-40
D.16 PLUTO TEST CASE RESULTS LOG FOR TRAJECTORY ... D-41

D-3

D.1 Pluto Test Case Results Log for AECLP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

AECLP_NR_001 1/5/95 12/21/94 12/21/94 N
AECLP_NR_002 N
AECLP_NR_003 N
AECLP_NR_004 N
AECLP_NR_005 N
AECLP_NR_006 N
AECLP_NR_007 N
AECLP_NR_008 N
AECLP_NR_009 N
AECLP_NR_010 N
AECLP_NR_011 N
AECLP_NR_012 N
AECLP_RO_013 N
AECLP_RO_014 N
AECLP_RO_015 N
AECLP_RO_016 N
AECLP_RO_017 N
AECLP_RO_018 N
AECLP_RO_019 N
AECLP_RO_020 N
AECLP_RO_021 N
AECLP_RO_022 N
AECLP_RO_023 N
AECLP_RO_024 N
AECLP_RO_025 N
AECLP_RO_026 N
AECLP_RO_027 N
AECLP_RO_028 N
AECLP_RO_029 N
AECLP_RO_030 N
AECLP_RO_031 N
AECLP_RO_032 N
AECLP_RO_033 N
AECLP_RO_034 N
AECLP_RO_035 N
AECLP_RO_036 N

D-4

AECLP_RO_037 N
AECLP_RO_038 N
AECLP_RO_039 N
AECLP_RO_040 N
AECLP_RO_041 N
AECLP_RO_042 N
AECLP_RO_043 N
AECLP_RO_044 N
AECLP_RO_045 N
AECLP_RO_046 N
AECLP_RO_047 N
AECLP_RO_048 N
AECLP_RO_049 N
AECLP_RO_050 N
AECLP_RO_051 N
AECLP_RO_052 N
AECLP_RO_053 N
AECLP_NR_054 N
AECLP_NR_055 N
AECLP_RO_056 N
AECLP_RO_057 N
AECLP_NR_001 1/18/95 12/21/94 12/21/94 N*
AECLP_NR_002 N*
AECLP_NR_003 N*
AECLP_NR_004 N*
AECLP_NR_005 N*
AECLP_NR_006 N*
AECLP_NR_007 N*
AECLP_NR_008 N*
AECLP_NR_009 N*
AECLP_NR_010 N*
AECLP_NR_011 N*
AECLP_NR_012 N*
AECLP_RO_013 N*
AECLP_RO_014 N*
AECLP_RO_015 N*
AECLP_RO_016 N*
AECLP_RO_017 N*
AECLP_RO_018 N*
AECLP_RO_019 N*
AECLP_RO_020 N*
AECLP_RO_021 N*

D-5

AECLP_RO_022 N*
AECLP_RO_023 N*
AECLP_RO_024 N*
AECLP_RO_025 N*
AECLP_RO_026 N*
AECLP_RO_027 N*
AECLP_RO_028 N*
AECLP_RO_029 N*
AECLP_RO_030 N*
AECLP_RO_031 N*
AECLP_RO_032 N*
AECLP_RO_033 N*
AECLP_RO_034 N*
AECLP_RO_035 N*
AECLP_RO_036 N*
AECLP_RO_037 N*
AECLP_RO_038 N*
AECLP_RO_039 N*
AECLP_RO_040 N*
AECLP_RO_041 N*
AECLP_RO_042 N*
AECLP_RO_043 N*
AECLP_RO_044 N*
AECLP_RO_045 N*
AECLP_RO_046 N*
AECLP_RO_047 N*
AECLP_RO_048 N*
AECLP_RO_049 N*
AECLP_RO_050 N*
AECLP_RO_051 N*
AECLP_RO_052 N*
AECLP_RO_053 N*
AECLP_NR_054 N*
AECLP_NR_055 N*
AECLP_RO_056 N*
AECLP_RO_057 N*
AECLP_NR_001 4/7/95 4/6/95 4/7/95 N
AECLP_NR_002 N
AECLP_NR_003 N
AECLP_NR_004 N
AECLP_NR_005 N

D-6

AECLP_NR_006 N
AECLP_NR_007 N
AECLP_NR_008 N
AECLP_NR_009 N
AECLP_NR_010 N
AECLP_NR_011 N
AECLP_NR_012 N
AECLP_RO_013 N
AECLP_RO_014 N
AECLP_RO_015 N
AECLP_RO_016 N
AECLP_RO_017 N
AECLP_RO_018 N
AECLP_RO_019 N
AECLP_RO_020 N
AECLP_RO_021 N
AECLP_RO_022 N
AECLP_RO_023 N
AECLP_RO_024 N
AECLP_RO_025 N
AECLP_RO_026 N
AECLP_RO_027 N
AECLP_RO_028 N
AECLP_RO_029 N
AECLP_RO_030 N
AECLP_RO_031 N
AECLP_RO_032 N
AECLP_RO_033 N
AECLP_RO_034 N
AECLP_RO_035 N
AECLP_RO_036 N
AECLP_RO_037 N
AECLP_RO_038 N
AECLP_RO_039 N
AECLP_RO_040 N
AECLP_RO_041 N
AECLP_RO_042 N
AECLP_RO_043 N
AECLP_RO_044 N
AECLP_RO_045 N
AECLP_RO_046 N
AECLP_RO_047 N

D-7

AECLP_RO_048 N
AECLP_RO_049 N
AECLP_RO_050 N
AECLP_RO_051 N
AECLP_RO_052 N
AECLP_RO_053 N
AECLP_NR_054 N
AECLP_NR_055 N
AECLP_RO_056 N
AECLP_RO_057 N

*: These test cases had to be re-executed because the include file CONSTANTS.FOR was changed in PR#24.

