
DRAFT 
General Mission Analysis Tool (GMAT 

Architectural Specification 

The GMAT Development Team 
Godda.rd Spa.ce Flight Center Thi~lking Systems? Inc. 

Codes 583 and 595 6441 N Cainino Libby 
Greenbelt., hlarylarld 20771 Tucson, Arizoiia 85718 

Ju ly  12, 2007 

https://ntrs.nasa.gov/search.jsp?R=20090004618 2019-08-30T06:01:32+00:00Z





. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1.1 The Object Configuration 52 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1.2 Factories and the GmatBase Class 92 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 The Factory Subsystem 52 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2.1 Factory Classes 52 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2.2 The Factory Manager 52 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2.3 Extending GMAT 52 

6 GMAT Work Flow 53 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.1 Configuring Objects 53 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 R.unning a Blission 53 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.3 Initialization 53 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.4 Execution 53 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.5 Interface Components 53 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.5.1 User Int.erfaces 53 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.5.2 External Int. erf'aces 54 

I11 Subsystem Designs 

7 GMAT Base Classes and Defined Constants 57 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 Gmat. Base 57 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2 G~natCommand 57 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3 Kamespaces and Enumera.tions 57 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3.1 Enumerations 57 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3.2 Defined Data Types 60 

8 Utility Classes and Helper Functions 6 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.1 The MessageInterface 61 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.2 The GmatStringUtil Xarnespace 61 

9 The Space Environment 63 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.1 Components of the Model 63 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.2 The SpacePoint Class 64 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.3 The Solar Syste ln Elernents 66 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.3.1 The Solarsystem Class 66 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.3.2 The CelestialBody Class Hierarchy 66 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.4 The Planet. aryEphcm Class 66 

10 Coordinate Systems 6 7 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.1 Introduction 67 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.2 Coordii~ate Systern Cllasses 67 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.2.1 The CoordinateSystem Class 65 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.2.2 The AxisSysteni Class Hierarchy 69 
. . . . . . . . . . . . . . . . . . . . .  10.2.3 CoordinateSystem and AxisSyst~~ll C~ol1abora.tion 71 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.2.4 The SpacePoint Class 73 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.3 Configuring Coordinate Systems 73 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.3.1 Scripting a Coordinate Syst, ern 73 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.3.2 Default Coordinate? Systc?ms 76 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.4 Coordinate System Integrat, ion 76 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.4.1 General Considerations 77 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.4.2 Creation and Configuration 77 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.4.3 Sandbox Initialization 77 



10.4.4 Initial Statcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 
10.4.5 Forces and Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 
10.4.6 Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 
10.4.7 Para.maters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 
10.4.8 Coordinate Systen~s and the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

10.5 bralidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
10.5.1 Tests for a LEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
10.5.2 Tests for a Libration Point Statme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
10.5.3 Tests for an Earth-Trailing State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

10.6 Some Mathematical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
10.6.1 Defining t.he C~ordinat~e Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
10.6.2 Setting Directions in GMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

11 SpaceObjects: Spacecraft and Formation Classes 87 
11.1 Component. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
11.2 Classes Used for Spacecraft Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

11.2.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 
11.2.2 The Spaceobject Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 
11.2.3 The Propstate Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

11.3 The Spacecraft Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 
11.3.1 Internal Spacecraft Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 
11.3.2 Spacecraft Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 

11 . 4 Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 
11.5 Conversion Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

11.5.1 The Convcrtcr Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99 
11.5.2 Time Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 
11.5.3 Coordinate System Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102 
11.5.4 State Representation Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 

11.6 Conversions in SpaceObjccts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106 
11.6.1 SpaceObjcct Conversion Flour for Epoch Data . . . . . . . . . . . . . . . . . . . . . . .  106 
11.6.2 SpaceObject Conversion Flow for State Data . . . . . . . . . . . . . . . . . . . . . . .  107 

12 Spacecraft Hardware 111 
12.1 The Hardware Class Str~rcture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
12.2 Finite Maneuver Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

12.2.1 Fuel tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
12.2.2 Thrust. ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

12.3 Sensor Modeling in GMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
12.4 Sis Degree of Freedom Model Clonsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

13 Attitude 113 
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
13.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
13.3 Class Hierarchy Sunlrnary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 
13.4 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 

13.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 
13.4.2 Comp~t~atioil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

14 Script Reading and Writing 119 
14.1 Loading a Script into GMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

14.1.1 Comment Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 
14.1.2 Object Definition Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 



14.1.3 Conl~nantl Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
14.1.4 Assignnlent Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

14.2 Saving a GM.4T h~Iission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 
14.3 Classes Used in Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

14.3.1 The Script Interpret. er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 
14.3.2 The ScriptR.eatlWrit,er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 
14.3.3 The TextParser Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

14.4 Call Sequencing for Script Reading and Writing . . . . . . . . . . . . . . . . . . . . . . . . . .  136 
14.4.1 Script Reading Call Sc?quence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 
14.4.2 Script Writing Call Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142 

15 The Graphical User Interface 147 
15.1 uxTVitlgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
15.2 GrnatDialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

16 External Interfaces 149 
16.1 The MATLAB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 
16.2 GhiIAT Ephemeris Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 

17 Calculated Parameters and Stopping Conditions 151 
17.1 Paramet, ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 
17.2 Stopping Conditions and Int. erpolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 

17.2.1 Stopping Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 
17.2.2 Interpolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 

18 Propagators = Integrators + Forces 155 
18.1 Propagator Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

18.1.1 The Equat. ions of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
18.1.2 Division of Labor: Integat. ors and Forces . . . . . . . . . . . . . . . . . . . . . . . . .  155 

18.2 1ntegrat.ors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
18.3 The CiMAT Force Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

18.3.1 The PhjrsicalModel Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
18.3.2 The fircchlodel Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
18.3.3 Applying Forces to  Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

18.4 The State Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

19 Force Modeling in GMAT 157 
19.1 Compont?nt Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 

19.1.1 Gravit. y from Point Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
19.1.2 Aspl~erical Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
19.1.3 Solar Ftadiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
19.1.4 Atmospheric Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
19.1.5 Engine Thnist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 

20 Maneuver Models 159 

21 Mission Control Sequence Commands 161 
21.1 Conlnland Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 
21.2 Structure of the Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 

21.2.1 Command Ca.tegories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 
21.2.2 Co~nrnand Sequence Struct. urt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
21.2.3 Co~nmand -Sandbox Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 





24.3.1 MathTree and MathNode Class Hiera.rchy Snninmry . . . . . . . . . . . . . . . . . . .  225 
24.3.2 Helper Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 

23.4 Building the Mat. hTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229 
24.5 Program Flow and Class Iriteractioris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229 

24.5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 
24.5.2 Exc!cution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 

25 GMAT and MATLAB Functions 235 
25.1 GbIAT Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235 

29.1.1 Scripting Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235 
26.1.2 The GmatFunction File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236 

25.2 hIATLAB Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238 

26 Adding New Objects to GMAT 239 
26.1 Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 
26.2 Adding Classes to GMiITT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 

26.2.1 Designing Your Cla. ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 
26.2.2 Creating the Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 
26.2.3 Bundling the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 
26.2.4 Registering with GMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 

26.3 An Estensive Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 

IV Appendices 241 

A Unified Modeling Language (UML) Diagram Notation 243 
A.l Package Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243 
A.2 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244 
A.3 Sequence Diagrarns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246 
A.3 Act.ivity Diagranls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246 
A.5 St. ate Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248 

B Design Patterms Used in GMAT 249 
B.l The Singleton Pattern . . . . . . . . . . . . . . . . . . . . .  ... . . . . . . . . . . . . . . . . .  219 

B.l.l Motivation . . . . . . . . . . . . . . . . . . . .  ... . . . . . . . . . . . . . . . . . . . .  249 
B.1.2 Implement.atio11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
B.1.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 

B.2 The Factory Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
B.3 The Observer Pather11 . . . . . . . . . . . . . . . . . . . . . . .  ... . . . . . . . . . . . . . . .  250 
B.4 The Adapter Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
B.5 The Model-View-Controller (MVC) Patt. ern . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 

C Command Implementation: Saniple Code 251 
C.l Saniple Usage: The Ylaneurrer Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251 
C.2 Sanlple Usage: The Vary Coniniand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252 

D GMAT Software Development Tools 255 
D.l Windows Build Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 
D.2 Macintosh Build Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 
D.3 Linux Build Environmcntnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255 

E Definitions and Acronyms 257 



E.1 Defi~litions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 
E.2 Acronyms . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 





LlST OF FIG UI2ES' 

. . . . . . . . . . . . . . . . . . . . . . . . .  11.5 C.!lasses Used to  Convert State R.eprcsentations 105 
11.6 Procedure for Retrieving or Setting a Formatted Epoch . . . . . . . . . . . . . . . . . . . .  107 
11.7 Procedure for Ret. rieving or SeDting a Formatted State . . . . . . . . . . . . . . . . . . . . .  108 

. 11.8 Procedure for Sett. ing a Single Element in the Sta.te . . . . . . . . . . . . . . . . . . . . . . .  109 

13.1 Attit. ude Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 

14.1 Sequence Followed when Loading a Script into GMAT . . . . . . . . . . . . . . . . . . . . .  120 
14.2 Scripting Int. erfaces in the User Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 
14.3 Sequence Followed when Writing a Script . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

. . . . .  14.4 Soquence Followed by GmatBase: :GetGeneratingstring() when Writing a Script 127 
14.5 C!lasses in the ScriptInterprcrter Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 
14.6 Overvielv of Interpreter Clas$ Interactions when Reading a . Script . . . . . . . . . . . . . . .  137 
14.7 Int. erpreter Class Interactions when R.eadi~lg a Comment Block . . . . . . . . . . . . . . . .  138 

. . . . . . . . . . .  11.8 Interpret. er Class Interactions when Reading an Object Definition Block 139 
11.9 Interpreter Class Interactions when Reading a Command Block . . . . . . . . . . . . . . . .  141 
14.10 Interpreter Class Interactions when Reading an Assignment Block . . . . . . . . . . . . . .  143 
11.11 Calls Made when Writing a Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

17 . 1 St. opping Condition Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 

21.1 GMAT Comnlarld Sequence in the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
21.2 Base Classes in the Command Suhsystenl . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 
21.3 Calls hllatlc to Build and Validate Commands . . . . . . . . . . . . . . . . . . . . . . . . . .  166 
21.4 Parmlctcr TVrappers Used by C)onimands . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170 

22.1 GMAT Command Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 
22.2 Executing the Propagate Comnland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176 
22.3 Algorithm Used to  Stop Propagat. ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I78 
22.4 Propagate Command Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180 

23.1 Thc Solver Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 
23.2 The Solver Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 
23.3 State Trmsitions for the Differeiztial Corrector . . . . . . . . . . . . . . . . . . . . . . . . .  189 
23.4 State Trailsitions for Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192 
23.5 The Optimizer Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193 

. . . . . . . . . . .  23.6 GMAT state transitions n~lien running the Fn~~lconOpt~irnixer Optmimixer 194 
23.7 GhI -T  Classes Used with E x t o r n  Opt. imizers . . . . . . . . . . . . . . . . . . . . . . . . .  196 
23.8 Int. etface Classes usotl by t.he RninconOptimixcr . . . . . . . . . . . . . . . . . . . . . . . . .  198 

. . . . . . . . . . . . . . . .  23.9a Initialization Call Sequence for MATLAB'S finincon Optimizer 200 
23.9b Esecution CaJl Sequence for MATLAB's finincon Optimizer . . . . . . . . . . . . . . . . . .  201 
2 3 . 9 ~  FminconOpt. imizer Nested State .Transition Det. ails . . . . . . . . . . . . . . . . . . . . . . .  202 
23.10 Command Classes used by t.he Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 
23.11 Commitnc-1 Classes Required by All Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 
23.12 Command Classes Used by Scannors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214 
23.13 Command Classes Usot-l by Targeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214 
23.14 Colnmantl Classt?~ Usod by Optriinizt!rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216 

24.1 Tree View of the Longitude of Periapsis Calculation . . . . . . . . . . . . . . . . . . . . . .  221 
24.2 Tree View of the Satellite Separation Calculation . . . . . . . . . . . . . . . . . . . . . . . .  222 

. . . . . . . . . . . . . . . . . . . . . . .  24.3 Trw View of the Matrix Calculation in Example 3 223 
. . . . . . . . . . . . . . . . . . . . . . . .  24.4 CIlasses Used t. o Implement GMAT Matht?nlat.ics 224 



24.5 C!ontrol Flow for Parsing an Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24.6 Parser Recursion Sequence 230 

24.7 MathTree Initialization in the Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 
24.8 Evaluat.ion of a MathTree Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 

-4.1 GMAT Packaging. Showing Some Subpackaging . . . . . . . . . . . . . . . . . . . . . . . . .  244 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 .  Solver Classes 246 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.3 A Sequence~ia.gral~1 D i a n  246 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.4 An Activity Diagranl 247 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.5 A State Diagranl 248 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B . l  St.ructure of a Singleton 249 



List of Tables 

10.1 Coordinate System Para~neters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
10.2 Defa. ult Coordinat. e Systems defined in GMAT . . . . . . . . . . . . . . . . . . . . . . . . . .  77 
10.3 Coordinate Systems Used by Individual Forces . . . . . . . . . . . . . . . . . . . . . . . . . .  80 
10.4 Coordinat. e Conversions for itn orbit near the Earth . . . . . . . . . . . . . . . . . . . . . . . .  83 
10.5 Coordinat. e Conversions for itn orbit near t h ~  Earth:/Moon-Sun L2 Point . . . . . . . . . . . .  84 
10.6 Coordinate Conversions for an E.wt h-Tmiling sta. tc  . . . . . . . . . . . . . . . . . . . . . . . .  85 

21.1 Script Examples of Parameters Us(3d in Conlmands . . . . . . . . . . . . . . . . . . . . . . . .  169 

22.1 Assig~mlent Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 
22.2 Propagat. e Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23.1 Opt. ions for the Frni~lco~iOptimizer Solver 199 

21.1 Operat.ors and Operator Precedence in GMAT . . . . . . . . . . . . . . . . . . . . . . . . . .  220 



Part I 

Introduction 





Chapter 1 

Introduction 

Dnrlsl .I, Conuiay 
Thinking Systems, Inc. 

Early in 2002, Goddard Space Flight Center (GSFC) began to  identify requirements for the flight dy- 
namics software needed to fly upcoming missions that use formations of spacecraft to collect data. These 
requirc?nients ranged from low lcvel modeling features to large scale interoperability recluircments. In 2003 
we begal work on a system designed to  rneet these  requirement.^: this syst.e~ii is GMAT. 

The General hlission Analysis Tool (GhfAT) is a general purpose flight dynamics modeling tool built on 
open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. 
GMAT can be run through either a fidly filnctional Graphical User Interfrtce (GUI) or as a coninland 
line progranl urit,h ~ninimal user feedback. The system is built a i d  runs on Microsoft Windows: Linux, 
and Macintosh OS X platforms. The GhIAT GUI is written using wxWidgets, a cross platform library of 
components that streamlines the development and extension of the user int,erface 

Flight dynamics modeling is performed in C X 4 T  by building  component,^ that represent the players in 
the analysis problem that is being modeled. These components int.eract through t,he secluentid execution 
of instructions, embodied in the GMAT h~lission Sequence. A typical Mission Sequence will model t.he 
trajectories of a set of spacecraft evolving over t.ime, calcula,ting relevant parameters during this propagation, 
and nlaneuvering individual spacecraft to maint.ain a set of mission constraints as established by the rnissiori 
analyst. 

All of the elements used in GMAT for nlissiorl analysis can be viewed in the GMAT GUI or through a 
custom scripting language. Analysis problems modeled in GM-AT are saved as script files, and these files can 
be read into GLlAT. When a script. is read into the GM.4T GUI, t,he corresponding user interface eloments 
are constructed in the GMAT GUI. 

The GMAT system was developed from the grouild up t'o run in a platform agilost,ic environment. The 
source code compiles on nwnerous different platforms, and is regularly exercised running on Windows, L i n u ,  
and Macintosh computers by t,he development and analysis t.e<tms working on the project. The system can 
be run using eit,her a, graphical user interface, written using the open source uxWidg~~ts  framamrk, or from 
a text console. 

The GMAT source code was written using open source tools. GSFC has released the code using the 
NASA open source license. 

1.1 The Tool 

Figure 1.1 shows a sa~nple rwi using Gh.IAT on Windows XP. GR.I..\TT can be run using either a custom 
scripting language or components configured directly from the user interface. GM.4T script.ing is designed 
t,o run either from wit,llin GLUT, or from inside of the kI.4TLAB product fro~n 3,IathJVorks. 



Figure 1.1: A Salnple GRIAT Run 

1.2 Design Criteria 

There are several high level requirements for GMAT that  drove the design of t,he sysbem. These requirements 
can be sunlmarized in five broad categories: R/IATLAB Accessibility, E,xtensibility, firmation Modeling, 
Parallel Processing, and Open Source Availability. Thc syst,enl is designed t o  run on Ma.cintosh, Willdows, 
and  variant.^ of Unix (including Linux) - through a. recompilation of the source. 

1.2.1 MATLAB Accessibility 

MATLAB is a tool used a t  many facilities in the aerospace coln~nunity to  develop new algorith~ns and t.o 
prototype approaches unique to  new missions under considera.tion. hlATLAB as a syst.em is quite flexible, 
but is rat.her slow for precision orbit  nodel ling work. GMLIT, by tiesign, performs detailed orbit and at.titudc 
modeling, pro~iding an engine that  can be callod from MATLAB for tasks that  present, parformance issues 
when built in t,he MATLAB language. 

1.2.2 User Extensibility 

One prirne driver for the development. of GMAT mas to provide a tool that  allows users to  try new components 
and ~nodcls in the system wit,hout rebuilding it from scratch. This capability is partially sat,isfied by thc 
MATLAB int,erface describetl a.bove. Conlponents of GPIIAT can also he added to the system by writing new 
code t,hat can be conlpiled into shared libraries and incorporated into t.he system at  run time. All of the 
operating systems GMAT supports provide native methods for this capability: and t,he syst,em is designed 
t,o make the atldit,ion of new components si~nple using thest.? capabilities. 



1.2.3 Formation Modeling 

The current tool set. used to model format.ions treats a format.ion of spacecraft as individual spacecraft, 
modeled independently and then compared by matching states at spccific epochs, either on a. small scale 
(taking single steps for each and then comparuig t.he states) or on a large scale (prol)a.gating ephemerides 
for each spacecraft and then going hack afterwards to compare states at specific epochs. GMAT provides 
t.he ability to t,reat a collection of spacecraft as a single entity, makiug the modeling more streamlined and 
providing the ability t,o handle formations and constellat.ions as simple ent.ities. 

1.2.4 Parallel Processing Capabilities 

Some sat,ellite analysis tasks require the execution of many separate orbit propagat'ions, ii~cludi~lg mission 
tuning (aka t,argeting or optinlhing) and other mission refinements: in order to adequately model t,he nlissio~l 
sccmarios under analysis. Thesc tasks can take as marly as several hundrcd separate runs, cad1 consisting of 
several minutes or more of run time on current hardware, in order to determine the results of t,he analysis 
problem. GMAT is designed t.o enable t,he parallelization of these tasks across multiple processors, either 
within the same computcr or, eventuall;r5 across a net.wor1i of computers. While the current implementation 
does not 1evera.g~ this capability, it. is designed to make the transition to multiple processors and distributctl 
computing as simple as possible. 

1.2.5 Open Source Availability 

GMAT is a.vailable for external users in bot,h execut,a.bla and source code form, subjoct to  the NASA Open 
Source licensing agreement. This redistribution requirement drove design issuc?s related to  the selection of 
external libraries and packages used by GMAT. 

1.3 Design Approach 

The categories described above drove t,he architecture of GMAT. The following paragraphs describe the 
architectural elements used to address t.hese  requirement.^. 

1.3.1 Modularity 

GMAT is a conlplicated systenz. It is designed to be imple~nented using a "divide and conquer" approach 
that uses simple components that combine to satisfy the needs of t,he sys%em. This system modularity nlakes 
the inclividual components simplc, a ~ d  also simplifies the addition of new components i11t.o the @em. In 
addition, each type of resource ha.s a well defined set of interfaces, implemented through C+- base classes. 
New components in each category are created by implenlentat,ion of classes derived from these base classes, 
building core methods to implement the new functiona1it.y ... for c:xa,n~ple! forces usod in the force model for 
a spacecraft all support. an interface; GctDerivativt:s(), that provides tho a.ccelcrat,ion data. needed to model 
the force. Users can add near components by implenlenting the desired behavior in these interfaces and then 
registering these components in the GM.4T factory subsystem. 

1.3.2 Loose Coupling 

The modularity of the components in GMAT a.re implemented to faci1itat.e "plug and plaji' capd)ility for the 
components that allows them to be conlbined easily using a set of common interfaces. Conlpollents built in the 
system have simple interfaces to  be able to communicat.e with MATLAB and with one another. Dependei~cies 
bet,ween the components arc ~nininlized. Circular dcpcndencies betwecm components minimized. 



18 

1.3.3 Late Binding 

GMAT is d(:sigiied to support running of niult,iple inst,ana:s of a mission sinlult,aneously in order to satisfy 
parallel processing requirements. This capability is built into the system by separating the configuration 
of the co1nponent.s used in t,he mission from tlie objects used during execution. Configurecl  object.^ are 
copied il1t.o the running area (tlie 'Santlbox") and then connect.ed togethor to  execute the mission. The 
connections between the components cannot. be made until the objects are placed in the Sandbox because 
t,he 0bject.s in the Sandbox are clones of t'he configured objects. This late binding makes parallelization 
sirnple to  inlple~nent when the system is ready for it. - -  parallelization can be accomplished by running 
multiple Sandboxes simultaneously. 

1.3.4 Generic Access 

GhlAT componcnt,s share a cornmon base class that enforces a set of access methods that are used to 
serialize the components, facilita.ting both file levcd read ant1 write access to the components a.nd simplifying 
conimunications with MATLAB and other external tools. This capability is implemented using parameter 
access met,hods that. are thenlselves serialized, providing descriptors for each parameter. Connections between 
components are specific?d a t  this level by establishing parameters that identify tlie connecteti pieces by name. 
Dat.a generated by tho systcm is passed out of the Sandbox through a message interface, using "ptiblish and 
subscribe" design. 

1.4 Documeilt Structure and Notatioiis 
GhlAT is writt,en in ANSI C++. The system is objcc.t-orientc?d, makes exbe~isiw use of t,he standard t,ernplate 
library (STL), and is coded based 011 a style gxiilide[shoa.nj so that the code confornis to a consistent set of 
conventions. The source is configuration mana.ged in a CVS repository host.ed at GSFC. 

This docunierlt provides a fairly in-depth introduction t,o the design of t'he software. Throughout this 
document,, t,hc archit,ect,ure of t,he system is desciibed using C++ nome~lclature. Thc design of t.he systern 
is illust,rat#ed using Unified Modeling L2ang~1age (UML) diagrams to sketch the relationships and program 
flow elenients. While this docuinent is extensive, it does not completely document all of t,he intricacies of 
each GMAT class. These details can be found most accurat'ely in the source code, which is available on 
request under the NASA Open Source licensing agreement. The code includcs comments written in a style 
compatible with the Dosygen documentation syst,em. When the source code is processed by Dosrygen, the 
output is a con~plet,e reference t,o the GhlAT ..lpplication Programmer's Interface (API). 



Chapter 2 

GMAT System Framework 

Dam1 .J. Conwuy 
Thinking Systems, Inc. 

Tho G M - T  syst,eln consists of a high level framework, the GMAT -4pplication: that manages systern 
level messages l>rocessed by GMAT. This framework contains a single instance of the core GMAT executive, 
the Moderator, which manages the functionality of the system. The Moderator interacts with five high level 
elements, shown in Figure 1: that function together to run the system. 

The Interpreter subsystem consists of two separate components. The interpreter contains the c~~rrent,  
tnissioi: script-, used t80 generate the mission event sequence, and t,he interface to the GMAT user int,el-face. 
This 1at.ter interface takes the defined user actions and passes these actions to the appropria.te ele~nents in 
the systeni .. for instance, when a user presses a "Run Mission" butt'on on the GMAT GUI, the command is 
passed to the user act,ion int,erpreter, n~hich then config~~ros t.he objects needed t.o nm the current script and 
then starts the execution of the script. (Okay, that sentence assumes a lot that I haven't talked about yet ...) 

The Environment subsyst,em contains configuration information for the system data files, ex3ernal pro- 
grams (e.g. MATLAB), and a numbtrr of utility subsystems (Okay: I needed someplace to put these - -  is t,his 
the best place?) used to perform co~n~non ta.slrs. It a.cts a.s the repository for all of the information needed 
for GMAT to talk to other elements running on a user's workstation, along with the central location for 
information about the data files used by the system. 

GhlAT contains numerous classes t,hat are used to  perfonn spacecraft modeling. These classc?~ are all 
mana.gec1 by a set of components that construct instances of the classes nc?edr!d by a. script; these components 
are shown on Figure 1 as a set of object factories defined fbr the system. This infrastruct,ure provides t,he 
flexibi1it.y needed by t,he systenl to give users the a.bility to add custorn componc.nts to the system, and will 
be described in inore det,ail la,ter in this document. (This piece is pretty core to the design I'm t,hinking 
about right now, so it needs to  be examined closely to be sure nre get what we want in GblAT. Of course, 
that means it,% also the hardest, part to explain ... especiall~r when I try to  muddle through the way the systern 
puts it together with the script interpreter and the config~~rations!) 

The GhlKT Moderator includes a, contd~ler used t,o ~nanage lists of configured components used by the 
system to  pelform mission analysis. GR/I:AT maintains these lists a.s the core object structures manipulat.ed 
by the system to  perform mission analysis. The Moderator has the following core 1ist.s used in a 1nissio11 
timeline: 

1. So1a.r System Config~irations: A list of t h ~  celestial object,s (star(s) , planets, moons, asteroids and 
co~~lets  that represent the playing field for ~nission analysis scenarios 

2. Propagation Configurations: A list of configured propagation elements used to cvolve the modeled 
c.lements during analysis 

3, .4ssc.t Configurations: A co~itaincr for spacecraft, forma,tionsl of spacecraft., and ground assets 



4. Forn: Model Configurations: Collections of forces used to model pesturbations a.ct.ing on tho assots 

5. Script Configurations: Either complete timelines or   subscript.^", consisting of a sequence of actions 
taken by the system to rnodtrl all or a piece of an orbit problem 

G .  Matllernatical Configurations: Elements used to perform custom calculations and for com~nunication 
with exterilal p rogans  like MATLAB 

GMAT runs arc perfonnetl in the G K 4 T  Sandbox. This pox-tion of t,hc syste~n is tha contailler for the 
components of a run, linked tog-ether to perform the sequence of events in the mission t,imeline. When a, 
user tells GMAT t.o run the script, the syst,e~n moderator uses the script interpreter t,o interpret the contents 
of a. script, a.nd to  place t.he corresponding script t?lernents into t,he sandbox for use during the run. The 
Moderator links ea,ch element pla,ced into the sandbox to its neighboring elements. Once the full script has 
been translated into the component,s in the sandbox, the Moderator starts the run by calling the R.un method 
on the sandbox 

The following sections describe ea.ch of these conlponents more completely. These descriptions we follotvcd 
by several sample system configurations. The last' section of this document provides details of the classes 
used in this design. 



Part I1 

System Architecture 





Chapter 3 

System Architecture Overview 

Darrcl .I. Conwag 
Thinking Systemst Inc. 

The purpose of this cha.pter is to  describe the key architectural elements of GMAT. We will begin by 
examining a st,atic view of key components of GMA4T, grouped func.tionally. After presenting this functional 
grouping of GMAT's components, some common user interactions are described and broken out int,o a 
description of the flow I~et~ween the components of these packages. Thcse descriptions provide an overview of 
how messages and dat.a flow in tile syst.em. The chapter concludes with a more complete functional sulnrnary 
of the core cleinent,~ of Gh;IL4T. After reading these materials, you should have a high level understanding of' 
how the classes and objects in GMAT int.eract t,o perform mission analysis. 

3.1 GMAT as a Collection of Packages 

The GMXT architecture can he described as a set of components grouped into functional packages1 that. 
intera.ct to  modd spacecraft missions. The system is built around four packages that cooperatively interact 
to model spacecraft, in orl~it. Fig1.n-e 3.1 shows an overview of this package grouping. GA4.kT functionality can 
be broken into Prograrn Interfaces, the core system Engine, the Model used to  simulate spacecraft. and their 
ei~vironment, and Utilities providing core programmatic funct,ionality. The constituents of these packages 
are tlcscribed t,llroughout. this document; this chapter provides a. framework for thc more detailed discussions 
that. follow. 

Each of these functional categories can be broken int,o smaller units. The next level of deconiposition 
is also shown in Figure 3.1. This next, level of packaging -.. referred to  as 'Subpackaging." in this document 
.. provides a finer grained view of the functions provided in trxh package. The next level of deconiposition 
belo~v the subpa,ckages provides a view into the class st~-uct.uro of GMAT, as will bc seen in the nest few 
paragraphs. 

3.1.1 Package and Subpackage Descriptio~is 

Figure 3.2 presents thrt packages a,nd subpackages in a s1ight)ly difkrent fornla,t from that shown in the 
last figure. The top level packages are represent,ed by specific colors matching those in Figure 3.1" The 
package n m e s  are listed at  tmhe top of each column, with the subpackages slionn indent,ed one level from these 
packages. One addit,ional levt?l is shown in this diagram, showing represerltat,ive members of t.he subpackages. 
The deepest level items in this figire are classes contained in the subpackages; for example, the Executive 

'Note that these divisio:s are functional, and rlot r:~lforccd by any ph:rsical packaging constraints like a rlancspxc tir s i i a~ed  
l i  brnry boundaries. 

.,..,. -': ilis coior scherrle will l i t .  usetl Sor l it? reci~ailitlei. of' this chaplrr as \z.ell. 





subpackage in t,he Engine packa.gt! cont.ains the &lodera.tor, Sandbox! anti Publisher classes. These elements 
 ill be used in the discussion of how the packages interact in the n e s  few pages of this document. 

As is shown in these figures, three of these packages can be further broken into suhpackages. The following 
paragraphs present a11 overview of the packages arid t.heir subdivisio~is. 

Program Interfaces All twcrwa.y communiclttions bet-ween users and external programs and GMAT are 
contained in the Program Interface package. This paclcage can be broken into four subpackages: 

* User Interfaces Users view GMAT through a user interface .- usually through t,hc GMAT Graphical 
User Int,crface (GUI), but also potentially through a command line interface into GhlAT called 
the GMAT console application, or Console. These intelfaces are contained in the UserInterface 
subpackage. 
GMAT's GUI is coded using t,he wxWit1gets cross-plat.form library/arx]. The GUI provides a rich 
environment tha.t provides access to all of tlle fca.tures of GXAT through either panels customized 
for each component or through a text based script. klissions saved from the GUI are saved in the 
script format, and scripts loaded into the GUI populat'e t,he GUI elements so that they can be 
viewed on the custonlized intc?rface pa,nols. 

The console version of GMAT can be used to run script files a.nd genera.te text dat,a a i th  little 
user interaction. The console application can run multiple scripts at  once, or individual scripts 
one at  a t,ime. This version of the system is currently used for test,ing purposes, in situations 
whertt t,ho ovt!rhead of tile full graphical user interfaace is not needed. 

.Intevretel:g The user inter-face components communicate with the core GMAT system through 
an interface layer known as the Interpreter subpackage. This layer acts as the coxlnection point 
for both the scripting interface and the GUI into GMAT. 
The Interpret,er subpackage contains two specific interpreters: a GuiIntc:rpreter, designed to pack- 
age mossages between the GUI and the GNAT engine. and the ScriptInterpreter, designed to 
parse script files into messages for the engine, and to  serialize components in the engine into 
script form for the purposes of saving these objects t.o file. 
The Interprctcr subpackagc? is designed so that it can be extended t,o provide other means of 
cont.rolling the GMAT engine. All that is required for this extension is thc development of a 
new interpreter, and interfaces for this new component into the Moderator, a component of the 
Executive subpackage in GMAT's Engine package. 

* External Interfaces Gh4.4T provides an interface that can be used to communicate with external 
These int,erfaces are packaged in the ExternalIntcrfaces subpackage. 

* S14bscribel:s Users view the results of a mission run in GMAT through elements of the Subscriber 
subpackage. Subscribers are used to generate views of spacecraft trajectories, plots of nlission 
parameters, and reports of mission data in file form. 

