PoET: Polarimeters for Energetic Transients

Mark McConnell (UNH) Scott Barthelmy (GSFC) Joe Hill (USRA)

POET Science Team

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Lorella Angelini	Taka Sakamoto
Matthew Baring	Bing Zhang
Peter Bloser	Kunihoto Ioka
Brian Dennis	Takashi Nakamura
Gordon Emslie	Yamazaki Ryo
Alice Harding	Kenji Toma
Dieter Hartmann	Zuefeng Wu
Phil Kaaret	Jochen Greiner
Robin Morris	Wojtek Hajdas
Jim Ryan	Gottfried Kanbach
Don Kniffen	Nicholas Produit
Anita Krishnamurthi	Toru Tamagawa

2008 Nanjing GRB Conference

QuickTime™ and a TIFF (Uncompressed) decompresso are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.

Overview

GRB Polarimetry Science
POET mission
GRAPE
LEP
POET Performance
What Now?

Quest for the holy grail

X-ray polarimetry will be a valuable diagnostic of high magnetic field geometry and strong gravity.....

One definitive astrophysical measurement (1978) at two energies
 Weisskopf et al.
 P=19.2% ± 1.0%
 156°

ND 20

ROTATION ANGLE (*)

2008 Nanjing GRB Conference

27th June 2008

Other Measurements

Intercosmos (Tindo) Solar Flares Rhessi (Coburn & Boggs) GRB 021206 BATSE Albedo Polarimetry System (Willis) GRB 930131 P>35% ☞ GRB 960924 P>50% 2151 (†) GRB INTEGRAL (2 groups) 100 CGRO 2σ result Flux/Threshold(64 ms) Earth 60 80 100 120 140 160 180 27th June 2008 2008 Nan Willis et al. 2005 n (degrees)

Current Status

Recent instruments have not been optimised for polarimetry... ...or never launched Gazillion papers describing the importance Need a way to break the cycle rew techniques have lowered the technical barriers

Observed <u>Prompt</u> GRB Properties

- Prompt Spectrum:
 - The Band Function: $\alpha \approx -1 \pm 1$ $\beta \approx 2^{+1}_{-2}$
- Huge release of energy: ~10⁵¹ erg
- Relativistic process to avoid pairproduction opacity paradigm
- Achromatic steepening implies GRB jet

Standard Fireball Model

Explains the late afterglow observations well
 Debates for prompt emission on-going

Internal shock model solves the rapid variability problem

Energy has to be extracted from KE of shells

Low efficiency

Requires additional mechanisms

Synchrotron Emission

Cannon-ball model

Cannon balls ejected from central engine Inverse Compton scattering of ambient photons <u>Unclear</u> how the cannon balls would survive accⁿ over large dynamic range and Lorentz factors

27th June 2008

GRB Unknowns

Unknown Fire Ball content Kinetic energy or magnetically dominated Unknown location of 'where' the prompt emission is produced Internal Shocks - favored External Shocks Unknown dissipation mechanism **Shocks** Magnetic reconnection Unknown radiation mechanism Synchrotron Comptonization **Etc**

Motivation for POET

What is the magnetic structure of the jets?
What is the geometric structure of GRB jets?
What is the prompt radiation mechanism of GRBs?

27th June 2008

Polarization Predictions

- The theories on the GRB production mechanism can be constrained by different degrees of linear polarization (P):
 - P>~80% Generally difficult to achieve within synchrotron emission models. Could be Compton scattering jet viewed from outside the edge of the jet
 - 20%<P<60% is predicted if synchrotron emission in an ordered Bfield or as a result of viewing the burst from near the edge of the jet
 - Low degrees of polarization can be expected can be expected from hydrodynamical models in which the random magnetic fields are generated in the shocks with an on-beam viewing geometry

POET - Proposed SMEX Mission

POET - Clarimeters for Energetic Transients

Institutional Responsibilities
University of New Hampshire
PI : Mark McConnell
GRAPE Instrument
Universities Space Research Association
Deputy PI : Joanne Hill
LEP Instrument
Goddard Space Flight Center
Mission Scientist : Scott Barthelmy
Mission Operations Center (MOC)
POET Data Center (PDC)
Data Archive (HEASARC)
Charles S. Draper Laboratory
Project Management
Mission and Systems Engineering
Safety and Mission Assurance
ATK Space, Inc
Spacecraft Bus
Observatory Integration and Test

POET Science Goals

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

27th June 2008

POET GRB Science

POET will answer questions about GRBs that can only be answered by X-ray and Gamma-ray polarisation measurements

 What is the composition of GRBs?
 What is the prompt radiation mechanism?

What is the small-scale geometry of the prompt emission region?