D-8

D.2 Pluto Test Case Results Log for ARSP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

ARSP_RO_001.TC 1/5/95 12/21/94 12/21/94 N
ARSP_RO_002.TC N
ARSP_RO_003.TC N
ARSP_RO_004.TC N
ARSP_RO_005.TC N
ARSP_RO_006.TC N
ARSP_RO_007.TC N
ARSP_RO_008.TC N
ARSP_RO_009.TC N
ARSP_RO_010.TC N
ARSP_NR_011.TC N
ARSP_NR_012.TC N
ARSP_NR_013.TC N
ARSP_NR_014.TC N
ARSP_NR_015.TC N
ARSP_NR_016.TC N
ARSP_NR_017.TC Y 24
ARSP_RO_018.TC N
ARSP_RO_019.TC N
ARSP_RO_020.TC N
ARSP_RO_021.TC N
ARSP_NR_022.TC Y 24
ARSP_NR_023.TC Y 24
ARSP_RO_001.TC 1/13/95 1/13/95 12/21/94 N
ARSP_RO_002.TC N
ARSP_RO_003.TC N
ARSP_RO_004.TC N
ARSP_RO_005.TC N
ARSP_RO_006.TC N
ARSP_RO_007.TC N
ARSP_RO_008.TC N
ARSP_RO_009.TC N
ARSP_RO_010.TC N
ARSP_NR_011.TC N
ARSP_NR_012.TC N
ARSP_NR_013.TC N
ARSP_NR_014.TC N
ARSP_NR_015.TC N

D-9

ARSP_NR_016.TC N
ARSP_NR_017.TC N
ARSP_RO_018.TC N
ARSP_RO_019.TC N
ARSP_RO_020.TC N
ARSP_RO_021.TC N
ARSP_NR_022.TC N
ARSP_NR_023.TC N
ARSP_RO_001.TC 4/7/95 4/6/95 4/6/95 N
ARSP_RO_002.TC N
ARSP_RO_003.TC N
ARSP_RO_004.TC N
ARSP_RO_005.TC N
ARSP_RO_006.TC N
ARSP_RO_007.TC N
ARSP_RO_008.TC N
ARSP_RO_009.TC N
ARSP_RO_010.TC N
ARSP_NR_011.TC N
ARSP_NR_012.TC N
ARSP_NR_013.TC N
ARSP_NR_014.TC N
ARSP_NR_015.TC N
ARSP_NR_016.TC N
ARSP_NR_017.TC N
ARSP_RO_018.TC N
ARSP_RO_019.TC N
ARSP_RO_020.TC N
ARSP_RO_021.TC N
ARSP_NR_022.TC N
ARSP_NR_023.TC N

D-10

D.3 Pluto Test Case Results Log for ASP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

ASP_NR_001.TC 1/5/95 12/21/94 12/21/94 N
ASP_NR_002.TC N
ASP_NR_003.TC N
ASP_NR_004.TC N
ASP_NR_005.TC N
ASP_NR_006.TC N
ASP_NR_007.TC N
ASP_RO_008.TC N
ASP_RO_009.TC N
ASP_RO_010.TC N
ASP_RO_011.TC N
ASP_RO_012.TC N
ASP_RO_013.TC N
ASP_RO_014.TC N
ASP_RO_015.TC N
ASP_NR_016.TC N
ASP_RO_017.TC N
ASP_RO_018.TC N
ASP_RO_019.TC N
ASP_RO_020.TC N
ASP_RO_021.TC N
ASP_RO_022.TC N
ASP_RO_023.TC N
ASP_RO_024.TC N
ASP_RO_025.TC N
ASP_RO_026.TC N
ASP_RO_027.TC N
ASP_RO_028.TC N
ASP_RO_029.TC N
ASP_RO_030.TC N
ASP_RO_031.TC N
ASP_RO_032.TC N
ASP_RO_033.TC N
ASP_RO_034.TC N
ASP_RO_035.TC N
ASP_RO_036.TC N
ASP_RO_037.TC N
ASP_RO_038.TC N

D-11

ASP_RO_039.TC N
ASP_RO_040.TC N
ASP_RO_041.TC N
ASP_RO_042.TC N
ASP_RO_043.TC N
ASP_RO_044.TC N
ASP_NR_001.TC 1/17/95 12/21/94 12/21/94 N*
ASP_NR_002.TC N*
ASP_NR_003.TC N*
ASP_NR_004.TC N*
ASP_NR_005.TC N*
ASP_NR_006.TC N*
ASP_NR_007.TC N*
ASP_RO_008.TC N*
ASP_RO_009.TC N*
ASP_RO_010.TC N*
ASP_RO_011.TC N*
ASP_RO_012.TC N*
ASP_RO_013.TC N*
ASP_RO_014.TC N*
ASP_RO_015.TC N*
ASP_NR_016.TC N*
ASP_RO_017.TC N*
ASP_RO_018.TC N*
ASP_RO_019.TC N*
ASP_RO_020.TC N*
ASP_RO_021.TC N*
ASP_RO_022.TC N*
ASP_RO_023.TC N*
ASP_RO_024.TC N*
ASP_RO_025.TC N*
ASP_RO_026.TC N*
ASP_RO_027.TC N*
ASP_RO_028.TC N*
ASP_RO_029.TC N*
ASP_RO_030.TC N*
ASP_RO_031.TC N*
ASP_RO_032.TC N*
ASP_RO_033.TC N*
ASP_RO_034.TC N*
ASP_RO_035.TC N*
ASP_RO_036.TC N*
ASP_RO_037.TC N*
ASP_RO_038.TC N*

D-12

ASP_RO_039.TC N*
ASP_RO_040.TC N*
ASP_RO_041.TC N*
ASP_RO_042.TC N*
ASP_RO_043.TC N*
ASP_RO_044.TC N*
ASP_NR_001.TC 4/7/95 4/6/95 4/6/95 N
ASP_NR_002.TC N
ASP_NR_003.TC N
ASP_NR_004.TC N
ASP_NR_005.TC N
ASP_NR_006.TC N
ASP_NR_007.TC N
ASP_RO_008.TC N
ASP_RO_009.TC N
ASP_RO_010.TC N
ASP_RO_011.TC N
ASP_RO_012.TC N
ASP_RO_013.TC N
ASP_RO_014.TC N
ASP_RO_015.TC N
ASP_NR_016.TC N
ASP_RO_017.TC N
ASP_RO_018.TC N
ASP_RO_019.TC N
ASP_RO_020.TC N
ASP_RO_021.TC N
ASP_RO_022.TC N
ASP_RO_023.TC N
ASP_RO_024.TC N
ASP_RO_025.TC N
ASP_RO_026.TC N
ASP_RO_027.TC N
ASP_RO_028.TC N
ASP_RO_029.TC N
ASP_RO_030.TC N
ASP_RO_031.TC N
ASP_RO_032.TC N
ASP_RO_033.TC N
ASP_RO_034.TC N
ASP_RO_035.TC N
ASP_RO_036.TC N
ASP_RO_037.TC N
ASP_RO_038.TC N

D-13

ASP_RO_039.TC N
ASP_RO_040.TC N
ASP_RO_041.TC N
ASP_RO_042.TC N
ASP_RO_043.TC N
ASP_RO_044.TC N

*: These test cases had to be re-executed because the include file CONSTANTS.FOR was changed in PR#24.