The Engine The int,erfaces described above exist on top of a core sin~ulation engine used to  control the 
model of flight dynamics problems in GMAT. This engine consists of the control and management 
structi.~res for t,he program. The elements of tlle model used to simulate the spacecraft mission are 
illtroduced in t,he next package description. The Engine package consists of three subpackages: 

Exec,utive The Executive subpa.cka.ge contains t,he central processing component for GMAT (ca.llt?d 
the ?vloderator), a. connection point used to ca,pt,ure and distribute t.he results of a inission run 
(the Publisher), and the workspace used to  run a mission (the Sandbox). 
Tho Moderator act,s as the central communications hub for the GRIAT c:ngine. It recc.ivos messages 
from the program interfaces t.11roug.h the interpreters, and d(?tcrmines the actions t.hat necd t,o be 

"1% This mribing, the ofily c-urcrnal iu:,crfacc Inc.or~oral,cd into the  core G.Lir\'T code basc is an in1 crfacc. t o  thc LlatbXVorks' 
~~~-otii.lci AIXLI.:iH~r~~atlab]. 



Figure 3.2: Pxka.ges, Si~l)pac:ka,ges; a.~i!l Somtt Di.t,ail~ 
Subpackages are indicated by a cluster of di=~~o~li ls  
Objects and Classes are marked by a circle 
Other co~~st ructs  arc marked by a sir~gie diamond 



3.1. C.Z,W?'AS A COLLECTION OPE"AC:KA4C;ES 27 

t,aken bast?d on these messages. The hlodera.tor sends messages to t,he other co1nponent.s of the 
Engine to accomplish the requested twks. 

GMAT is designed to run missioris inside of a component called the Sandbox. When a user 
requests a mission run! the h1odcrat.o~ set.s up the Sandbox wit.h the elements configured for t,he 
run, and t#hen turn control twer to the Sa.ndbox to execute thc mission. 

The Publisher acts as the connection between dat#a generated in t.he Sandbox and the views of 
these data presented to  the User. It receives messages from the components in the Sandbox, and 
passes those messages to the corresponding Subscribers. 

Configuration When GM.4T builds a model, it st,a.rts by building conlpoiients t.hat will be con- 
nc.ct.ed together based on a sequence: of inst,ructions. Each component. is an instance of a GhlAT 
c1a.s~ as they are built. these components are st.ored in a local roposit,ory of objects. Tho repos- 
itory holding model components is known a s  the configuration. Tlie Configuration subpackage 
c0nsist.s of t,his reposit,ory and an interface used to access it, called the ConfigurationManager. 

The components stored in the configuration are all derived from a base class nanied GmatBase, 
described in Chapter 7. In G>lAT, every object that a user creates and uses to simulat,e a 
spacecraft mission is derived from this base class. The configuratioll is maintained as a collection of 
pointers to  GmatBase objects. The ConfigurationManager works with this collection to  maintain 
the configuration repository. 

Factory The model e1ement.s st,ored in the confignration are creat'ed on request from t.hc users. The 
subpackage responsiblc for processing rctquest,~ for new model demcnts is the Factory subpa.ckage. 
It consists of an interface into the subpackage .-- t.he FactoryManager and a collect,ion of factory 
classes used to create specific types of model  element,^. 

Each fact.ory in GNAT creates objects based on the type requested. For example, Spacecraft 
or Forma.tic)n objects are created through a call is the corresponding type of object. into t,he 
SpaceObject.Factory. Similarly; is a user needs a Prince-Dormand 7(8)  integrator, a call is made 
to the PropagatorFactory for that type of integrator. The  factor^. creates the object through a 
call to the class's const,ruct,or, and returns the resulting object pointer. 

Tlie Fa.ctory subpachge is const.ruct,ed this way to facilitate ext,ensibility. Users can adtl user 
genera.ted classes by crea.ting these classes anti a Factory t,o instantiate t,hcni. That factory can 
then be registered with GMAT's FactorpManager, and users will be able to access their specialized 
classes in GM+ilT without modifying the configured GMAT code base. Eventually, users will be 
able to load their 01>ject8s through shared libraries (aka (111s in the Windows world) at run time. 
The FactoryManager registration process sakes the factory pointer and asks it. what. t.ype of object,~ 
it can crea.to, and sentls the corresponding rcquest.~ to the correct fact.or3-. Details of the factories 
theniselves can be found in Chapter 5. Extensibilit,y is discussed in Chapter 26. 

The Model The Engine package, dt.?scribetl abol-e! providas the progrwlniatic framework nc?cessarg for 
building and running a siniulation in GM,4T. The objects t,llat, are used to model the elements of the 
simulation are contained in the Model package. All of the elements of the Model package are derived 
fkom a common base class: GniatBase, described in Chapter 7. 

When a, user configures Ghll'IAT to simulat,e a spacecraft mission, the user is configuring objects in the 
Model package. In ot,her words, t.he hlodel package contains all of tho coniponents that are available for 
a user whcn set.t.ing up a mission in GMAT. The model elements ca,n be broken int80 four subpa.ckages: 

Evivironment The environment subpackage provides all of the background ei:virolitnetital data used 
in GMAT to model the solar system: along with the con~ponents needed to perform conversions 
that require t,hosc ele~netits. 

Resou.rces All of t,he model elements that, do not require some form of sequential ordering in 
GMAT are called Rc?sources. These are the ~nodcl elements t .hd appear in t,he Resource tree in 



t,hc: GUI - esclucling t,he Sola,r Systeni etlaments - and they are the elemants t,hat are st.orotl in 
the configuration subpackage, described above. 

e Commands Con~mands are the elements of the model that describe how the model should evolve 
over time. Sincc? cornmands arc sequent.ia1. they are stored sepa.ratc?ly, and i11 sequential order, 
in tho Comnland silbpackage. The sequential set of com~na.nds in GALAT is called the Mission 
Control Sequence. 

The Mission Control Scqnenct~ is a linked list uf commands. Corn~nands that allow brandling 
manage their branches through "child" linked lists. These branch conlnlands can be nested as 
deep as is required to nlcet the needs of the modcl. 

e Pal-ameters Parameters are values or data co11t.aint.r~ (e.g. variables or arrays) that exist exT,ernal 
to  other objects in the GhlAT model. These objects arc? used to perform calculatioris of c1at.a 
usr:ful for analysis purposes. 

Utilities The Utility package contains classes that are useful for implementing higher level GMAT functions. 
These core classes are provide basic array computations, core solar system independent calculations, 
and other uscful low level conlputations that facilitate prog~amming in thc GMAT systeni. 

3.1.2 Package Component Interactions 

The preceding section provides a static view into the components of t.he GMAT. In t.his section, a high level 
view of t,he int,eractions between t.he elements of t,hese packages will be describc.d. Figxro 3.1 shows the stat,ic 
package view of GMAT. Each top level package is color coded so that the system components shown in the 
interaction diagram, Figure 3.3, can be identified with their conta,ining package. The legend on this figure 
idont.ifies t,hc pacliage color schetne. 

Users interact wit11 GIGAT t,llrough either a Graphical User Interface (GUI) written using the cross- 
plat.forn1 GUI library WX-Widgets, or through a 1ight.weight console-based application designed to run scripts 
without tfispla.ying graphical output. Theso interfaces comnl~nicat~e wit,li the GMAT engine through in- 
terpret.er singletons4. The GUI a.pplicatio11 interacts with the engine through both the Script ant1 GUI 
Interpreters, while the console application interacts t,hrough the script interpreter exclusirely. These inter- 
prcters are tlcsigned t,o mediate two-way communications between the GNAT engine and users. The GUI 
and console applications drive the GMAT engine t.hrougl;h these iilterprt:ters. 

The Interpreters in turn communicate with GM.4T3s Moderator singleton. The Moderator is the central 
control object. in t . 1 ~  GMAT engine. It 1nanagc:s all program level com~nunications and i~iformation flow 
while the program is running. It. receives rnessages from the interpreters. processes thoso messages, and 
 instruct,^ ot.her conlporiellts of the engine to  take a,ctions in response t,o the messages. The messages sent by 
the interpretc?rs fall into several dist,inct groups: 

e Object Creation messages a,re used to request the creation of resources stored in the 
da.tabase or the creat.ion of commands stored in the Mission Cont'rol Sequence. 

e Object Retrieval messages are used to access created objects, so they can be modified by users or 
stored to file. 

e Run messages prepare thc Sandbox for a run of the Mission C'ontrol Sequence. and then laundi 
execution of the Mission Control Sequence. 

'"I!J~ Ghld'J.' et;gir:e is I.I!II I.L;int.;~.;lt a se!, r!T sl~tdi.t.o~t class ina:a~tc+~l;:. I'lte ~ir:glel.on dc?aiyn lia.:.!.ci.~t 11sd  .!ill l , l~~?s t?  ir~sl,a.iices is 
illirvdu~:rcl in ,%p~.rei!tlix Ij, 'l'l~t. irilyi~rtallr rili~ig Lo krioa. atiou! sing~r1ur:b 11.)i this discussicin ir-: Lila1 lt!ere is ol1l-j orlr irlsl8,r11;e 
ctf any singleton class; hence a ruuni::~ G41A'r executable has one w d  ol~iy on? ScriptI:lterpreter, and >~loderaror: a11d at mvrt 
onc (;IJTIn!,crprctcr. Oihcr singletons -xi11 bc introdccce during t,llis discr!ssion as: wc?ll. wli.cn ihr! factories and rotlfigriration 
ar? disc!~ssrti. 



1 interface Package j 
! Engine Package 

i I 2 ,.. M&j Pa~)r.age i 

] Utility Par,bgc 

i a Extertfal Pro~sses ' 
\ I! 

Figmc 3.3: Subsystein Interactions in (3MXT 
Grt.c:13 a.rrows stiow jriforniation flow I~ettvecn tile core Engirie cc;nipoIic.rLi;s, while Ijlue arrows eliotv iliforniatiori 
fiow thar, occurs d l e n  a missiorl is executed. 



Polling mc:ssages are usec.1 to control an execut,ing Mission C:ontrol Sequence, and are used to coordinate 
external conlmtinicatiorls (for example: the startup process for MATLAB) and user actions taken during 
t,he sun. Sequence so that a new model can be built in the engine. 

The message anti information flow in the Engine a e  shown in Figure 3.3 with double headed arrows. The 
green arrows show the central message ant1 infornla,tion flow in the cmgine, wlule the blue arrows show 
information flow that occurs while a mission cont,rol secluence is executing. These messages are described 
1)riefly here, and more complet,ely through examples lat.er in this chapter. 

The Motlerator responds to requests for new resources or co~nmands by req1ic:sting a new object from the 
Fa.cto~-yMana.gcr. The FactorykIanager dotc?rmines whic,h Factory class can sul>ply the req~iested object, ant1 
sends a "create" request to  that facto~y. The Fact,ory builds the requested object, and sends the pointer to 
t,he new object to  the FactorgManager, which in turn sends t,he point'er to  the Moderator. The Moderator 
sends the new object's pointer t.o one of two locations; depending on the t j ~ e  of object created. If t,htr object 
is a R.esource, the object pointer is passed t o  the ConfigurationManagor. The Configura.tionR4anager adds 
the resource to the database of configured 0bject.s. If the requested object is a conlinand, it is added to t,he 
Mission Control Sequence. The Moderator then returns the point,er t,o the int,erpreter that requested the 
new object. 

Object ret.rieval is used t,o ret,rieve the pointer to an object t.hat was previously creat,ed. The Moderator 
receives the message asking for the object. If the object is a configured resource, it calls the Configura.tion- 
Manager and asks for the resource by name. Otherwise, it traverses the Mission Control Sequence until it 
finds the recluested command, m d  ret.urns the pointer t,o t,hat. co~nmand. 

R,un messages are used to tramsfttr the resources rind Mission Control Sequence into the Sanrlbox and 
sta1-t a run of the mission. When the Moderator is instrucied to run a Mission Control Sequence, it starts hy 
loading the configured components into the Sandbox. The Moderator requests objects from the Configura- 
tionManager, by t,ypo, and passes t.hose objects to the Sandbox. The Sandbox receives t,he object ~)ointt:rs, 
rind clones each object into a local resource data.base. These local clones a.re t,he objects that interact urit,h 
the commands in the Mission Control Sequence to  run a mission. The ILiodera,tos then passes the Mission 
Control Sequence t.o the Sandbox so that the Sandbox has the list of commands that need to be esecuted 
t,o run t,ht? mission. Next Moderat.or t,ells t,he Sandbox to initialize its components. Tho Sandbox initializes 
each of the local components, and eshblishes any necessary connections bet.ween components in response t,o 
this message. Finally, the Moderator instruct's the Sandbox to  execut.e the Mission Control Sequence. The 
Sandbox starts with t,he first command in t,he sequence, and runs the commands, in order, until the last, 
co~nnland has executed or the run is tenninat.ed by &her r i  user generated interrupt or an error encou~lt~eretl 
during the run. 

Polling messages are used to process messages bet,ween t,he 1,Ioderator and the Sandbos during a run. 
Typical messages processed during poling are user requests t.o pause or terminate the run, or to open a 
connection to an external process (including the startup of t,hat process). 



The descriptions provided here for these messago types niay be a bit confusing at first. The following 
section provides representative cases of the message passing and object interactions in GMAT when a user 
prefo~~ns stveral co~n~non int,eractions. 

3.2 GMAT from a User's Perspective 

When users run GhlAT, they follow a work tion, like that shown in Figure 3.4. Users st,art the program, 
configure resources, plan their mission, save the config~rdion, build the mission if working from a script 
file, and run tile mission. The follo~ving sc?ct.ions tlcscribe the top level actions taken by GMAT when a user 
initiates each of these actions. 

3.2.1 The GMAT Startup Process 

Figure 3.5: The S t a ~ t u p  I'rocess 

The startup process for GMAT, shov~n in Figure 3.5: launches t,he executable program and prepares 
the engine for use. A/Iost of the work performed during startup is performed by the Moderator. When t,he 
application lau~ichles, t,hc first action taken is the creation of trhe &Iod(~at.or singleton, mad(? by calling the 
sta,tic Instance() metliotl on t.hc Modera,tor class. This freshly created Moderat,or is then init,ialieed by the 
application through a call t,o the Initialize method. 

The proct?dure followed in Initialize() is shown in the large green st,ructurac-1 flow bc)x in tlie figurc?. The 
Motlerator reads the GhlAT startup file, setting linkages to the default. files needed to ~izodel and display 
running missions. The startup file resides in the same folder as the GMAT application, and contains path 
and f i l t r  information for planetary ephemcrities, pot.etitia.1 models, g~aphical i~na,ges used to provide t.ex%ure 



maps for botlies displayed in thi? GUI, a,tmospheric nlodel files, and d(?fa.ult output paths for log files and 
other GMAT generated outyt~ts.  

Upon successfi~l read of t.he output, file, t,he Modera,tor starts crcat,ing and connectsing the main conlpo- 
nt!nts of thr! engine. It begins by creating the co~nponents used for building lnodel elements. The Fa.ct.0- 
ryManager and Configurationh,ta~lager are created first. &ex? the Moderat,or creates each of the internally 
configured fact.ories, one at. a time, and passes these instances into the  FactoryManager. This process is 
called "regist,ering" the Factories in (Ahor parts of this doalment.. Upon complet,ion of Fa;astory registration, 
thc Moderator crea.tc:s instances of the ScriptInterpreter and GuiIntt?rprc:ter singletons and t.he Publisher sin- 
gleton. This completes the configuration of the core engine  element.^, but does not complete the %loderator 
init,ialization process, because G3iAT starts with several default   nod el elements. 

The Moderator creates a tiefault Solar System model, popula.ted with a, st.a~idard set of solar system 
members. Nest it creates three default coordinate systems t,llat always exist in GMAT configurations: the 
Earth-Centered Mean of JZOOO E,arth Equator system, the Earth-Centered Xiearl of 52000 Ecliptic syst,em, 
and t.he t.he Earth-Conteretl Earth body-fixed system. Ncxt tho kjfotlerator sets the point,ers neetfeti t,o 
interconnect. these default resources. Finally, the Moderat,or creates cz default mission, an t i  upon succcss, 
returns co~ltrol t o  the GMAT application. 

The Application retrieves the  pointer for the GuiInterpreter, and sets t,his pointer for later use in the GUI. 
It. then displays the GMAT splasli screen, anti then finally created a11d displqs t.he main GMAT JVindow. 
At this point, the GMAT GUI is configured and ready for use building rnodels and running missions. 

3.2.2 Configuring Resources 

Figure 3.6 shows t,he top level set of actions tab11 by a user when configuring a t,ypical resource --- in 
t,his case! a Spacecraft object - -  from the GUI. The user starts by right clicking on the Spacecraft folder 
(or control-clicked on tho Macintosh) in the resource t,ree on the left. side of thr: 1ntii11 GMAT window. This 



action opens a contex* menu; the user se1ec:ts "Add Spacecraft?' from this menu, ant1 a ncw spacecraft resource 
appears in the resource tree. This action is represented by the box labeled "Create the Spacecraft" in t.he 
figure. The user n1a.y also eloct to change the name of the new Spacecraft. This action is t,aken by right, 
clicking (control-cliclc on the Macintosh) on the new resource in t,he resource tree: and selecting "R,ena.mc? 
fro~n the resulting context menu. 

Once a rosource has been created, the user can cdit. the properties of t,he resource. From the GUI, t,his 
act,ion is performed by double clicking on the resource. Double clicking opens a new panel tailored t o  the 
t,ype of resource t.hat is selected; for a Spacecraft, the panel shown in Figme 3.7 opens. The second block 
in Figure 3.6, labeled "Set Spa.cecraft Properties",  represent,^ t,hc actions t,alcen in GMAT when the user 
performs this select,ion, and when the user nlakes changes on t,he resulting panel. 

Figure 3.7: The Spacecraft Configuration Panel 

Changes made in a GUI panel like the one shown here are not automatically made on the underlying 
objects in GMAT. Changes made on the panel are fed back t.o the internal objocts when the user select,s 
eit,hcr the "Ok" or "Apply" but.ton on the bot.torn of the panel. This updating of t,he rosource is represented 
by the "Update Configuration" block in Figure 3.6. 

Each of these 11lot:ks can be further deconlposed into the intcxnal a.ctions performed in GkfAT when 
t.he user makes the selections described here. The following paragraphs describe in sonle detail how GhlAT 
reacts t.o each of these user actions. 

Creating the Spacecraft 

Figure 3.8 shows an exalnple of the process followed in GMAT when a new resource is crc?at.ed fronl the 
GUI. The user selected "Add Spacecraft" from the option menu on the Spacecraft node of the resource tree 
(accessed by right clicking on the node). This selection triggered the chain of events shown in the sequence 
diagram in thc figure" Tlle sequence starts with a CreatctObject() call fronl the GUI to the int.erface int.o 
the GMAT engine. The interface bet,waen tile GCI and t,he GM-AT engine is a singlet.on inst.ance%f the 
GuiInterpreter class, and is shown in green in the figure. 

"For an introduczioc to t,he I:M1, diagram tiotation lit;r?d ihroiighou! this docurncn!.. ace Appendix '4 
6Single~.o~~s, and oltier citrsiqi yat.Lartts used i t ,  ~.;hlA'l ' ,  ate iiit~uducrti on Apyerirlh H. 



Figure 3.8: Configuration Exatnple: Prcating the Spacrcr;rR 

The Gui1nterprt:tcr singlt2ton rcceives t.hc call to croat.e an object of typc Spacecraft.. It makes a call, 
in turn, into t,he sirlglet,on responsible for I-unning the GMAT engine. This singleton is an instance of t,he 
Moderator class7. The call into tlie Moderat.or is rna,de in step 1 of the diagram; t,he call is made through 
the Createspacecraft,() method of the hloderator. 

User configured objects in GMAT are always created through calls int,o a subsystem referred to collect.ively 
as the l;'act.ory subsystem. Factories are responsible for crc?at,ing these objects. Tho factory subsystem is 
managc3d through a singleton class, t,he FactoryMana,ger. Thc Moderator accesses thc fas.t.ories thro~igll 
this singleton. In step 2 of t,he figure, the Moderator makes a call to the Createspacecraft0 method on 
t,he FactoryManager. The Factoryhlanager finds the Factory responsible for creating object,s of the type 
recluested .. in this case, a Spa,cecraft) object .- and calls that factory in turn. Spacecraft are created in G31.4T's 
Spa~ceObjectFactory; so tlie h.ctoryManager calls thc CreateSpacecraft() n l~t~hod on the Spacc:Objeci,Factory, 
as is shown in step 3. 

Tho Space0bjectFac:tory creates an instance of t,he Spacecraft class by calling the class's constructor: as 
is show ill step 4. The constructed object is given a name, and then returned through the FactoryMana,ger 
to  the Modera.tor. The Moderator receives t,he new object, and adds it to  the dittabae of configured  object,^ 
in G3IAT. 

All configured GMAT objecbs we  managed by a singleton instance of the Configurationkfanager class. 
The Configurat.ionManag.er is used to store and retrieve objects during configuration of the model. The Mod- 
erator atids created components to the configuration by calling Add met,liods o11 t,he ConfigurationMa,nager. 
For this exmlple, the new Spacecraft is a.ddcd to the configuration through the call shown in step 5. 

Once the steps described above have been completed successfully, the Moderator returns control to the 
Guihlterpreter, ~vhicli in turn informs the GUI that a new object.: of type Sp:icecraft, has been configured. 
The GUI a,dds this object. to t,he resollrce tree, and ret,urns to an idle stat'e, a ~ a i t ~ i n g  new instructions from 
t,he user. 

71;br thc purpascs of this d i s ~ ~ s s i n n .  !,hi! singlrto~l instances will be referred 1.0 by their class name for the remai~ider of this 
tliscussiur:. 



Setting Spacecraft Properties 

The Spacecraft that was created here has defa.ult settings for all of its prope1-tics. Users will typically reset 
these properties to match the needs of their model. The process follon-ed for making these changes frorn the 
GUI is shown in Figure 3.9. 

Fig:~r~ 3.9: Configuration Exaniplrx Setting Spacc:rraft Propcrtics 

.4s was discussed in t.htr int.roduct.ion to t.his section, Spacecraft properties arc set on the GUI panel 
shown in Figure 3.7. XJsers can open this panel at a,ny point in the model setup process. Because of tthe free 
flow in the configmation process, the Spacecraft pointer may not be accessible when the user elects to open 
the configuration panel by double clicking on the Spacecraft's name on GMAT's resource tree. Therefore, 
the first action taken when the panel is opened is a call from t-he pariel to the Guihltcrpreter to ret,rieve 
the configured Spacecraft with the rmme as specified on the R.esource tree. The GuiIntr?rprcter passes dhis 
request to the Moderat,or. The Moderator, in turn, asks the ConfigurationManager for the object with the 
specified name. Ths ConfigurationMitnager returns t,hat ohject to the Moderator: which passes it. t.o the 
GuiInterpreber. The GuiIntorpretcr ret,urns the object (by point,er) to the Spacecraft Panel. 

Tho Spa.cecraft Panel creates a temporary clone of the config~~rt?d spacecraft. so that it has an object 
that. can bc used for i~itcrmetliate propc:rty ~n~nipulations\ This clone is set on tho Spa.cecra.ft Panul:s 

"211c Spacecraft in unique ir: this respect; other abjcctj crjnligurcd ic tile C;Rl,Yl' GU1 art2 ~czllipulated di:.cciiy, rather than 
tl~rough x clonc. Thc Spscccrafz is in Inany rcspccts :% composite object; this added complcxir>- ntakrs thr: interrnediatr clone a 
useful cor~si.rucl. 



sul~panels~ accessad through a tabbed interfa.ce shown in t.he snapshot of the palel. Each subpa,nel accesses 
the propert.ies correspondiilg to the fields on the subpanel, and sets its data accordingly. The Spacecraft 
Panel is t,lie11 displayed t,o the user. The user then makes any changc:~ wanted for the niodel that is being 
config-ursd. 

Saving the Spacecraft 

The final step in the spacecraft configuration process is saving the updat,ed data into the configuratio11. 
That process is shown in Figure 3.10. 

The Spacecraft Panel has several tabbed si1bpanc:ls. The SpacecraftPa~lel begins the proct:ss by 
calling each of these subpaaels in turn, set,t,ing the correspo~idi~ig Spacecraft dat,a one subpanel at a time 
on the locally cloned Spacecraft. Once all of the subpanels have synchronized their data, wit11 the clone, the 
copy const.n~ctor of the config~~rcd Spacecraft is called with the clont!d Spacecraft as the input. argument. 
This a,ction updates the configxirc?d Spacecraft,, completing the save action. 

There are two buttons on t,he SpacecraR Panel that can be used to  perform the saxre action. The button 
labeled "Apply' saves t,he updated t i ah  to  the configured object and lewes the Spacecraft Panel open for 
further user mmipulat,ion. The "OK" butt,on saves t,hc data, and closc?s t,he panel. Tht! 1at.t.er a.ction tlostrovs 



the inst,ancc of the panel. Since tho panel is going out of scope, t.hs cloned Spacecraft must also be d(?lct,ed, 
as is shown in the figure. 

3.2.3 Mission Design 

The previous paragraphs describe the interactions between core GMAT conlponents and the internal message 
passing that occurs when a component of a GMAT Model is configured for use. Thc following paragraphs 
dt.scribc thc andogous configuration for thc commands in the hlission Control Sequence. 

............. ,:...: ..... __i_i. . . . . . . . . . . . .  R.. ........... 
-: .......... 3-, .,., ;;::: . . . . . .  

:-. Mission Sequence 
, .. 
j r Propagate1 
i C Propagate2 

iEi -@ Target1 
$3 Vary1 

Maneuver1 
i - f ?  Propagate3 
j i . .& Achieve1 

1 : . . 4 EndTargetl 
j. ..j:P Propagate4 
IF Propagate5 

:?-@ Target2 
I ?..di? vary2 
I i.. .Av Maneuver2 
j : fir Propagate6 
i @ AchteveZ 

4 EndTarget2 
.. .:R Propagate7 

Figure 3.11: The hlission Tree in GMAT's GU1 

The Mission Control Sequence is shown in the GMAT GUI on the tab labeled "Mission," shown for 
a modified Hohmann transfer problem" Figure 3.11. The sequence is sho~vn as a hierarchical tree of 
commands. Each level of the hierarchy is a separa.te list of co~nmands. The top lcvel list is the main control 
seq~~ence. Conlmallds that. 11ra.nch from this list are shown indented one level from t,llis sequence. Commands 
branching off of t.hese comnlands are indented an additional level1o. This process continues until all of the 
commands in the sequence are incorporated into the tree structure. 

The Mission Control Sequence shown in the fig-ure consists of seventeen commmds, grouped as seven 
coninlands in the main (i.e. top level) sequence, five addit'ional coril~nands branched off of this sequence to 
perform one set of maneuver targeting, and an additional five commands to perform targeting for a second 
maneuver. The rnltirl sequence of commands shown here is t.he sequence Propagate .-- Propagate .-- Target 
- Propagate - Propa,gate - Target - Propagate. Tho Target commands arc? used to tune the maneuvers at  
each end of the transfer orbit by applying the command sequence Vary .-- Maneuver -.- Propagate --. Achieve -- 
EndTarget. The inner workings of these comnlarids is beyond the scope of this chapter; the i~nportant thing 
to obscrve at  t,liis point, is the sequancing of the commarlds, a11d the prcsentakion of this sequencing to the 
user by way of Gh'IAT's GUI. 

The tree shown in the GUI is populated by traversing the linked list of commallds comprising bile Mission 
Control Sequence. Each node of the Mission Tree is an instance of the class rC1issionTreeItcmDat.a. This 
class includes a pointer to  the corresponding GmatCornrnand object in the htission Control Sequence. When 
GMAT needs to build or refresh bile Mission The ,  it accesses the first node in the Mission Control Sequence 
and creates a corresponding MissionBeeIten~Data instance. That instance is passed t,he pointer to the 

81 , 1 ';I*: rrio<lilit:atioik r~radc: liere is alor~g f.he i.ransfer !.rajectogr Liorii the iiijtial viljit to Ilie Ii~ral orbit. 'I'hr s~~acrcral't I l l  liiis 
e>:arr:pie is propagated ttirough one aud a i:df orbits on tile tra::sfe:. trajectory-, ratiier thari the typical half ilrbit ~icedcd icr 
tlre problcru. 

"IIL sl.:lime c;lses sequences ijl' sirriiiar corrirua~~ds are also indetltel! to sirilpliij. the display ui' ibe Xlissiol: C:un(rol Seguertce. 



GmatfCommand, and uses tha,t co~iirnand point.er to configure its propeitios in the tree. GMAT then wks 
for t,he next node in the sequence, and  repeat,^ this operation unt.il t,he tree is fully populat,ed. 

Soint? Grnat,Coinmands arc derived from a subc1a.s~ named BrancliCo~nmand. These comma~ids ma.na.ge 
child linked lists, like the ones shown for the target commands in the figure. J%'1ie11 the GI11 encounters a 
BranchCon~mand derivative, it indents the nodes displayed on the hfission 'I'ree to  indicat,e this nested level 
for the child sequence of the branch co~n~nand. All of the conlma~ltls that allow this type of nesting are 
terininat.ed wit11 a corrc:sponding "End" commantl - for tics example; the Target command tcrminat,es the 
targeting child sequence when it encounters an EndTarget conmland. 

Fjg;.lt.r~ 3.12: Coufigxirailon Example: A %lissiori Coiltrol Scqircince Corntnaxitl. 

Users interact with the Mission Control Sequence either t.hrough GGhlAT's script.ing int.erface, or through 
manipulat,ions made in the GUI. Llanip~lat~ions made while script,ing are pretty st,raightforward; they consist 
of editing a script file of conlinands and then instructing GMAT to passe this script. This process will be 
described later. Figure 3.12 shows the steps a user takes when adding a con~mand to  the Mission Corltrol 
Soquence from the GUI. 

The Mission Cont.rol Sequence is a doubly linked list of objects that describes t'he sequence of actions that 
GR;I-T will run when excc,uting a mission. E-a.ch notlc in t,lle linked list is an object derivc:d from the comlnmd 
base cla,ss, GmatCommand, is dascribed in Chapter 21. Since Grnat,Conlnland objects arc doubly 1inkt:tl 
in the list, each command has a pointer to  its predecessor and to  the next conlnland in the list. When a 
user decides to add a command to t,he Mission Cont,rol Sequence, a node in the Mission tree is selected and 
right clicked (or control-clicked on the Macintosh). This itct,ion opcms a contt:xt nlenil wit,h "Insert Bofore" 
and "Insert After" submenus as options. The "Before" and ;;Aftre?' selections here refer to the location of the 
new command. The user selects the desired command type from the submenu, and the requested command 
is addetf to tha Mission Control Sequence in the specificd location. This set of act,ions corresponds to the 
first block in the activity diagraii, labeled "Create: Command in hlission Control Setlilence." 

Most, of the con~mands in GMAT require additional set,tings to operate as the user intends .. for example, 
Propagate commands require t.ho itlentit,y of t,he propagator and spacecraft that should be used during 

' 



propagation. The second I>lock in tht: figure, "Edit Commaid Proporties," is launched when the user double 
clicks on a command. This action opens a command configurat,ion panel designed to  help the user configure 
the selected cornmand. The user edits t.he command's properties, and then saves thc updates back to t,he 
conunand object by pressing &her the "Apply" or " O K  button on the panc:l. This act,ion is performed in 
the 'Save Updates" block in the figure, and is tlle film1 st,ep a user takes wllen configuring a command. 

Each of these high lcvel actions can bc broken into a. secluence of steps pcrfortncd between t.he core 
elenlents of GMAT? is described in the following paragra.phs, which describe the interact,ions followed to 
add a. h4aneuver con~mand to  the Mission Cont,rol Seq~~ence. 

Creating a Maneuver Command 

Figure 3.13 shows the process followed when a Maneuver command is created and inserted following an 
existing command from the GMAT GUI. The process starts when the user selects a command on t,he mission 
tree, right clicks it, and 'hooses the "Insert. Aftei' option from the result.ing context menu. The resulting 
subnle~lu contains a list of ava.ilable commands; the following actions occur when thc user se1ect.s 'Maneuver" 
from this list. 

Figurrj 3.13: Commitrld C:rc>lttion Example: Creating a h,Iaslc:uvc~ Clorrlrnand 

RiIaneuwr conlnlantf creation starts when t.he kfissionTrt:el object sends a recluest to the GuiInte~preter 
for a new h?aneurrer conl~nand instance. The GuiInt.e~-preter sends t.he recluest to the hlotierator, wlicli sends 

I1Here, ant1 ~hrougltuul. :,liis ciuculrierit: speriiii: ir~sl..ailt:es ~L'siilgieton cias~es are rekrred to bj- the class nanw - -  "hlisaiun~l'i.ei' 
in this case. \Vlicn the rlass or user expcriecce of the inuta::ce is diseased, i t  wiil be reFc:rcd to less forrrlaily - 't.lission tred'; 
fcr cxamplo. Sc. as an cxsi.lplc of this stylc. wc inight discljfis the user sclccting a11 object on the missior? zrce in I f i ~  (;[;I; which 
ca.usew l he Missiori'l'l-ee t u  perfi~rrll il.>iTIt. af:lion. 



thc request to tho Factorykfanager. Thc Fact.oryManagr?r finds the factory that, creates kfaneuver cotnrnands, 
and ask t,hat factory for an instance of the RIaneuver command. The resulting instance is returned froni 
the fa.ctory, through tho Fact80rgMana,ger, to the Moderat.or. Thc hfoderator sots somc: default c1at.a on the 
cotiunand, and then returns the command pointor to the GuiInterpret,er. The Gui1nterprcttc:r passes the 
conlrnand pointer to the MissionTree. 

Each notle in the MissionTree includes a data nzernber point,ing to  t,he correspondi~~g cornmand in the 
Mission Control Sequence. This structure simplifies the interactions between the GUI and the engine when 
a user makcs cllangos to the Mission Control Sequence. Since the MissionTrett a,lrea.dy hits a pointer to the 
commantl preceding the new Me.neuver command, it has all of the information nt:etlcd to request that t,ht? nc:nr 
colnlnand he added t o  the Mission Control Sequence. The new Maneuver comrnand is added to  the Mission 
Control Sequc:nce from the MissionTroc?. The hlissionTree passes two pointc?rs through t.he GuiInt.er-preter 
to t,he Moderator: the first pointer identific?~ the command selecteti as thr? command preceding the new one, 
and secol~d pointer is the address of the new Maneuver cotn~nand. The Moderator pa,sses t,hese two pointers 
t.o the head of the hlission Cont.ro1 Sequence using the '?nsertn method. This n~et,hod seardies the linked 
list recursively until it finds the node identifietl as t.he previous comrnti.nti notle, and adds the new c o ~ n ~ n m d  
i~n~nediat~ely after that node in the list, resetting the linked list pointers as needed. This completes the 
process of adding a corninand to the Mission Control Sequence. 

Configuring and Saving the Maneuver Command 

When a new command is a.dded to the Mission Control Sequence, it is incorporat,ed into the sequence with 
default settings selected by the Moderator. Most of the t,ime, the user will want to edit these settings to 
niatch the requirements of the nussion being modeled. Command configuration is performed using cust,otn 
panels designed to  display tha properties users can set for each command. Figure 3.14 shows the panel that 
opens when a uscr double clicks a maneuver command - like the onr? created in the example described abwt? 
- -  in t,he ~riission tree. 

Figure 3.14: The Maneuver < ' o n ~ m a ~ ~ d  Configiiration Panel 

The sequence dia.gra.m in Figure 3.15 shows the top level messages that arc? passed when the l~f;~ant?uver 
conl~riand is configured using this panel. This view into the corninand configuration includes a bit tilore 