POET Characteristics

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.	QuickTime [™] and a TIFF (Uncompressed) decompressor are needed to see this picture.
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 27th June 2008	niina GPB Conference
	In the content of the

POET Characteristics

POET Instrument Suite

LEP Parameters			
Polarimetry	2-15 keV		
Detectors	Ne:CO ₂ :CH ₃ NO ₂ Gas (8)		
Spectroscopy	2-15 keV		
Field-of-View	\pm 44 $^{\circ}$ (non-imaging)		

GRAPE Parameters

Polarimetry	60-500 keV		
Detectors	BGO/plastic scintillator (62)		
Spectroscopy	15 keV - 1 MeV		
Detectors	Nal(TI) scintillator (2)		
Field-of-View	\pm 60 $^{\circ}$ (non-imaging)		

27th June 2008

X-ray and Gamma-ray Polarimeters

 Capitalize on: correlation between the incident photon electric field vector and the photoelectron emission direction or scattered photon direction

✤ Fit function to the angular distribution

Modulation Factor, μ:

$$\mu = \frac{N_{\max} - N_{\min}}{N_{\max} + N_{\min}} = \frac{B}{2A + B}$$

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

2008 Nanjing GRB Conference

27th June 2008

GRAPE Prototype

Based on use of flat panel 22 M 2008

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

2008 Nanjing GRB

Grape Performance

Legere et al., Proc. SPIE, 5898, 413 (2005)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

2008 Nanjing GRB Conference

27th June 2008

GRAPE Engineering Balloon Flight

Balloon flight of an engineering prototype on June 21, 2007.

27th June 2008

POET-GRAPE

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

The TPC Polarimeter

GEM with strip readout

- Track images formed by time-projection by binning arrival times
- Resolution is (largely) independent of the active depth
 - Max depth determined only by degree of X-ray beam collimation

Prototype TPC Polarimeter Results

Polarization Phase	Measured Parameters		
	Modulation (%)	Phase (degrees)	χ_v^2
unpolarized	0.49 ± 0.54	44.6 ± 28.7	1.2
0°	45.0 ± 1.1	0.3 ± 0.6	1.1
45°	45.3 ± 1.1	45.2 ± 0.6	1.0
90°	44.7 ± 1.1	-89.9 ± 0.6	1.4

Uniform response

- Modulation consistent with gas pixel detectors
- Unit QE possible

Black et al, 2007, NIM A, 581, 755

Wide FoV Prototype

Parameter	Value
Active Element	Ne: CO ₂ : CH ₃ NO ₂
Active Volume	24 x 24 x 24 cm ³
Pressure	780 Torr
Energy Range	2-15 keV
Energy Resolution	38% at 6keV
µ @ 6 keV	45%
Field of View	\pm 44°
Mass	28.5 kg
Power (peak/ave)	33/31 W
Data Volume	248 MB/day
Temperature Range	25 \pm 1 $^{\circ}$ C / -10 to 50 $^{\circ}$ C
Peak Sensitivity	~3.5 keV

Wide FoV Prototype

Spectra: Ne:CO₂:CH₃NO₂

Mission Concept

	Missic	Mission Parameters	
	Launch Date	May, 2012	
	Launch Vehicle	Standard SMEX	
	Orbit	600 km, 28.5° incl.	
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.	Mission Lifetime	e 2+ years	
	Pointing Mode	Zenith-pointed	
	Spin Rate	15_rpm	
27th June 2008	QuestTime** and a The Characteristical devices are needed to use this polar.		

POET Spacecraft

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

27th June 2008

POET Mission Operations

POET Performance

27th June 2008

Distinguish GRB Models

What is the GRB radiation mechanism?

GRAPE and LEP will independently measure Π above and below E_{peak}

LEP		GRAPE	
GRBs	MDP	GRBs	MDP
8	10%	6	8%
40	25%	40	20%
*72	50%	62	51%

27th June 2008

POET was not selected for Phase A so now what?....

Improve readiness of GRAPE
 Balloon flight
 Improve readiness of LEP
 MidSTAR-2 GRBP (~2011)
 GEMS in Phase-A (Gravity and Extreme Magnetism SMEX)
 Look for new opportunities
 e.g. Space Station

The GRBP: A payload for MidStar 2

Area: 144 cm^2 Depth: 5 cm FoV: 1 steradian Gas: Ne: CO_2 : CS_2 Pressure: 1 atm

MDP averaged from 2 - 10 keV

MidSTAR-2

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. USNA Project High risk Low-cost Make a scientific measurement Several GRBs in 2 yr lifetime Low cost proof-of-concept Launch ~2011

27th June 2008

(mBAT - Mini BAT 1/8 scale)

mBAT Parameters		
Energy Range	15-150 keV	
FoV	~2 str partial coding	
Spatial Resolution	~3 arcmin	
Spectral Resolution	~7 keV	
Position Notice	~4 arcmin in 20 sec	

Solar Flare Science

QuickTime™ and a TIFF (Uncompressed) decompresso are needed to see this picture.

- How does the Sun release such large quantities of energy in a Solar Flare?
- How does the Sun accelerate electrons and lons with such high efficiency?
- POET will determine the angular beaming of electrons
- Polarimetry measures the electron beaming.
- Models predict 20-30% polarization.

corona e, p, ³ He, (r, C, N, O,	Energy Band (keV)	23 July 2002 (X4.8) ∆t = 60 s	M5 flare ∆t = 300 s	/
	50-500	2.3%	27%	_
chromosphere reaction products	50-100	3.6%	43%	
	100-200	3.4%	40%	
	200-500	4.9%	62%	for

GRAPE will measure polarization direction and magnitude of Solar Flares to answer these questions

Pulsar Science

X-ray polarimetry is the <u>only</u> way to distinguish between the two leading models of accretion flow onto highly magnetized neutron stars.

Intensity (top), polarization position angle (middle) and degree of polarization (bottom) vs. phase predicted by different models for the Crab pulsar. All reproduce the intensity profile. Only polarization measurements can uniquely differentiate between models.

	LEP (2-10 keV)		
	MDP in 10 ksec	MDP in 1ksec	
CRAB	4 %	8%	
1/10 CRAB	8%	15%	

onference