D-14

D.4 Pluto Test Case Results Log for CP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

CP_NR_001.TC 1/12/95 12/28/94 1/12/95 Y 25
CP_NR_002.TC Y 25
CP_NR_003.TC Y 25
CP_NR_004.TC Y 25
CP_NR_005.TC Y 25
CP_NR_001.TC 1/19/95 1/19/95 1/12/95 N
CP_NR_002.TC N
CP_NR_003.TC N
CP_NR_004.TC N
CP_NR_005.TC N
CP_NR_001.TC 4/7/95 4/6/95 4/7/95 N
CP_NR_002.TC N
CP_NR_003.TC N
CP_NR_004.TC N
CP_NR_005.TC N

D-15

D.5 Pluto Test Case Results Log for CRCP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE
TEST CASE
FETCHED

RESULTS
(was .ANA file
generated Y or

N?)

PR #

CRCP_NR_001 1/5/95 12/21/94 12/21/94 N
CRCP_NR_002 N
CRCP_NR_003 N
CRCP_NR_004 N
CRCP_NR_005 N
CRCP_NR_006 N
CRCP_RO_007 N
CRCP_RO_008 N
CRCP_RO_009 N
CRCP_RO_010 N
CRCP_NR_001 1/17/95 12/21/94 12/21/94 N*
CRCP_NR_002 N*
CRCP_NR_003 N*
CRCP_NR_004 N*
CRCP_NR_005 N*
CRCP_NR_006 N*
CRCP_RO_007 N*
CRCP_RO_008 N*
CRCP_RO_009 N*
CRCP_RO_010 N*
CRCP_NR_001 4/7/95 4/6/94 4/7/94 N
CRCP_NR_002 N
CRCP_NR_003 N
CRCP_NR_004 N
CRCP_NR_005 N
CRCP_NR_006 N
CRCP_RO_007 N
CRCP_RO_008 N
CRCP_RO_009 N
CRCP_RO_010 N

*: These test cases had to be re-executed because the include file CONSTANTS.FOR was changed in PR#24.

D-16

D.6 Pluto Test Case Results Log for GP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

GP_NR_001 1/4/95 12/21/94 1/4/95 Y 24
GP_NR_002 Y 24
GP_NR_003 Y 24
GP_NR_004 Y 24
GP_NR_005 Y 24
GP_NR_006 Y 24
GP_NR_007 Y 24
GP_NR_008 Y 24
GP_RO_009 Y 24
GP_RO_010 Y 24
GP_RO_011 Y 24
GP_RO_012 Y 24
GP_RO_013 Y 24
GP_RO_014 Y 24
GP_RO_015 Y 24
GP_RO_016 Y 24
GP_RO_017 Y 24
GP_RO_018 Y 24
GP_RO_019 Y 24
GP_RO_020 Y 24
GP_RO_021 Y 24
GP_RO_022 Y 24
GP_RO_023 Y 24
GP_RO_024 Y 24
GP_RO_025 Y 24
GP_RO_026 Y 24
GP_RO_027 Y 24
GP_RO_028 Y 24
GP_RO_029 Y 24
GP_RO_030 Y 24
GP_RO_031 Y 24
GP_RO_032 Y 24
GP_RO_033 Y 24
GP_RO_034 Y 24
GP_RO_035 Y 24
GP_RO_036 Y 24
GP_RO_037 Y 24
GP_RO_038 Y 24

D-17

GP_RO_039 Y 24
GP_RO_040 Y 24
GP_RO_041 Y 24
GP_RO_042 Y 24
GP_RO_043 Y 24
GP_RO_044 Y 24
GP_RO_045 Y 24
GP_RO_046 Y 24
GP_RO_047 Y 24
GP_RO_048 Y 24
GP_RO_049 Y 24
GP_RO_050 Y 24
GP_RO_051 Y 24
GP_RO_052 Y 24
GP_NR_053 Y 24
GP_RO_054 Y 24
GP_RO_055 Y 24
GP_RO_056 Y 24
GP_RO_057 Y 24
GP_RO_058 Y 24
GP_RO_059 Y 24
GP_RO_060 Y 24
GP_RO_061 Y 24
GP_RO_062 Y 24
GP_RO_063 Y 24
GP_RO_064 Y 24
GP_RO_065 Y 24
GP_RO_066 Y 24
GP_RO_067 Y 24
GP_RO_068 Y 24
GP_RO_069 Y 24
GP_RO_070 Y 24
GP_RO_071 Y 24
GP_RO_072 Y 24
GP_RO_073 Y 24
GP_RO_074 Y 24
GP_RO_075 Y 24
GP_RO_076 Y 24
GP_RO_077 Y 24
GP_RO_078 Y 24
GP_RO_079 Y 24
GP_RO_080 Y 24
GP_RO_081 Y 24
GP_RO_082 Y 24

D-18

GP_RO_083 Y 24
GP_RO_084 Y 24
GP_RO_085 Y 24
GP_RO_086 Y 24
GP_RO_087 Y 24
GP_RO_088 Y 24
GP_RO_089 Y 24
GP_RO_090 Y 24
GP_RO_091 Y 24
GP_RO_092 Y 24
GP_RO_093 Y 24
GP_RO_094 Y 24
GP_RO_095 Y 24
GP_RO_096 Y 24
GP_RO_097 Y 24
GP_RO_098 Y 24
GP_RO_099 Y 24
GP_RO_100 Y 24
GP_RO_101 Y 24
GP_NR_102 Y 24
GP_NR_103 Y 24
GP_NR_104 Y 24
GP_NR_105 Y 24
GP_NR_106 Y 24
GP_RO_107 Y 24
GP_RO_108 Y 24
GP_RO_109 Y 24
GP_RO_110 Y 24
GP_RO_111 Y 24
GP_RO_112 Y 24
GP_RO_113 Y 24
GP_RO_114 Y 24
GP_RO_115 Y 24
GP_RO_116 Y 24
GP_NR_001 1/13/95 1/13/95 1/4/95+ N
GP_NR_002 1/13/95 1/13/95 12/21/94 N
GP_NR_003 N
GP_NR_004 N
GP_NR_005 N
GP_NR_006 N
GP_NR_007 N
GP_NR_008 N
GP_RO_009 N
GP_RO_010 N