detail about the GUI messages than was shown in the Spacecraft present,ed previously. 

The configuration process starts when the double clicks on the command in the mission tree. The double 
click action sends a, messa,ge to  t,he MissionTree requesting. the configura.tion panel for the selucted notle in 
the tree. The MissionTree finds the item data, and sends t,liat data to  the main GMAT windo~v, called t,he 
Gmat~~lainFrame, asking for a new child window configured to edit t.he pr~pert~ies of the command contained 
in the iten1 data. The GmattMiIainFrame creates t.he child m<ncl~>~v and displays it for the user. 

Morc concretela; if the user tlouble clicks on the Mancuver command crc?at,ed in t,ho precc?ding sect,ion, 
the tree iten1 dat,a for tlla,t maneuver conlnland is passed from the MissionTree to the Chnat,hdainFrame. 
The co~lfiguration window that should result from this action for display in the GUI needs to contain the 
panel designed to match the underlying object that is being configured - - -  in this case, a Maneuver coinmand. 
The GmatMainFrame uses the trt?c? it,ern data passed to it to dottrrnline t,he type of panel necdetl by the 



I;i&x~re 3.15: Cornn~and Cc)rifiguration Example: Co~ifiguring the I\ilaricuver Command 

child window (luring its creation. For this esampl(!; the Gnla,thlainFrame determines that t h ~  panel that is 
needed should be a Maneuveflanel because the tree item data includes a pointer to  a Maneuver command. 
Accordingly, the GmatMitinFrame creates an instance of the ManeuwrPanel class, and passes that. panel to  
the child ivindow. The child uri~ldow received the pale1 ant1 places it into tha corresponding container in the 
window. 

Finally. tlie child window uses the coninland pointer in the tree item data to access the command and 
deternzine t8he current values of it,s internal properties. These data are collected from the command and 
passed to the corresponding CiUI conponents so that the user can see the current set,tings. Once these dat.a 
fic?lds hae been popula.tc?d, thc child windour is displayed on the GUI, giving the GUI a new window like 
that shown in Figure figxire:XTaneuverConfigPanel. This conlpletes the top portion of the sequence show11 in 
Figure figure:MmeuverCoiLfiguration. 

Oncc the panel is shown on tho GUI, t,lie user makes changes to  the settings for the command on t,he 
new panel. FThe~i the settings mat.ch t,he needs of t.he mission, t8he user clicks on eithcr the "OK" or "Apply" 
button. This action makes the hlaneuverPane1 update the Maneuver com~lland with the new settings. If the 
user pressed the OK butt,on, the child window also passes a message to GblAT indicat.ing t,hat the user is 
finished with thc window. When that message is processed, the dlild window is closed in the GUI. 



3.2.4 Model and Mission Persistence: Script Files 

GM-AT saves configuration dat,a in files referred to as script files. The dotails of the script file parsing can 
be found in Chapter 14. The following paragraphs provide an overview of these processes. 

The GMAT script files can bt: thought. of as a serialized text. view of the configured objects and Mission 
Control Secluence construct.ed by the user to model spacecraft. G34.AT provides a subsystem, c~nt~rolled by 
the ScriptInterpreter, t,llat manages reading and writing of t.hese files. All of these script files are .ASCII 
based files, so they can he edited directly by users. 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% C o n f i g u r e  R e s o u r c e s  
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Create Spacecraft satl 
satl . SMA = 10000.0 
satl.ECC = 0.25 
satl.INC = 78.5 
satl . RAAN = 45 

Create ForceModel fm 
fm.PrimaryBodies = {Earth) 
fm.PointMasses = {Luna, Sun) 

Create Propagator prop 
prop .FM = fm 

Create XYPlot posvel 
posvel.IndVar = sat1.X 
posvel.Add = satl.VX 
posvel.Add = satl.VY 
posvel.Add = satl.VZ 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
% T h e  M i s s i o n  C o n t r o l  S e q u e n c e  
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
While satl.ElapsedDays < 7 

Propagate prop (sat I) 
EndWhile 

Listing 3.1: :I Basic GSIAT Script File 

Script 3.1 shows a siniple script that propagates a spacecraft for approximately 7 days, plotting the 
Cartesian components of the vc:locit.y against thc space craft,'^ X coordinatt? value. Dctltils of all of these 
settings can be found in the Gscr's Guide[UsersGuido]. This script just serves as an example for the t-liscussio11 
that follows. 

.A11 objects that are createtl as cc)nfiguretl resources from the GUI are stored in the script files using 
thc kejrsvortl "Create". In t,he script shown here, there are four resources: a Spacecraft named 'hatml", a 
ForceModel named 'fin", a Propagator (act,ually an instance of the PropSetup class) ilanled "prop", and an 
XYPlot Subscriber named "posvel!'. Each of these resources is used when running the mission. 

In GILIAT, each resource can h w e  one or more data mernbers that users c m  set.. Thesa resource properties 
a,re initialized t,o default settings. U~ers  can ovorridc the values of t,hest? propt:rties. In the GUI, this action 
is performed by editing data presented on tlle panels for the resources. Properties are changed in the script 
file by assigning new values t.o the properties by name; for example, in the sample script,, the space craft,'^ 
semimajor axis is changed to 10000.0 km on the fifth line of script: 



I sat I. SM A  = 10000. o I 

The script shonm her(: is a script as it niight be entered by a user. Only thc lines that override default 
property values are shown, and the lines are written as simply as possiBlc. Thc full set of object proper-ties 
can be examined by writing this object to  a script file. SVhen a Spacecraft - -  or any other resource - -  is saved, 
all of the resource properties are written. In addition, the keyword "GMAT" is written to  the file, and t.he 
full precision data for the numerical proper tic:^ are written as well. The Spacecraft, configured in the script, 
file above is written to file as shown in Listing 3.2. 

Create Spacecraft sat 1 ; 
GMAT sat1.DateFormat = TAIModJulian; 
GMAT sat1.Epoch = 21545.000000000; 
GMAT sat1.CoordinateSystem = EarthMJ2000Eq; 
GMAT sati. DisplayStateType = Keplerian; 
GMAT sat1.SMA = 9999.999999999998; 
GMAT sat1.ECC = 0.2499999999999999; 
GMAT sat1.INC = 78.5; 
GMAT sat1 . RAAN = 45 ; 
GMAT sat1.AOP = 7.349999999999972; 
GMAT sat1,TA = 0.9999999999999002; 
GMAT satl. DryMass = 850; 
GMAT satl.Cd = 2.2; 
GMAT sat1.Cr = 1.8; 
GMAT sat1 . DragArea = 15; 
GMAT sat 1. SRPArea = 1; 

Listing 3.2: Script Listing for a Spacecraft 

GM-AT generates t,he scripting for resources m d  con~niands using a method, GetGeneratingString(1, which 
is providod in the GmatBase class. This class provides the infrastructure needed to read and write objec* 
properties through a consistent set of int,errfces The GetGeneratingString method uses these interfaces when 
writ,ing most user objects and commands to script. Deriv~al classes can override the nlethoti as needed to 
write out class specific informa.tio11. When GMAT saves a   nod el to a script file, it. tells the ScriptInterpreter 
to mite  a script file with a given name. The ScriptInterpreter systenlatically calls GetGeneratingString 011 

each object in the configuration, arid sending the resulting serialized form of each object to the script. file. 
Once all of the objecbs in thc configuration haw been saved, GM.4T takes the first conimand in thc Mission 
Control Sequence and calls its GedGe~ler~tingString. incthod; writing the resulting test to the script. file. It 
traverses the linked list': writing each conlnland in sequential order. 

Script reading inverts this process. Whe~i a user tells GLUT to read a script, the name of the script file 
is passed to the ScriptInterpreter. The ScriptInterpreter t.hen reads the file, one logical blockl%t a time, 
and const.ruct,s and configures the script,eti objects following a proceclurc? similar t,o that, described above for 
actions t.aken from the GUI. 

Details of script processing can be found in Cha.pter 14. 

12 1 yo gical biocic" of s c ~ i p t  is one or :nore lincs of text suilicicntly detailed to  describe a single actio:~ taken i : ~  GXIIW. 
fi:,xal>~pics inclcdc crcarion of a rcsotirce, sct,ting of n single pac?nlat.c:- on a resoxlrcc. or ndcli~g a command to the hfission 
Cul11,rol Sr<jua~~ce.  



3.2.5 Running a Mission 

Once a user has configured a xnodel in GMAT, t,he nlotlel is roady to  l>e run. The configura.tion has been 
populated with all of the resources needed for the run, a11tl t,he resources have been configured to inatch the 
needs of the analyst.. The klission Control Sequence has been entered and configured to  meet the needs of 
t,he rnission. All that  rernairls is the  actual running of t'he model encoded in these el(?ments. 



Figure 3.16 sho-ws the sequcnce followed when a niissio~i is execut.ed in GMAT. Tlie figure shows the 
sequence as initiated in the GUI. The user chooses to run the mission by pressing the "R,un3' button on 
GMAT's toolbar. This action sends a RunMission message to t.he G~iInterpret~er, which then calls t,he 
Modt!ra.tor's Run;lIission metthod. 

The Moderator begins by clearing any stale data out of the Sandbox By calling the Sandbox's Clear 
met.hod. This action removes any local copies of objects in the Sandbox that niay strill exist from a previous 
run. Once t,he Sandbox has been cleared, the Moderator begins passing resources into the Sandbox. 

The Moderattor passes the current Solar Systein into tlie Sandbox, and then begins making calls t,o 
ConfiguratioilManager to  get. tlle current. set of resources used in the model. The A.Ioderator passes these 
resources into the Sandbos by t,ype, st.art'ing with coordinate systems, and proceeding until all of the resources 
have ba?n passed into t,he Sandbox. Tho Sandbox receives each resource as it is passed in and m&os a copy 
of that resource by calling it.s Clone method. The Sandbox stores these local clones by riaine in it.s local 
object map. The local object map contains the objects that are irianipulated during a run; the configured 
ob.ject,s are not. used when running the mission. 

After t,he configired objects have been paqsed into tlie Sandbox, tlie Moderat.or sends the head nodo of 
the Mission Cont,rol Sequence to  the Sandbox1". This sets the Sanclbox's internal sequence point.er t.o the 
first command in the Mission Control Sequence. completing steps needed to begin work in t,he Sandbox. 

Tlie Moderator has coniplet,ed t,he bulk of it.s work for the Iun a.t this point. The next adion talcen is 
a call from the Moderator to the Sandbox, instructing it to initialke itself. When t,hc Sandbox received 
t.his instruction, i t  begins initializing t.he local objects. Each object is queried for a list of referenced objects 
t.hat need to be set,, and the Sandbox finds these objects in the local object st,ore and sets (tach one on the 
requesting object. After the object illitialization, the Sancihox walks through t.he hlission Control S(?quenct? 
node by node, passing each comnland a pointer to the local object. rnap and then calling the Command's 
Initialize method, giving each comnland the opportunity to  set up data structures needed to execute t,he 
Mission Control Sequence. If iiiitidizatio~i fails at. a.ny point during t,his process, t,he Sandbox ha1t.s t,he 
initialization process and reports the crror to the Moderat.or. 

Once initialization is complete, the Sandbox reports successful initialieation to the Moderator, At this 
point. the Moderator sends an Execute message tt.o thc Sandbox. The Sandbox respo~ids by cdling the 
Esecut.e method on tht: first command in the Mission Control St?qusnce. The commaid executes this method, 
nianipulating objects in the local object map and sending data to  GMAT's Publisher based on the design of 
each command. When data is passed t.o the Publisher, it passes the dat.a on t,o each Subscriber, producing 
output. that the user can view to  nionitor the niission as it execut,es, or t'o process after t,he nlission hltr 
finished running. 

When the first command coiiipletes execution, the Sandbox asks for the next node to execute in the 
Mission Control Sequence, and repeats this process on the second node. The process continues: calling node 
after node in t,hc hlission Control Sequcnct! unt)il tlle final co~nrnand has bcen executed. 

Once t,he final co~nmand has esecuted, the Sandbox sends a message to  the &fission Control Sequence 
stating that. the run has completed execution, m d  control is returned to the Moderator from the Sandbox. 
The Moderamtor re.t,.~urns control to the GuiInt,erpreter, which ret,urns cont,rol, through the GUI, t.o t,he user, 
conlpleting thc mission run. Figure 3.17 shows the results of this sc?quence when execut,ed for tho script. 
shown in Listing 3.1. 

3.3 What's Next 

This completes bhe presentat.ion of the overview of GMAT's architecture. The next few chapters will present, 
in sonie detail, descript,ions of each of the co~nponent,~ of the E,nginc: pacliage, followed by sections dcscribiiig 
the infrast.nicture used for the R.esources and Commands, and then the design features of these elements. 

I?,<' , .omrnu~dr are 116t cio~led irlto tile Sai~dbox at this writing. A future build of G?:IAT may reqGre cloniug of cuclmands 
as well as resources, so that thc systr^:.m can support xultiplc Snnilboxcs sim!iltaltcousl?-.~es. Thc systctn is designed to allow this 
exLel1sibi1it.y wile11 ilevtied. 



.---. .---* :: Total Run Time 3 330DW seconds 

Figure 3.17: Results of the Script Esauple. Run on Liilux 



Chapter 4 

Components of the GMAT Engine 

Durrel J. Comui(zy 
Thinking Systen~u; I;r,c. 

The core executive for GAJIAT is the Moderator. The Moderator controls program flow, creating compo- 
nents t.hat are managed in the Configuration Ma.nager and using these components to  model rnissionv in the 
Sandbox. 

4.1 The Moderator 

4.2 The Sandbox 

User scripts cont.ain descriptions of the components that itre used during a run and the sequence of events 
that needs to  be executed in order to  perform the run. These pieces are assembled and execut,ed in t.he 
GMAT Sandbox. 

The Sandbox is created by the Moderator. It contains the solar system configuration for the run (Are 
there cases where this configurat,ion changes during a run?)? the spacecraft and ground system configurations 
for the run, the cornpiled seclilence of events t'hat. fire for t.he runl and a dat'a stora.ge container that contains 
the final state data for the syste~n at the end of each mission event. 

Some nomenclature: The spacecraft, and ground system elernetlts are cont.ained in a class called the 
Model. Each element of the script that corresponds to an action performed on the Model is stored in a list 
called a Command. The sequence of Clonlmands is assenibled int,o a doubly linked list called t.he Sequence. 
The final st& data for each object in the Model is st,ored in a table of data, called the St:t.tc?List. 

The Sandbox is the container for all of the pieces used during the run of a script.. It contains one of each 
of tile ohject,s described above: a klodel, a Sequc?ncn, a Solar System, and a St,at.eList. 

MThen a user runs a script, the Rloderat,or passes the current script t,o a script interpreter and instructs 
t.hat intc.rpreter to process it.. As each line of t,he script is read, the script. int'erprc:ter tells the Moderator 
wha.t components are required t,o execute that line. The Modera.tor obtains copics of ea.ch component and 
passes these copies to  the Sandbox, which stores the components in t.lie appropriate containers. After t.he 
script 11% beon assembled into t,he corresponding object in t,he Sandbox: the kloderator tells t,hc Sandbox 
to exccuta the Commands in the Sequence. Each coninland executes, stort?s t'he final state of the Model 
at  t,he end of its execution. and then calls the next Conlmand to execute. This process continues until the 
system has processed all of the commands in the Sequence. Figure 2 att.empt,s to show these steps. (The 
Solar Systc?m object load is omitted from this figure.) 

The Sandbox keeps all of the created objects when a run is completed. Subsequent runs of a script do 
not rebuilt1 t.he clernents of the Sandbox unless t,he script or an underlying element has been changed. 



GMAT uses a reserved location in memory to run nlodels of spacecraft called the Santlbox. The Sandbos 
is passed copies of the configured objects and the Mission Sequence, and uses these objects to  model the 
evolution of the system. The Moderator instructs the Sandbox to perform these t,aslis in three phases: first 
thc Sa,ndbox is populated wit.h tlie objects used hi the model, then it is init.ialized, and finally the lnodel is 
run by executing the colnina~ids in the Mission Seyue~ice. Tliese processes are described below. 

The Late Binding Strategy 

4.2.1 Mission Control Sequence Execution 
Interrupt Polling in the Sandbox 

Populating the Sandbox 

Objects are placed in the GMAT Sandbox by making copies of t,hc configured object,s and storing these 
copies in local stora,ge in the Sandbox. The Sandbox uses an std::map container for this stora.ge, called the 
objectMap, which tilaps configured objects using their names. 

More to come! 

Initialization 

Figire 4.2 shows the colitrol flow through sandbox iniiialization. 
I'll describe i t  when I fill i n  this section .. for now, I just needed to hatie a place holder for this piece 

beca.?ue 1:t is referenced later. 

Execution 

4.3 The Configuration Manager 



I Sandbox Initialization Overview ) 

oderator loads object 
into Sandbox 

Initialize Mission 

Initialize internal 
objects '-4 
pointers 

Objects 

com mand in sequence 

Is currentCm d 
NULV 

Yes 
lnitializatlon Complete 

Initialize Com m and I * + 
f ~ e t  next  omm man dl 

Figure 4.2: Overview- of Smdbm Initialization 





Chapter 5 

Factories 

Darrel .J. Conwuy 
Thinking Systems, Inc. 

The object factory conlporients are responsible for crcat,irig instances of the classes registered with GMAT 
for use in a run. E,ach factory is configured as: a 11odc. in a list. The factory classes include links to owtied 
factories as well, allowing the creation of a t,ree structure for the factory system. 

Each Factory maintains a list of core c1a.ssc.s tha,t it knows how to instantiate. -411 of the core classes 
a,re derived from a base class, Atom (Here I'm stealing John's name; we may want to  use something else if 
we keep a, large pol-tion of VAL int,act in GMAT), whicli provides basic st,nicture for the created objects. 
Each of the core objects has a group ID used to  identify what type of object it is (e.g. enumerated ID'S for 
Propagator, Forcc, Spacecraft, Grountlsta,tion. Command, UI Elemetit, Planet, and so forth). the name of 
the object's type (e.g. R.ungeKutt,a89, Drag, Spacecraft, Groundstation, etc), and the instance's name. The 
Atom class also provides a mechanism to find the parameter list for instantiated objects, so that the list of 
wailable paranlet,ers car1 be built on the fly t.hrough calls to an inst.ancc of a class that is being configured. 

The Moderator builds lists of the recognized object's on request. This feature allows a user interface 
to make a call through the User Action Interpreter to  get a list of the available objects by class. The 
Modera.tor can be asked for all of the objscts configured in t.he system or all objects of a specified type 
(e.g. Propa.ga.tors). This list can be used to  populate selection list$s in the UI. Once a user selccts ii specific 
t,ype of object for configuration, the UI can make a call through the Moderator to  obtain an inst.ance of the 
corresponding horn .  That Atom is t,hen inst.ant,iated, and the IT1 rnakes calls to the created instance to get 
the list. of a.vailable paramet,ers, and to set the values for each paramet.er. 

When GhiIAT is sbarted, the Moderat,or creates a Factory used as the entry point for a,ccess to t.he Factory 
system. This top level Factory is responsible for rnanaging all of thc othcr Factories in the system. It does 
not create a,ny o b j t ~ t s  on its own; instead, it calls the appropriate Factory t.hat then crea,tes the requt:stcd 
instance. 

The Moderator creates i~istarices of each regist.ered Factory during the initialization sequcncc:. GhlAT 
s t a ~ t s  with six core fact.ories that arc? always insta.ntiated when t,he syst.ern starts: the Propagator Factory, 
the Force Factory, the Asset Factory (labeled Satellite Factory in Figure 1 ... I need to  fix the Figure), t.he 
Celastial Body Fact,ory, tlie GUI Factory, and t,he Co~nma,ntl Factory. These Fa'act,ories fill the following roles: 

Propagator Factory: Creates instances of Propagators for use in propagation configurations Force Factory: 
Creates individual forces used in propagation configuratiolis, and the force modd container that collects 
together forces for a specific configura.tion Asset Factory: Creates intlivitlual spt~.cecraft, and gro~indsbations 
used in tha model. and the container insta.ncos used t,o nlotiel for~nations a.nd g~c)u~id systems Celestial Body 
Facto~y: Creat,es Stars, Planets, R3ooi1s, arid minor bodies used in the model GI?I Factory: Creates plot, 3D 
graphics, text file: and other interfaces designed t,o communicate with corresponding GUI elements Command 
Factory: Creatc?~ tlie cont,rol flow stnicturcs used to tic together the coniniands parsed from a. script 



Users can create additional Factories ancld add them t,o GMAT dgnmlically. User created fa~t~ories arc 
placed ill shared libraries conipiled for the platform running GMAT - -  for JYindoms, user created Factories 
are built int.o DLLs; under Linux/'Unix/%fac, t,liey are built int.o shared libraries. 

GMAT builds and registers one adtfitional Fact.ory, the MATLAB Object Fact,ory, a7hich lises GSIAT's 
MEX interface to call MATLAB for serialized versions of GMAT objects built under MATLAB. GMAT 
comes wit11 MATLAB .ni files designed t,o simplify building of GMAT  object.^ in MATLAB. 

Factories in GM.4T create components that are setup by users t,o niodel specific cle~ilents of their missions. 

5.1 User Configurable Objects 

S(?ct,ion 4.3 introtluced the Configuration Mana,ger component, ~ h i c h  manages the rt?posit80ry of object,s that 
a user has collstructed during a GMAT run. This section pro~ides a description of the actual objects stored 
in that, rc?pository.. 

5.1.1 The Object Configuration 

<<A description of the reposit,ory inanaged by the Config manager.>> 

5.1.2 Factories arid the GrnatBase Class 

uA tl(acription of how Gmat,Base and the I;'acto~ies a.re related>> 

5.2 The Factory Subsystem 

5.2.1 Factory Classes 

5.2.2 The Factory Manager 

5.2.3 Extending GMAT 



Chapter 6 

GMAT Work Flow 

Dane1 .I, Conwuy 
Thinking Systems, Inc. 

This chapter describes, at  a high level: the interactions of the objects in GMAT during a typical session. 

6.1 Configuring Objects 

6.2 Running a Mission 

6.3 Initialization 

6.4 Execution 

6.5 Interface Components 

6.5.1 User Interfaces 

GhlAT can be run from either a command line interface or a graphical user interface (GUI). These inter- 
f a c s  are connected t,o the core GMAT code through obbjccts in the Ustrr Interface portion of the Interface 
s~ibsystem. The con~mand line irltc?rface controls GMAT exclusively through the sir~gl;lsti>n ScriptIntc4rprt"ier 
The GGI uses the ScriptInt,erpreter t,o read and write GMAT files and to preview GMAT scripts, and t.he 
GuiInterpreter for other interactions with t,he internal GMAT objects. 

The command line interface provides minimal feedback during a r1111. Uscrrs can use t.he command line 
intelfact? to execute GMAT  script.^, either one at  a time or in a batch mode. Tht? interface tiisplays stat,us 
messages during the run: but provides no other feedback regarding the status of a script run. In batch mode, 
t8he int,erfac runs multiple scripts seq~~entially based on the input from a bat,& file. Statist.ics regarding the 
success or failure of the individual scripts are coll(?cted and display,);cd a t  the end of t.he run. 

The graphical user int,erface is inlplerncnted using the wxWit-lgets GUI Library [u?c]. It provides a rich 
development environment for the inlplemelltat,ion of the user interface. The GMAT GUI is built on all 
three target platforms (Windows XP, Macintosh OS X, and L i n u )  using the same GUI code, with minimal 
cust,omization for the different platforms. The communications layer between t,his library and core GMAT 
functionality is the Gui1ntc:rpreter. Further information about the GUI can be found in Chaptcr 15. 

All sc~ipting capabilities in GR(1AT are i~nplernented using the Scripthterpreter and its helper classes. 
This component is discussed in Cllapt,er 14. The GMAT script,ing language is documented in the GNIAT 
Mathematical Specifications and User's Guide IMathSpcc], a companion volume to this document,. 



54 

6.5.2 External Interfaces 



Part I11 

Subsystem Designs 





Chapter 7 

GMAT Base Classes and Defined 
Const ants 

Damel .J, Conway 
Thinking Systems, Inc. 

This chapter documents the core classes used in GK4T to implement, the system. 

7.3 Namespaces and Enumerations 

GhlAT uses several namespaces defined for specific purposes. The "C:niat? namt?space is used to  define 
program specific enumerations defining t.he types of objects users can config~~re in GXIAT, t,he types of 
data st,ructures commonly used in the system, and more specialized enumerations used by sonle of GM.4T's 
suhsystcms. 

7.3.1 Enumerations 

The ObjectType Enumeration 

SPACECRAFT This member is initialized to the value 1001. 

FORNIATION 

SPACEOBJECT 

GROUND - STATION 

BURN 

COMMAND 

PROPAGATOR 

FOICCE- MODEL 



C1-I1413TER 7. G31.47 .BASE CLASSES AIVD DFFliVED C'Oa'S?:A?JTS 

PHYSICAL - MODEL 

TRANSIENT - FORCE 

INTERPOLATOR 

SPACE - POINT 

CELESTIAL-BODY 

CALCULATED - POINT 

BARYCENTER 

PARAMETER 

STOP - CONDITION 

SOLVER 

SUBSCRIBER 

PROP - SETUP 

REF - FRAME 

FUNCTION 

FUEL - 'I1CINK 

THRUSTER 

HARDWARE Tanks, Thrust.ers, Antennae, Se~isors, etc. 

COORDINATE-SYSTEM 

AXIS - SYSTEM 

ATTITUDE 

MATH - NODE 

MATH - TREE 

UNKNOWN - OBJECT 



The ParameterType Enumeration 

INTEGER - TYPE 

IJNSIGNED - INT TYPE - 

UNSIGNED - INTARRAY - TYPE 

REAL - TYPE 

REAL - ELEMENT - TYPE 

S T R I ~ G  - TYPE 

STRINGARRAY - TYPE 

BOOLEAN - TYPE 

RVECTOR - TYPE 

RMATRIX - TYPE 

TIME - TYPE 

OBJECT - TYPE 

OBJECTARRAY - TYPE 

ON - OFF - TYPE 

Typecount 

XJNKNOfVN - PARAMETER - TYPE - -1 

The WrapperDataType Enumeration 

Some componcmts of GMAT need to access data elements in a generic fashion. Those componcnt,~, most. 
notably including the Coninland subsystem, use a class of wrapper objects t,hat t,ake the disparate t,ypes 
and present a common interface into those types. The TVrapperDataType enumeration is used to ident.ify 
the type of underlying object presented by the wrapper classes. More informat.ion a.bout this objact can be 
found in Section 21.4.3. 

This enumeration has the following entries: 

NUbIBER a Real or Integer value entered esplicitly int.0 the command. 

STRING a t,ext st.ring with no associated object. 

OBJECT - PROPERTY an internal data member of an object, accessible using the GmatBase parameter 
accessor inathods (GctRoalPar.a~nc:ter(); GetI~ltc:gerP;tra~neter(), etc). 

VARIABLE an instance of the Variable class. 

ARRAY a11 instance of the Array class. 

ARRAY - ELEMENT an element of an Array object. 

PARAMETER OBJECT any other object derived from the Parameter class. - 



60 CFIAPTEX 7. 6:\1.4=21' B-4S.E CLASSES AIVD DEk'IiVED CXlXSTrlN7'S 

The RurlState Enumeration 

IDLE .;; 10000 

RUNNING 

PAUSED 

TARGETING. 

OPTIMIZING 

SOLVING 

WAITING 

The WriteMode Enumeration 

SCRIPTING 

SHO'CV-SCRIPT 

0'C4rNED-OBJECT 

MATLAB - STRVCT 

EPHEM - HEADER 

7.3.2 Defined Data Types 

typeclef sttI::veclcor<Gn~at::Q1~je~:t;Type::~ ObjectTypeArray 



Chapter 8 

Utility Classes and Helper Functions 

Darrel .J. Conwag 
Thinking Systems, b ~ c .  

This chal>t,er doc,~ime~lts the classes and filncbions t.hat are used by GMAT to support program function- 
ality. 

8.1 The MessageInterface 

8.2 The GmatStringUtil Namespace 



63 Clli-AI'T'E12 8. UTILIIL'E' CLASSES AXD liELf'Eli2 FUi!*CTIOiVS 



Chapter 9 

The Space Environment 

Darrel .I. Conway 
Thinking Systems, Inc. 

The core purpose of GM4T is to per-fo~~n flight, dynamics simulatio~is for spacecraft flying in t.he solar 
system. There are many different componellts that users interact with to produce this model. In this chapter, 
t,he architecture for the elenlents that comprise the model is introduced. The elements that are not directly 
manipulated in the model - -  specifically, the Sun, planet,s, moons, and related points that comprise the stage 
on which the spacecraft and related objects perform their actions --- are described in some detail in t,lle 
chapter. Descriptions for the other objects .-- most specifically spacecraft and format.ions -. introduced here 
appear in chapters for those component,s. References for t.hose chapters ai-e provided when the objects are 
introduced. 

9.1 Components of the Model 

The environnie~ital elements that have a spatial location and evolve over t.inle in the GR.I.4T model are all 
derived from t.he Spacepoint class. The class hierarchy, shown in Figure 9.1, indudes classes t,hat. model the 
objects and special locations in GMAT's solar system ..- referred to  as "backgound:' objects because their 
evolution is modeled through precalculat,ed ephemerides or computations performed off of these precalculated 
data .- along with the pieces that are directly manipulated in the mission control sequence and that evolve 
t,hrough numerical i~ltegra~tion using GblAT's propa.ga.tion subsyst.em. In t,he figure! t.ho clases used to 
model background o1)ject.s arc shown ill purple; those that evolve through dircct  nodel ling in Gi\lA4T using 
the propagation subsyste~ll are shown in blue, and other element's that will be incorporated in the future, in 
red. 

The space environment as defined in this document consist,~ of t,he elements t,hat, while dynamic, are 
automatically updated as the niodel evolvcs~ based 011 epodl data generated for the model. These elements 
are the gravitating bodies in the model --. that is, the Sun and the planets and their moons .-- and points 
with specialized significance in flight dynamics, like t,he Lagrange points and gravitational barycenters. All 
of these ele~nent~s me managed in an instance of the So1arSyste.m class. SolarSysteni act.s as a. cont.ainer, antl 
manages bot,h the objects in t,he spa.ce environment and the resources needed to calcula.te cphemeridss for 
these objects. The bulk of this chapter provides details about the classes and objects colnprising this space 
environment. 

A key fea.ture of GMAT is t8hc ability to niodel spa.cecra.ft and fornlations of spacecraft as they move 
through the spa.ce e~lviro~inlent. These elements of tile model are configx~red in detail by GhlAT users, 
and evolve through time using precision nunlerical integrators configured by the users. The Spacecraft and 
Formation classes, along with their base SpaceObject class. are discussed in detail in Chapter 11. The 
nu~nerical integrators and associat.ed force model components are prc:sented in Chapter 18. 



Figurc 9.1: Objccts in tilt: Gkl.llT I\/lodel. 
The d t w e n t s  shoii.n p ~ ~ r ~ : , l e  arr: core coastii.i~clil:s of GIvfAT's solar systeni. Cinsses sliowr, in y c l l o ~ ~  are 
GMAT base classes. Elements shown in blue are rhe key coi11po1lents studied in Ghf-AT'S model: Spacecraclft 
and l%mnlations of Spacecraft,. Those shown in red are future enhance~nents, primarily focussed oil contact 
analysis wit,h diff(cre11t typc?s of objcct,~. 

The class hierarchy includes provisions for future model elements att,ached to  conlponents of the space 
environment. These classes, FixetlObjact and thc derived Grou~ldStation, FixedTarget, and FixedRegion 
classes, will be documented at a later date in prepa.rat.ion for imple~nentat,ion. 

Before proceeding with a det,ailed description of GMAT's space cnvironment, t,he base class used for all 
of the   nod el elements needs some explana.tion. Those details are provided in the next section. 

9.2 The SpacePoint Class 

411 spatially modeled components need some common data in order to define tile positiorls of objects in the 
model. These data. are collected in the SpacePoint base class. This base class provides the foundation for 
objects used t,o define coordinate syst.erns (see Chapt.er 10): for tho user configured Spacecraft and Formations 
(see Chapt.er ll), md for other specializeti points a,nd objccts in t,he spa.ce cnvironment.. 

Figure 9.2 shows the elements of the SpacePoint. class. In order for GILIAT to accl~rately model flight 



9.2. THE SP.4 CEI'OIN?' CLASS 

cd: SpaccPoint Dc tu ls  

dynamics proble~ns, t.hc GMAT spa.ce model needs to specify an internal origin and coordinate system 
orientation used as a reference for computations. SpacePoint defines one object, the J2000 body, which is 
used t,o define that origin. GMAT uses the Mean-of-J2000 Earth Equat.oria1 axis system as the orientat,ion 
for all such calculations. 

Class Attributes SpacePoint defines two data members to track the 52000 body: 

r SpacePoint* j2000Body: The body used to define the coordinate origin for tlie SpacePoint. 

* std::string j2000BodyName: The name of t,he body defining the coordina.te origin. 

Methods A11 classes derived froin SpaccPoint inherit the implementation of six methods used to set 
and access the 52000 body. Five of these methods are used specifically for the internal data members: the 
sixth, Get~~l.J2000Accelcration(), provides a default implementation so that derived classcs that do not have 
acceleration data do not need to provide an implementation 

r bool RequiresJ2000Body(): Returns a boolean used to determine if the SpacePoint requires a 
52000 body. 

const std::string& GetJ2000BodyName(): Returns the name of the .J2000 body for the Space- 
Point,. 

e SpacePoint *GetJ2000Body(): R.eturns the pointer to  t,he J2000 body for t,he SpacePoint. 

bool SetJ2000BodyNanle(corlst std::string &toName): Sets the name of the 52000 body for 
the SpacePoint. 

void SetJZOOOBody(SpacePoint *toBody): Set,s t.hc point.er to tho 62000 body for the SpacePoint. 



a Rvector3 GetMJ2000Acceleration(const AlMjd &atTime): Returns the Cartesian acce1:lera.- 
tion of the SpitcePoi~it relative to its 52000 body at the specified epoch. The default implernentatioi~ 
rctilrns (0.0: 0.0, 0.01; tlcrived classes that contain accelarat,ion data should ovcrritle this n1et)hod. 

Abstract Methods Each suBclass of SpacePoint ixnpleinents three pure virtual methods defined in the 
class, using coinputations specific to that subclass. THcse abstract methods have the following signatures: 

a virtual Rvector6 GetMJ2000State(const AlMjd &atTime) = 0: Returns the Cartesian state 
of t,he SpacePoint relative t o  its 52000 body at the specified epoch. 

r virtual Rvector3 GetMJ2000Position(const AlMjd &atTime) = 0: Returns the Cartesian 
locattion of the SpacePoint relative to its 52000 body at the specifitxl epoch. 

e virtual RvectorS GetMJ2000Velocity(const AlMjd &atTime) = 0: Returns the Cartesian 
vslocit,y of the SpacePoi~lt relati~re to it.s J2000 body at the specified epoch. 

9.3 The Solar System Elements 

GM-AT provides a container c l ~ s :  SolarSystem: that is used to manage the objects nlodeliiig the space 
environment. 

9.3.1 The SolarSystem Class 

Members and Methods 

Ephemeris Sources 

9.3.2 The CelestialBody Class Hierarchy 

Stars 

Planets 

Moons 

9.4 The PlanetaryEphem Class 



Chapter 

Coordinate Systems 

DUI-re1 J. Go~zway 
Thinking Systems, Inc. 

NOTE: This  chapter  curreritly contains t h e  original design spec for t h e  coordinate systems. 
It needs t o  b e  reviewed against t h e  current  GMAT system, t h e  figures need t o  b e  recreated, 
a n d  some of t h e  t e x t  needs t o  b e  fi t ted into  t h e  res t  of t h e  design document .  

This chapter prevents design guidelines for the coordinate system classes in the Goddard Mission Analysis 
Tool (GMAT). It describes ho\: the CXLkT software irnplcments the coordinate system math described in the 