D-19

GP_RO_011 N
GP_RO_012 N
GP_RO_013 N
GP_RO_014 N
GP_RO_015 N
GP_RO_016 N
GP_RO_017 N
GP_RO_018 N
GP_RO_019 N
GP_RO_020 N
GP_RO_021 N
GP_RO_022 N
GP_RO_023 N
GP_RO_024 N
GP_RO_025 N
GP_RO_026 N
GP_RO_027 N
GP_RO_028 N
GP_RO_029 N
GP_RO_030 N
GP_RO_031 N
GP_RO_032 N
GP_RO_033 N
GP_RO_034 N
GP_RO_035 N
GP_RO_036 N
GP_RO_037 N
GP_RO_038 N
GP_RO_039 N
GP_RO_040 N
GP_RO_041 N
GP_RO_042 N
GP_RO_043 N
GP_RO_044 N
GP_RO_045 N
GP_RO_046 N
GP_RO_047 N
GP_RO_048 N
GP_RO_049 N
GP_RO_050 N
GP_RO_051 N
GP_RO_052 N
GP_NR_053 N
GP_RO_054 N

D-20

GP_RO_055 N
GP_RO_056 N
GP_RO_057 N
GP_RO_058 N
GP_RO_059 N
GP_RO_060 N
GP_RO_061 N
GP_RO_062 N
GP_RO_063 N
GP_RO_064 N
GP_RO_065 N
GP_RO_066 N
GP_RO_067 N
GP_RO_068 N
GP_RO_069 N
GP_RO_070 N
GP_RO_071 N
GP_RO_072 N
GP_RO_073 N
GP_RO_074 N
GP_RO_075 N
GP_RO_076 N
GP_RO_077 N
GP_RO_078 N
GP_RO_079 N
GP_RO_080 N
GP_RO_081 N
GP_RO_082 N
GP_RO_083 N
GP_RO_084 N
GP_RO_085 N
GP_RO_086 N
GP_RO_087 N
GP_RO_088 N
GP_RO_089 N
GP_RO_090 N
GP_RO_091 N
GP_RO_092 N
GP_RO_093 N
GP_RO_094 N
GP_RO_095 N
GP_RO_096 N
GP_RO_097 N
GP_RO_098 N

D-21

GP_RO_099 N
GP_RO_100 N
GP_RO_101 N
GP_NR_102 N
GP_NR_103 N
GP_NR_104 N
GP_NR_105 N
GP_NR_106 N
GP_RO_107 N
GP_RO_108 N
GP_RO_109 N
GP_RO_110 N
GP_RO_111 N
GP_RO_112 N
GP_RO_113 N
GP_RO_114 N
GP_RO_115 N
GP_RO_116 N
GP_NR_001 3/1/95 1/13/95 3/1/95 N
GP_NR_002 N
GP_NR_003 N
GP_NR_004 N
GP_NR_005 N
GP_NR_006 N
GP_NR_007 N
GP_NR_008 N
GP_RO_009 N
GP_RO_010 N
GP_RO_011 N
GP_RO_012 N
GP_RO_013 N
GP_RO_014 N
GP_RO_015 N
GP_RO_016 N
GP_RO_017 N
GP_RO_018 N
GP_RO_019 N
GP_RO_020 N
GP_RO_021 N
GP_RO_022 N
GP_RO_023 N
GP_RO_024 N
GP_RO_025 N
GP_RO_026 N

D-22

GP_RO_027 N
GP_RO_028 N
GP_RO_029 N
GP_RO_030 N
GP_RO_031 N
GP_RO_032 N
GP_RO_033 N
GP_RO_034 N
GP_RO_035 N
GP_RO_036 N
GP_RO_037 N
GP_RO_038 N
GP_RO_039 N
GP_RO_040 N
GP_RO_041 N
GP_RO_042 N
GP_RO_043 N
GP_RO_044 N
GP_RO_045 N
GP_RO_046 N
GP_RO_047 N
GP_RO_048 N
GP_RO_049 N
GP_RO_050 N
GP_RO_051 N
GP_RO_052 N
GP_NR_053 N
GP_RO_054 N
GP_RO_055 N
GP_RO_056 N
GP_RO_057 N
GP_RO_058 N
GP_RO_059 N
GP_RO_060 N
GP_RO_061 N
GP_RO_062 N
GP_RO_063 N
GP_RO_064 N
GP_RO_065 N
GP_RO_066 N
GP_RO_067 N
GP_RO_068 N
GP_RO_069 N
GP_RO_070 N

D-23

GP_RO_071 N
GP_RO_072 N
GP_RO_073 N
GP_RO_074 N
GP_RO_075 N
GP_RO_076 N
GP_RO_077 N
GP_RO_078 N
GP_RO_079 N
GP_RO_080 N
GP_RO_081 N
GP_RO_082 N
GP_RO_083 N
GP_RO_084 N
GP_RO_085 N
GP_RO_086 N
GP_RO_087 N
GP_RO_088 N
GP_RO_089 N
GP_RO_090 N
GP_RO_091 N
GP_RO_092 N
GP_RO_093 N
GP_RO_094 N
GP_RO_095 N
GP_RO_096 N
GP_RO_097 N
GP_RO_098 N
GP_RO_099 N
GP_RO_100 N
GP_RO_101 N
GP_NR_102 N
GP_NR_103 N
GP_NR_104 N
GP_NR_105 N
GP_NR_106 N
GP_RO_107 N
GP_RO_108 N
GP_RO_109 N
GP_RO_110 N
GP_RO_111 N
GP_RO_112 N
GP_RO_113 N
GP_RO_114 N

D-24

GP_RO_115 N
GP_RO_116 N
GP_NR_001 4/795 4/6/95 4/7/95 N
GP_NR_002 N
GP_NR_003 N
GP_NR_004 N
GP_NR_005 N
GP_NR_006 N
GP_NR_007 N
GP_NR_008 N
GP_RO_009 N
GP_RO_010 N
GP_RO_011 N
GP_RO_012 N
GP_RO_013 N
GP_RO_014 N
GP_RO_015 N
GP_RO_016 N
GP_RO_017 N
GP_RO_018 N
GP_RO_019 N
GP_RO_020 N
GP_RO_021 N
GP_RO_022 N
GP_RO_023 N
GP_RO_024 N
GP_RO_025 N
GP_RO_026 N
GP_RO_027 N
GP_RO_028 N
GP_RO_029 N
GP_RO_030 N
GP_RO_031 N
GP_RO_032 N
GP_RO_033 N
GP_RO_034 N
GP_RO_035 N
GP_RO_036 N
GP_RO_037 N
GP_RO_038 N
GP_RO_039 N
GP_RO_040 N
GP_RO_041 N
GP_RO_042 N

D-25

GP_RO_043 N
GP_RO_044 N
GP_RO_045 N
GP_RO_046 N
GP_RO_047 N
GP_RO_048 N
GP_RO_049 N
GP_RO_050 N
GP_RO_051 N
GP_RO_052 N
GP_NR_053 N
GP_RO_054 N
GP_RO_055 N
GP_RO_056 N
GP_RO_057 N
GP_RO_058 N
GP_RO_059 N
GP_RO_060 N
GP_RO_061 N
GP_RO_062 N
GP_RO_063 N
GP_RO_064 N
GP_RO_065 N
GP_RO_066 N
GP_RO_067 N
GP_RO_068 N
GP_RO_069 N
GP_RO_070 N
GP_RO_071 N
GP_RO_072 N
GP_RO_073 N
GP_RO_074 N
GP_RO_075 N
GP_RO_076 N
GP_RO_077 N
GP_RO_078 N
GP_RO_079 N
GP_RO_080 N
GP_RO_081 N
GP_RO_082 N
GP_RO_083 N
GP_RO_084 N
GP_RO_085 N
GP_RO_086 N

D-26

GP_RO_087 N
GP_RO_088 N
GP_RO_089 N
GP_RO_090 N
GP_RO_091 N
GP_RO_092 N
GP_RO_093 N
GP_RO_094 N
GP_RO_095 N
GP_RO_096 N
GP_RO_097 N
GP_RO_098 N
GP_RO_099 N
GP_RO_100 N
GP_RO_101 N
GP_NR_102 N
GP_NR_103 N
GP_NR_104 N
GP_NR_105 N
GP_NR_106 N
GP_RO_107 N
GP_RO_108 N
GP_RO_109 N
GP_RO_110 N
GP_RO_111 N
GP_RO_112 N
GP_RO_113 N
GP_RO_114 N
GP_RO_115 N
GP_RO_116 N

D-27

D.7 Pluto Test Case Results Log for GSP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

GSP_NR_001.TC 1/5/95 12/21/94 12/21/94 N
GSP_RO_002.TC N
GSP_RO_003.TC N
GSP_RO_004.TC N
GSP_RO_005.TC N
GSP_RO_006.TC N
GSP_RO_007.TC N
GSP_RO_008.TC N
GSP_RO_009.TC N
GSP_NR_001.TC 1/17/95 12/21/94 12/21/94 N*
GSP_RO_002.TC N*
GSP_RO_003.TC N*
GSP_RO_004.TC N*
GSP_RO_005.TC N*
GSP_RO_006.TC N*
GSP_RO_007.TC N*
GSP_RO_008.TC N*
GSP_RO_009.TC N*
GSP_NR_001.TC 4/7/95 4/6/95 4/6/95 N
GSP_RO_002.TC N
GSP_RO_003.TC N
GSP_RO_004.TC N
GSP_RO_005.TC N
GSP_RO_006.TC N
GSP_RO_007.TC N
GSP_RO_008.TC N
GSP_RO_009.TC N

*: These test cases had to be re-executed because the include file CONSTANTS.FOR was changed in PR#24.

D-28

D.8 Pluto Test Case Results Log for RECLP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

RECLP_NR_001 1/5/95 12/21/94 12/21/94 N* 24
RECLP_NR_002 N* 24
RECLP_NR_003 N* 24
RECLP_NR_004 N* 24
RECLP_NR_005 N* 24
RECLP_NR_006 N* 24
RECLP_NR_007 N* 24
RECLP_NR_008 N* 24
RECLP_NR_009 N* 24
RECLP_NR_010 N* 24
RECLP_NR_011 N* 24
RECLP_NR_012 N* 24
RECLP_NR_013 N* 24
RECLP_NR_014 N* 24
RECLP_NR_015 N* 24
RECLP_NR_016 N* 24
RECLP_NR_017 N* 24
RECLP_NR_018 N* 24
RECLP_NR_019 N* 24
RECLP_NR_020 N* 24
RECLP_NR_021 N* 24
RECLP_NR_022 N* 24
RECLP_NR_023 N* 24
RECLP_NR_024 N* 24
RECLP_NR_025 N* 24
RECLP_NR_026 N* 24
RECLP_NR_027 N* 24
RECLP_NR_028 N* 24
RECLP_NR_029 N* 24
RECLP_NR_030 N* 24
RECLP_NR_031 N* 24
RECLP_NR_032 N* 24
RECLP_NR_033 N* 24
RECLP_NR_034 N* 24
RECLP_NR_035 N* 24
RECLP_NR_036 N* 24
RECLP_NR_037 N* 24
RECLP_NR_038 N* 24
RECLP_NR_039 N* 24
RECLP_NR_040 N* 24
RECLP_NR_041 N* 24