GMAT Mathenlatical Specificat.ions[MathSpd. This de~cript~ion includes the initial design for t,he classes 
that proTide coordinate system support in GMAT. The interactions between these classes and the rest of 
t,he GMAT systenl are also described. 

10.1 Introduction 

The Godda.rtl h4ission Analysis Tool (GMAT) is a multi-plat.form orbit simulat,or designed to  support nlultiple 
spacecraft missions flying anywhere in the so1a.r systcm. GMAT is written in C i f  and runs on Windours, 
Macintosh and Linux computer systems. The t,ool provides an integrated interfa.ce to MATLAB, a high level 
co~nputing environment from the Mathworl<s, Inc[niat.lab(. The GMAT gaphicd user interface (GUI) is 
alrit,t.en using the wxSVidget.s GUI Toolkit,[u~], an open source library that compiles and runs under all of 
the target operating systems. 

GMAT is an object-oriented system, using the full extent of the Cis language to  implenlent the object 
model that provides GMAT's functionality. The first t,hree builds of GMAT provided capabilities to  model 
orbits in the vicinity of the Earth, including detailed force modeling, impulsive Inan(:uvers, and parameter 
targeting using a differential corrector. All of t,hese capabilities can be controlled &her using either the 
GMrlT graphical user int,erface or a custom script.ing language desigxed to simplify GMAT and MATLAB 
intera.ctions. The fourt,h build of t,he systenl generalizes the capabilities of GMAT modeling for other orbit,al 
regimes. 

In ortlcr t o  model spacecraft trajectories in these regimes, GhI=IT ~ieeds t.o bc able to  represent the 
spacecraft state and related cluantities in coordinate systems that are convenient, to each regimt:. This 
document describes how these coordinate systems are implemented in the GNAT code. 

10.2 Coordinate System Classes 

Figure 10.1 shows the core C + i  classes (drawn using Poseidon[poseidon() added to GMAT to  provide support 
for coordinate systeins in Build 4. The coordinatc: system capabilit,ies arc: provided by the incorporation of 



.. .. *. 
:: :: '. 
:: 5 :: 
:: :. :: 
. i:. . . .:i. .?.. 

these classes into tht: GMAT base s ~ i b s ~ s t e n ~ ~ .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
cd: High level coordinate sydem dasses 

#solar :Solarsystem ' 
#orlglnName :=ring 

#origin : SpaceP oird 

Figure 10.1: Coordinate System Ciasseq in GMAT 

The coordinate systenl dasses coiisist of a CoordinateSystenl class that acts as the interface bet,ween the 
conversio~:~ and the rest of GM.4T, an AxisSyst'en: base c las  with a. derived hierarchy useti for rotational 
conversions, a CoordinateConverter c1a.s~ that rnanages convcrsions bet.wecn tliffercnt. coordinate systems? 
and a factory constructed as a singleton t,hat create the AxisSyst.em objects. The CoordinateSystenl class is 
the component that is instant.iated when a user "Creates" a coordinate system object. 

Previous 1,uiltls of GTVI.4.T included classes that moc-tel spacecraft, forn:ations, and celestial objects. These 
classes were de~ived from a core l>ase cla,ss nanled GmatBase. A new intermetliate class; SpacePoint, is 
implemented in GMAT to  make access to  posit,ion, velocity, and rotational data available to the coordinate 
system classes when needed. Section 10.2.4 describes this class. 

10.2.1 The Coordinatesystem Class 

The Coordinat.eSyst,em class is a configured conlponent that i1np1e1nent.s the functionality needed to convert. 
into and out of a specified coordinat,tt syst,enl. Int,ernally, GAT-AT perfor~ns computat.ions in a Mean of 
52000 Earth Equatorial coordinate system, centered at  one of the celest,ial bodies in the GMAT solar system 
(i.c. the Sun, a planet., or a moon) or at a barycent.er or libration point. Each Coordina.teSystem instance 
provides nlet,hods t.o transform into and out of thoso 12000 coordin:itt. systems. It contains the data necessary 
for translat,ion calculat,ions, along with a member objcct pointer t11a.t is set to an A~isSyst~e~n insta.ncc: for 
coordinate spstenls whose principle axes are not pxallel to the Mean of J2000 Earth Equatorial axes, or to  
NULL for coordinat,e systems that are oric?nt,ed parallel t.o t.ht?se a-ucs. 

"Yiie G?:iXT code base co:isists of a set of classes that provide the core functionality tif the Vstem, the ''Lase" subsystem, 
classes t.hzi. calnr!risr thc graphical user ictcrfact?, the ''gni?! subsystcn:. 2\11 of thc 1-.1asses dcscribnd In this docurner:t are 

rrietnbe~s of !he ilrase siibaydte:~~, with tllr excep:.iv;! of tile r e r o t n ~ ~ ~ e ~ ~ ~ i a l  ions !or  c l~a i~gaa  l < i  Llle palieis on l l ~ r  C;I:l. 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
cd: k~t System &elview 

+ RotateToMJ2000Eq ():voY 

+ RotateFmmMJ2000Eq 0 : v o l  

+ Initialize (1 void 

IY CalculateRotMdrK 0:voY 

The AdsSystem class provides t,he niet,hods needed to rot,ate the coordinate system int,o and out of the 
Mean of 52000 Earth Equator frame. Tlle Axissystem is set, for a given Coordi~iateSystem by setting the 
axes member to an hxisSyst.em instance. 

GMAT uses a late binding scheme to provide ii~tesconnections between objects used when modeling an 
analysis problem. Individual components are configured from either the gapical user interface or a script 
file describing the objcct.~ t,liat need to  be modeled. Connect,ions between these objects are defined using the 
narncs of the objects, but t8he r~.ctual obj(?ct inst,ances used in the model are not, set until the simulation is run. 
Upon execution, the configured objects are copied into the analysis workspace, called t'he Sandbox, and the 
co~incctions between tho configurc?d objects are established immediately prior to the run of the simulat.ion. 
The Initialize method in the CoordinateSystam class implements this late binding for tlle conncct,ion bctureen 
the coordinate system instance and t,he related SpacePoints. 

10.2.2 The Axissystem Class Hierarchy 

GhlAT is capable of suppor-ting numerous coordinate system orientations. These orienhtions are defined 
through the Axissystem class; each unique axis orientation is implemented as a sepmat'e class derived from 
the Axissystem base class. I?igure 10.2 shows an o\rcrview of t,he AxisSystern claw hierarchy, antl identifies 
the top level classes in tllis hierarchy. 

Tho orient,ations of the coordinate systems in <:MAT fall into two broad categories: axes t'hat charige 
oric:nta.tion over t,ime, ad t,hose t.hat remain fixed in orientation. The latter category requires coniputation 
of the rotation matrices one time; at  initialization, in order to perform the rot.ations into and out of t,he 
coordinate system. Figure 10.3 shows the six inertial axis systenls supported in GI!I.AT. These systems 
support cccluatorial and eclipt,ic versions of Mean of 52000, Mean of Epoc:ll, and Tsuc of Epoch transformations. 

Coordinate systems that are not fixed in orientat.ion over time are derived from the DynamicAxes class, 
as is shown in Figure 10.4. Thesct coordinate systems include equat.oria1 antl ecliptic versions of the mean 
of date and tr-ne of date axes, along with axes that evolvta with the polar motmion of the body's rotfatic)nal 
axis (implemented in the EquatorAxes class) and axes that me fixed on the body's prime meridian (the 
BotlyFixedAxt?~ class). All of these classes require recomputat,ion of the oricntatio~i of tahc axes as the epoch 
of the model evolves. 

One additional class in Figure 10.4 bears discussion here. GMAT supports IluInerous coordiilate systems 
t,hat reference bodies that, ase nc~t celestial objects - -  specifically coordina.tc systems that us(? Lagra~iga points, 



............................................................................................................................................ 
cd: Axis System' Inertial 

............................................................................................................................................... 
cd: Axis Sytem:  Dmamic 

I I 

4 

- x M s  :String 
- y w s  :String 
- zAds :String 
- primaty 'SpaocP ant * 

IW208OEqAxes 

- 

MJ2000EcAxer 
- 

TOEEqAxer TOE EcAxes 



barycenters, spacccraft, and forniations to define t,hc coordinatc: origins and axes. These coordulate syst,ems 
use the OhjectRefereilcedAxes class to construct. the coordinitt,e basis and rotation matrices. The GMAT 
Mathematical Specifications[MathSpec] provide detailcd descript,ions of how this class operates. 

10.2.3 CoordinateSystem and AxisSystem Collaboratio~i 
The GM.4T %lathematical Specification[MathSpec] includes a flow chart that. describes the process of t,rans- 
forming bet,ween coordinatc: syst.en,nls. This process is performed in the GM.4T code using the Coordinate- 
Converter class and the public met,hods of the Coordixlat,eSystem class. When GML4T needs a conversion 
from one coordinate syst,enl t.o another, tlie method Coordinateconverter: :Convert is called with the 
epoch, input stat,e, input coordinate system, output state: and output coordinate syst.ern as parameters. 
The co~lvert~ed sta,te vector is stored in tlie output stat.e parameter. 

The Convert method calls tile coniversion method Coordinatesystem: :ToMJ2000Eq on tho input coordi- 
nat.e system, followed by CoordinateSystem: :FromMJ2000Eq on %he output coordinate system. ToMJ2000Eq 
calls t,he AxisSystem: :RotateToMJ2000Eq met,hod followed by the CoordinateSystem: :TranslateToMJ2000Eq 
method, converting the input state from the input coordinate system into Mca11 of 52000 Equatorial coor- 
dinates. Similarly, FromMJ2000Eq calls t,he CoordinateSystem: :TranslateFromMJ2000Eq method and then 
the AxisSystem: : RotateFromMJ2000Eq met,hod, converting the intermediate st.ate froni Mean of 52000 
Equatorial coordinates into the output coordinate syst,eni, completing t.hc tr;uisformat,ion from the input. 
coortiinata system to the output coordinate system. Eadl of t,he conversion routincs takes a SpacePoi~it 
pointer as the last parameter in the call. This parameter idexltifies the J2000 coordinate system origin to 
the conversion routline. If the pointer is NULL, the origin is set to t,he Earth. 

Tho following paragraphs provide progrmmat.ic samples of these conversions. 

Code Snippets for a Conversion 

Figure 10.5, generalized from t,hc GMAT nlat.heniatica1 specification, illustrates the procedure used to  i ~ n -  
p1t:ment a, transformation froni one coordinate systeni to  another. The following paragraphs provide code 
snippets witli the corresponding function argunielits for this process. 

When GklAT needs to  convert from one coordinate system to  mother, this method is called: 

if (!coordCvt->Convert(epoch, instate, inputCS, outstate, outputCS)) 
throw CoordinateSystemException("Conversion from l1 + 

inputCS->GetName() + " to " + outputCS->GetName() + " failed."); 

This method invoices the calls listed above: like this: 

/ /  Code in CoordinateConverter::Convert 
if (!inputCS->ToMJ2000Eq(epoch, instate, internalstate, J2000Body)) 

throw CoordinateSystemException("Conversion to MJ2000 failed for " + 
inputCS->GetName 0) ; 

if (!outputCS->FromMJ20OOEq(epoch, internalstate, outstate, J2000Body)) 
throw CoordinateSystemException("Conversion from MJ2000 failed for + 

outputCS->GetName () ) ; 

The con~~ersion code from the input stat'e t o  Rieari of 52000 Equatorial Coordinates is accomplished using 
t,hc calls 

/ /  Code in CoordinateSystem::ToMJ2OOOEq 
if (axes) // axes == NULL for MJ2000Eq orientations 

if (!axes->RotateToMJ2000Eq(epoch, instate, internalstate, J2000Body)) 
throw CoordinateSystemException(l~Rotation to MJ2000 failed for " + 



m 
Transformation reauested 

No InputCS .ToMJZ000tq 

called 
Is InpttCS same as con!.etter's 
MJ20W swem? 

I 

InoutCS has an 

6 OutputCS:FromMJ2000Eq 

NO 
Is OutputCS same as convetlet's I 

V 

MJ2WO system? I 

AxlsSystem 

NO 

Yes 

Fill Intermediate 
State retumedto 

State InputCS. TransleteToM J2000 
I called 

4 
NO 

Fill Return OuiputCS hasan AASyrtem 
State 

Yes 

< 
'. 1 

Return convetied data 

Figur? 10.5: GXAT Procedure for a Generic ('oorifinate Traxsformatio~~ 



instanceName) ; 
else // Set the intermediate state to the input state 

internalstate = instate ; 

if (!TranslateToMJ2000Eq(epoch, internalstate, internalstate, J2000Body)) 
throw CoordinateSystemE~ception(~~Translation to MJ2000 failed for 'I + 

instanceName) ; 

and the con~ersion from Mean of J2000 Equatorial Coordinates to  the output stat,e is performed using 
these calls: 

// Code in Coordinatesystem: : FromMJ2000Eq 
if (!TranslateFromMJ2000Eq(epoch, internalstate, internalstate, J2000Body)) 

throw CoordinateSystemException(''Translation from MJ2000 failed for " + 
instanceName) ; 

if (axes) // axes == NULL for MJ2000Eq orientations 
if (!axes->RotateFromMJ20OOEq(epoch, internalstate, outstate, J2000Body)) 

throw CoordinateSy~temException(~~Rotation from MJ2000 failed for " + 
instanceName) ; 

else // Set the output state to the intermediate state 
outstate = internalstate ; 

10.2.4 The SpacePoint Class 

In general, coordinat,e systems are defined in reference to locations and directions in space. h4a.n~~ of t,he 
coordina.te systenls used in GNAT havc the directioli fixed based on an external reference - for example, the 
MJ2000Eq system has the a-asis pointed along the Earth's rotation &xis at t.he J2000 epoch a,nd the x-axis 
aligned with the vernal equinox at the sane epoch. GMAT also supports coordinate systems constructed in 
reference to objects internal to thc Gb4.AT - t,ypically a planet,, the Sun, a moon, or a spacecraft. car1 be used, 
as can special points in space like Lagrange points or the barycenter of a multi-body syst,ein. The coordinate 
syst,enl classes need t o  he able to  access position and velocity dat,a about t.hese objects in a generic fashion. 
GhlAT has a class, SpacePoint, that provides this access. SpactPoint. is the base class for all of tile objects 
that nlodel 1ocat.ion data in the sola,r system, as is shown in Figure 10.6. The SpaccPoint class is tlescribcd 
in more detail in Chapt.er 9. 

10.3 Configuring Coordinate Systems 

10.3.1 Scripting a Coordinate System 

'The script, cornmands usetl to crca.te a. coordinate systcml object in GM.4T are defined in the GMAT Math- 
e~rlatical Spccificatio~ls[Mat.hSpecj. Coordinate System scripting is perfornled using the following lines of 
script.: 

Create CoordinateSystem csName 
GMAT csName.0rigin = <Spacepoint name>; 
GMAT csName.Axes = <Axis type>; 
GMAT csName.Primary = <Primary SpacePoint name, if needed>; 
GMAT csName.Secondary = <Secondary SpacePoint name, if needed>; 
GMAT csName.Epoch.<Format> = <Epoch data, if needed>; 

% Only two of these three can exist for a given coordinate system; 



% see the coordinate system table for more information 
GNAT csName .XAxis = <$\pm$R, $\pm$V, or $\pm$N>; 
GMAT csName.YAxis = <$\pm$R, $\pm$V, or $\pm$N>; 
GMAT csName . ZAxis = <$\pm$R, $\pm$V, or $\pm$N> ; 

The fields in iulglc brac1iet.s aro used to set the paramc?t!zrs that, tlefine the coordi~lat.e system. Tablo 10.1 
provides a brief description of these fields; niore (letmails are available in [MathSpecj. 

In the following paragraphs, tile intera~t~ions btrtmreen the script int(?rpreter sltbsystcnl and the coordinate 
systenl classt:s arc described. 

Script Interpreter Actions 

In GMIIT, t.he Scripthltorpreter rea.ds ea,ch line of script and sets up thc corresponding  object,^. The lines 
of script above map t,o calls ~rlatle in the Script,Interpret,er code, as described in the following text. 

Tlie Ckeate line causes the ScriptInterpreter to  call the CoordinataSystemFactory arid requests a Coor- 
dinateSysten1 instance: 

/ /  In the Interpreter subsystem 
GmatBase *csInstance = moderator->CreateCoordinateSystem("CoordinateSystem, "csName"); 

The resulting coordinate systeni is registered with the configiration manager. 
The Origin line sets t,he origi11Xanie parameter on this instance: 

// First determine that the parm is a string 
Gmat::ParameterType type = csInstance->GetParameterType(C)"Origin"); 

/ /  Here type is a string, so this is called: 
csInstance- set stringparameter ({) ' ' Origin' ' , <Spacepoint name>) ; 

Tho .Axc?s line crcat.es an instance of t,he dsisSyst,eln and passes it t,o t,he coordina.te system: 



Parxmot.el 1 Rt:ciuircci/ Op- 
/ tioi~al 

Origir! / Itequircd 

Axcs I Itcquircd 

Primary I 0pi.ional 

Secondaxy / 0pl:iolial 

Epoch j 0p::iooal 

Xlxis  1 Optiond 

.................................. : 
YAsis I Optional 

ZAxis 1 Optional 

.................................. ... 

Alli>\~~d 17al:~c>s 1 Debcriptio:~ 

1 
I 

Any Nruned 
SpaceE'oint 

Equator, R4J2000Ec? 
M,J2000Eq, TOEEq, 
hlOEEq, TODEq, 
RIODEfj, TOEEc, 
MoEEc, T(iDEc. 
&fODEc, Fixed, 

Dcfincs thc location of thc coordin:ttc sys- 
wtn cirigin. 

Df!fir~cs thc orientat.ion of the coordin:.itc 
axesir1 Spa,'.:" 

0bjec;;R.t~fernced ! j 

I ' Defines the prinlary body used :.o ori- 
ent axes for systems thzt need a pri~nary =iny Nanled 

I body. Spacc\Poilrt 
I 

Any- Xarned 

Dcfinc!s the secotldnry body usid to orient 
axes for systems that need a seconclary 

Spa<:cPoi~it / 
Any GMAT Epoi::h j Sets tlie rc.f(crencci (+pod1 for systerns that 

1 need a refererrce epoch. 
iR,, i V, i N ) Used for 0bjecttR.eferences =es only; txvc, 

i of the three axes are set, and one must 
i 
I rcfcrc>ncc i N ,  

( -  .+. 1: I -  -L- N 

kFi> * I:?? !'I 

....................................................................................................................................................................................... 
Used for ObjectReferences axes oniy; two 
of :.tie t.11ree axes ;.,.rc: set, ant1 one :n:~sl. 
reference k N .  
Used for Ot),ject.R.ctf(?rencea axes ot~iy; twc, 

/ of the three axes are set, and one :nust 
reference 2- N 

................................................................................. ... I......... ................ ? ----: .............................................................. 



/ /  First determine that the parm is an internal object 
Gmat::ParameterType type = csInstance->GetParameterType({)"Axes7)); 

// Here type is an object, so this is called: 
GmatBase {*)axesInstance = moderator->CreateAxisSystem(<Axis type>, C)""); 

/ /  Then the object is set on the coordinate system 
csInstance->SetRefObject(axesInstance); 

The Primary line set,s the pri~nasy body on the -4xisSystcni i~istance. This is done by passing t,he dat,a 
through the Coordi~iateSystem object int.o t,lie AsisSystem object: 

// First determine that the parm is a string 
Gmat: :ParameterType type = csInstance->GetParameterType(C)' 'PrimaryJ ' )  ; 

// Pass the string to the coordinate system 
csInstance->SetStringParameter(C}"Primary7', <Spacepoint name>); 

/ /  In Coordinatesystem, this parameter is passed to the AxisSystem: 
axes->SetStringParameter({>"Primary", <Spacepoint name>); 

The St?contia~y line is treated similarly t.o t,he primary line: 

// First determine that the parm is a string 
Gmat::ParameterType type = csInstance->GetParameterType({}"SecondaryJ'); 

// Pass the string to the coordinate system 
csInstance->SetStringParameter({)"Secondary", <Spacepoint name>); 

/ /  In Coordinatesystem, this parameter is passed to the AxisSystem: 
axes->SetStringParameter(C)"Secondary", <Spacepoint name>); 

The Epoch line is handled like in the Spacecraft object, and the XAxis, YAxis and ZAxis lines are t.reated 
M string inputas, like tho Primary ant1 Secondary lines, above. 

10.3.2 Default Coordinate Systems 

GRLT defines several coordinate systems by default when it is initialized. T h ~ c  systc:n~s arc listed in Table 
10.2. 

10.4 Coordinate System Integration 

Sections 10.2 and 10.3 describe the internal workings of the GMAT coordinate systems, but do not explain 
how the coordina,te systeni c,ode interacts with the rest of GhfAT. This section out*linc?s that irifornlatio~i. 



10.4.1 General Considerations 

Tt.l,le X0.2: D(:f'i.,illt Cocudina1:e Svst.~nts tlcfir~cd it] GhTAT 

GMAT uses coordinate systenls in several general arcas: for t.hc input of initial state dat,a, internally in the 
impulsive and finite burn code, force models and propagation code, in the calculation of parameters used to 
evaluate t.he behalrior of the model being run, and in t,he graphical user interface (GUI) t.o display data as 
viewed from a. coorc-tinate system based perspective. 

h-.. dirlc: I Origiil 
__.________._...._. .......----.......--- .L . . . ............. 

Eart,hki33000Eq I Eertll 

........................................ + 
EarthMJ200UEc i Earth 
EarthFixed , j E a t h  

BodyFixed I Other cclcstid 
I bodies 

10.4.2 Creation and Configuration 

Coordinate Syste~n Creation 

Axis System 

l,i.J20Ch0 Earth Equztor 

........................................................................................................................................................... 
MJ2000 Ecliptic 
Body Fixed 

Body Fixed 

Coordinate systems are created through a series of int,esactions bet,ween the GML4T interpreters, thc Mod- 
erat,or, and t,he Factory system. Figure 10.7 shows the sequence followed by t,hc ScriptInterpretor when a 
coordinate system is configured from a script. The procedure is similar when the GUI configures a coordinate 
system, with one exception. The ScriptInterpreter translates a script file a line at a time, so it needs to look 
up t,he Coordina.teSyst,e~n object each time it is referenced in t'he script. The GUI configures the coordinate 
system from a single panel, so t,he coordi~late system object does not need to l ~ e  found each t,i~ne a paxamt?ter 
is accessed. 

Comrncnt.~ 

The rlefaulr coorrlinat,e sysLem for 
GM;IT 

I h e  Eat11 &xed system is used 
. . 
by tllc g~avitr; rnod(!i for full field 
tnocleling 
Fixed syst,cmis used by the gTaTT.- 
ity model for f11l iield nlodeling 
at  other bodies 

Startup Corlsiderations 

When a user starts GMIIT, the executable progra.m creates a singleton instance of the Moderator. The 
Moderator is the core control module in GMAT; it manages the creation and deletion of resources, the 
interfaces between the core co~nponents of the system and the external int,erfaces (including the GliI and 
thc scripting engines), and the execution of GMAT sirnulat,ions. When the hloderat,or is created, it creates 
a variety of default resources, iacluding the default factories used to  create the objects in a simulation. The 
factories that. get. created include the CoordinateSystemFactorg. 

After it has creat,ed the factories and consbructed the default solar systcni, t,he ?vIotlcrat,or creates t.he 
default coortlina.tc? systems listed in Table 10.2, following a procedure like t,he one shown in Figure 10.7. These 
coordinate systems are registered with the Configuration Manager using the names in the table. Users can 
use these coordinate systems without any taking any additional configuration act,ions. 

10.4.3 Sandbox Initialization 

When a user runs a mission sequence, the Moderator takes the following sequence of actions 2 :  

1. Send t,he n~rrent. SolarSystcm tto the Sandbox for cloning 
2rr . -  :he description here rcfcrcficcs a Sandbox for 1.li.a run. 'Tlie >locicraf.or can bc rrtnfigurcd t o  manage a colli?ctior, of 

Sariiiliox~s; ir: tlrai c u e ,  the nlciic~tis cled(:t.llircir liere are ayplieli to i . 1 ~ ~  curre:il San~iliox frorr~ that coliecl i u ~ ~ .  



ad: Creatlng a Coordinate System 

kls type 

Figure 10.7: Coordinat,~: Systerrr Crearion and Configuration S~quence 

2.  Load the config~irod  object,^ one at  a tinle into thc Sa~dbox.  These objects are clorietf into the 
Sandbox. 

3. The Sandbox is initialized. 

4. The Mission is excxuted. 

Tllc critical piccc for successfill execution uf a GMAT mission is the third step. SVhen the Sandbox is 
initialized, the following actions are executed: 

1. The local solar system object is set for all of the 0bject.s that need it. 

2, Reference object pointers are set on objects that, use them. 

3. The objects are initialized. 

4. Para~neters are configured. 

5 .  The command sequence is configunjd. 

(a) The object table is passed to  each command. 

(b) The solax system is passed t o  each corninand. 

(c) The coinmand is initiali~ed. 

The coordinate system objects are fully init.ialized and ready for use by the end of the st,ep 3. Conlinands 
that use the coordinate system objects have the object associations set. in step 5c. 

10.4.4 Initial States 

Users rieed to set t,he locations and initial motion of spacecraft, ground stations: and othcr physical entities 
nlodeled in GMAT using a coortiinato system t,hat rnakes this dat,a simple to specify, Fos this reason; GhlAT 
lets users select all or a port,ion of the coordinate system needed for these objects. 

"'!,)la curretit bliilfj (;Ik;A;i' c[oes ;lit[ fuii:, itjjplr~tjerjl clani~tg !'or !,lie ~:uiil'igurel'i objrcls. '.t'his issue is britig corrected. 



Spacecraft 

The initial sta.te for a spacecraft is espressc?d as an epoch and six numerical qua.ntitics representing t,he space? 

craft's location and instantaneous motion. These quailtit.ies are typically expressed as either six Cartesian 
clerne~it~s -. the x, y, and z components of the position and velocity, six Keplerian elements .- t.he semi~najor 
axis, eccentricity, incli~lation, right. ascension of t.he ascending nodc, argunlent of pasiapsis, and the ano~ndy 
in one of three forms (true, mean, or eccentric), or one of several other &ate representations. The elemelit 
representation depends on the coordinate system used. Some representations cannot be used with some cc+ 
ordinate syst,ems --.for example, the Ktrplerian rc?presentation requires s gravitational paranlet,er, 11 = GM, in 
order to  calculate the elements, so coordi~iate systems t,hat do not have a massive body at the origin cannot 
be used for Keple~ian elements. For these ca.ses; GMAT reports an error if the element type is incompatible 
with the coordinate system. 

Ground Stations and Other Body Fixed Objects 

Ground stahion objects and other objects con~lected t'o physical 1ocat.ions on a body axe expressed in terms 
of the lat.itude, longitude, and height a.1)o.i.e the mean ellipsoid for the body. The coordinate system ust:tl 
for these objects is a body fised coordinate system. Users can specify the central body when they configure 
these objects. The body radius and flat,tening factor for that body are used to calculat,e the mean ellipsoid. 
Lat,it,udo is the geodetic latitmud(: of the location, and longit,ude is measured east,wa,rds from the body's prime 
meridian. 

GMAT does not currentsly support g~ound stations or other body fixed objects. This sect,io~i will be 
updated when this support is added to the system. 

10.4.5 Forces and Propagators 

Internal states in GMAT arc? always stored in a Mean of 52000 Earth-Equator coordinate syst.ern. The origin 
for dhis system is set to  either a celestial body (i.e. the Sun, a planet, or a, moon), a barycenter betuaen 
two or more bodies, or a Lagrange point. The propagation stibsystenl in Ghi-AT allows the user to specify 
this origin, but no other coordinate system parameters. Propa.gation is performed in the Mean of J2000 
Earth-Equat,or frame located at the specified origin. 

Individual forces in the force model may require additional coordinate system transfor~nat~ions. These 
transformations are described in the next section. 

Coordinate Systems Used in the Forces 

GMAT contains models for point mass and full field gravity from b0t.h a central body and other bodies, 
atmospheric drag, solar radiation pressure, and bhrust from thrusters during firiit,e maneuvers. Ta,ble 10.3 
identifies the c0ordinat.e system used for each force. Users set the point usc?tl as t.he origin for the force 
model. This point is labeled r, in t,he table. Forces that require a central body reference t.hat body as r,b in 
the t.able. Users also specify the coordinat,e system used for finite maneuvers. All ot.her coordinate systems 
are set up int,ernally in the force modal code, and managed by t,he constituent forces. 

Transformations During Propagatiori 

GM-AT'S propagators consist of a numc?rical integrator and a.n associated force model. Each force model is 
a collection os individual forces fhat get added togehter to  determine the net acceleration applied to the 
object t.ha,t is propaga,t.ed. The preceding sect,ion defined bhe coordinate systems used by each of t,hese forces. 
Figure 10.8 shows the procedure that is followc?d each time t,he force model calculates the acccrleration itpplietf 
to an object. 

Tlle force model calls ea,ch force in t#urn. As a force is called, it begins by transforming from the 
internal Mean of 52000 equatorial coordinate syst,ern into the coordinat,e system required for that force. The 
acceleration from the force is then calculat.ed. 



Table 10.3: Coordinate Svstpnls U ~ e d  bv Inili~<,id~ial Forces 
I Force / Coordinate System I Yotes 

/ Puir~t Mass Gravity 1 r, contercd R,IJ20iiO 1 Pctirit rrmias forces us(. t,hc rir!i"ault r~!prcseniijt.icjr,s 

Full Field Gravity 

Solar Radii., t,ion Prcsslut* 

Finite R,la~~euuer Thrust. 

....................................................... 
r,b centcrcd LfJZ000 
Earth Erjl~iit,or 

Earth Eauator 

System: user specified 

F1.111 A(4d rnoitc?is Lise tihe hotly fixed syst.i-:rt~ to cal- 
culate Ia~itude sad lollgitude data, a i d  calculate 
accelerations in the XiJ3000 frame based on those 
valuf!s. .............................................................................................................. 
11ri1,g fwccv set t,hc a,tmc;spherc to rotati? with the 
a..;so::iat,c.d troc.ty, so the rt~fi->re:tcc~ fr;trn<i ren~i?.ir,s 
inertial (i.e. hIJ2000 based). 
S4a.r Ra.clia,tion Pressure c;alc:ilat.iot~s are pcr- 
fornied in &153(10i) coordi~ates 
Finite nmieuvers det,eniline ohe rhrust directioc 
based on t,he thrust vector associat.ed mith the en- 
aincu. Thc upacccr~ft. iirc aligr~cd n-ith this coorcii- - 
na.te system. A f'ui:ilr.e build will atid at1 sddil.iot~ai 
transformat,ion to d l m  specification of the spare- 
craR's :lt,titudc in this fi-xnc. .............................................................................................................. 

9 . ," rceM0del::GetDerlvatlvescalleu 
NO 

GetDeriwtlves called h More Forces? Return derivatiw data j 
,-. ................................................................ ....................................................... 

: : 
j i 

j ectlunsln this box are Internal j j / to the Indludual forces. 
Yes j j 

Force needs 
j j transformation . , . 
, , 

i j 
NO i j 

i j 
V v j j 

, , 

Calculate derivhves i i 
j i 
i i 

................................................................................................................................................................................................................. 

Figx~rclrc 10.8: Co2tr~)l Fiow for T r a n s f o r ~ r i  Durirlg Pr(-)pagetii>li 



ad: Maneuw low 

Fig,lre 10.9: Caiculaiing the Dirc!ct8ion Used for l l a ~ l c u ~ c r s  

Calarlde coordinate Calculate deltay Prajed dV dong 
system basis vectors w acceleration basis bettors 

Maneuwr Requested Return resllts 

10.4.6 Maneuvers 

j 

The impulsive and finite burn ~rmlels are used Do si~nulate thruster actions on a spacecraft. h;Ianeuvcns are 
applied either as an impulsive delta-V or as an a,cceleration in the force model. In either case, the coordinate 
system related operations in the maneuver object are the same: t,he basis vectors for the coordinate system 
are calculated in the MJ2000 f'rame, the magnitude of the change in the velocity is calculated for the maneuver 
(resulting in a delta-V niagnitude for inipulsive miwnc.uvers, or t.he time rate of change of velocity for finite 
maneuvers), and the result,ant is projected along the ba.sis vectors using at.t.itude data in t.hc maneuvcz objectf. 
Figire 10.9 illustrates this flonr. 

10.4.7 Parameters 

Many of the parameters that GWIAT ran calculat,e tare computed based on the coordinate system of the 
input data; in some cases this dependency uses the full coordinate system, and in other cases: it. uses the 
origin or central body of the coordinate system. The Parameter subsystem contains flags for each parameter 
taht are used to  indicate the level of coordinate system informa.tion required for that parameter. Thcse fla.gs 
indicate if the para~neter is specified indt:ptantiently from the coordinate system, depends only on t8he origin 
of a coordinate system, or depends on a fully specified coordinate system. 

10.4.8 Coordinate Systems and the GUI 

OpenGL Viewpoints 

The OpenGL visualization component in tile first three GMAT builds set the Eartli at  the center of t,lle display 
view and allowed users to  mom t,heir Earth-pointing viewpoint to different locations. The incorporati011 
of coordinate systems into the code opens GMAT t,o a greatly expanded visualization capability in t,his 
component. Users c a l  set thc viewing dire~%ion t o  point towards any SpacePoint or a,n offset from that 
direction. Users can also set the viewpoint location to either a point in space, to  the origin of any defined 
coordinate systeni, or to  locations offset. from any specified SpacePoints. The latter capability allows the 
OpcnGL view t,o follow the niot.ion of the en ti tic?^ rnodcled in GMAT. 

New Panels 

GRlAT needs a new GUI panel used to configure coordinate system objects. 

Panel Changes 

Several of the existing GUI panels in GhlAT will change once the Coordinate System cl:i.sses art: f~nct~ional. 
Both the report file and the X-Y plot components use parameter data to produce output. The configuration 
panels for these elements needs the a.bility to specify either the coordinate syst'em or the origin for the calcu- 
lated data that requires these elements. One way to add this capability to  t.he CUI is shown in Figure 10.10. 



Figxre 10.10: Thc Updatcd Para~nctcr Su':,pimc:l 

As different parameters are selected, the "Coordinate System" and "Coordinate Origin" comnboboxes become 
active or disabled ("grayed out."), depending on the needs of the selected parameter. 

The propagat,or subsyst,em needs infonnationi a.bout the global origin for the forces in a force model. 
Figvrc 10.11 shows one way tto atid this dat,a to the pa.nel. 

The OpenGL panel needs to  be updated to  allow configuration of the capabilities described in Section 
10.4.8. Users can use the settings on chis panel to specify both the coordinate system used to plot the 
mission dat,a and the location and orienta,tion of the viewpoint usad t,o observe these data. In some c,ases, 
the viewpoint will not be a fixed point in space --. for exarr1ple, users will be able to view a spacecraft's 
environment in the sinlulat,ion by specifying t,he locatsion and orientation of the viewpoint relative t,o the 
spacecraft in a spacecraft centered coordinatt? system, and thus observe how other objects move in relation 
to that, spacecraft. 

10.5 Validation 
In this section; several tables are presented that show the data for a single state in several different coordinate 
systems. GMAT tests will be run that. transform bet,ween tt.hese systems and validates that the conversions 
itre in agreenlerlt wit,h the data in t,he tables t,o an a.ccept.ablc level of precision. Thc t,est. data were gt?nt?rated 
in .;lstroga,tor by GSFC, Codc 595. This output slloultl be in a,greelnent with GMAT rosults t,o at least one 
part in 1012. (Subject to change once t,est,s are run - -  seenls like a good value a,s a starting point.) 

10.5.1 Tests for a LEO 
Tablc 10.3 list,s the expected state data for a spacecraft orbiting near the Earth. 



Table 10.4: Coortlintikc. Cvo~c?rsior~s fLr an. i1rl)it nea,r the Earth 
A LEO State . ----. . . . . -. . . . . ----. .-. . . . ---. --------.--. 

?och: 

>ordinate Systein 
rth r ~ 1 . c ;  Meail 

300 Equator 

I-th Ccntcred Fixcd 

rlh i:er~l.c~retl ,. .Slea.a 

liptic of Eat<? 

l ib  Ccntcred hlean 

liptic of 52000 

rtil Ccn:erc;ii ,Clean of 

, le 

.. .. .. . .. .. . . . . -.-. --. -. .-. . .-- - .- -- - . ---- - . - . -------- - - - . . - -------. .-. . . . . . . . -----. .-. . 

UTC Gregorian 

f   tar^ 2005 12:00:00.0(! 

X Y 
1.59~).!400i~i)D9!!999S 0.O0000000~i0000 

:~10!).7~i064'2'2ll)37 12 j 1569G.(i747GU!~712'L(i 

15999.!.)881 OO5CI9Y:Ii' j 1 I).GIJ01!47I11 !.i100fil 

15i)!Jid.O!~999'39$~~IJi18 j 0.00000!10UU00i)O 

15999.986100569!!37 1 17.89699076.13261870 