D-29

RECLP_NR_042 N* 24
RECLP_NR_043 N* 24
RECLP_NR_044 N* 24
RECLP_NR_045 N* 24
RECLP_NR_046 N* 24
RECLP_NR_047 N* 24
RECLP_NR_048 N* 24
RECLP_NR_049 N* 24
RECLP_NR_050 N* 24
RECLP_NR_051 N* 24
RECLP_NR_052 N* 24
RECLP_NR_053 N* 24
RECLP_NR_054 N* 24
RECLP_NR_055 N* 24
RECLP_NR_056 N* 24
RECLP_NR_057 N* 24
RECLP_NR_058 N* 24
RECLP_NR_059 N* 24
RECLP_RO_060 N* 24
RECLP_RO_061 N* 24
RECLP_RO_062 N* 24
RECLP_RO_063 N* 24
RECLP_NR_064 N* 24
RECLP_NR_065 N* 24
RECLP_NR_066 N* 24
RECLP_NR_067 N* 24
RECLP_NR_068 N* 24
RECLP_NR_001 1/13/95 12/21/94 12/21/94 N
RECLP_NR_002 N
RECLP_NR_003 N
RECLP_NR_004 N
RECLP_NR_005 N
RECLP_NR_006 N
RECLP_NR_007 N
RECLP_NR_008 N
RECLP_NR_009 N
RECLP_NR_010 N
RECLP_NR_011 N
RECLP_NR_012 N
RECLP_NR_013 N
RECLP_NR_014 N
RECLP_NR_015 N
RECLP_NR_016 N
RECLP_NR_017 N
RECLP_NR_018 N
RECLP_NR_019 N
RECLP_NR_020 N
RECLP_NR_021 N

D-30

RECLP_NR_022 N
RECLP_NR_023 N
RECLP_NR_024 N
RECLP_NR_025 N
RECLP_NR_026 N
RECLP_NR_027 N
RECLP_NR_028 N
RECLP_NR_029 N
RECLP_NR_030 N
RECLP_NR_031 N
RECLP_NR_032 N
RECLP_NR_033 N
RECLP_NR_034 N
RECLP_NR_035 N
RECLP_NR_036 N
RECLP_NR_037 N
RECLP_NR_038 N
RECLP_NR_039 N
RECLP_NR_040 N
RECLP_NR_041 N
RECLP_NR_042 N
RECLP_NR_043 N
RECLP_NR_044 N
RECLP_NR_045 N
RECLP_NR_046 N
RECLP_NR_047 N
RECLP_NR_048 N
RECLP_NR_049 N
RECLP_NR_050 N
RECLP_NR_051 N
RECLP_NR_052 N
RECLP_NR_053 N
RECLP_NR_054 N
RECLP_NR_055 N
RECLP_NR_056 N
RECLP_NR_057 N
RECLP_NR_058 N
RECLP_NR_059 N
RECLP_RO_060 N
RECLP_RO_061 N
RECLP_RO_062 N
RECLP_RO_063 N
RECLP_NR_064 N
RECLP_NR_065 N
RECLP_NR_066 N
RECLP_NR_067 N
RECLP_NR_068 N
RECLP_NR_001 4/7/95 4/6/95 4/7/95 N

D-31

RECLP_NR_002 N
RECLP_NR_003 N
RECLP_NR_004 N
RECLP_NR_005 N
RECLP_NR_006 N
RECLP_NR_007 N
RECLP_NR_008 N
RECLP_NR_009 N
RECLP_NR_010 N
RECLP_NR_011 N
RECLP_NR_012 N
RECLP_NR_013 N
RECLP_NR_014 N
RECLP_NR_015 N
RECLP_NR_016 N
RECLP_NR_017 N
RECLP_NR_018 N
RECLP_NR_019 N
RECLP_NR_020 N
RECLP_NR_021 N
RECLP_NR_022 N
RECLP_NR_023 N
RECLP_NR_024 N
RECLP_NR_025 N
RECLP_NR_026 N
RECLP_NR_027 N
RECLP_NR_028 N
RECLP_NR_029 N
RECLP_NR_030 N
RECLP_NR_031 N
RECLP_NR_032 N
RECLP_NR_033 N
RECLP_NR_034 N
RECLP_NR_035 N
RECLP_NR_036 N
RECLP_NR_037 N
RECLP_NR_038 N
RECLP_NR_039 N
RECLP_NR_040 N
RECLP_NR_041 N
RECLP_NR_042 N
RECLP_NR_043 N
RECLP_NR_044 N
RECLP_NR_045 N
RECLP_NR_046 N
RECLP_NR_047 N
RECLP_NR_048 N
RECLP_NR_049 N

D-32

RECLP_NR_050 N
RECLP_NR_051 N
RECLP_NR_052 N
RECLP_NR_053 N
RECLP_NR_054 N
RECLP_NR_055 N
RECLP_NR_056 N
RECLP_NR_057 N
RECLP_NR_058 N
RECLP_NR_059 N
RECLP_RO_060 N
RECLP_RO_061 N
RECLP_RO_062 N
RECLP_RO_063 N
RECLP_NR_064 N
RECLP_NR_065 N
RECLP_NR_066 N
RECLP_NR_067 N
RECLP_NR_068 N

* Even though an analysis file (.ANA) was not generated for these test cases, the limits checking prints

messages to the screen for values of THETA that are in bounds. This indicates an error in the bounds
checking code. Further observations revealed that the upper and lower bounds constants were reversed in the
CONSTANTS.FOR file. The test cases were re-executed after this is corrected. Note that neither the RECLP
code or the test cases had to be refetched. However, the CONSTANTS.FOR file was refetched and the code
was recompiled.

D-33

D.9 Pluto Test Case Results Log for TDLRSP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

TDLRSP_NR_001.TC 1/4/95 12/21/94 12/21/94 N
TDLRSP_RO_002.TC N
TDLRSP_NR_003.TC N
TDLRSP_RO_004.TC N
TDLRSP_NR_005.TC N
TDLRSP_RO_006.TC N
TDLRSP_NR_007.TC N
TDLRSP_NR_008.TC N
TDLRSP_NR_009.TC N
TDLRSP_NR_010.TC N
TDLRSP_NR_011.TC N
TDLRSP_NR_012.TC N
TDLRSP_NR_013.TC N
TDLRSP_NR_014.TC N
TDLRSP_NR_015.TC N
TDLRSP_NR_016.TC N
TDLRSP_NR_017.TC N
TDLRSP_NR_018.TC N
TDLRSP_NR_019.TC N
TDLRSP_NR_020.TC N
TDLRSP_NR_021.TC N
TDLRSP_RO_022.TC N
TDLRSP_RO_023.TC N
TDLRSP_RO_024.TC N
TDLRSP_RO_025.TC N
TDLRSP_RO_026.TC Y 24
TDLRSP_RO_027.TC N
TDLRSP_RO_028.TC N
TDLRSP_NR_001.TC 1/13/95 1/13/95 12/21/94 N
TDLRSP_RO_002.TC N
TDLRSP_NR_003.TC N
TDLRSP_RO_004.TC N
TDLRSP_NR_005.TC N
TDLRSP_RO_006.TC N
TDLRSP_NR_007.TC N
TDLRSP_NR_008.TC N
TDLRSP_NR_009.TC N
TDLRSP_NR_010.TC N