. . . . . . . -. ------------- - - -- - - ---- --------- -- - - - - - - --- ------- - - - - - .............................. 
UTC J u l i a ~ ~  

2453372 
Z 

O.ilG0O000OOO!)!)il 

7.54822029851itjfj!4 

. 0 1 4 . S  

O.ilC0000001i00OO 

7.7768466297859297 

- --- - .-- .----------. . ----. . -------. . ----. . . . . . . . . . . . . . .------. . .--. . . . 
Ephenicris Tillle 
2~~3~2 .00074287  

1:: 
0.0000000000000 

-2.6485022470204Ii02 

-O.O!I(j20376$7!1G8tj50 

0.000000000!10U0 

-0.0062037647908690 

I{J 
3.8liCit?Ol8270~>19716 

U.32132'1458(i562i29 

5.085030R9!jY!W iiGO 

:i.Od50575!)1(j827729 

3.8661983573941092 

Ti; 
3.8CjG201 S'17051.!); 

3.8(i6343176851(il 

2.009:341 7847447: 

2.00!1284037ti358( 

:3.8FJ6200319:3814t 

............................................ 



Table 10.5: Covrdit~a.t.ci Con:-carsions f i ~ r  a.1u orbit war  t.116, E;i.rtlu;'tLfoon-S:m T,2 Poj~ul: 
A L2 State . --. . . . -. --------. . .-. . . --. . . -------. . . . . . . . . . . . . . - - - - . . ---------- - . . . . . . . . . . -. . . . . . . . . . . . . . . . . .--. . . .-- .- .-. . .-. . . . . .---. -. -. ------. . . . . . . . . -. -----. . . . . . . ---- .-. . . . . . -. . . . . . . . . . . . . . . . . . . .-. .----. . . -. . . -. . . . . . . .-. . . . . . . . . . . . ---. . . -- .-. . . . . . ----. . . . . . . . . . -. . -.. .--. . . .- .- .-. .-- .--.. ..-. . . . . . . . . . . . . . . . 

both: KTC Greaorian IJTC ,Tulian 

10.5.2 Tests for a Libration Point State 

Table 10.5 lists t.he c?xpectt:d st'ate data for a spacecraft flying near tho Earth-Sun. 

Enhameris Tilrie 

2.5 S<JP 2003 16:22:47.94 2432908.18249!331 

i zm ............................................ I .....---.-----II.I-.II.-..-I.............. .i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.iI .----------------------------------------- ~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J~ ..................................... 

10.5.3 Tests for an Earth-Trailing State 

bordinate Sys- I X 
2452908.18322218 

arth C:er;tcrcd Ylc'm 1 11 5%413.9(iOI!lYU50il 

2000 Equator 
LO-Eartlilhloon / 2699568.8530356660 

Table 10.6 lists the expected state data for a deep space object trailing behind the Earth. 

Y i Z vz 15, 

10.6 Some Mathematical Details 

17; 

lfj448'.'.90400i)851Yl 1 J..3706083783!i / -0.02374<!132803j502 I -2708c: 

-467.975167835796'3j 1 -314259.10186358291 1 -0.0062197634008532 

This section will probably appear in some form in tlie mathematical specifications. I'm leaving 
it here until I can confirm that assumption. 

.A spatial coordinate system is fully specified by defining the origin of the syst,em and t,wo orthogonal 
directions. Given t,hese pieces of data: space can be gridded illto  triplet,^ of nunlbers &at uniquely identify 
eadi point. The purpose of this section is to provide some guidance int,o how to proceed with the defi~litiorl 
of the coordina.te system axes once tile origin and t.wo directions are specified. 

10.6.1 Defining the Coordinate Axes 

U.G46:;49(j0929:3SI)I 7 

0.361050760~1663427 

The coordinate systcni axes are defined from t.heAtw ort,liogonal directions in t,he system specification. These 
direct.ions arc given two of t,ha three la.t)cls X, Y, and 2. These labels are usc!d to define tlie correspondi~ig 
directions for the coordinate sgst,em. The third axis is calculated by taking the inner product of the other 
two axes, using 

U.I8969527(!537066 

-0.il.l~98067111SEi'~Z 

10.6.2 Setting Directions in GMAT 

The principal directions for a coordinate system are set in GNAT by specifying a priinary direction and a 
secondary direction. The spccifietl secondary axis need not. be orthogonal (i.e. perpendicular) to the primary 



Table 10.6: Coordinate Conve~sions for an Earth-Trailing state 
An Earth-Trailing State 

Ephen~erjs Tirrw 

2455927.50074287 

I?, 

~ c h :  TJTC Grcgorixn 1-TC Julia11 

1 Jan 2012 00:00:00.00 2465927.5 

1-I 

ius (.:e~~ter[?<l Fixed / 234(i718!)7.87!3970'22 

on C!rtite:.ed Fixed / -282l.8080.5S:j74t~:15~I .............................................................................. 
urr (.?rr~lared irlrtliiil 1 18009331.-153252095 

X rordinate Sys- I 

-29.8E775713588113 

-2!).8(i77194617801!1'20 

-29.8577571 358811300 

+ti Cei~lereri Meall 1 I 8407337.2137560 

00 Kql~a.:.or 

,ti; (:fniert.ri h,lew> 1 1801O545.~(iF27i718 

ipric of Date 

. th C:entcred. Mean 1 7 8407337.24375(;0 

pp 

3.7988731866283533 1 -0.0883535323 140 

3.3629312l651750!48 / -1.5!.f21471032003 

:3.45(Y.'529fiO4X.L'L'LO? 1 -1.5!421.677110083 

l l 6 7 1  7552.3fj42T2 / 21:$6998.008080 1622 

1356:3-1004.81496j251 1 -56121251.2%808-1592 

1:365XOI 04.S(i(!2478H I -56124988.1 96549937 

-1845302f;4.4:30211287 / -4UOHO1!)6.:3R403178l! 

-1336L5637.16513638 j -56782501,270',03:,99 
+ 

1.~266Sfj558.453L0178 / 2386670.4083221816 

Y z 1 <t 

87.70i28099V251 G540 

-325.9434285713376800 ..................................................................................................................................................... 
-29.770787137fjO.167YO 

130.412?,1(j3] 7457$5() 1 -:3,$6'231)5853117[ 

70.71fjJ0]0-i3€j8701~j 1 -2,32fj9:36] ]251::38 

2,899289596163~:191 1 -0,4~:30[)5995]2l.8 



axis. Given a prixnasy direction and a sc:condary dircct,ion 3; the primary axis is oricnteti along :i. unit 
vector given by 

The unit vector tlefining the sc?contla.ry axis is const,ructod hy projecting the secondary direc?io11 3 into t.hc 
plane perpendicular to  t.hc prixnary direct,ion, anti unitizing the resulting vector. This is done by calculating 

In gent?ral, two points are needed to specify a direction. 



Chapter 11 

SpaceObjects: Spacecraft and 
Format ion Classes 

Darrel J.  Conlliny 
Thinking Systems, Inc. 

The Spacecraft and Formation classes used in GILlAT are t.he core components studied when running the 
system. Instances of these classes serve to niodel spacecraft stat,e information as t,he model evolves. Thcy 
also serve as containers for hardware componeilt,~ used t o  extend the model to include finitc burn analysis, 
contact calculations, spatial mass distributions, and full six degree of freedoni modeling. The core elements 
of this modeling are present,ed in this chapter. The hardware extensions are document.ed in Chapter 12. 

11.1 Component Overview 

The cer~ttrd nature of Spacecraft and Forma.tion objects in GMAT's rnissioii model ~nakes the design of the 
supported features of these classes potentially quite complex. The state data and related object properties 
required for these objects must meet numerous requirements, including all of t.he following: 

1. Supply State informatmion to force model 

e Origin dependent. data, MJ2000 Earth Equator orientat.ion 

* Cartesian st,ates 

r {<Future% Eyuinoctial states 

2. Support input representations 

e Convert between different representat.ions 

c Preserve accuracy of input data 

3. Support coordinate systems 

r Support internal &I.J2000 Cartr?sia~i syst.en1 for propagation 

e Allow- state input,s ul different. systems 

e Show state in different systems on deinand 

4. Support time systerns 



ES ' T  1 1. Sf"4 CXOB JECW: SJ'-4CECflA4i.'T AiYB FOR:ll-41110X CLASSES 

a Suppoll. ModJulian 

e Support Gregorian 

c C'on~rert all time systems 

.5. Support mass and ballistic properties 

e Basic spacecraft Ina,ss 

e Cd, Cr, Areas 

e Atlass in tanks 

r <<Future>> Mass depletion from maneuvers 

e ccFut.ure)> MornenOs of Inertia 

6. Support tanks and thrusters 

r Add and remove tanks and thrusters 

r c<I;'uturc+) Deplete mass during finite burn 

r ({Future, partially implemented* Model burn direction based on thruster orientations (BCS based) 

7. GUI 

e Provide epoch information 

--- Epoch represent.ation string 
- Epoch in that representation 
--- Supply different representation on request 
- Preserve precision of input. opoch data 

6 Provide state information 

- State type st,ring 
- Stat.e in that representat,ion 
- Provide units and labels for state elements 
- Convert t,o different representat.ions 
- Preserve precision of input state dat,a 

r Provide support for fi11it.e nlaneuvers 

8. Scripting 

s Support all GUI functionality from scripting 

e Provide element by elemont manipulations of state data 

r Allow element entry for data not in the current state type without forcing a state type change 

9. Provide R a g e  Checking and Validation for all Editable Data 

10. <Future> Support attitude 

e Allow attitude input 

o Convert attitude st,ates 

11. <Future> Support sensors 

e Add and remove 

o Conical modeling 



11.2. CLASSES USED F012 Sf'rlCECi1AFZ' A,VD FOlIJ.IAYiOJ'S 

e Masking 

Contact infor~nat.ion based on sensor point.ing (BCS based) 

GM.4T defines a base class! SpaceObject, for the common elements shared by spacecraft and format,ions. 
The primary feature of the SpaceObject class is t,hat it provides tlie data structures md processes r1c:cessary 
for propagat,ion using GMAT's numerical integrators and force models. Classes are derived from this base 
t,o capture the unique charact,eristics of spa,cecraft, and formations. Additional components that int.erface 
with t,hc propagation subsystem should he added to GMAT in this hierarchy; t,hc propagation subsystem is 
designed t o  work at the Space0bjc:ct level. 

Tho SpxeObject subsysteni usc:s three categories of helper classes: PropStates, Converters? and Hard- 
ware. In one sense, the SpaceObject classes can be viewed as containers supporting the features needed t,o 
model object8s in the solar system that evolve over time through numerical integrat,ion in GM.4T. 

The core data needed for propagation is contained in the PropSt,ate helper class. Each SpaceObject 
has one PropState instance used to  manage the dat,a directly manipulated by the numerical integrators. 
The PropSt,ate tnanages the core epoch ant1 state data used by the propagation subsystem to model the 
SpaceObject,~ as they evolve through time. Details of the PropState class are given in Section 11.2.3. 

Each SpaceObject includes conipone~its used to take the data in the PropState and convert it into a, 

format appropriate for viewing and user interaction. The coriversion subsystem described in Sectioli 11.5 
provides the utilities needed to convert cpocli dztta, coordinate systems, anti sta,te element representakio~is. 
The conversion rout.ines needed to meet t.he requirenierits are contained in a, tria,d of conversion claqses: 
TimeConverter, CoordinateCo~lvert,er, and R.epresentationConvertter? tha.t share a common base that enforces 
consistent interfaces int.0 the conversion routines. These conversion routines interact wit,ll the state and epoch 
data at the Spa.ceObject lave1 on GMAT; therefore, conversions on a Formation object are performed using 
idtmt#ical calls to conversions for individual Spacecra.ft,. In otlicr words, tlie state or epoch daka for a Formation 
is transformed for all members of the Formation with a single call, and tliat call looks identical to the same 
t,ransformat.ion when performed on a single spaceaaft. 

The spacecraft as modeled in Ghlf-4T is a fairly simple object, consisting of several key propert,ies required 
to niodel ballistics arid solar radiation forces. The state compl(:xities are managed in t.he SpaceObject base 
class. Additiollal spacecrat't hardware - fuel tanks, thrusters, and eventually sensors and other hardware 
elements - -  are modeled as configurable hardware elements that are added as needed to Spacecraft objects. 
Hardware elements tliat contribute to  the spacecraft model are broken out into separate classes modding 
the specific attributes of those (dements. Users config~~rc? fuel tanks axid thrusters as entit,ies t,hat. the space- 
craft uses for finite maneuvering. These elements include structures that allow location and orientation 
configuration in the Spacecraft's body coordinate system, so that detailed mass and nlomerlt data can be 
calculated during t,he xxiissio~i. 4 future release of GMAT will add support for attitude calculakions and, 
eventually? sensors, so that. attitude based rnaxieuvering, full six degree of frc?edom modeling, and deta.ilt?d 
contact modeling can be incorporated into the system. These components are discussed in more detail in 
Chapter 12. 

The remainder of this chapter details the design of the components that implement t,he core SpaceObject 
classes, Spa.cecraft and Formation. It includes t,he design sspecific~ation for the contrerters GMAT uses to 
support. these classes, along with a discussio~i of how these elame~its interact. t,o provide the conversions 
needed to meet the system requirements. 

11.2 Classes Used for Spacecraft and Formations 

Figure 11.1 shows the details of the classes derived from Spacc3Point that arc? used when modeling spacecraft 
:~.nd formations of spacecraft. Tho class hierarchy for the spacecraft subsystem  consist.^ of three core classes: 
the SpaceObject class, wliich coritains the common elenients of the subsystem, the Spacecraft class, which 
acts as the core component for d l  spacecraft modeling, and t,he Format,ion class, whidl collects spacecraft 
and subformations into a single unit for tnodeling purposes. This subsystem also contains a. helper class, the 



PropState, wllicli encapsulates the da.ta that. evolves as the rnodel is run, simplifying t,he int.erface t.o the 
propagation subsystem. In addition, two of the hadware classes .-- Thruster and FuelTa~~k - -  are shown in 
the figure. 

11.2.1 Design Considerations 

The central role of the Spacecraft and Forn~ation Spaceobjects in GR'I.4T's models drives several design 
considerat,ions related to the consistent disp1a.y and use of these objects in the model. Before present.ing the 
design of t,he classes used for these objects. several of the considera,tions t.hat went into this design will be 
discussed. 

Data Consistency Philosophy 

The SpaceObject subsystem follows a conr.elition that requires that the state data in the PropState always 
stays correct with respect to  the model. In other words, once some &aka in t,he state vector is set, changes t,o 
other propc3rties of the SpaceObject do not change the st,ate wit,h respect to  the modsl. That means that if 
thc int,ernal origin changes for a Spacc?Object, the da.ta in the sta.tc vector is translated to the new location, 
and the velocity da.ta is updated to reflect the speed of the SpaceObject with respect to the new origin. 
111 order to change the state of a. SpaceObject in GMAT's model, the art.ual state data must be cliangod. 
Changing the coordinate system or origin does not change the position or velocity of tlic Spa,ceObject wi6h 
respect to other objects in the space environment; ii~st~ead, it changes the values viewed for the SpaceObject 
by updating the \+enred data in the new coordinat,e system. The epoch also remains unchanged upon change 
of the coordinat,e system, the representation, or elements of the st,ate vector. 

Epodi dat,a is simpler (beca,i~se it is independent. of 1ocat.ion in the space environment), but follows 
the sane philosophy. Internally the epoch data is stored in the TAI modified Julian time system. Users 
can view t.he epoch data in any of GhIAT's defined time systems. Changing the time system does not 
cha.nge t,he internal epoch data, only thc way t,liat data is prcsentctd. Epoch data is changes by directly 
updating the epodi. Upon change of epoch, the st,atc? of t.he spa.ce<:raft rt:niains unchanged with respect to 
the SpaceObjectls origin. However, a side effect of changing the epoch on a SpaceObject is that the locations 
of the objects in the solar system ma,y shift, so the location of the Spa.ceObject wit.11 rt?spect to othcr solar 
system objects may be different. 

Data Presented to the User 

Each SpaceObject indudcs data mtmibcrs usctl to tracli the current default vicws of the data. The epochType 
nienliber is used to st,ore the cilrrent fon~mat for viewing t.hc epoch dam. State data requires t.wo components 
to fully define the view of the state data: the coordinateType member tracks the coordinat,e system used t.o 
view t,he state dat,a, and the stateType member the representation for that view of the state data. These 
three nlernbers - epochType, coordinateType, and stateType - define the views used wht!n a SpaccObject 
is writ,ten to a file, displayed on a GUI panel, or accessed as strings for other purposes. 

Access to t.he st.ate and epoch data as R.eal values ret,urns the internal data ele~nent,~: the epoch is 
returned as a T.41 modified Julian value, and the state data is returned as Cartesian hiean-of-J2000 Earth 
etlua,torial data, referenced t o  thc origin specified for the Spa,ceObject. Tho Spacr?Objects providc rnetliods 
that retrieve the data in other formats as well; the values described here are those returned using the default 
GetRealParamet.er methods overridden from the GmatBwe class. 

State data can be react or writton either clement. by elrmcnt or as a vect'or of st,ate data. Tlie former 
approach is takcn by t,he Sc~ipt  Intcryretor when sett.ing a spacecraftc's state as expressed elernent.-by-elcri1t?11t 
in t.he script, like sllown here: 

Create Spacecraft sat ; 
sat.StateType = Keplerian; 
sat.SMA = 42165.0; 



11.2. CLASSES GSED 1;'OIi: SPA CECi?iaFT -4-W FOR.~IAT~OLYS 

........................................ 

Fig~ rc  11.1: Class Birncturc fcjr Spacc~~aft.  aarld Fcjrrnrttions 



92 E l  1 .  S1334C7EOBJEC?'5': S1'-4CECf$Ar;'T A i W  FOf?d.l-ATiliON CLASSES 

The GUI works with the state dat,a as a single entity, ratlier than clernei:t,-by-cle11i~11lt. Accordingly~ tho panel 
that displays spacecraft state data accesses this data with a single call that returns the full state dat.al. 

Spacecraft states can be displayed in many difft?rent, roprc~selit.atio~~s. Rat.her than code t>ext descript,ions 
for the different components of each representation into the representation converter, each represent,ation 
includes structures to provide the labels and units used for the components. The SpaceObject,s provide 
methods to retrieve these values. 

Sonie stake representations have opt,iond settings for specific elements. For example! the Keplerian 
represent.ation can specify tlie anomaly in one of several forms: elliptical st,a.tas can specify a. true anomaly, 
eccentric anomaly, or mean anomaly, while hyperbolic orbits use either the hyperl~olic anomaly or a mean 
anomaly defined off of the hyperbolic anomaly. Representat.ions that support this t,ype of option also provide 
a method, Set Option(), t.o set t,hc opt,ion. SpaceObject,~ provide methods to access these nlethods as well. 
so that tlie representa,tion opt.ions can be set through calls to the Spa.ceObject. 

11.2.2 The SpaceObject Class 

Ghl.4T's force model constructs a stat.e vector that is manipulated by the system's numerical integrators 
to adva~lce the state wctor throilgh time! as described in Chapter 18. The core building block for the 
construction of this state vector is t,he SpaceObject,, a class used in GMAT as the base class for Spacecraft 
and Formations': as shown in the class diagram, Figure 11.1. 

The SpaceObject cla,ss supports all operations and data  clement,^ that Spacecraft and Formations share 
in conlmon. In particular, the vector used by the propagators to model evolution over time is e~lcapsulat~ed 
in the Spaceobject class. Conversions that invol~e the data in this vect,or are perfornied at the SpaceObject 
level. The SpaceObjcct class ~naintains pointers to the elements tha,t are necessary for these conversions. 

SpaceObject inst,ancos also act as cont.ainers for several helper classes, responsible for performing coor- 
dinate syst,em conversions. state tra~lsformat~ions between different state represelitations, and tune system 
conversions that allow the object's epoclz information to  be presented t,o users in conlnlon time systems, 
described in Section 11.5. The SpaceObject class  implement,^ several methods that call t.hose components 
t,o supply requested data. The returned data from theso calls is always an std::string or StringArray. The 
Spa.ceObject class Inanages the underlying Real dat,a internally, and uses these a.s checkpoints to rna1iag.e the 
precision of the output, to validate that t.he data is consistent, and to ensure that all data presented t,o t,he 
users is co~isistent wit,h the internal data st.ructures in the SpaceObject. 

Class Attributes 

r PropState state: The cor~t,ainer for the raw state and epoch data that get,s propagated. Dt:tails of 
the PropState class are pro~ided in Section 11.2.3. 

r boo1 isManelwering: A flag used to  indicate if there is a finihe bi.1~11 active for any of the members 
of t.he Spacc?Object. 

Create Spacecraft sat; 
s a t  .StateTgpe = XepLerian; 
sat .S ta te  = C42165.0, 0.0011, 0.25, 312.0, 90.0, 270.01 ; 



11.2. CLASSES USED E'OIZ Sl'ACEClldF'I' .4,W FO1l~~A'IIIO:YS 93 

std::string origirflarne: The name of the Spacc:Point that is t.ho origin of the data containc:d in the 
Spaceobject's PropState. 

r SpacePoint *origin: A pointer to  the SpacePoint t,hat is t,he origin of the data in the state. 

boo1 parmschanged: -4 flag used t,o indicate if the size or data corltained in the PropState has 
changed, so that consluners of thoso data can perforrn uptlatc:~. 

r SpacePoint "origin: The origin used for the st.ate data.. 

6 CoordinateSystem *baseCoordinates: The coordinate system used for the state data. This co- 
ordi~~at,e system is a iLIean-of-J2000 Earth-Equator systemt with the o~igin set to t.he Spa.ceObject's 
origin. 

r std::string epochType: Text descriptor for the current epoch type used for display. 

r Timeconverter tinieConverter: The time converter used by this Spaceobject. 

<<Future>> TinieBase* baseTimeSystem: The time systenz matclliilg the epocllType. 

r std::string coordinateType: Text descriptor for the current coordina.tte systenl used for display. 

r CoordinateCorlverter coordconverter: The coordina.te system convc:rter used by this SpweOb- 
ject. 

e CoordinateSystem* basecoordinates: The coordinate systeril associated with the SpaceObject's 
PropSt,atc:. 

r CoordinateSystem* viewcoordinates: Tho coordinate system associated with the SpaceObject,'~ 
coordinateType, used for display. 

std::string stateType: Text descril>tor for the current state reprcsentaiion used for display. 

e Represe~tationConverter repconverter: Tlie represelit.ation converter used by this SpaceObject.. 

e ccFuturen Representation* basenepresentation: Tlie rc:prc?sent,ation used for display. 

e std::string textEpoch: The xnost recently accessed string version of t.hc c?poch. This string is only 
updated if the epoch field is accessed as a string using GetEpochString(), and the epoch or epoch type 
has changed since the last access. 

StringArray textstate: The most recently accessed st,ring version of the state. This string array is 
only uptlated if the st,at,e is accessed as a string array using GetStateString(), a~ ld  t,he coordinate type 
or representation has changcd since the last access. 

Methods 

r PropState &Getstate(): Returns the internal PropState. 

r Real GetEpochO: Returns the TAI niodified Julia11 epoch of the Spa.ceObject, obtained from the 
Propstate. 

Real SetEpoch(Rea1 ep): Sets the SpaceObject's epoch to a new value. The input parameter is the 
new TAI epoch. This mathod passes t,he new epoch into the PropState for storage. 

r boo1 IsManeuveringO: Returns a flag indicating if a finite burn is currently active for the SpaceOb- 
jttct. 



94 i f  1 .  SF"4CE'oBJEC?S: 5 ' fT4CECfja4 A!VD I;'Of35.I-4'1iOil: CLASSES 

0 void IsMa~leuveri~lg(bool rnnvrFlag): Sets t,hc fla,g indicating the presc:ncc? of a finite l~urn. 

e bool ParametersHaveChangedO: R.uturns a flag indica,ting that. the st,at'e dat,a hati been changed 
ouitside of the propagation sul~system, and therefore the states need to be refreshed. 

r void ParametersHaveChanged(boo1 flag): Method used to indicate that, an external change was 
made, and therefore st'ates should be refreshed before propagating. 

r std::string GetOriginNarneO: Returns the name of the SpacePoint used as the origin of the state 
data. 

r void SetOriginName(const std::string &cbName): Sets the name of the origin used for the state 
data. 

0 void SetOrigin(SpacePoint *cb): Sets the SpacePoint corresponding to the origin of the stat,e 
vector. The SpacePoint passed in the parameter cb is the new origin, and gets set on the base 
coordi11at.e system as its origin. 

e RvectorB GetMJ200OState(AlMjd &atTime): R,eturns the Cartesian state relative to the SpxcOb- 
ject's 52000 body". 

r Rvector3 GetMJ2000Position(AlMjd &atTime): Returns the Cartesian position relative to the 
Spaceobject's 52000 body. 

r Rvector3 GetMJ2000Velocity(AlMjd &atTime): Returns the Cartesian velocity relative to the 
SpaceObjcct's J2000 body. 

r bool SetCoordSystem(CoordinateSystem* coordsys): Set,s t.he vien?Coordinates member to  the 
input. coordinat.e syst,cnl. 

r std::string GetEpochString(std::string toTimeType): Returns the current epoch in string fornl? 
in t h ~  format in the toTimeType input,. If toTirneTypc is an empty string. epochType is used as the 
fornlat for the output. 

e StringArray GetStateString(std::string toType, std::string tocoords, Coordinatesystem* 
toCS): R.eturns t,he Spaceobject state in t,he represent.ation specified by to.Qpe, in t'he coordinate 
systcm set by toCoords, using t,he int.erna1 coordinat,e converter and the input coordina.ts systcm, toCS. 
If toCS is ITULL? the coordina,te converter locates the required coordinate system. If, ill addition, 
toCoords is an en1pt.y string, viewcoordinates is used for the output coordinate system. If the toType 
is also an e1npt;v string, the baseRepresent,ation is used. 

bool SetEpochF'romString(std::string epochstring, std::string timeType): Sets the epoch in 
t,he PropState using the input epochSt.ring, which is forlatted using the input ttirneType. 

bool SetStateFromString(StringArray statestring, std::string froznType, std::string from- 
Coords, CoordinateSystem* fromCS): Scts the state in the PropState using the data in the 
statestring array, which has the representation specified in the fromType string in cooidirlate system 
fro~nCoords, which has an instancc in the fromCS input. 

e StringArray GetStateLabelsO: Returns a string array containing the labels identifying the state 
c?lernents. 

r StringArray Getstateunitst): Returns a string array containing the units for the state elements. 

r void Synchronize(): Method used to fill the textEpoch and textstate from the data in the PropState. 

"The currcli! Gcl,MJ2000 mctl;od,- t,nlic ati a.1 epc.*ch m tllc cpoch fcr ? h c  calciliation. i\ future rclc25c will changr this call 
to ilse 'SAI epo~:lts. 



11.2.3 The PropState Class 

,411 SpaceObjoct,~ contain a. menlb(?r PropState element t,hat. is designed t,o encapsulate all dat,a needed to 
propagate the SpaceObject. This member class is used to provide tlle single state vector propagated as the 
core component seen by GkIAT's propagators. The PropSt,ate objects can contain data for a single spacecraft, 
multiple spacecraft (t,ypically flown in a Forrnat,ion), and rela,tcd mass depletion and state transition matrix 
da.ta. The propa.ga.tor subsyst.em ensures t,hat, thest? data, are treat.ed appropriat.ely during propagat.ion. 

Each PropState instance defined the following data nle~nbers and methods: 

Class Attributes 

e Real epoch: The current epoch for the state. This value is a TAI modified Julian value, and is used 
in the force model to specify the epoch for force evalua.tions. 

e Real* state: The state vector that get,s propagated. 

e Integer dimension: The tot.al number of elements in the state vector. 

Methods 

e Real &operatorn(const Integer el): Provides element by element. access t,o the state vector, so 
that the components can be set using t,he same syntax as is used to set C + t  array elements. 

s Real operator[](const Integer el) const: Provides element by element access to tlle state vector, 
so that the components can he read using the same syntax as is used to read C++ array e1ement.s. 

void SetSize(const Integer size): Resizes the st,ate vector. This method copies the current, sta.te 
da.ta into the resized vect.or once the new vector has been alloca.tc?tl. 

r const Integer Getsize() const: Returns the current size of the state vect,or. 

Real *Getstate(): Returns the st,ate vector. The returned vector is t,he internal Cartesian state used 
by the propagators. The stsate data is in Mean-of-.I2000 Earth-Equatorial coordinates, referenced to 
the SpaceOhject7s origin. 

e boo1 SetState(Rea1 *data, Integer size): Sets the state vector to match the input vector. If the 
size paramett:r is less than or equal to the dimension of the state vector, tho data vector is copied 
int,c) t,he st.ate vect,or? filling from the start until the indicated number of e1ement.s is filled. If size is 
greater than t,he PropState dimension, the method ret,urns false. The input state is in Mean-of-J2000 
Earth-Equatorial coordinatest referenced to the SpaceOhject's origin. 

s Real GetEpochO const: Returns the value of t.he epoch data member. The returned value is a TAI 
modified Julian value. 

r Real SetEpoch(c0nst Real ep): Sets the value of the c:poch data ~nembcr. The input value is a 
T-41 modified Julia11 value. 

11.3 The Spacecraft Class 

One key component that supplies PropState data to GMAT is t,ho Spacecraft class, used t,o nlodel satellites 
in the mission control sequence. Ea,ch sat,ellite studied in the mission has a corresponding Spacecraft object, 
configired to simulate the behavior of that satellite. The Spacecraft contains core data elements necessary 
t,o model the physical characteristics of the satellite, along with the inherit.ed SpaceOhject properties that 
form the core sta.te representations used for propamgation. 



96 4 1 .  S1'-4C!EOUJECr7'S: SI'-iCECl?Af;'T A2V.D f W f  ?,lfA.l-!ON CLASSES 

In GhlAT, the Spacecraft niodel allo~vs for the addition of new satellit,e componcmts that model specific 
hardware elements. The current implementation supports fuel tanks and thrusters for use when modeling 
finit,e maneuvers. Tho base class for the hardware subsystem was designcd to be flexible, incorporating 
data elements designed tto model the loca,tion and oricnta,tion of the hardware rolat,ive to a sat.el1it.e body 
coordinate system. The orient,ation data is used in GMAT to set. the thruster direction during finite burns. 
Once the thrust directio~i has been determined, it it rotated based on the satellit,e's attitude to det.ermine 
t,hc thrust direction in tho propagation frame, so that the maneuver accel(?rat,ion can be incorporated int.0 
the force model. This modular hwdwaro incorporation is also the first step towards incorporat.ing moments 
of inertia into the model, so that full six degree of freedom modeling can be perfornled in GMAT. Additional 
details of the hadware model are provided in Chapter 12. 

11.3.1 Internal Spacecraft Members 

Spacecraft object,s are SpaceObject,~, so they contain d l  of the data struct,ures associat.ed with SpaceObject,s 
described above. They ma,na,ge a StringArray t.hat, (contains the current state as expressed in the current. 
state representat,ion. This a,rray typically contains the state as seen on t,he GUI or in the script file that 
configured the Spacecraft; the data in this array is only updat,ed when needed for display purposes. 

The Spacecraft class contains data me~nbers controlling the core ballistics of the object.. Mass is handled 
as a core Spacc?craft mass plus all massc?s associated wit.h the hardware attached to t,he Spacecra.ft. The 
force niodel accumula.tc?s the nlass i1lt.o a. total mass used in the acceleration calculat.ions. Areas and force 
coefficients are included in the Spacecraft model for drag and solar radiation pressure calculations. 

11.3.2 Spacecraft Members 

The Spacecraft class provides data memebers used to manage the ballistic properties of the spacecraft. 
Properties are defined to manage the spacecraft mass. incident areas for drag and solar radiat,ion pressure 
perturbations, associa.tad coefficierlts of dra.g a.nd reflectivity, and t.hs structures needed to adti hardware 
elenlents to the core spacecraft objects. The members that provide this support are: 

Class Attributes 

a Real dragcoefficient: The coefficient of drag. C d  (see equation 19.3), used when calculating atmo- 
spheric forces acting on tho spacc?craft. 

r Real dragarea: Tho area of bhe spacecraft enco~nt~ering the at.mosphere. 

a Real srpcoefficient: The rcflcctivit,y coefficient,, CR (see oquation 19.2), useti when cdculating 
accelerations from solar radiation pressure. 

r Real srpArea: The area e s ~ o s e d  to solar radiation, for the purposes of calculat,ing the solar radiation 
pressure force. 

r Real dryMass: The t.ot:d mass of the spacc:craft, excluding fuel and other massive hardware elements. 

a StringArray tankNames: Names of t,he file1 tanks t.hat the spacecraft usts. 

r StririgArray thrusterNames: Xa~nes of the t,hrust'ers that the spacecraft. uses. 

r ObjectArray tanks: Array of fuel tanks on t,ha spacecraft,. h e 1  ta~lks we added to spact?craft by 
~naking local copies of defined tanks. Each fuel tank contributes fuel mass to the total mars of a 
spacecraft. Fuel is depleted from the tanks during finite maneuvers4. 

.-. . . --. . . . . . . . . . . . . . . . . . . . .--. . . . . -. . ---- .--. . . -. . . . -. . -. . -. . ---. ----. . . . -. . -----. . . . . -. . -. 
'.\4ws cL~piet.i~.ili is scllnclulrci Itit. Irr:yirti>anl aiiori d!il.irig Li:e sutr>r:ler 01 2007. 



ObjectArray thrusters: Arra,y of thrust.ers attached to the spacecraft. Thrust,ers aro added t.o 
spacecraft by ndcing local copies of defined thrusters. Each thruster has a. location and pointing 
c1irc:ction defined in teh spacecraft's body coordinate systcm. The applied thrust tlir ection is computed 
by rota.ting the tllrust direction based on teh spacecraft's at.t,itude? Tha thruster mass should be 
included in the dry rnnss of the spacecraft. 

Real totalMass: The t,otal mass of tho spacecraft., including fuel and other lnassivc hardware elements. 
This is a calculated parametcx, available only as an out,put. Users cannot set tho spa.cecraft.'s t,otal 
mass. 

Methods The support for Spacecraft state and epoch access and manipulation is provided by the 
Spacc?Object. kme class. Access to t.he new data nletnbers described above is provided using the Gmat,Base 
a,ccess methods doscribed in Section 7.1. Generdlg speaking, the ballistic properties are accessed using 
the GetRealParanet,er and SetR.ealParameter methods overrifclden from the base class. Hardware elements 
are set by name, and configured on t.he Spact?craft by passing in pointers to configured hardware elements 
which alp then cloned inside tlle spa.cecraft tto make the local copy used when exe~ut~ing the mission control 
seclileace. Since most of the infra,structure for these steps is described elsewhere, the list of new inetllods 
on t,he Spacecraft is rather sparse, consisting of notes describing Spa.cecraft. specific details implemented for 
these core methods: 

virtual Real GetRealPararneter(const Integer id) const: Returns the real paranleters listed in 
the daka ~nember section. Of pa.rticu1a.r interest. here is the treatment of t,he mass parameter. Requests 
can be made for either the dry mass of t,he spacecra.ft, or tho tot.al mass of the spacecraft,. When the 
total mass is requested, the ret.ur-ned value is the output of the UpdateTotalMass() method described 
below. 

virtual boo1 TakeAction(const std::string &action, const std::string &actionData = ""): 
Takel-lction in the Spacecraft class adds the following new actions t o  the objec,t: 

- SekupHnrdware : Exanlines the hardware on t,he spacecraft, and set,s up intcrnal 1i1Ika.g~:~ required 
for this hardware. For example, each thruster reqires a pointer to  a fuel tank; that connection is 
configured by this act.ion. 

- RemoveHardwrare: Removes one or d l  hardware elements from the Spacecraft,. If a name is 
specified for the hadware element, only that elenlent is removed. If the act'ionData st,ring is 
empty, all hardware elements are removed. 

- Remot~eTu~k: R.emoves one or all fuel tanks from tmhe Spa.cecra.ft. If a. name is specified for the 
fuel tank, only that tank is removed. If the actionData string is empty, all fuel tankr are removed. 

- RernoveThri~ster: Rn:movc?s one or all thrusters from the Spacecraft. If a nanle is specified for 
t,ha thruster, only t,hat thruster is renloved. If t.he acti0nDat.a st,ting is empty, all thrusters are 
removed. 

The Spacecraft Class includes the following protected methods used to nlaintdn some of the internal 
data structures, and to generate data needed for the public methods: 

a Real UpdateTotalMass(): Tipdat,es the t,ot.al mass by adding all hardwar(: masses to the dry mass. 

e Real UpdateTotalMass() const: Updates the total mass by adding all hardware masses to  the dry 
mass. The co~ist version does not update the intr:rnal member, and tharefortr can bo called by ot'her 
const methods. 

5 :  i'ha curreti: irryiit.inerrcatii.iii uses either inertial a,l:tilutlp ur a. velui:iby-i1o:~rr:al-1-~i1~rj1'1~i;il all ituda k;i. :,his caicgJat,iurl. 



11.4 Formations 

In GMAT, SpaceObjects can be gouped together and treated as a single entity, the Formation, which evolves 
over time as a. single stat(? vect,or. Each l;i)rniation car1 contain Spa,cecraft, other Fc)rmations, or any ot,her 
SpaccObject tlefinetl in the system. Fc)rrna.tions arc nlotleled using instances of t.hs Formation class, tlcscribcd 
in this section. 

Class Attributes 

StringArray componentNames: Kames of tlie SpaceObjects in the formation. 

o std::vector <Spaceobject *> coniponents: Pointers t.o the formation members. 

r Integer dimension: Siee of thc state vector used in propagation. 

r UnsignedInt satcount: Number of SpaceObjects in the components vector. 

Methods The Formation class defines the follo~~ing msthods, usctl t.o ma.nage the object,s in the For- 
mation: 

o virtual void Buildstate(): Constructs the PropState for the Formation. 

a virtual void UpdateElementsO: Updates the rnember Spa#ceObjects using the data in t,he Forma- 
t,ion PropState. 

o virtual void Updatestate(): Updates the internal PropState data from the member SpaceObjects. 

* virtual bool TakeActio~l(const std::string &action, const std::string &actionData = ""):TakeAction 
in the Formation class adds two actions to the object: 

- Clear: Calls ClearSpacecraftList() to  remove all SpaceObjects from the Formation. 

-- Remove: Calls RemoveSpacecraft(f with a specific SpaceObject name t o  remove that Spaceobject 
from the Formation. 

For~na.tio11 also contairis two protected methods t8hat are used t.o pupport t,he public iritcrfa.ces: 

o bool ClearSpacecraftList(): Clears the list of SpaceObjects in the Formation. This method clears 
1)otli the list of SpaceObject nalnes and the list of i~istance point,ers. 

a bool RemoveSpacecraft(co~~st std::string &name): R.e~noves a. SpaceObjcct froni tlie list of 
For~uation members. This niet'liod removes both tlie SpaceObject nanie froni the componentNames 
member and the instance pointer from the conlponents list. 

11 -5 Conversion Classes 

GRf-AT's Spacecraft arid Formation modals act as a datta. provider for state informa.tion that is fed into t21e 
pr~pagat~ion system. Users int,eract with this aspect of the model by selecting the view of the data, spacecraft 
by spacecra,ft, in one of many different coordinate syst,eins and state representat,ions at a user specified epoch. 
011 a coarse level, thc views into the stat.e data can 1,e broken int,o three separat,e components: the time system 
used to track the epoch for the spacecraft, tho coortlinato system that specifies the origin and orientation of 
coordinate axes defining the position and velocity of the spa,cecrrtt%, and the representation used to express 
t,his state data -. a set. of Cart.esian or Keplerim elements, or some other representation based on the needs 
of the user. 



Intornally, these data itre managed as Mean-of-J2000 Earth-Equatorial states, translat,ed to  the origin 
specified for the Spaceobject, in eit.her the Cartesian or equinoctial represent.ation6. Epoch data is stored 
internally in int.ernationa1 atomic time (TAU, Temps Atomique International), in a modified Julian time 
for~nzii measured in days from January 5, 1941 at 12:00:00.000. 

The Conversion classes and the related base classes defining the interfaces for the conversion t.ypes are 
designed to satisfy GMAT's estensibility requirements. Users can define new coordinat,e syst,ems as needed, 
from either GMAT's graphical user interface or from a script file. R.epresent,ation and t,iine systenls are 
more difficult t,o add to the system because the underlying math and is more specialized t,o meet tthe needs 
of the system. Users tliat. ncecl t.o a,dd state reprt?sentations or t,imc? systems not currently in GMAT should 
refer to  Chapter 26. 

The basic pllilosoplip for conversions performed by GMAT is that all conversions proceed from the internal 
data type, and go through that type when converting from one system t.o another. Conversions for epocll 
data are referenced to t.he base TAI epoch. Coordina.te syst,c!tn conversions arc? referenced to the Mean of 
52000 Earth Equatorial system. Element, conversions are referenced to the Cartesian or equinoctial state 
representation. 

All of the conversiorl components that support t.he Spacecraft and Fonnation classes have a similar 
structure. Each acts as a pipeline from the data in the SpaceObject t,o the code t.hat transforms that data 
into the requcstc?d format.. In tha.t sense, t,hc converters play thc role of t.he controller in a si~nplified motlel- 
view-controller pattern, as described in Section B.5. The SpaceObject plays the role of the model, and the 
presentation t o  the user the GM-AT GUI or t,he Script file .-. presents a view of these data to  the user. 

There are three converters used by the SpaceOl>jects for this purpose. Each SpaceObject. has a Time- 
Converter, a Coordinat,eConverteq and a RepresentationConverter. The Converter classes contain instances 
or references to  t.he support classes used in the conversions. Eadi support class represents a single 14cw of 
the data. The support classes iniplernent a co~i~~c?rsion method that transform the internal data, into the 
requested view. 

The class hierarclly for the conver-ters and the support classes is shon.11 in Figure ll.Z7. Each converter is 
derived from the Converter base class. All converters support the ability to take a PropState and transform 
the data. in tliat stat.e into t,he requested format for display and manipulation by the user. They dso support 
the inverse operation, corlverting a set of user data specified into a PropState. The interfaces for these 
conversions are contained in the Converter base class. 

Each Converter subclass holds a reference to  the data type used in the PropSt'ate as the base repre- 
sentation for the corresponding data. The object that owns t'he PropState is responsible for setting this 
reference. 

11.5.1 The Converter Base Class 

All conversions pc2rformed for spacecraft and formations are managed through the Converter classes. GMAT 
provides three types of co~iverters: bime system converters, coordinate system converters, and state represea- 
t.ation convert.ers. Each of these converters manages the corresponding conversion code. The SpaceObjects 
wra,p these calls in methods that simplify i11terfa.ce to tho data. Specific are made through the 
calls to the Con~c!rt method on the appropriate converters. 

The Converter base class has t.ho followirig int.ernal dat,a members and ~nethods: 

Class Attributes 

e static StringArray supportedConversions: String array of all of the defined conversions supl>orted 
by this conve~ter. 

"'l'lle clirreli; iinplst~jt?i>ta:iou i r i  C;>lA'.L' uses C:arlasiai~ eienirl~is exclusiveiy: aquiiiucliai represerrtaiicirls trjili bt! added as ait 
uptiun for the PropStatc data wLcrl the Variatiorl of Paramete1.s Illtegrators are incorporated iritn tlic syaterr:. 

7Figiirr 11.2 shews t.hr long i.crm deiligl~ f o ~  chc convcrslorl classes. The c.odc base dcvciop-ed for t.hc first reieasc of C;klit:r 
supports the iilteri'acas needed tbr currversiori, lju t ~ ~ : i l y  par!:ialiy irr~ylerr:erlls (tie iiluclratecl ilesigil. 



Figxrc: 31.2: C!la.sscs Kscd to Prcrvidc Vicms of tht! Spar.cC)bjc;ct Statc Data, The coiirrcrtcx cla,sscs arc shown 
j:, yellox. Rase classt:~ fir the 'i.'jett- supporl; clasaes ase g~et::~; and spec:iti(: si~ppovt classats art? sh:w;n in blue. 

r Integer precision: Precision used for nu~ileric data when converting to a string format. 

Methods 

r void Initialize(): Method called to  prepare and validate the converter for use in a SpaceObject. 

static boo1 AddConversion(const std::string &conversionType, GrnatBase *toBase): Met,liod 
used to add support for a new con~~ession to the Converter. This method is used to add configired 
CoordinateSystems t,o the Coordinat,eConverter. The Timeconverter and R.epresent,ationConverter 
classes do not support addit,ion of new syst.e~ns in the current builds of GNAT. 

e static StringArray GetSupportedConversions(): Method used to return the list of all of the 
conversions supported by the Converter. 

e std::vector<Real> Convert(const PropState  &fromState, std::string toType, GmatBase*=NULL 
toobjec t )  = 0: Abstract, method that convt?rts data fro111 a PropSt.atte into tho requested type. 

e PropState  Convert(std::vector<Real> fromstate,  std::string fromType, GmatBase*=NULL 
fromobject)  = 0: Abstrart method that fills a Propstate in the internal representation from input 
data of the specified type. 

e virtual StringArray ToString(std::string toFormat,  std::vector<Real> value, std::string 
froniFormat) = 0:  Abstract conversion routine that takes a state in Real vector (value) in a specified 
fornlat (fromFormat) and converts it to  a string array in a t,asgeb format (toFormat). 



virtual std::vector<R.eal> ToReal(std::string fromFormat, StringArray value, std::string 
toFormat) = 0:  Abstract conversion routine that. takes a the text form of a state in StringAr- 
ray (value) in a. specified format (fromFormat) and converts it t,o a. Red  \rector in a. t.argot format, 
(toForrnat). 

11.5.2 Time Conversioiis 

The TinieConvert,t!r clars provides implenientations for the abstract methods inherited from the Converter 
hase class. The current code hase supports t,ime conversions using C-style functions enclosed in a namespace, 
Ti~neConvc:rterUtil. The TinieConverter class wraps these conversions so that there is a time conversion 
interface in GNAT tha.t looks identical to the other con~~ersion int,erfaces in the system. -4 future release of 
the system will rework the time coilversions do that the class structure matches the class hierarchy shown 
in Figure 11.2. The following descriptions provide initial steps toward this goal, marked as with the prefix 
" ~ ~ ~ ~ t u r e ~ "  for elements t.hat are not planned for tho syst>em until hhese elements are incorporated during 
these time syst.eni revisionsP. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
cd: The TimeSynem ConvenerClass 

Figurc 11.3: Classt!s Used to  Corlvert Epoch Data 

The TirneConvert,er class is shown in Figure 11.3. The properties of this class; including the arguments 
for the methods t,hat are hidden in the figure, are tal~ulated below. 

Class Attributes 

a (<Future>> TimeBase *baseTime: .An instance of the base time system used internally in GM.4T. 
This ~nember cont.ains a pointer to  a T:\IMod.Julian instance so t,hat the conversion code has the thne 
system for methods tliat use Propstates at  one end of the conversion. 

% M K S  is, by clesigu, extensible to incorpoiitle Ite\v colripouettis iis 1l:ey are icler~tilied attd cimstrucled by the C:MA;I' 
conx~lunity, without vioiatiag tllc illtegrity of the officiai code base. 'The time sj.ste:rl code as curreutjy i~cplernentcd would 
rcqui~e  ~.eworlc in the  GMA'Ys hasc code f,o support any acw time system, violaiing this rcc~uuircmcn? ;he dcsigr! shoxn here 
provitieb tlir l'ran:ework ~ ~ r r c l r t i  t,o ujrrecl th is  discreyiincy. 



102 ' I  1 .  9'--1C!EOUJECrTS: Sl'3iCECl?,41~T diYD i~'Of2~l.IAl~ION CLASSES 

e ccFuturen std::vector<TinieBase*> timesystems: A vector containing pointers to each of the 
defined time systems in GMAT, so t,hat the co~zversion code can perform conversions without requiring 
tinie syst.ern pointers on the function calls. 

Methods 

r void Initialize(): hfcthod callad to prepare and validate the converter for use in a SpaceObject. 

e std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase*=NULL 
toobject): Method that converts the T.41 epoch data from a PropState into the requested type. The 
resulting modified Julian data is stored in the first element of the returned array. 

e PropState Convert(std::vector<Real;> fromstate, std::string EromType, GmatBase*=NULL 
EromObject): Method t,hat sets the epoch on a PropState to  the epoch containad as the first e l c ~  
ment in the irzput ( f rom~ta te ) ,  which is expressed in the time system given hy the nanze in t,he 
fromType string. 

e virtual StringArray ToString(std::string toFormat, std::vector<Real> value, std::string 
fromFormat) = 0: Conversion routine tha.t takes epoch data in a ve.ct.or of Rcals in a specified format 
(fromFormat) and produces the string equivalent of each element in t.he requested format, given by 
toFormat, in t,he returned StringArray. 

e virtual std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string 
toFormat) = 0: Conversion routine that takes one or more epochs in a StringArray (value) in 
a specified format (from~ormat) m d  converts them into a vector of Real data in a target format 
( to~ormat ) .  Tlze resulting data is a vector of nzodified Julian data in the target time system. If a 
request is made from Gregorian data in the Real vector, an exception is thrown. 

The Timesystem Classes 

4 s  nientioned al,ove, t,he current. time system conversion code does not. uss a class bases systcnl to  handle 
the tirne systems. This section will be conlpleted ~vhen the t,irno syst.em code is brought, illto conforrnancc 
with t,he conversioil syst,e~n design. 

11.5.3 Coordinate System Conversions 

Figure 11.4 shows the CoordinateConverter class, used t.o transform state data between different coordinate 
systems. The CoordinateCo~iverter class works with state data exyressed in Cartesian coordinates (?xclusively. 
Consumers that have state tla,ta in other represont,ations first convert the dat,a int,o Cartesian coordinates, 
and then use the facilities provided by instances of this class to  transform between coordinate systems. 

The CoordinateCoizvei-ter objects work with ally coordinate system defined by the user. The other two 
convert~ers provided by GMAT .-. the Timeconverter class and the Representationconverter class ... require 
code compiled into G?I'I.AT in order t.o function? Coordinate systems in GhlAT can be df:fined at  run time, ar 
described in [CsersGuide]. The dynamic nature of these objects requires greater versatility in the conversion 
met,hods. Consunlers of these methods must provide pointers to instances of the coordinate systems used in 
t.he conversions. 

Coordinateconverter Attributes and Methods 

Class Attributes 

'A f~it,urc rclcarc of GM-YI' ma!; z1lo~- c d ~ ~ n . r ? l i c  dcfinitiou of reprcse~~tatiolks and t,imn sg~st,cnis. ':'hat f&cilli.y is not pianncd 
1~): i1es.r t w r r i  Gk1,X.l' f i~~icf.iotizIity~ 



Figwe 11.-1: Classes Used to Clons7erts Betw~en Coordinate Systenls 

CoordinateSystem *baseCoordSys: An instance of the Coordina,teSyst,em class used as the base 
class for 'onversions involving a Propstate. This member is initialized t.o NULL, and set by Spac.eOb- 
jocts that need it prior to  use. 

r Rmatrix33 1astRotMatrix: The most recent rotation mat'rix used in coordi~lat~e conversions, stored 
so that it can he accessed externally. 

std::map <std::string, CoordinateSystem*> availableCoordSys: A map of coordinate systems 
available for use in methods that do not. pass on CoordinateSyste~n pointers. These pointers are stored 
in a map so t,hat they can bc accessed by name. 

Methods 

9 void Initialize(): Met,hod called to preparc a.nd validate the convcr-ter for use in a SpaceObject. 

9 bool Convert(A1Mjd epoch, Rvector instate, CoordinateSystem* inCoord, Rvector out- 
State: CoordinateSystem* outcoord? bool forceNutationComputation = false? bool ornit- 
Translation = fabe): General purpose conwrsion routine that convcrts a Cartesian Rvector in a 
given input coordi~~ate system into a Ciuhesian Rvector in the output coordinate system. 

a bool Convert(A1Mjd epoch, Real* instate, CoordinateSystem* incoord, Real* outstate, 
CoordinateSystem* outcoord, bool forceNutationComputation=false, bool omitTransla- 
tion=false): General purpose conversion rout,ine that converts a Cartesian Real array in a given input 
coordinate system into a. Cartesian Real a.rray in the out.put c~orclinat~e system. This method requires 
that the input and output R.ed arrays both contain the Cartesian state in the first six elemellts. 

r Rmatrix33 GetLastRotationMatrixO const: Method used to access the most recent rotat,ion 
~natrix usc?tl in convc?rsions. 



4 1 .  S1334C!E0BJEC1'5': SIT4CECfl"AFT AiW FOR~IATlIION CLASSES 

e std::vector<Real> Convert(const PropState &fromState, std::string toT'pe, GmatBase* 
toCS): i\let.hod that co11vert.s t.he state in the input PropState into t,he specified Coordinat.eSystem. 
The toCS parameter is a pointc:r t,o an instance of the target coordinatc systoni. This method usos t.he 
base c0ordinat.e system, I~asoCoordSgs, n s  t,he c0ordinat.e system of the input PropState. The calling 
code nlust ensure that the base coordinate system is set correctly. 

m PropState Convert(std::vector<Real> fromstate, std::string fromType, GmatBase* fromCS): 
Method that sets the state in the data in a PropState in thr! base coordinate system, given an input 
state in a specified CoordinateSystem. The fromCS parameter is a poiilter to  an instance of the co- 
ordinate system used for the input state, fromstate. This method uses the base coordinate system, 
baseCoordSys, as the coordinate system of the target PropSt.ate. The calling code must ensure that 
bile base ~oordinat~e systern is set correct,ly. 

m StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor- 
mat): 3I(:thotl that takes a Cartesian stfate contained in a. wctor of Reds is a specified coordinate 
syst,em, and converts it into a target coordinate system, then stores bile data in a StringArray at  t.he 
precision set for the converter. 

e std::vector<Real> ToReal(std::string fromFormat, StringArray value, std::string toFor- 
mat): Method that takes a Cartesian state contained in a StringAmy in a specified coordinate system, 
and converts it into a target coordinate system, then stores the data in a vector of Reals. 

e void AddCoordinateSystem(CoordinateSystem *cs): Metllod used to  add a Coordinatesysteln 
pointer to the map of mailable coordinate systems. 

The Coordinatesystem Classes 

Coort1inat.e Systenls in GMAT arc: described in detail in Clllapt,er 10. 

11.5.4 State Representation Conversions 

Oncc? t.he coordinate system has been selccteti for a. stat,e, t,he actual format for t,he data Inlist also be 
selected. Tho state can be displayed in many dif£eront ways: as Cartesian data., as the cor~esponding 
Keplerian elements, or in any other representation defined in GRIIAT. The conversioil from t,he Cartesian 
state into a selected representation is managed by the Represent.ationConverter class, shown in Figure 11.5. 

Representationconverter Attributes and Methods 

Class Attributes 

e Spacepoint* origin: The SpacePoint, dt?fining the coordina,te syst,e~n origin. Some representations 
need this object to  deternline the representation data; for instance, the Keplerian representation needs 
the gravitational const,ant for the body at. the origin. 

StringArray elements: A voctor of tex% string labels for the elements. This vector contains the 
labels for the most recent target conversion. 

e StringArray units: A vcct'or of t.ext string labcls for tho element. units. This vcctor cont.ains the 
units for th(: most n!cc?nt, targt?t conversion. 

9 aFuture)} Representation baseRep: Tht: representation used for the PropSt,a.tc? data,. 

m <<Future>) std::vector<Representation*> supportedReps: A vector of instances of all supported 
representat.ions, provided so that. conversions can be made without passing in a pointer to a target 
representation. 



I cd: T h e  Renresen ta t ionConvener  Class J 

Figure 11.5: Classes lJsed to Convert Stmate Reprcisenta.tic,~>s 

Methods 

a ttFutureu boo1 AddRepresentatio~l(Representation* rep): Method used to register a new rep- 
resent,ation with t,he convert,er. This nlet,hod is used to  regist.er new representations that are built into 
shared libraries loaded at run time. 

e std::vector<Real> Convert(const PropState &fromState, std::string toType, GmatBase* 
toRep=NULL): Method tha.t cconvert.~ the state in the input PropSt,at.,e into the specified Represell- 
t,ation. The optional toRep parameter is a pointer to an instance of the target R.epresentation; if it 
is riot provided, the converter finds an inst,ance in its internal array of Representat,ions. This method 
uses the base reprc?senttt.tion, baseRcp, as thc representation of the input PropSt,a.te. The calling code 
 nus st ensure that the l>asc represent,ation is set correctly. 

a PropState Convert(std::vector<Real> fromstate, std::string fromType, GmatBase* from- 
Rep): Method that sets the state in the data in an PropState in the base representation, given an input 
state in a specified Represent.ation. The fromRep parameter is a pointer to  an instance of the Repre- 
sentat,ion used for t,he input state, fromstate. This nlethod uses the base Representat.ion, basc?Rep, as 
the representation of the t.axget Propstate. The calling code must ensure that the base representation 
is set correctly. 

a std::string SupportsElement(std::string label): Method used to query all supported representa- 
tions to deternzine which representation supports a specified clement. The return value is the name of 
the supporting rcprescntation. 



106 ' 2  1 Si'=IC!EOBJEC?'S: SP-4CECfTAf;"l' A!W f;0f?,1.1.4T!OX' CLASSES 

a StringArray ToString(std::string toFormat, std::vector<Real> value, std::string fromFor- 
mat="Cartesianl'): Conversion routine that generates a text view of the stat,e conta,ined in the input 
Real vector in a target rcpresent,ation. Tho resulting StringArray cont.ains data at. the Converter's p r e  
cision. 

e std::vector<Real> ToReal(std::stri~lg fromFormat, StringArray value, std::string toFor- 
mat="Cartesianl'): Conversion routine that. t,akes a. text. version of a statme in a StringArray: expressed 
in a specified representation, a,nd converts it into a Real vector of data in a target representation. 

The Representatiorl Classes 

ccR~ture)>~~' All state represent,ations share a common interface, enforced by the R.epresentation base class. 
Represe11tat.ions like the 1iepleria.n reprc~enta~tion that. provide opt,ions for cenain elements provide the list, 
of options for the elements on an t?lcment by ele~nerit basis.. 

11.6 Conversions in SpaceObjects 

The Spa,ccObject classes - SpaceObject, Spa.cecrafi., and Formation, and other classos a,s they are added t,o 
GMAT .. d l  share a common representation of locat,ions in the GMAT Solarsystem, the PropSt,ate. As it,s 
name implies, the PropSt,ate class is tho core cornponc?nt that  interact.^ r i t h  the propagation subsystem; it 
contains the epoch, position and velocity data t,llat is advanced to  model tthe motion of user defined objects 
in t.1ie solar system. The data stored in the PropState is a TAI epoch and the Mean-of-J2000 Cartesian 
positions and velocit.ies of the objects that are propagated. The origin for these dat'a is a Spacepoint object 
defined in t,hc solar syst.em. Each SpaceObject. includcs a point,er to the SPacePoint defi~iirlg t,ho origin arid a 
Coortii~lateSystenl object configured as a Mean-of-J2000 Ea~th-Equat)orial origin-centered coordinate syst,ern 
to  facilitate conversions between the data in the encapsulated PropState arid esternal consumers of the data. 

The PropState data is encapsulated inside of SpaceObject instances. Users interact. with the PropSta.te 
indirc!ct,ly, by ~naliing calls tmo t,hese SpaceObjects. This f(!at.urc? provides a buffering mechanism to GMAT's 
SpaceObject,~, so tha.t the data in the PropState can be forniat,ted for presentation purposes for the user. 
The SpaceObject. class pro~rides int,erfaces that conwrt the internal PropState data. into other formats for 
display, and t,hat take data from those formats and convert them into t.he internal PropState structures 
nc:eded for computation. 

SpaceObjects include four data struct,ures used this buffe~ing of the state data. The epochType and 
stateType data members are strings containing t,he current sett.ings for t.he displayed format of the epoch 
and state representation. St,ring versions of the epoch and state in these formats are stored in the textEpocli 
and tex-tState dat,a members. These st,ring versions of the data are the versions t,llat users interact wit,h 
when configuring a mission, either fro111 tha GUI or using the scripting interfa.ce. The following para.g~aphs 
describe the procedure followed when performing these interactions. 

11.6.1 SpaceObject Conversion Flow for Epoch Data 

Figure 11.6 shows tlie procetfure employed to send a.nd receive epoch data for a SpaceObject using the string 
for~nat needed for display arid output purposes. Epodls can be displayed in sither Gregorian or Modified 
Julian format, using one of several different supported time syst'ems. The tirne system used and the format 
for the out,put are separate entities, and treated as such in GMAT. The internal epoch data is stored in the 
T-41 system as a, Modified Juliim Real number. This data is retrieved for external manipulation as a string, 
using tlie GetEpodlString() method on the SpaceOhject. that owns the epoch. Updat.ed epoch data is passed 
into the Space0bjec.t using the SetEpocliFromString niet,hod. 

"'Like tile tiuie sor~~,,ersio:i classes, the repsaur:itation conversion classiis do not currently confor::i to the desigc prese:ited 
hcre. hc,cordil;gIy, in the foliowing descriptions, the eiemcnts that arc. nat planned for inimediate in;plcrncrlia?.ion arc nlarlicd 
a.5 biulure etil'~ar~crrrwlits. 



Figure 11..6: Proced1:rc: for Rt:tiie~ing or Settit~g a Fcrrmatt.c.d Epoch 

The t.op activity diagrani in the figure shows the procedure follom~ed to retrieve: the current epoch data 
from the SpaceObject using the GetEpochString method. Tlie first action taken is a test to  determine if the 
t,argct time format matches tlie epoch fornia,t used in tlie SpaceObject. If so, then t,he string that is ret,urncd 
is tho tcxt,Epoch da,ta member for tlie SpaceObject, as set i~nmediat~ely after syntllronizing the tt!xt,Epoch 
with the PropState. If the time systems do not match, the target t,iine system is broken into two pieces: 
the t,ime system used and the format for the string. The format porbion is the suffix on the toTimeType 
parmet,er> and is either "ModJulianl' or "Gregorian". Tlie GetEpochString rnethod retrieves the epoch from 
the PropSt.ate and? if t,he target systeni is not TAI, converts it into the target time system. Then it takes 
that ModJulian real number, and converts it into a formatted string using the timeConverterls ToString 
met,hod. 

The lower activity diagram in Figure 11.6 shows the procedure followed when setting t,he epoch from 
thc GUI or script, using the SetEpot:liString method on the SpaceObject,. The first. parameter in this call 
specifies the format of the input time. It is broken into the input tinie system and the format of the string. 
The t,ime converter then const.ructs a modified Julian real value for the input. string using its ToReal method. 
If the input time is not a TAI time: it is then converted into TAI. The resulting modified Ju1ia.n epoch is 
then set. on t.he Propstatme using the SetE,poch method. Finally, t,he Sy~lchronize method is called 011 the 
SpaceObject t o  update the string representation of the epoch with the data in the PropState. 

11.6.2 SpaceObject Conversio:i Flow for State Data 
The st.atc! dat.a in the PropStat,e taxi be manipulatc?tl either c?lement, by element or as a complete vector. The 
following paragraphs describe t.he coriversion procedures for both approaches. 

Converting State Vectors 

Figire 11.7 shows the procedures employed to convert the state in vector form. State conversions are always 
a two step procedure. The state data in the Propstate is always defiiled wit11 respect to the Mean-of-J2000 
Earth Equatorial coordinate axes orieritat,ion, wit tl the coorcli~iate origin located at a user specified origin. 
The int,errlal dat.a is st,orc?d in t,he Cartesian representa,tionll. Users can viomv the state in any defined 

":I fxrtirr: updata2 %s-il! aliow izitcrlial storage in cit,her C!artes;.iarl or Ijiquinoclial clc~qcnts, so that Variation of .F1arailietcrs 
l-iroi-iagaticjn riieil~ods cac be iinplrtrit.rlbed. 



106 ' 2  1 .  31'--ICEOUJEC?'S: S13+4CE'Cf?Af;'T l'A!YD I;'Of?:7f-4TiON CLASSES 

Figure 11.7: Proccdu~,r: f i x  R(it.rie:.ing or Sct tling a F~'o1~rnat~tet1 Stai.e 

coordinate system using any repre4entation defined in GkIAT. Hence the procedure for building the state 
for display to the user potentially involves both a coordinate trarlsfornlation and an element conversion. as 
shown in the figure. 

Conversion of t,he PropState da.ta for display is shown in the t,op diagram in dlle figure. The stat,@ vector 
is request.ed using the Get.StateString method, which contains three parameters: the target representation in 
t,hc toType parameter, the name of the target coordina.te system in t,he toCoords parameter, and a pointer 
to a11 instance of thc target coordinate system. The SpaceOl~ject ha.s a pointer to  a bltse coordinate system, 
along with the name of the base system. If these match t,he target coordinate system, then the coordinate 
conversion step can be skipped; ot.herwise, the internal state vector in the PropState is converted int,o t,he 
target coordinate system. Thc resulting int.ermedia.tc: state vector is then conve~~.ed into a StringArray in 
the target representatmion using thc Tostring() method on t h ~  SpaceObject.'~ representation convertor. 

The lower diagarn in Figure 11.7 shows the inverse process, used t,o set the state vector on a SpaceOb- 
ject through the Set,Stat,eE+ornSt,ring method. This method has four parameters: the input state in t,he 
St,ringArray para;tnet,er stat,eString, the representation that that String-irrav uses (frotnType), the name of 
the coordinate system (fromC'oords) used for the input staxe, and a poiilt.er to an instance of that coordi- 
nate system (fromCS). First the input state is converted into a Cartesian vector using the SpxeObject. '~ 
Rt:present,ationCon~rert~er. Once the Cartesian stat'e has been constructed, it is transformc?d into the internal 
coordirlat,e systetn mtl stored in t,he SpaceObject's Propstatme. Finally? tht: SpaceObject1s t.ext represe11tat.ion 
of the stat,e is updated suing the Synchronize  neth hod'" 

Converting Single Elements 

The procedure for setting single st.ate elements is shown in Figure 11.8. This procedure is slightly more 
involved than the procedure employed t'o set. a complete state because the procedure includes provisions for 
set,t,itlg  element,^ from one rt:present,ation while maintaining a different text reprcsentation of the st,ate in the 
textstate buffer. This allows a user to script, for exa,inplc, a semimajor asis for a spa.cecraft that st.ort:s its 
state in a Cartesian represent,ation. Element. setting is performed using the standard SetStringParan~eter 
method defined for dl GtnatBase subclasses. 



Fignrcl 11.8: Proc,cdurc for Se1,ting a Sing](* Elcrr1r.111 in the St;%tcl 

The procedure employed for sett,ing a single element when the ele~nent.'~ name is a member of the current 
statme representation is ~t~raightfornrard. The string cont,a.ining the new element, data in inserted into the 
textstate string array, conver-ted into a red w ~ % o r  in Ca.rtesian coordinates by the reprttsentation converter, 
anii then into the internal coordinate system by the coordinate systenl converter. This state is set on the 
Propstate. 

If the element is not a mexnl~er of t.he current representation, the procedure is slightly more complica.ted. 
The tc?xtState is convert.ed from the current state type into a vector of real numbttrs in t.he represelltation 
containing the element that is being set. The element is set to the input value: and t,he resulting vector is con- 
verted back int,o tho t,es*Sta,te StringArray. Then the t'extSt.ate is converted into the internal representation 
and coordinatte system as described in the previous paragraph. 





Chapter 12 

Spacecraft Hardware 

Damel J .  Conway 
Thinking Systems, Inc. 

Chapter 11 dcscribcd the structure of the core spacecraft inodel used in GMAT. This cllaptcr cxamines 
the co~nponents that can be used to extend the spacecraft model to  include models of hardware elements 
needed to model finite n:aneuvers and sensor measurements. 

12.1 The Hardware Class Structure 

12.2 Finite Maneuver Elements 

12.2.1 Fuel tanks 

12.2.2 Thrusters 

12.3 Sensor Modeling in GMAT 
GMAT does not contain sensor modeling capabilities at this time. The Hardware class infrastructure was 
designed to support sensor ~rlodeling at a litter date. 

12.4 Six Degree of Freedom Model Considerations 





Chapter 13 

Attitude 

Wendy C. Sh0a.n 
Godtlard Space Flight Center 

13.1 Introduction 

GRIAT provides the capability to model the attitude of a spacecraft. The a,ttit,ude can be computed in 
any of three different ways: lune~natically, by performing six-degw-of-freedom calcula.tions, or by reading 
an attitude file (forrnat.(s) TBD). The current version of GMAT has only two types of kinematic modeling 
available; other methods are to be implemented at a later date. 

13.2 Design Overview 

Whcn the user creates a Spacecraft object, via the GUI or a, script,, and s /he needs to compute or report the 
attitude of that spacecraft at one or more times during t,he run, s/he inust specify a type of attitude for the 
spacecraft. The user must aiso set initial dat,a on the spacecraft, attitude. 

.4 Spacecraft object therefore cont,ains a point.er to  one Attitude object, of t.ho type specified by the user. 
This object. will need to be created and set for the spacet:ra.ft using its SetR.efOl)ject method. The spacecraft 
object contains a method to return its attitude as a direction cosine matrix, and a method to return its 
angvlar velocity. 

GMAT can niodel several different types of attitude, as mentioned above, each computing the attitude 
different,ly. However, since the types of attitude representations are conlnlon to all models, many of the data, 
and nlet,hods for handling attitude are contained in a base class: from which all other classes derive. 

The base class for all attitude components is the Attit.ude class. It contaills data and methods required 
to retrieve spacecraft attitude and attitude rate data. The method that conlputes t,he attit,ude is included 
as a pure virtual met,hod, a.nd must bc imple~nerlted in all leaf classcts. 

Tho base At,tittude class contains met.hods that. allow the user, the spacecraft: or other GM.4T subsystems, 
to  requcst at.titude and attitude rate data in any of several different puameterizations. Attit.ude may be 
returned as  a quaternion: a direction cosine matrix, or a set of Euler angles and a sequence. An attitude 
rate is ret,riewble as an angular velocit,y or as an Eulcr axis and angle (computed using the Euler sequence). 

Also included in the base At.t.itude class are many static conversion ~nc:thods, allo~rring other parts of 
GMAT to convert one attitude (or attitude rate) parameterization to  another, del>ending on its needs, 
without having to reference a specific spacecraft or attitude object. 

As nle~itiolled above, GSIAT includes several different, attitude models. Kinenlatic attitude propagation 
opt.ions are 1) a Coordinate Syst.ern Fixed (CSFixed) att.itude; 2) a Spinner att,it.ude; and 3) Three-Axis 
Stabilized at.titutle (TBD). 



To implenlent t,hese? GM.4T currently has a 1iint:mat.ic class that is derived from the Attitude class. The 