D-34

TDLRSP_NR_011.TC N
TDLRSP_NR_012.TC N
TDLRSP_NR_013.TC N
TDLRSP_NR_014.TC N
TDLRSP_NR_015.TC N
TDLRSP_NR_016.TC N
TDLRSP_NR_017.TC N
TDLRSP_NR_018.TC N
TDLRSP_NR_019.TC N
TDLRSP_NR_020.TC N
TDLRSP_NR_021.TC N
TDLRSP_RO_022.TC N
TDLRSP_RO_023.TC N
TDLRSP_RO_024.TC N
TDLRSP_RO_025.TC N
TDLRSP_RO_026.TC Y*
TDLRSP_RO_027.TC N
TDLRSP_RO_028.TC N
TDLRSP_NR_001.TC 4/7/95 4/6/95 4/6/95 N
TDLRSP_RO_002.TC N
TDLRSP_NR_003.TC N
TDLRSP_RO_004.TC N
TDLRSP_NR_005.TC N
TDLRSP_RO_006.TC N
TDLRSP_NR_007.TC N
TDLRSP_NR_008.TC N
TDLRSP_NR_009.TC N
TDLRSP_NR_010.TC N
TDLRSP_NR_011.TC N
TDLRSP_NR_012.TC N
TDLRSP_NR_013.TC N
TDLRSP_NR_014.TC N
TDLRSP_NR_015.TC N
TDLRSP_NR_016.TC N
TDLRSP_NR_017.TC N
TDLRSP_NR_018.TC N
TDLRSP_NR_019.TC N
TDLRSP_NR_020.TC N
TDLRSP_NR_021.TC N
TDLRSP_RO_022.TC N
TDLRSP_RO_023.TC N
TDLRSP_RO_024.TC N
TDLRSP_RO_025.TC N
TDLRSP_RO_026.TC Y*

D-35

TDLRSP_RO_027.TC N
TDLRSP_RO_028.TC N

*: The ANA file generated in this iteration of testing involves a condition that is not specified in the
SPEC. Although the results of this test run does not agree with the expected values, the results are just as
valid because this robustness test case exercises a condition that is not defined in the Specification. More
specifically, a value of "2" is assigned to the variable TDLR_STATE. Although a "2" is not defined as a
legal value for this variable in the GCS Spec, it is a possible value since the variable is ultimately
implemented as an integer. For robustness test cases, DO-178B requires only that the software not cause
any detrimental effects to the system. For this specific test case, the PLUTO code leaves the values of
K_MATRIX unchanged. This will not have a severe impact on the implementation's ability to deliver the
required function for TDLRSP.

D-36

D.10 Pluto Test Case Results Log for TDSP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

TDSP_NR_001.TC 1/4/95 12/21/94 12/21/94 N
TDSP_NR_002.TC N
TDSP_NR_003.TC N
TDSP_RO_004.TC N
TDSP_RO_005.TC N
TDSP_RO_006.TC N
TDSP_RO_007.TC N
TDSP_NR_001.TC 1/17/95 12/21/94 12/21/94 N*
TDSP_NR_002.TC N*
TDSP_NR_003.TC N*
TDSP_RO_004.TC N*
TDSP_RO_005.TC N*
TDSP_RO_006.TC N*
TDSP_RO_007.TC N*
TDSP_NR_001.TC 4/7/95 4/6/95 4/6/95 N
TDSP_NR_002.TC N
TDSP_NR_003.TC N
TDSP_RO_004.TC N
TDSP_RO_005.TC N
TDSP_RO_006.TC N
TDSP_RO_007.TC N

*: These test cases had to be re-executed because the include file CONSTANTS.FOR was changed in PR#24.

D-37

D.11 Pluto Test Case Results Log for TSP

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

TSP_NR_001.TC 1/4/95 12/21/94 12/21/94 N
TSP_NR_002.TC N
TSP_NR_003.TC N
TSP_RO_004.TC N
TSP_RO_005.TC N
TSP_NR_006.TC Y 24
TSP_NR_007.TC Y 24
TSP_RO_008.TC Y 24
TSP_RO_009.TC Y 24
TSP_RO_010.TC Y 24
TSP_RO_011.TC Y 24
TSP_NR_001.TC 1/13/95 1/13/95 12/21/94 N
TSP_NR_002.TC N
TSP_NR_003.TC N
TSP_RO_004.TC N
TSP_RO_005.TC N
TSP_NR_006.TC N
TSP_NR_007.TC N
TSP_RO_008.TC N
TSP_RO_009.TC N
TSP_RO_010.TC N
TSP_RO_011.TC Y*
TSP_NR_001.TC 4/7/95 4/6/95 4/6/95 N
TSP_NR_002.TC N
TSP_NR_003.TC N
TSP_RO_004.TC N
TSP_RO_005.TC N
TSP_NR_006.TC N
TSP_NR_007.TC N
TSP_RO_008.TC N
TSP_RO_009.TC N
TSP_RO_010.TC N
TSP_RO_011.TC Y*

 *: For this robustness test case, the difference flagged by the ANA file is in the 14th digit of
ATMOSPHERIC_TEMP. This amounts to a relative error less than that required by the simulator.