CSFixed (Coordinate System Fixed) and Spinner attitude classes derive from the Kinematic class a,nd, as 
leaf classc:~, contain i~nplernenta,tions of the nlet,hotl: in1leritc:d fronl the base class Att.itude, t,hat computes 
the attitude a t  the rec~uested tinie. 

13.3 Class Hierarchy Summary 

This sect,ion describes the current attitude classes in GMA4T, summarizing key features and providing addi- 
tional information about the class members. Figire 10.1 prcstnt,s the clam diagram for t,his sut>system. 

Attitude 

The Attitude class is the base class for all attitude classes. Any type of attitude that is created by user 
sl>tv5fication, ria a script or the GUI, will thorcfore include all pul~lic or protected data tncnibers and nlethods 
contained in the Attitude class. Iiey data and methods axe: 

Data members 

o eulerSequenceList: a list of st.rings representing all of the possible Euler sequences t.hat may be 
selcct~eti by the user 

0 refCSName: the name of the reference coordinate system - t,he user must supply this 

refCS: a pointer to t.ho reference coordinate system - bhis rnust be set, using the at.tit.ude ob.ject.'s 
SetRafObject method 

i~litialEulerSeq: an UnsignedhltArray containing the three values of t,he initial Eultlr sequence 

e initialEulerAng: an Rvector3 containing the three initial Euler angles (degrees) 

initialDcm: an Rnlatris33 contairliag the initial direction cosine matrix 

e initialauaternion: Rvector representatioll of the initial quaternion 

0 initialEulerAngRates: R.vector3 cont,aining the initial Euler angle rates (degrees/second) 

o initialAngVe1: Rvector3 containing the initial angular velocity (degrees/second) 

Methods 

r GetEpochO: ret.urns the epoch for the attitude 

r SetEpoch(Rea1 toEpoch): sets the d u e  for the attitude: this method is called by the GUI, script 
interpreter or spacecraft 

e SetReferenceCoordinateSyste~nName(const std::string &remame): sets the reference coor- 
dinate systeni name 

e GetEulerSequenceList(): returns a list of strings representing all possible Euler sequence values 

r GetQuaternion(Rea1 atTime): returns the quaternion representation of the abtitude, comput.ed at 
t,he AlMjd time atTi~ne 

0 GetEulerAngles(Rea1 atTime): returns the Euler angle representation of the attitude, computed 
at t,hc AlF\/Ijd t.i~ne a tTi~ne 



ititude Classes 

Creates 



GetCosineMatrix(Rea1 atTime): retul-xls the direction cosine matrix rt>prcscntation of tho attitude, 
computed at the Alh4jd time atTi~ne 

e GetAngularVelocity(Rea1 atTime): returns the angular volocit,y rcpresent,ation of t,he attitude 
rate, co~nputcd a,t the AlR~jd time atTi~ne 

e GetEulerAngleRates(Rea1 atTime): returns the Euler angle rates representation of'the attitude 
rate, co~nputed a t  the Alhljtl time atTi~ne 

In addition to class methods, there are several st,atic met,hods in the base Attit,ude class that may be 
used without instantiating an object of t.ype Attitude. These are all methods t.o convert. between at.t.itude 
representatio~is or between attitude rat,e representations (angles are assumed t,o be in ra.dians). They are: 

e ToCosineMatrix(const Rvector &quatl): converts the input. cluaternion to a dircct,ion cosine 
niatrix 

e ToCosineMatrix(const Rvector3 &eulerAngles, Integer seql, Integer seq2, Integer seq3): 
converts t,he input Euler angles m d  sequence t,o a direction cosine ~natrix 

r ToEulerAngles(const Rvector &quatl, Integer seql, Integer seq2, Integer seq3): converts 
t,he input quaternion to Euler angles, given the input Euler sequence 

e ToEulerAngles(const Rmatrix33 &cosR/Iat, Integer seql, Integer seq2, Integer seq3): con- 
verts the input direction cosine nlatris to Euler angles, given the input Euler sequence 

e ToQuaternion(const Rvector3 &eulerAngles, Integer seql, Integer seq2, Integer seq3): 
converts the input set of Euler mglcs and sequence t.o a quatcrnion 

ToQuaternio~i(const Rmatrix33 &cosMat): converts the input directioll cosine nlatrix to  a 
quaternion 

e ToEulerAxrgleFtates(const Rvector3 angularvel, Integer seql, Integer seq2, Integer seq3): 
converts the input angular velocity to  Euler angle rates: using the input Euler sequence 

ToEulerAnglenates(const Rvector3 eulerRates, Integer seql, Integer seq2, Integer seq3): 
converts t,he irlput. Euler angle rates to angular vt?locit#y, using the input Euler sequence 

Kinematic 

The Kinematic class is the base class for the kinematic models: C0ordinat.e System Fiuetl, Spinner, and 
Three-Axis Stablized (TBD). At this time, there are no additional data mernbers or methods for this class. 

CSFixed 

The CSFixed class niodels a Coordinate System Fixed attitude. The user supplies the initial attit,ude and 
specifies the reference coordinate system, from the current set of default ltnd user-defined coordinate systems, 
to which the attitude is fixed. Since the attitude is fixed to  this coordinate syst,em, no initial att.it,udo rate 
need be provided. The cotle in this class then computes t,he at.t.itude at a requc?stcd time using the initial 
input data and the rot,ation nlat,rix betxeen the reference coordinate system and the inertial coordinate 
system at the specified time, obtained from the Coordina.te System suhsysten~. There are no significant data 
menlbers. 

Methods 

e ComputeCosineMatrixA~~dAngularVelocity(Real atTime): conlputes the direction cosine ma- 
trix and angular velocity at  thc requested time: these data can then be retrieved in other representations 
as W?ll 



This class models a Spinner a.ttitude. The user must supply an initial atiitude and reference coordinate 
system when initializing a Spinner attitude. In addition, s/he must provide an initial attitude rate. This 
rate does not change over tinle, for this niodel. The initial epoch is t?xpectctl to be an Alhljd tinle, input. 
as a. R.eal, and is assu~ned to be the same as the orbit. cpoch (i.e. n~hen the orbit epoch is set, the spacecraft 
knows to use that epoch for the attitude as well). This cla,ss can the11 compute the attitude at a specified 
t,ime, using the init.id input data and t,he rotation matrix from the reference coordinate syst.em to t,he inertial 
coordinate system at t,he epoch time. It contains some protected data members to  store da.ta c701nputc.d on 
initialization. 

Methods 

ComputeCosineMatrixAndAngularVelocity(Real atTime): computes the direction cosine ma- 
trix and angular velocity at thc rtquested time; these data, can then be retrieved in other representations 
as well 

13.4 Program Flow 
Aeer an Attitude objcct is croated and passctl to a Spacecraft objcct, the i~iitial tlata must be set. Then. as 
it is for most objects, the Initialiec method i nu st be called on the attitude. After that, the Attitude objcct 
is ready to compute the spacecraft attitude at anv time requested. 

13.4.1 Initialization 

As mentioned above, the user must specify attitude initial data for a spacecraft, via t,lle GUI or the script. 
An example script appears here: 

%-- - - - - - - - - - - - - - - - -  Spacecraft Attitude Mode ............................ 
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Sat-AttitudeMode = {Kinematic, 6DOF, FromFile); 
Sat.KinematicAttitudeType = { Spinner, CSFixed); % 3-Axis TBD 

%-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
y------------------ sp acecraft Attitude Coordinate System --------------- 
%-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Sat.AttitudeCoordinateSystem = MJ2000Ec; 

%-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Sat.AttitudeStateType = {EulerAngles, quaternion, DCM); 
Sat .EulerAngleSequence = <123, 132, 213, 312, . . . 321); 
Sat.EulerAngle1 = 5.0; % degrees 
Sat.EulerAngle2 = 10.0; % degrees 
Sat.EulerAngle3 = 15.0; % degrees 
% Sat.q1 = 0.0; % these are set if the type is Quaternion 
% Sat.q2 = 0.0; 
% Sat.q3 = 0.0; 
% Sat.q4 = 1.0; 
% Sat.DCM11 = 1.0; % set if attitude type is DCM 



Sat.AttitudeRateStateType = (EulerAngleRates, AngularVelocity); 
Sat.EulerAngleRate1 = 5.0; 
Sat.EulerAngleRate2 = 5.0; 
Sat.EulerAngleRate3 = 5.0; 
% Sat .AngularVelocityX = 5.0; % set if attitude rate type is angular velocity 
% Sat. AngularVelocityY = 5 .O; 
% Sat .Angularvelocity2 = 5.0; 

In all models, the init,ial attitude may be input as a direction cosine matrix, a q~at~ernion, or a set of 
Euler angles and sequence. The iiiit,ial ratc may bo input as an angular  rel lo city or as an Euler axis and 
angle (to be used along wit,ll an Euler sequence from the input attitudt: specificat,ion). 

13.4.2 Computation 

GMAT uses the initial data t o  compute the attitude at any tiine requested. For better performance, GMAT 
keeps track of the last attit,ude coinputc3d, and the time for which it) was coinputc?d, and only rc:coinputes 
when necessary. 

For the two models implemented thus far, it is necessary for GMAT to compute a rotation niatrix (and 
for the CSFixed attitude, its derivative as nlell) between the inertial (MJ2000 Equat.orial) coordulat,e system 
and the specified reference c~ortlina~te systein. GMAT has this capability, impl(:mented in its Coordinat,e 
System subsystem. 



Chapter 14 

Script Reading and Writing 

D a m 1  .I. Conwuy 
Thinking Systems, Inc.  

GMAT stores mission modeling data in a text file referred to as a GhlAT script file. The scripting 
language used in GhlliT is documented in [UsersGuide]. This chapber describes the architecture of the 
ScriptInterpreter subsyst,em, which is used to  read and write these files. 

GMAT sctil>ts, like MATLAB scripts, are case ~ensit~ive. In the sections that. follow, script element,~? when 
they appear, will he written with the proper case. That said, t'llis chapter is not meant to be a coinprehe~lsive 
text on OMAT script,ing. Script lines and portions of lines are presented here for the purpose of describing 
thc worki~igs of the ScriptInterprcter and rclatcd classes. 

14.1 Loading a Script into GNIAT 

Figure 14.1 shows the sequence followed when GhlAT opens a script file and reads it, constructing internal 
objects that model the behavior dictated by the script. Some of the detailed work perfonled in this process 
is dictated by the properties of t,he objects; the figure provides the general flow through the process. The 
figure is color coded to reflect three basic groupings of actions taken while reading a script file. The large 
scale flow through t,he ScriptInterpreter system is colored blue; actions that affect configured objects are 
colored green, and actions related t,o the time ordered Mission Sequence are colored yellow. This figure 
shows a fair amount of complexity; the section describing the subsystcni classes breaks t,his complexity into 
more manageable pieces. 

When a user instructs GLUT to read a script, either from the command line or from the gra,phicd user 
interface, the Moderator rcceives an InterpretScript() comma~ld containing the name of the filc that needs 
to be read. This comnland calls tho Interpret() command on the Script,Interl>ret,er, whidl uses the classes 
and n~ethods provided in the Interpreter subsystem and described in this chapter, to read the script and 
configure the objects described in it. 

Tllere are four types of physical lines in a script. file: (1) cotnlnent lines, which start with a percent sign 
(%), (2) object definition lines: which st.art. with the word "Create", (3) command lines, which start with 
the text itssigned to a GmatCommand class? and (4) assignment. lines, which opt,iondly start nith the word 
"GMaTT"l. Commcnts car1 be appended on the enti of script lines; when that happens, all of the tcxt following 
the percent sign comment delimiter is associated with the line and referred to  as an inline conlrnent in this 
document. 

"Yhe GMBr liry\\wr.d iu sutornatically irlserted on assigament lines v.-he:i u script is written. The  Scrip:Kead\\'ritiir class 
has  an irlt,err~al flag tha t  ioi;glcs this feature ccn and off u-hcn writing, so that futilrc versions of CihliYT car1 provide rhc ahiiity 
to lurn illis tal i ire l;il or c ~ l f .  



Scnpi passed to 
Scnptlmerpmter 

mK$##g#.$#<+K; 
~ ~ : : * ' : # $ $ ! + " ~ 2 ~ $ 2  md&i$w$z2$$g$ .. .,...,...,...,...,......,.,.,.,.,.,.,.,.,..___ 

SendCQmmPnt buffer Can thls lhm 
a cammanu set avadable, away 

element. or an 
3 ., - 1  lniernal parameter? I I 

assignment Ilne? 

Have am/ Commands 
been create@ 

Tcrmlnate and repon c m r  

J 
Script parsing 
succeeded 

Figure 14.1: Sccpt:gcc; Followed when Loading a Script into GMAT 

The script file is read one "logical l)lock' at  a t i~ne, using the Script,Read\Vriter helper class. A logical 
block consists of one or nlore physical lines in the script file. Ea,ch logical block can ha.ve tllree elements: one 
or more lines of opening conlrnents jident,ified with leading % characters), an instruction t.hat tells GMAT 
t,o do something, and an inline comment appended to the end of the instruction. Each logical block has: at 
least one of these elemcnt,s, but need not have all three. Inline conlnlents cannot. exist on their own - t.hcy 
require the instruction cornpone~t. 

The instruction elenlent can be split up over multiple physical lines in t,he script file, as long as each 
physical line is terminated by ellipsis (. . .). Inline comments for a multiline instruction must be placed at 
t,hc end of t,he last physical line of the block. IVhit,e space at the beginning of c3acll line of an instruction 
is discarded. Lines t,hat a,rc continued using ellipsis nlarksrs pick up an extra space in place of the ellipsis 
characters. Inst,ructions in a logical blocli~ can he terminated wit.h a. semicolon; this character has no effect. 
in GMAT? Onco a logical block has been read fro111 the file using these rules, it is analyzed to  determine 
the type of infor~na.tion contained in the block. 

The Scripthtcrprder t.reats comment lines tha.t start with the sequcncc " %--- - - - - "  as a special t.ype 
of comnlent, called a block delimiter. These lines are ignored by the ScriptInterpreter when reading a script. 
Details concerning conlment handling are presented later in this chapter, as are the detailed control flow 
p~acedures GRIAT follomrs n~hen working with scripts. 

2Sclnicolons arc used in hlh'l ' l ,~\B to supprcss display of thr :-csult of (.he line of t.r?xt. Since C:AI,-2'I' scripts call 1x2 read in I t l e  
I\,iA'I'LAH envirunrr~rtii ,  Liie C;I\,IArI' scriytitig laiiguitge allosvh, bui. a.It~e~ :iul, ~-eil!lii.e, a set l~ja , io~t  at ti!a end o!' an i~~e:rucl.ion. 



14.1.1 Comment Lines 

Coninlents in GMAT scripts are sta.rted with t,he percent, sign (%). Con1tnelit.s can exist in ant? of two 
different forms: either on individual lines, or inline with other GMAT scripting, as shown here: 

%-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
% - - - - - - - - - - -  Spacecraft Components ------------ 
%-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% This is the main spacecraft in the mission. 
Create Spacecraft mainsat % Not to be confused with MaineSat 
GMAT mainSat.X = 42165.0 % Start at GEO distance 
GMAT mainSat.Y = 0.0 
GMAT mainSat.Z = 0.0 

% This is the velocity part. I've intentionally made the 
% indentation ugly to make a point: leading white space is 
% preserved in comment lines. 

GMAT mainsat .VX = 0.0 % But slower than a circular orbit 
GMAT mainSat.VY = 1.40 
GMAT mainSat.VZ = 0.95 

Lines 1-3 and lines 5 and 10-12 are individual comnierit lines. Lines 6; 7 and 13 contain inline comments. 
The individual conlnlent lines fall int.o two categories: lines 1-3 here are block delimiter lines, denoted by 
the delimiter identifier at the start of each line: while lines 5 and 10-12 art: user supplied comments. The 
ScriptInterpreter inserts the block comments automatically when a script is written, and skips over those 
comment lines when reading the script,. The user provided conlments like lines 5 and 10-12 are stored with 
t,hc data provided immediately after those lines. In this script snippet,' for c?x;tnlple, t,he cornmcnt "% This 
is the main spacecraft in the mission" is associa,ted with the object creation line; and stored as an 
object level corninent for the Spacecraft named mainSat. The conlnlerlts on lines 10-12: 

% This is the velocity part. I've intentionally made the 
% indentation ugly to make a point: leading white space is 
% preserved in comment lines. 

are associateti with the assignment line "GMAT mainsat .VX = 0.0"! and stored: including linebreltks, in t.he 
data nletllber associated with the object. paameter mainSat.VS. Each entire line is stored, including the 
leading whitespace, so that. the ScriptInt,erpreter can reproduce the comment verbatim. 

Itiline comments arc st,ored with the GMAT struct.urt3 that. tnost closely matches the cotnmont line. Hence 
the inline comment on line 6 is stored in the data. member associated with the Spacecraft mdnSat., while 
the inline corninents on lines 7 and 13 axe st,ored incorresponding members of a StringArray in that object. 
that tna.ps the comment to the corresponding spacecraft parameters: mainSat.X and 1nainSat.VX for this 
example. 

The ScriptInterpreter makes these associations when it finds comments in a script. Cornrnerlt lines 
are buffered in t,he ScriptInterpreter: and written to the next resource encountered in the script file. The 
Gmat,Base class cont.ains the data structures and interfaces needed to implement this funct,ionality. These 
interfaces are shown in Figure 14.2. 

There are two additional types of conlnle~lt blocks that GMAT manages. Comnients that occur a.t t,he 
beginning and at the end of a script are saved in the Script.Int'erpret'er in case t.heg are needed for display 
on t,he GUI or when writ,ing a. script. The header comment consists of all coni~nent lines found at the start, 
of a, script to t.he first bla.nk line in the script. If a.n instmction is detected before a hla~ik line? the header 
conltnerit is set to t,lie empty st,ring. Sirnilarly, t.he script's footer comment consists of all comments that are 
found after the final instruction in the script. If no comments are found after t.he final u~struction, the footer 
comment is set to  the empty string. 



I Scripting Interfaces in ~ m a t ~ a s e )  

7imFawe 

-cam incntLine, svitng 
-d;neCnmm bnt'sltitig 
-MAhuteCm m mmtinas atnngt1 
-at?rftt#efht~#eCcrmm cmz:btnng[] 

+EetGmematmgStnngQ:stdng 
+GerCeneratltirrgWfin@wa@$r~fn@11"ay 
+MC~mmentLine$~lmrncnt.~rnng>vo~ d 
+GetCum m entL~ne(i. rtnng 
.t-Zdini~ naCam m em(com meWanng)vald 
&Getintine Comment6 string 
+$etAttdbd e f a m  m enth nepcvi m ertt stnngj urn# 
&*attr im +c&mr# m t ~ c ~ o ~ s t ~ f r r ~  
+.Eaki~ haartrlburacam mkhtgarn mah~rttfn&rrr#tl 
uGerlnttneAttttrtbut~Cm m ehtO,stdfig 
+ F t ~ ~ l 2 & 2 ~ i 0 ~ ~ 5 l d  
-PrepComm mmWks I).uofd 

Figxrc 14.2: Scripting 1iltcrfa.ccs in the User C!lasscs 

14.1.2 Object Definition Lines 

When the ScriptInterprt?tta detects an object definit,ion instruction (starting with the word "Create"), it 
breaks t,he line into three pieces: the initial "C'reatd' keyword, the type nanie for the object that needs to be 
created, and one or Inore names used for the created objects. When multiple objects are created on a single 
line, t,hc object names are separated using co~nrnas~.  Throe c?xa.mples of object definition are provided here: 

Create Spacecraft  MMSRef ; 
Create Spacecraft  mS1 ,  PIMS2, MMS3, MMS4; 

3 Create Array squareArray [3, 31 notsquare [4, 71 vector  [6] 

The first script line here ("Create Spacecraft  MMSRef ;") denlollst,rates basic object creation. When the 
ScriptInterpreter parses t,his line, it calls the Moderator and instructs it, t.o crt!at.e an instance of the Spacecraft 
class namcwi M3fSRef. The Moderator calls t,ho a.ppropriate factory (the spacecraft factory in this case) and 
obtains the object. It t.hen adds this object to the configured objects, and returns the object pointer t,o 
the ScriptInterpreter. The ScriptInterpret,er validates t,he returned pointer, ensuring t,hat. the pointer is not 
NULL, performs finalization 011 t,he objec,t by calling t,he "FinalizeCreationO" method, and then moves 
to t.he nest line. If no fa.ctory is available to crc?at,e the object.. the Moderator t8hro\vs an exception which the 
ScriptInterpreter handles. The Scripthlterpreter throws an expection t11a.t is displayetl to t,he user, indicating 
t'he line number of the offending line, the nature of the error encountered, and, in quotation marks, the text 
of the line t,hat caused the! error. 

The second script line ("Create Spacecraft  MMS1, MMS2, MMS3, MMS4 ;") works identically, calling the 
Moderattor four consecutive times to  crea.tt: tlle four spacecraft named M?\-fS1, MMS2, 313IS.3, a,nd MMS4. 
Ea.ch object is created, validatfed by t,esting the returned pointer to see if it is NULL, and finalized using 

"Vole ~ l r r z ~  corr:~tias are reqriirrti, 'ltiis restlrjclioil cur:les lkun: the ir~t~i.operaljilj!y 1.rcluirritieii1 t i e t r ~ a e ~ ~  C:h,iA':'and MAI'LAH. 
I i  the colrircas are oniittcd, the:: ::.he:: hlK1'LiiB parses the iine: i t  creates a cell array for t,iic elen~aits  fsl1w;ing the Create 
kcyn-ord. A niziilar const,rair~t appiics :.,n all script ii:stn>ctiofis  hen the  bloclts In the inst,rcctioc exist o:iisidc of i.,arc?~lthcses. 
lii-ackebs, ui ',)races. 



Finalizecreation(). The ScriptInt.e~-preter loops through thc list. of requostad objects, anti performs this 
procedure one name at a time. 

The array creation line ("Create Array squareArray C3, 31 notsquare [4, 71 vector 163") requires 
a bit of additional parsing. Arrays require the count of the number of rows and colu~nns%n the array before 
it can be constructed. These counts are contained in square k)ra,ces in the m a y  :)::rc?at,ion line. Eadi array 
on tlle line has a separate field indicating this size. If a, user  specific?^ a single tlirnension for the array, as 
in the case of the array named vector in this example, that dinlension is the column count for the object: 
vector as specified here is a 1 by 6 asray. Once t.he size para;niet,ers have been parsed, t,he ScriptIntcrpreter 
proctvds as before: t.hc Modera,tor is called and in~truct~ed to create an asray with the desired dimensions. 
This array is created in t,he factory subsystem, added t>o the object configuration, and returned to the 
Scripthterpreter for pointer validation. Once the pointer has been validated, the ScriptInt,erpreter exe~vt,ed 
the Finalizecreation() method on t,lie new objoct, arid the11 proceeds to  t,he next. line of script. 

14.1.3 Commalld Lines 

If the logical block is not an object definition line, the ScriptInterpreter next checks t,o see if t,he line is a 
GhlAT command. GX4T co~ntnands all start wit,h the keyword assigned to the specific command; examples 
include Propagate, For, Maneuver, Target, and BeginFiniteBurn. A typical (though simple) cornma~ld 
sequence in a script is shon~n here: 

F o r i = l :  5 
Propagate propagator(satellite, (satellite.ElapsedDays = 1.0)) 

EndFor ; 

The command sequence is usually found after all of the objects used in the script have )wen defined and 
configured in the script filc. A complete list of the commands available in the configuration managed GhlAT 
code5 can be found in the User's GuidelUsersGuide]. The ScriptInterpreter builds a list of colninands in the 
system upon initializat,ion. It uses this list t.o determine if a script line cont.ains a command. If the first. word 
in the script. line is in t,he list. of commands, t h ~  ScriptInte~preter caals the Moderat,or, requesting a command 
of the indicat,ed type. The hiIoclerator uses the fa.ctorx subsystem t,o crea.tc the command. It. then adds the 
conl~nand to the Mission Sequence using tlle Append method on the first command in the sequence. One 
item t,o note here: the conmands manage the time ordering of t,he sequence through the Append interface of 
the Gma.tCommand classes; the ScriptI~iterpreter does not diract,ly set the command sequenctt ordering. 

Once a command has been creat,ed in the Moderator, the Motlerat.or returns t.he new command to the 
ScriptInterprc4ter. -4t this point, tht? command has not yet been configured with t,he det.ails of the script line 
that was used to create it. GMAT commands can be configured in one of two different ways: they can parse 
and configure internal data using methods inside the command, or they can receive configuration settings 
from the Script.Int.erpreter. Only one of these options exists for each conltnand - either the comnland is self- 
configuring, or it relies on the ScriptInterpreter for configiration. Self-configuring comrnands override the 
InterpretAction method defined in the GniatComma.nd base class to parse the script line; t.his approach allows 
thc creation of commands that do not follow a. generic configuration stra,tegy. The default impltrmeritation 
of the InterpretAction method raturns false; indicating tha.t tht? ScriptInterpreter needs to complete tht. 
command configuration. Further details of conlmand configuration can be fouild in Chapter 21 

The ScriptInterpreter takes the nenrly created command and passes the script line into it. Then the 
ScriptInterpreter calls t,he InterpretAction method on the command. If the 1nterpret.Action  neth hod succeeds, 
the ScriptInterpreter tho co~ntnand fully configured, completing parsing for this line of script. If 
the IntcrpretAction method returns false; the Script,Interpret.er parses the rest of the co~nmand line and 
configures the cornmaad accordingly. 

% ~ h l . . l ~  does not support matrices with more thaz 2 dimer~sicrls at tiiis time. 
"Not(? that  sincc commands arr: clsr:r objects, the coxtlnlartd list can bn c?x:,andcd using a usrr defined librarv, ddi,?cusscd in 

Chapter 26. 



14.1.4 Assignment Lines 

The final type of logical block that the Scripthitcrpreter can oncounter is an assig~lnient line. GMAT 
assignment 1int:s all t.ake the form 

<<Left Hand Side>> = <<Right Hand Side>> 

Assig~inlerit lines perform mult.iple purposes in GkIAT. Assignment lints can be uscd to  initialize the internal 
data for an object, to reset. the value of a piece of internal data., to  set, one object's data t.o nla,tch another 
objects's, or to perform custom calculations as described in Chapter 24. This complexity adds an underlying 
wrinkle to  GMAT's internal structure when parsing an assignnierit line: assignment lines in a script can set 
object data, or represent Assignnient comma.nds in the Control Secluence. The ScriptInt,erpreter tra.cks the 
state of a script while parsing; it starts tlie parsing sequence in "object" mode, and toggles into "command" 
mode when t,he first command is encountered. This mode switching has direct implications on the way 
assignment commands are handled: when in object mode, assign~nent comniands can set t,htr values of 
paramt:tcrs on configured objects. In co11inia.nd mode, this parameter setting is deferred until the script is 
executed. The following script segment illustrates this diflerence: 

Create Spacecraft sat; 
Create Propagator prop; 
GMAT sat.SMA = 10000.0; 
GMAT sat.ECC = 0.25; 
GMAT sat.TA = 0.0; 

% Start in object mode 

% Set some object parameters 

Propagate prop(sat, (sat.Apoapsis}); % Switches to command mode 
GMAT sat.SMA = 12500.0; % Brute force circularization 
GMAT sat. ECC = 0.. 0 ; 
Propagate prop(sat, (sat.ElapsedDays = 1.0)); 

The assignment lines in t.his script all begin with the GMAT keyword. The first t,hree assignmenbs (lines 3 - 
5) are used to set, the internal data on t.he Spacecraft named sat. When the Script,Interpret,er builds the 
Propagate coninland on line '7: it switches int#c) command mode. The next lines, lines 8 and 
9, do not set the internal data on sat during script. parsing. Instead, they each construct an Assignment 
command which is inserted int.0 the command sequence, configured to  set the intornal Spacc?craft data when 
that. Assignnlent command fires during the run of the mission. I11 effect, the assignments mad(? htze are 
postponed; the Spacecraft parameter is set to the scripted value when the Assignment command executes 
for the scripted line, rather than when the Script1nterpret.c.r parsed Ohe line of script.. This t,oggling from 
object ~rlode i11t.o command mode makes it possiblc for a user to reset object properties partway through the 
ext?cut,ion of a script; other uses include the ability to alter the mass of the spacecraft, modeling t,he release 
of a stage during a mission, and adding new spacecraft to or removing spacecraft from a formation that has 
already propagated for a period of time. 

IVhen an assiglment line is parsed by t,he ScriptInterpret.er, t,he Script,Int.erpret,er first breaks the line 
into thrt?o picces: the left. hand side, tlie etluals sign, and t*hc right hand side. If the equals sign is missing, 
the Scripthterpreter throws an exception arid esits. The left hand side (LHS) may start with the keyword 
"GMAT". If it. does, t,his word is ignored by t,lie ScriptInterpreter6. After the optional keyword, the LHS of 
the line can consist of one and only one entit,y: oit,her an object. parametc:r, an object name, or an array 
element identit.y, as shown here: 

GMAT sat.X = ... % An object parameter 
L forceMode1.Gravity.Earth.Degree = ... % A nested object parameter 

OThc Clhlii'l- kcyxord sin~plifics script intcrchangability bct~vcen GIbI.47' anti MA'XAR;  t l ~ c  C?;t:\'T kcyvork cai! bc izsctl to  
tell MA'I'L.%H i iia( i iie iitlr js a sprr:ia! consi ruck, b u i l ~  Lix C:>AA'.I'. w+~e~t a scrip1 file is rra:i ill tlie LlA'.L'l,A H rrn.irur~ritnt!. 



J sat2 = . . . 
4 GMAT squareArray(l,3) = ... 
5 vector(3) = . . . 
I, myFormation.Add = ... 

GMAT SatReplacement1.Z = ... 

% Object assignment 
% Array element setting 
% More array element setting 

% Another object parameter 

i\lot,e that the Gh4AT preface on lines 1: 4, and 7 is optional. When a valid right hand side (R.HS) is provided, 
all of these lines will be parsed correctlv by the Scripthterpreter. Line 2 deserves some special considerat.ion 
here. This line set,s a parameter on an object owned by a force model. The Scripthterpreter includes parsing 
ca,pabilities that it uses to drill into owned objects like this one; these capabilities are clcscribed in the class 
descriptions later in this chapter. 

The right side of an assignment line provides the dat,a that is set for the left side. This data can be a 
number, a string, an object name, a Gh11.4T or MATLAB function, an array or array element, or an equation. 
Working fronl the p a ~ t i d  lines presented earlier. some examples of complete assignment. lines are: 

GMAT sat.X = 7218.88861988453; % A number 
2 forceModel.Gravity.Earth.Degree = 12 % An integer for a nested object 
3 sat2 = sat3 % All object attributes (except the name) 
4 GMAT squareArray (l,3) = sat 1. VZ % Array element set to an object property ... 
s vector(3) = BuildZComponent (sat2) % . . .  and to a function return value 
6 myFormation.Add = SatReplacementl % A string -- here an object name 
7 GMAT SatReplacement1.Z = vector(3); % An array element 

The ScriptInt,erpreter provides the interfaces required t.o configure these RHS elements as well. It &st. 
analyzes the RHS string and determines the type of expression encoded in the string. The string is then 
deconlposed into its constituent elements: which are configured based on the det,ect,ed type information. If 
the ScriptI~iterpreter is operating in object. mode, it remains in ol~ject mode as long as  the LHS is an object 
parameter and the R,HS provides data compatible with t,llat parameter. If this condit,ion is not met, then 
t,he ScriptInterpretcr builds an Assignment command for the assignment line, and sets up the objects for 
this coninland. 

Once all of the lines in a script file have been parsed and the corresponding actions taken, the ScriptInter- 
preter takes a final pass through the object,s in memory This final pass is used t.o set intermediate point.ers 
where needed for the user interface for instance, Spakccraft crc?ated in a script, need to ha.11~ pointers set, 
to  referenct!d c~ordinat~e syst,ems so that conversions between c?lemelit representations can 11e performed 011 
the user interface. 

14.2 Saving a GMAT Mission 

The procedure followed when writing a script file from GMAT is markedly simpler t.han that followed when 
parsing a script file. Figure 14.3 shows the basic cont.ro1 flow exercised when the Script,Interpret,er writes 
a script file. First the Script,Interpret,er initializes itself if it has not been initialized previously, and opens 
t,he output stream that is the target of the script. Then the ScriptInterpreter retrieves the configured items 
by type, and writes these items t,o tlie output stremi. Comnient lines are inserted at appropriate places 
during this process, as indica,ted in the figure. After all of t,he configured ol)ject,s have been ~rritten, the 
ScriptInterpreter walks througli t,he co~nlnand sequence, writing the coinmands out in order. This completes 
the script. writing process. 

Script writing is significantly simplified hecarnst? each user configclrable object, in GhiAT includos a method, 
GetGeneratingstring(), which retul~is t.he full script st,ring required to reproduce the object. This interface 
is included in the GmatBa.se class diagram, Figire 14.2. The GetGeneratingstring0 method essentially 
serializes any GhfAT object derived from GmatBase (see Section 5.1). When the GetGeneratingstring 
furict,ion is called, tlie object builds t.his string I>asr?d on its intorn:il ciat,a. Command st.rings consist. of a 



Yes 

Is object 
list empty? 

Command 
Lsesuence NULV 
... ... 
' 

Yes 
NO. . 

Finished saving 
script 

Figure 143: Sequence Foliowfxi \\,ilen Writing a Script 

single instruct.ion, optionally decorat,ed with preceding comments or inline comment,s. Configured objects 
l~uild ~nult,i-i~lstructio~i strings: consisting of a11 oopeni~lg "Creatd' line and tho assib~~nent. lines required to 
set t,he internad ol~ject parametczs. Details of this process are show11 in Figilre 14.4. The ScriptI~:t,e~preter 
just calls this metliod sequentially on the object,s t o  write the requested script. 

This same facility is used at  sevc:ral ot.her pla,ces in GM.4T. The MATLAB interface supports seri- 
alization and passing of GXiIAT objects ineo MATLAB classes. This support is also provided by the 
GetGeneratingstring0 method. Similarly, the GMAT graphical user interface includes a popup win- 
dow that shows scripting for all GM.4T objects and commands. The GetGeneratingstring0 met.hod is 
called to  populate this wi~ldo~v. 

14.3 Classes Used in Scripting 

The preceding sections described the process followcd when reading and writing scripts. This section outlines 
how those processes are implenlextc.?d in C4RlfIIT. 



14.3. CLASSES GSBD 1 3  SC'Ii,!f"l'i3rC~ 127 

1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : 

Figure 14.4: Sequence Ehllonied by GnatBase: : GetGeneratingstring0 when 'IVriting a Script 

14.3.1 The Script Interpreter 

The ScriptInterpret.er is the class tha,t mmagos the reading and writing of script files for GMIIT. It makes 
use of several helper classes when actually reading and writing scripts, along with core Interpreter funct.ions 
from the Interpreter base class. Actions taken by the ScriptInterpreter can be broken into two categories: 
script reading and script writing. The complexity- of these processes is shown in Figures 14.1 and 14.3. In 
this section, the Intcrpreter and ScriptIntc?rpreter classes are described, along with their helper classes, the 
ScriptR,ead\\'riter and t,he Testparser. These classes are shown in Figure 14.5. Then the process followed 
t.o accomplish each of the reading and writing t.asks is presented. Script reading is particularly complex, so 
t.hc script reading procedure is broken illto descriptions of the process followed for each of the four types of 
script blocks GMAT supp0rt.s. The description of t.he class interactions performed when reading a script can 
be found in Section 14.4. The class interactions followed rvhea writing a script are outlined in Section 14.1. 

Global Considerat ions 

The Interpreter subsystem used severnl components that exist at the progratn scope in GMAT. There are 
three enumerations used by the Interpreters that are defined in the Gnlat namespace: 

r Gmat::ParameterType: An enumeration used to identify the data type for inte~nal parameters in 
GmatBase derived obj(?cts. 