D-38

D.12 Pluto Test Case Results Log for SP Subframe

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

SP_001 3/6/95 1/13/95 3/2/95 N
SP_001 4/7/95 4/6/95 4/7/95 N

D.13 Pluto Test Case Results Log for GP Subframe

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

GPSF_001. 3/6/95 1/13/95 3/2/95 N
GPSF_002. N
GPSF_003. N
GPSF_004. N
GPSF_005 N
GPSF_006 N
GPSF_007 N
GPSF_008. N
GPSF_001. 4/7/95 4/6/95 4/7/95 N
GPSF_002. N
GPSF_003. N
GPSF_004. N
GPSF_005 N
GPSF_006 N
GPSF_007 N
GPSF_008. N

D-39

D.14 Pluto Test Case Results Log for CLP Subframe

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

CLP_001 3/6/95 1/13/95 3/2/95 N
CLP_002 N
CLP_003 N
CLP_004 N
CLP_005 N
CLP_006 N
CLP_007 N
CLP_008 N
CLP_009 N
CLP_010 N
CLP_011 N
CLP_012 N
CLP_013 N
CLP_014 N
CLP_001 4/7/95 4/6/95 4/7/95 N
CLP_002 N
CLP_003 N
CLP_004 N
CLP_005 N
CLP_006 N
CLP_007 N
CLP_008 N
CLP_009 N
CLP_010 N
CLP_011 N
CLP_012 N
CLP_013 N
CLP_014 N

D-40

D.15 Pluto Test Case Results Log for FRAME

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
(was .ANA file

generated Y or N?)

PR #

FRAME_001 3/6/95 1/13/95 3/2/95 N
FRAME_002
FRAME_003
FRAME_004
FRAME_005
FRAME_006
FRAME_007
FRAME_008
FRAME_009
FRAME_001 4/7/95 4/6/95 4/7/95 N
FRAME_002
FRAME_003
FRAME_004
FRAME_005
FRAME_006
FRAME_007
FRAME_008
FRAME_009
FRAME_009

D-41

D.16 Pluto Test Case Results Log for Trajectory

TEST CASE

NAME
EXECUTION

DATE
DATE
CODE

FETCHED

DATE TEST
CASE

FETCHED

RESULTS
MATCHED
EXPECTED

FRAMES

GP_PHASE
= 5

PR #

TRAJ_ATM_UD/IC_001 3/6/95 3/6/95 3/6/95 Y Y
TRAJ_ATM_UD/IC_002 Y Y
TRAJ_ATM_UD/IC_003 Y Y
TRAJ_ATM_UD/IC_004 Y Y
TRAJ_ATM_UD/IC_005 Y Y
TRAJ_ATM_UD/IC_006 Y Y
TRAJ_ATM_UD/IC_007 Y Y
TRAJ_ATM_UD/IC_008 Y Y
TRAJ_ATM_UD/IC_009 Y Y
TRAJ_ATM_UD/IC_010 Y Y
TRAJ_ATM_UD/IC_011 Y Y
TRAJ_ATM_UD/IC_012 Y Y
TRAJ_TD_UD/IC_013 Y Y
TRAJ_TD_UD/IC_014 Y Y
TRAJ_TD_UD/IC_015 Y Y
TRAJ_TD_UD/IC_016 Y Y
TRAJ_TD_UD/IC_017 Y Y
TRAJ_TD_UD/IC_018 Y Y
TRAJ_TD_UD/IC_019 N Y 27
TRAJ_TD_UD/IC_020 Y Y
TRAJ_TD_UD/IC_021 Y 3 27
TRAJ_TD_UD/IC_022 Y Y
TRAJ_TD_UD/IC_023 Y Y
TRAJ_TD_UD/IC_024 Y Y
TRAJ_TD_UD/IC_025 Y Y
TRAJ_TD_UD/IC_026 Y Y
TRAJ_TD_UD/IC_027 Y Y
TRAJ_TD_UD/IC_028 Y Y
TRAJ_TD_UD/IC_029 Y Y
TRAJ_TD_UD/IC_030 Y Y
TRAJ_TD_UD/IC_031 Y Y
TRAJ_TD_UD/IC_032 Y Y
TRAJ_TD_UD/IC_033 Y Y
TRAJ_TD_UD/IC_034 Y Y
TRAJ_ATM_UD/IC_001 4/7/95 4/6/95 4/7/95 Y Y
TRAJ_ATM_UD/IC_002 Y Y
TRAJ_ATM_UD/IC_003 Y Y
TRAJ_ATM_UD/IC_004 Y Y
TRAJ_ATM_UD/IC_005 Y Y
TRAJ_ATM_UD/IC_006 Y Y
TRAJ_ATM_UD/IC_007 Y Y

D-42

TRAJ_ATM_UD/IC_008 Y Y
TRAJ_ATM_UD/IC_009 Y Y
TRAJ_ATM_UD/IC_010 Y Y
TRAJ_ATM_UD/IC_011 Y Y
TRAJ_ATM_UD/IC_012 Y Y
TRAJ_TD_UD/IC_013 Y Y
TRAJ_TD_UD/IC_014 Y Y
TRAJ_TD_UD/IC_015 Y Y
TRAJ_TD_UD/IC_016 Y Y
TRAJ_TD_UD/IC_017 Y Y
TRAJ_TD_UD/IC_018 Y Y
TRAJ_TD_UD/IC_019 Y Y
TRAJ_TD_UD/IC_020 Y Y
TRAJ_TD_UD/IC_021 Y Y
TRAJ_TD_UD/IC_022 Y Y
TRAJ_TD_UD/IC_023 Y Y
TRAJ_TD_UD/IC_024 Y Y
TRAJ_TD_UD/IC_025 Y Y
TRAJ_TD_UD/IC_026 Y Y
TRAJ_TD_UD/IC_027 Y Y
TRAJ_TD_UD/IC_028 Y Y
TRAJ_TD_UD/IC_029 Y Y
TRAJ_TD_UD/IC_030 Y Y
TRAJ_TD_UD/IC_031 Y Y
TRAJ_TD_UD/IC_032 Y Y
TRAJ_TD_UD/IC_033 Y Y
TRAJ_TD_UD/IC_034 Y Y

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
Guidance and Control Software Project Data - Volume 3: Verification
Documents

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Hayhurst, Kelly J. (Editor)

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19550

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT
The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977
and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of
the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was
developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil
aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements,
design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this
information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public
availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project,
describes the 4-volume set of documents and the role they are playing in training, and includes the verification documents from the GCS project.

15. SUBJECT TERMS
Software engineering; Computer programming; Software reliability; DO-178B

18. NUMBER
 OF
 PAGES

355
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

457280.02.07.07.06.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2008-215552

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
12 - 200801-