e Gn1at::WriteMode: An enumeration that identifies the type of output requested from a call to an 
 object.'^ GetGeneratingstring() method. 

m Gmat::BlockType: An enumerat.ion ident,ifving the t'ype of logical block parsed from a script. 



Figure 14.5: Classes in the S::ript.h~i;erpt.<tt.(?r Sut~sysi:er,i 

The first two of these enumerations, ParameterType aind Tt7riteMode, are used in a fairly rigid manner 
in the Interpreter subsystem. Paranlet,erTypes are used to determine how to access the internal data on 
objects for rcading and writing; t,he object is queried for the type of the internal parameter, and that 
parameter is accessed accordingly. For exmlple, when a parameter value on an object needs to be set,: t8he 
Interpreter use the result,s of this query to call the correct set. method on the object ... SetR.ealParanzet,er 
for floating point data, SetIntc?gerPara~neter for integers: S(>tStringParan?eter for st,rings, and ot,her calls for 
their corresponding types. 

When calling the GetGeneratingString methods on objects, the Interpreters need to identify the style 
of tex* that is required. This style is identified using the identifiers in the IVriteMode enumeration. The 
ScriptInt,erprete uses t,he Grnat::SCRIPTIiYG onti3; from this list. Ol~ject~s that are passed to 31.4TLIIB use 
the Gma.t::%IATLAB-STRITCT entry, and so forth. 

The BlockType enunieratiorl has four nlembers: COMMENT-BLOCK, DEFINITION-BLOCK, COM- 
MAND - BL,OCI<, and ASSIGNMENT-BLOCK. These members are used to identify t,he type of logical 
block parsed from a script, ils describctl in Section 14.4. 

The ScriptIrlterpreter Class 

The ScriptI~lt,crpratcr class manages the script reading and writing process. Dr!rived from t,he Int,e~-preter 
class! this singletoni has methods t,hat usc a ScriptRcadTVritc3r to open and close file streams and to use 
those streams to perform the acttiom required to load and sa\Te GMAT scripts. The entry point methods 
t,hat take input. from the stream include the word "Interpret" in their names; the methods t,hat launch the 
- - -- -- - - - - - - - -- - -- --- - . -- --- - - -- - - - - . - - . - .--. . .-. . - . . . .- - .- .-. . . . . . . . -. . . ---. . . . . . . . -. . . ---. 

7Sae Section H . 1  



serialization of GMAT objects and that subsequt:nt,ly writ,? them out. to streams use the work "Build" as part 
of the method name. 

The key ScriptInterpreter da.ta members and methods are described below. 

Class Attributes 

r Integer logicalBlockCount: A counter that, counts the logical blocks of script as they axe read. 

e hool inCommandMode: A flag that. is used to detect when a script switches from object parameter 
mode int,o command mode: so t.hat, assignment, blocks car1 be configured correctly. 

std::iostream scriptstream: The stream used for script reading or writsing. . ScriytReadWriter * theReadWriter: A pointer t o  the ScriptR.ead\'17riter used when reading or 
writing the script. 

Methods 

0 ScriptInterpreter* Instance(): The method used to obtain the pointer to the singleton. 

r bool Build(): blethod used t.o write a script to the stream. This method cdls JVriteScript() to 
perform the actual work required when writing a script. 

bool Build(const std::string &scriptfile): h~lc?thod used to initia.lizc t,he stream to an output file. 
This method caJls Build() (a1)ove) after set,t,ing up tmhe stream. 

bool Interpret(): Method used to read a script from the stream. This method calls t,he prot.ected 
ReadScript(1 met,hod to perforrn t,hc actual script reading t.asks. 

e bool Interpret(const std::string &scriptfile): &lethod used to init.ialize the stream to an input 
file. This nlet,hod calls Interprc?t() (above) after setting up the stream. 

0 void Readscripto: The method that controls script reading. This method is called by Interpret(). 
The process followed in the ScriptInterpreter::ReadScript() mc!thod and the methods it, calls is shown 
in Figure 14.6 and the diagrams derived from it, and described in Section 14.4. 

r std::string ReadLogicalBlock(): Method t,hat obtains a logicad block from teh ScriptRea.dWriter 
for the R.eadScript () method. 

e void Parse(std::string &block): Method that interprets a logical block for the R,eadScript() method. 

r bool Writescripto: Chntrol method used to write a script. This prot.ect.ed method is called by the 
Build() method when a script needs to be written. The process followed in the Writescript() method 
is shown in Figure 14.11 and described in Section 14.4.2. 

The Interpreter Base Class 

The Interpreter base class defines tile interfaces into the Interpreter system, and provides functionality shared 
by all GMAT Interpreters. This class cont,ains the data st,ructures necessary to manage data that exists at 
t,hc mission scope rat,her than at object. scope, like header and footer comments. 



Class Attributes 

a Str ingArray t y p e  maps: Lists of the names of classes of corresponding types of configurable  object,^. 
There are separate maps for commands (co~nmandMap) ,  hardware coniponents (hardwareMap),  
forccs (physicalmodelMap) sol\7ers (solverMap), paramet-ers (parameterMap),  st,opping contli- 
tions (stopcoiidMap),  and functions (functionMap). These arrays are populated when the Inter- 
preter is initialized. 

a std::string currentBlock: the current logical blocli of script, used while parsing. 

a std::string headercomment :  The optional commentary, provided by the user, that precedes all 
instructions in a GMAT mission. 

a std::string footerComment: The optional commentary, provided by the ustrr, dhat comp1et.e~ all 
inst.nictions in a GMAT mission. 

r Textparser  theparser :  A Tt.st.Parser used t.o pieces of text. 

* enunn currentBlockType: An identifier for the type of the currtmt logical block of text, used when 
reading a script'. 

Methods 

s void Initialize(): Fills or refreshes the type maps by retrieving the lists of t,ype names froni the 
Moderator. 

* boo1 Interpret( ) :  Retrieves input from a stream and t,ranslates it into G M - T  actions. This abstract 
method is irllplexncnted by all derived Iritt?rpreters. 

r boo1 Build(): Accesses G34.AT objects anti writes tlle111 to  a stream. This abstract met,hod is imple- 
mented by all derived Interpreters. 

* void Finalpasso:  Invoked after object,s have been interpreted from a stream, this method sets 
pointers for object references that are required outside of the Sandbox, so that required functionality 
can be provided prior to  initialization for a mission run. Derived 1nt.erperters should call t'his method 
as t,he la.st call in t,heir Interpret() ~netllods if int8er~ial pointers are not set during execution of the 
method. 

e void RegisterAliasesO: Some GR.IAT script identifiers can be accessed using multiple t,ext strings. 
The Register..2liases() mc?thotl creates a mapping for t.hese strings so that scriptjs are pitrscd correct.ly. 
Tlle current GMAT system has five alia9ed parameter st#rings: 'TrimaryBodies" arid "Gra.vity" arc bot,h 
aliases for "GravityField" forces, "Point,hlasses" is an alias for 'a PointMassForce, 'Drag" is an alias for 
a Dragl;brce, and "SRP" is a n  a1ia.s for SolitrR.adiatioi~Pressure. 

r GmatBase* FindObject(const std::string ohjName):  %Iet,hod used to find a configured object. 

a void SetParameter(GmatBase *obj, const Integer id, const std::string &value): Method 
used to set parameters on config~~rlred objcct,s. Notme that while t,he input value is a string, it is convortc?tl 
to t.hc t:orrect type bcforo being set on the object. 

r ElenientWrapperY CreateElexnentWrapper(const std::string &name): Method used to create 
wrapper iizstallces needed t,o use object properties, Paxameters, array elements: and other types of 
object data inside of t.he commands t.hat. inlplement the &lission Control Sequence. The wrapper 
infrast.ructure is dtrscribetf in Section 21.4.3. 



14.3.2 The ScriptReadWriter 

File managemc?nt tasks necessary to script.ing are prc)vided by the Script,Rt?adWritcr class. This class, a 
singleton, is used by t,he Scripthterpreter t o  retrieve script data a logical block at a time arid to write script 
filcs out on user request. It does not dircctly interact with GMAT objects; rather, it provides the interfaces 
into the file system that are used to store and ret,rieve GGMAT config~irations in the file system. 

Class Attributes 

* std::string fileName: The current script name. 

e std::fstream script: an std::fstream object used to read or write the script. 

Integer linewidth: The maxinluln line width t o  use when writing a script; the default width is 0 
chasacters, which is treated as an unlimited line width. 

* bool writeGmatKeyword: A flag used to  determine if the keywork G31.4T is written when a script. 
file is written. This flag defaults t o  true: and all assignment lines ltre prefaed wit.h t,he GMAT keyword. 
Fut,ure builds of GMAT may toggle tthis fea.ture off. 

e Integer currentLineNumber: The current, physical line number in the script file. 

Methods 

e TextReadWriter* Instance(): Accessor used to  obtain t,he pointer to  the Text.Rcad\Vriter singleton. 

void SetScriptFilename(const std::string &filename): Sets the name of the script file. 

* std::string GetScriptFilenameO: Gets the current name of the script file. 

void SetLineWidth(1nteger width): Sets the desired line ~7idt.h. If the input paramet,er is less than 
20 but not 0, GMAT throws an excc?ption stating t,hat line widths must either be unlimited (tlenotcd 
by a value of 0) or greater than 19 characters. 

e Integer GetLineWidthO: Gets the desired line widt,h. 

r Integer GetLineNumberO: Get.s the line number for t,he last line read. 

e bool OpenScriptFile(boo1 readMode): Opens the file for reading or writing, based on the read 
modc (true to read, false to write). This method sets the fileStrcarn object to the cor~cct file, and 
opens the stroam. 

std::string ReadLogicalBlock(): Reads a logical block from the file, as described below. 

e bool WriteText(comt std::string &textToWrite): Writes a block of text to the stream. The text 
is formattfed prior to this call. 

bool CloseScriptFile(): Closes the file if it is open. 

Overview of the ReadLogicalBlock() Method 

The ReadLogicalBlock() niethod is designed to liandle ASCII files written from any supported platfornl -- 
Windows, Macintosh: or Linux --. without needing to update the line ending characters. This method works 
by scanning each line for CR mtl LF dlaracters; and treating any such character or co~nbin~tion of diaxacters 
found as a physical line ending character. This process lets G31.4T handle text files on all of the supported 
platforms8. 

"ii.o's what. t.he C.lori~ptlt.or Uiczicnary ( h t r p : ~ ~ r . o r r . p r ~ r . j n g - d i r . t t i o n a t , i . t ~ : C ! R ! I J T I ' )  says about, thc line 
eritiing iswe: 



For tho purposes of t,he RttadLogicalBlock() methoti! a. logical Block is ont? or more physical lines of text 
in the script file, joined together into a single block of text. A script file indicates that physical lines should 
be connected by appending ellipsis r.. .") to indicattr that a line is continued. For example: if this scripting 
is found in the file: 

Propagate Synchronized propl (MMS) , . . 
prop2 (TDRS) ; 

the encoded i ~ i s t r ~ ~ c t i o ~ i  that is returned is 

Propagate Synchronized propL(MMS), prop2 (TDRS) ; 

Note that the white space is preserved in this process. The ellipsis characters are replaced by a single space. 

ReadLogicalBlock(): Reading Comment Lines 

Commc:nts related to spttcific GKAT objects need t.o be preserved when rea.ding and writing script files. 
The co~nrnents associated with specific objects are considered as part of the object's logical block. Tlius, 
expanding on t,he example above, if the scripting reads 

% Single step both formations 
Propagate Synchronized propl (HMS) , . . . 

prop2 (TDRS) ; 

the logical block that is returned is two physical lines: 

% Single step both formations 
Propagate Synchronized propl(MMS), prop2 (TDRS) ; 

where the line break delinlits the separation between t,he coninlent prefacing the comma.nd from the text 
configuring the colnlnand object. Similarly, inline comments are preserved as part of the logical block; for 
example, t,he follon7irlg scriptixig 

% Build the spacecraft 
Create Spacecraft Indostarl % An Indonesian GEO 
% Set up a Geostationary orbit 
GMAT 1ndostarl.SMA = 42165.0 % Geosynchronous 
GMAT 1ndostarl.ECC = 0.0005 % Circular 
GMAT 1ndostarl.INC = 0.05 % Nearly equatorial 

produces 4 logical blocks: 

1. The object creation block: 

% Build the spacecraft 
Create Spacecraft Indostarl % An Indonesian GEO 

2. The first paramet,er setting block, with 2 comments: 

'/. Set up a Geostationary orbit 
GMAT 1ndostarl.SMA = 42165.0 % Geosynchronous 

jC:a:?iagr Ret.~irri/l,ilie Featl) 'i'iir rtid 01 lir~e t.1ial.ac~el.s used i r ~  .standard I'C.! texl iiies (ASCII cied:~rai i3 1.0, hex 
OD OA). In the 51ac, iluiy the CIt is used; in Unix: only the LF. Wherl OTle considers :!la? the co:riputer wurld 
couid n?-,i, standardlzct i.hc code to  use to r?nd a sin~plc text linc. it is xruly a niiracle that srificiont standwcis :sere 
agree</ :.ilmn to suj~pclr i  L?JP lnl.;?1.11e:., ~yihirl~ floiirisi.ir:s or~ly t)eca.~~se ii. is a stal;cla.rcl. 



3. a second para1netc:r block: 

GMAT 1ndostarI.ECC = 0.0005 % Circular 

4. and the final parameter block: 

GMAT 1ndostarl.INC = 0.05 % Nearly equatorial 

There are three additional types of comment blocks that the ReadLogicalBlock() method manages. These 
blocks, (1) the script header, (2) t,he script footer, and (3) se~Tioni dclinniter blocks, are not associated with 
specific GNI.4T objects, but rat.hor wit.11 the script filo as a whole. 

GMAT script hea,der comments are comment lines that begin on the first line of the script file, anti that 
are terminated by a blank line. An example: taken, with minor edit,s, from one of the GM-4T test scripts, is 
shown here: 

% GMAT Script File 
% GMAT Release Build 6 .0 ,  February 2006 
% 
% This test script uses the GMAT script language to convert from 
% the Cartesian to the Keplerian state. I only implemented the 
% conversion for elliptic inclined orbits, as described in the 
% math spec. I didn't implement other special cases, because it 
% would not test anything different in the inline math. 

% Create a s/c 
Create Spacecraft Sat; 

This script snippet co~itains a header comment, read into the logical block 

% GMAT Script File 
% GMAT Release Build 6 .0 ,  February 2006 
% 
% This test script uses the GMAT script language to convert from 
% the Cartesian to the Keplerian state. I only implemented the 
% conversion for elliptic inclined orbits, as described in the 
% math spec. I didn't implement other special cases, because it 
% would not test anything different in the inline math. 

and an object creation logical block: 

% Create a s/c 
Create Spacecraft Sat ; 

Tho script header comment is stored in tht? headerComrnt.?nt data member of the ScriptInterpreter. The 
comment associatsd with t,he objact creation logical block is stored with the associated object, as tlescribcd 
in the next section. 

Some script. files include comments after the last executable line of the script file. When such comments 
are found, they are collect.ed into a single logical block ancl st,ored in the Scripthlt.erprc?ter's footerComment. 
data member. The stored data in the header arid footer comment blocks are writ#t,en in t,he a.ppropriate 
locations when a script file is saved using the Build() inethod of the ScriptInterpreter. 

The final category of script comnlents, the sect,ion delinlit,ers, are automatically generated when writ.ing 
a script file, and ignored when reading a 'script,. ,411 example of a section deli~niter is shown herc: 



Create ImpulsiveBurn LunarPhasedV; 
GMAT LunarPhasedV.Origin = Earth; 
GMAT LunarPhasedV-Axes = VNB; 
GMAT LunarPhasedV.VectorFormat = Cartesian; 
GMAT LunarPhasedV.V = 0.027; 

Create ForceModel LunarSB-ForceModel; 
GMAT LunarSB-ForceModel.CentralBody = Earth; 
GMAT LunarSB-ForceModel.PointMasses = 1 Earth, Sun, Luna]; 

Section delimit.er comments exist on single lines: and always start with the string 

with no preceding white spa.ce. When the ReadLogicalBlock() method encounters this string of characters 
at the sta.rt of a physical line, the physical line is ignored. 

The ScriptInterpreter takes these logical blocks from the ScriptReadlVriter, and uses the TextPa,rser class 
to process each logical block. The facilities implemtmted in the TextParser and used for t,his processing are 
described next. 

14.3.3 The TextParser Class 

The S~riptReadT4~ritt:r provides the intt:rface to script files, and i~~cludes a method, R.ea.dLogicalBlock(), 
that accesses a script file and reads it one logical block at  a time. The ScriptInterpreter uses this method 
to obtain each logical block of text froin a script. When ReadLogicalBlock() returns a script block, the 
Scriptlnterprcter begins a process of breaking the block int,o pieces until the entire block hits bee11 consumctl 
and interpreted into internd GhlAT data structures. The Script.Interl>reter uses the TextPiwrser to perforin 
this decomposition. 

The TextParser class is used to process logical blocks of script, breaking them into their constitueiit p a t s  
so that the Interpret,ers and Co~nlnands can setup the underlying class relationshi~>s and parm1et)er values 
needed to model the mission clescribed in t,he script file. 

The TextParser class provides methods used by the ScriptInt.ererpter t,o iteratively decompose a logical 
block of text.. This class supplies all of the low level parsing functiorialit~y necessary to manage script lines, 
and is used both by the ScriptIntc:rpreter and by other c1assc:s -. not<t.k)ly commands that iwre too complex tt.o 
be treated generically. The TextParser does not parse inlinc: mat.homattics; when inline math is detected by 
the ScriptInt.erpreter, it. hands the parsing task off to the Mathparser, described in Chapter 24. 

Class Attributes 

r std::string prefaceComment: All comment lines that precede the inst,~-uction in t,hc ci.~rrent block 
of t,est. This 1noml:)cr is the empty st,ring if there arc no conlrnent lines preceding the i~lstruction. 

r std::string inlineCoxnment: Any comrnent text that is appentled to t8he instruction. This nienlber 
is the e~npty string if there is no conl~nent lines following the instruction. 

a std::string theInstruction: The text that is deconlposed to  tell GM.4T what to do. 

w StringArray commandlist: The list of available commands, excluding tlic GM.4T keyword, which 
is used for assignmc?nts. 



Methods 

a void Initialize(co~lst StringArray &commandList): Method t,liat sets up the internal dat'a for the 
Texi,Pa,rser. Thc parser's owner calls this mc?thocl during construction, identifying all of the cominands 
available to the parser in the current scope. 

a Gmat::LineType EvaluateBlock(const std::string &block): The ~nctliod that takes a logical 
block and breaks it into tllree pieces: prcface comments, the illstructioll in the block, and inlinc 
comments. These pieces are stored in internal TextParser data ~nemnbers until needed by the ScliptIn- 
terpreter. The method returns the type of block found, using these rules: 

1. If theInstruction is empty, tho block is a COMMENT-BLOCK, otherwise 

2. If theInstruct.ion has the word "Creato" as the opening nrord, it is a DEFINITION-BLOCK, 
otherwise 

3. If t.heInstruct.ion has amember of the comnlandlist as the opening word, it is a COMMAND-BLOCK, 
otherwise 

4. The line is an ASSIGNhlEKT-BLOCI<Y. 

0 StringArray ChunkLineO: Breaks t,he instruction string into logical groups, called "chunks" in this 
document. The instruction line is broken at white space and conima. charac.ters. Blocks ~nitrked with 
the grouping dolimiters 0, ( 1 ,  and (1 are kept together as independent chunks. 

a StringArray Decompose(std::string chunk): Breaks a text chunk into its constituent pieces, and 
returns t,lleni in a StringArray, This method is used to take a chmlk from the C!hunkLine() met,hod? 
and 1)rea.k it into substrings. Decompose calls into the Sepaate methods tiescribed below? looking first 
for brackets to  break apart, then coilzinas and spaces, and finally periods. 

0 StringArray SeparateBrackets(c0nst std::string &text,  const char bracket): Fi~ids the text 
in a bracket groiq)iiig, and separates it into its constituc:nt pieces. These pieces are returned in a 
StringArray. Tlle first element of the array is the opening bracket, and the last elenieilt is the closing 
bracket. 

text: The string that contains the bracketed tex*. 

bracket: The opening bracket, type; this is one of the followiilg cliaracters: '(', '1'. '1'. or '.:'. 

a StringArray SeparateSpaces(c0nst std::string chunk): Sepa.rat.es the chunk into pieces at whit,es- 
pacc and coinma characters. 

StringArray SeparateDots(const std::strirlg chunk): Separates the chunk illto pieces at period 
(aka "dot") characters. 

a std::string GetPrefaceComme~it():  Accessor method used to get the preface comment from the 
logical block. If no preface Kas available, the nietllod returns the empty string. 

std::string GetInlineComment(): Accessor method used to get tthe inline comment from t,he logical 
block. If no irilinc comment was available. t,he method returns the empty string. 

std::string GetInstruction():  Accessor method used to get t.he instruction from the logical block. 
If no instruction was available, t,he method returns t,he empty st.ring. 

0 void Reset()): Clears t,he internal da.ta in the TextParser. 

"No1.c i.hai, idcntK:ring a iinc as an assignment line K C Z I ~ S  that it wiil h c  used cit.hnr to s e x  an internal object parameter or 
to I.>uiirl a.r: .4ssig1~rnent corxlli~a,r:rl in tlie rrrission Srquriice, 



14.4 Call Sequencing for Script Reading and Writing 

The class descriptions describca-1 above provido a. st,atic pict.urc: of the components used to  config~lre Ghl,STT 
to run a script and to save a. script for later use. I11 this section, the scxluence followed for script reading mtl 
writing is presented to show how tlle st,ruct,ures and methods described for the classes interact with GMAT. 

14.4.1 Script Reading Call Sequelice 

Script reading is the process through which the instructions in a script are translat,ed into internal object 
configuration in GMAT. This process is, of necessit,~, rather conlplicizt.ed. However, t.he division of the t,ypes 
of lines that a script can cont,ain int,o four sets: comment. blocks, object. dofirlition blocks, command blocks7 
and wsignincnt blocks, makes it possi1)le to break the proccss into rnore ~nanageable pieces. Accordingly, 
this sect'ion provides a t,op level look at  the process followed when reading a script, followed by a description 
of the sequence executed for each type of logical block. 

Process Followed for All Logical Blocks. 

\%'hen the ScriptInterpretm is inst.ructed to read a script, it performs some basic initialization in preparat.ion 
for a new script file. Thc headcrCommant and footerCom~ne~lt bata n1enll)ers are set to empty st,rings, the 
1ogicalBlockCount data member is set tto zero, the tho TextPa.rscr owned by the ScriptInterpreter is reset t,o 
prevent inadvertent use of data from a previous script. Once t,llese preliminary actions are coinpleted, the 
script can be read. 

Figure 14.6 shows tlle sequence followed when the Scripthterpreter reads a script. The ScriptInterpreter 
sends the ScriptReadI5'riter t,he name of the script t.hat nseds t,o be read: and then requests t,hat the script. 
be opened for reading. If these commands succeed, the Scril>thterpret,er uses t.he ScriptR.eadF17ritcr to read 
the file, one logical block at. a time. 

The ScriptIntcrpreter calls the T(?xtParser::Evaluat,eBlock method with each block of script t.hat it receives 
from the ScriptReadLVriter. That tnebhod breaks the logical block into three pieces: the comment lines that 
precede the instruct.ion in the block, the instruction that needs to be interpreted t,o configure GMAT, and 
any inline comments tha.t appear in the l)locli. The TextParsc?r examines the inst.ruction portion of tht.4 block 
to  det,enline what type of instructmion is encoded in the block3 and returns the type information using thrt 
LineType enunzeration from tlle Gmat nanlespace. 

The Scripthltcrpetcr the11 initiates actions that translate the block into components used t.o setup the 
script instructions: based on the type of block that was det,ected. The process foloo~ved for the four possible 
types of script line are ddailed in t,he sections that follow this one, and illustratad in Figures 14.7 - -  14.10. 

Once the ScriptInterpreter has processed all of t,he blocks from a script,, it instructs the Script,ReadI%'rit,er 
to  close the script. The Script,htery>reter then execut'es a. find pass through the ol)ject,s in the currentm 
configurat,ion, setting a rninirnal set of object cross references t11a.t are required to make GM.4T's GUI 
functional. When this final pass has been performed, cont,rol is ret'urned t'o the Moderator with all of the 
inst,ructions encoded in the script t,ranslated int,o GMAT objects. 

The following paragraphs describe the details executed when txanslating each of the types of logical blocks 
t.hat GLUT scripts use. 

Comment Blocks 

The only time the ScriptRea.dlVriter returns a. comment block - -  that is, a block of script t'hat has no 
instructions, and consists only of conlnlents -.- is when the block is either the header comment for the script 
or the footer comnlent for t,he script. Sc~ipt  files (lo not necessarily have (tither of t.hese blocks. The 
Scripthterpreter maintains an internal counter tht it uses to  coilnt the logical blocks as they are read from 
t,he file. If that. counter is zero and a comment block is found, then the block is t.he header comment; 
other~vise it. is the footer comment. Fig~lro 14.7 shows this sequcncc. 



....................................................................................................................... 
Scnptlnterpreter Sequence Top Level 

pzizq 
I I 

loop(stan offile,end of file) 

[For each logical block11 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
rd: Scriptlntetpreter Sequence: Comment Blocks 

Figure 14.7: Interpreter Class Interactions when Reatiing a Colnnient Bio& 

Object Definition Blocks 

"Create" lines an a. sc~ipt. file invoke object definition instruct,ions, which are processed following the sequence 
shown in Figure 14.8. These instruct.ions iiista~lt.iatc the user configurable objccts that are used to lnodel a 
mission. 

When the TextParser tells the ScriptInterpreter that. an object definition block 11% bee11 detected, t,he 
ScriptInterpreter asks the TextParser t,o break the instruction in the block into smaller pieces, referred to as 
chunks. The text parser breaks the instruction at each wl:it,e space or coinma character in the instr-~~ction, and 
places these pieces, in order, into a StringArray, referred to  here as the "cliunkArray." Oace the instruct.ion 
has been broken into chunks, the chunkArray is retilrrietl to the ScriptI~iterprc?t~?r for processing. 

Object definition inst,ructions all have the format 

Create <ObjectType> <Namel>C, <Name 2>,  . . . I  

where Object,T-ype is a string ident,ifying wha,t type of object is desiretl ... examples are a. Spacecraft., a 
Force3lode1, a Propagator, an Army, arlcl so on. The inst~~iction has one or more ol~ject. names; one object 
will be created for each na11:e found in the i~lstruction. Object names st,art at the t,hird element in t.he 
chunk.lrray, chunk..lrray[2]. If the size of the chunkArray is less than 3' the ScriptInterpreter throws an 
exception stmating that no object name was found in the object' definition line. 

The ol>je~.t 1larnt:s in the instruction text are sopasat.ed by commas, a~hit~e space, or both. The Array 
object t,ype ha.s, in addition: a block specifying the array's dimensions, contained in square brackets. The 
array dimensioiis are written to  a separate chunk in the chunkA4rray, starting from the opening square bracket 
('!(") and ending wit,h the closing Bracket (:'In), when t,he instruct,ion is broken into pieces. 



1111: scmtlntemnterseauence: Deflnltlon B l a k s  J 

" ~ r w ' ' ) l ~  4) .Decompose =j I 
I 

I 

' f - - - ' L - - -  
I 
I 
I 
I 
8 
I 
I 

6) .~etlnteger~a&m eter 
I 

I 
C I 

I 7) .~etlnteger~a&meter 

I 

I 

' f - - - 8 L - - -  
I 

9) .Set preface cdmmein 
I 

I , 

. - 
I 
I 

* - - - 1 0 2 _ - - -  I I 

11) .Set inllne comment 
I 

I * - - - - - 11)-;- - - - - - 

Figure 14.8: 11ltcrprctc:r Cllass intt.r.nct,ions whcn Rending an Oi>j~c:t 1)efi;li:ion Block 



Once tlle instruction has been brolren into chunks, the ScriptIntorpretcr s t a m  to loop through the list of 
object names found in the chunk.4rray. For each object name! it calls the Moderator t.o crea,te an insta,nce 
of t,he object,. The Moderat.or returns a point,er t.o the new object, which t,lle ScriptInt,erprc:ter checks. If 
the pointer is NJLL,  the ScriptInterpreter throws an exception stating t,hat a requested object could not, 
be created. This escept,ion includes the name of the object, the object type, and the text of the instruction 
t'hat at,t,empted to create the object. If the returned pointer n7as not XITLL, the Script'Int'erpret,er co~itinues 
processing. 

If the object crea.t(ted was a.n Array, the Script,Int,crpreter takes the next dmnk from the chunkArray, ant1 
asks the TextPasser to break the bracketed dinlensions apart. These dimensions are then passed into t,lle 
new Array object to set the number of rows and columns for the array. 

Finally, the ScriptInterpretcr sets the comment strings for the new object by accessing the preface and 
inline pieces in t,he Tex~,Parser, and passing those pieces int,o the object. This completes the configurat,ion of 
the object, so the ScriptInterpreter requests the n e b  name from the chunkArray. It  t'hen repeats the process 
until all of the named objects h a v  been creat.ed. 

Command Blocks 

The time ordered sequence of events execut,ed when GM.4T runs a mission sequt:nce are encoded in conmlands 
-  object,^ that instantiate the classes derived from the Gma.tComma~d class, as descri1)ed in Chapter 21. 
Figure 14.9 shows the sequence of events that is followed by the Script Interpreter when a command is config- 
ured. The first cornmand detected by the script int.erpreter toggles the ScriptInterpreter's inCornmandMode 
flag on, and scts the flag in the ScriptRca(1JVritc:r so that all subsequent assignment blocks rwre treat,ed as 
Assignment commands. 

When a command is detected and set for configuration, the ScriptInterpreter calls the Atoderator and 
asks for an instance of the command. It then sets the generating string on the command. Some conlmands 
parse the generating string intc?rnally, using the boo1 InterpretActionj) method. Colninands that use t,his 
method create an instance of t,he Testparser, and use its public methods to decompose the string into its 
const,ituent pieces. An example of this type of comnland is the Propaga,te command, which has a generat.ing 
string that can consist of many different ol)t.ions. The complexity of the command rna.kes it difficult to  handle 
in a gc?ncric fashion in the ScriptIntcrpreter; hence it providas the parsing s e ~ ~ i c e  internally. Co~nrnantis that 
perform internd parsing return a value of 'true" from the call to 1nterpret.Actioiz; those that expect to  be 
configured by t,hs Scrip~Interpreter return '[false." 

If the comma.nd is not parsed internally, the inst.ruction lint! is broken into chunks, using the cams call 
a,s perfor~ned for object definition. The resulting chunks are tht? comrnand conlponents needed to config~lre 
the command. The instruction components embedded in a GMAT comlnand line typically exist. in one of 
several different forms: 

1. Stand alone commands. Some commands take no parameters at all, and are simply added to the 
command list unadorned. An cxanple of this type of command is thc EndTargct commantl, which 
itlcntifics the end of a targeting loup. 

2, Lists of referenced objects, separated by wllit,e space or co~n~nas.  An example of t,his type of command 
is tho Sa.w command, which has t,ha format 

Save <objectName> 

Whe11 a Save corntnantl is encountered, the narne of t.he object is passed to the command using the 
SetRafc?renceObjectiXi31~1t~()) method. 

3, Lists of paranlet,ers, separated by whit,e Spitce or commas. An exa~nplt? of this t,ype of cornrnand is the 
Report command? which has tho forrnat 

Report reportobject parameter1 parameter2 . . .  



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ld: Scnptlnterprrtcr Scqucnce Command Blahs 

5) returns t n x  d strinb war lntcrnalh 
+ - ~ t e ~ m ~ e q ~ a l ~  oLneyIs5 - - - 

I I 

Chunk 8s paramclrr refereno1 ~ l ~ . c c c ~ m m e t c r  : 

$ - - - - - - -  :--19---1----- 
~l ) .snaef+bjec~  

&- - - - - - Z ) 1 -  - - - - 

Fignrc 14.9: 1ntcrpri:tcr Ci;lss Ir~tcractions when Readirlg a Cormlrnand Block 



When a Repo1-t coxnnland is encount.ered, the name of the it.e~iis in tha list are passed to the command 
using the Set RefObject () method. The conlmand 1alidat.e t,eh first object as a ReportFile instance, 
arid the subsequent objccts as paramet.ers. 

4. Object,s with references. Some commands idontify objects that hat-(? associated ol~ject~s. An example 
of this type of conlnlarld is the BeginFiniteBurn command, which has tlle forinat 

BeginFiniteBurn <burnName>(<spacecraftName>) 

The objects identified on t,his line are a.ccessed from t.he Moderator, and passed int.o the command as 
reference objccts. 

Once these conlponents have been set on the corninand, the Script,Interpreter sets tlie comment strings 
for the new object by accessing the preface and inline pieces in the TextParser, and passing t,hose pieces into 
the object. This cornp1t:tt:s the configuration of the command, so the Script1nterprc:ter requests the next. 
name from the chunkbrray. It then repeats the process until all of the named objects have been created. 

Assignment Blocks 

All logical blocks that are not comment blocks, object definit,ions, or convnands are assignment blocklo. 
Processing for these blocks is shoum in Figure 14.10. The result of parsing an assignment. block can bc either 
a changed value in a configured object or a new coninland inserted into the mission sc?quonce, dt:panding on 
the setting of the inConlmaildMode flag. If the assignment line includes a function call or inline mathemat~ics, 
the ScriptInterpreter a.utoniatically swit,ches into conlmand mode and an appropriate command is created. 

All assiginlent lines consist. of an object idont,ifier, and an optional equals sign followed by a riglit side 
expression (typically referred to as the ''right hand side", or RHS). The only assigii~nent lines t,hat. a,re missing 
tlie equals sign are function calls, which execut,e a CallFiinction command. Assignmeilt lines fall into the 
following categories: 

1. Object properties. Object property a.ssigunents are used to set the internal data on configured objects. 
Object properties can be set t,o constant values, t,he current values of variables, or the value of an array 
element.. 

2.  object,^. Object,s can be set. equal to other objects of tlle sane type. iVht:n this form of ~ssignment. is 
used, t,he Copy() method of t.he objoct on tlie left sidt? of t.he assignment is called with t.he object on 
t,he right as the input parameter. 

3. Function calls. Function call lines are used to execute Gmat.hnctions and Matlabhnctions. 

4, h?atheniatics. Scriptcd mathematics, as described in Chaptc.r 24, are also managed on assignment 
lines. 

Figure 14.10 shows the sequence of function calls required to int.erpret assignment. lines. The command 
configx~rations segilents, shown in greon on tht: figure, execute the sequence described in the preceding section 
and shown on Figure 14.9. 

14.4.2 Script Writing Call Seq~zence 

The script writing process is considerably simpler than t,he reading process because all of the objects that 
need to be written to  script already esist. and are configured to meet the user's needs. Figure 14.11 shows 
the int,eractions performed bet,wean t.he GNAT classes nrhen a script is writ,tc:n. 

1 0 J 2 ~ ~ i , ~ ~ l e ~ t  lilles ir: the current scripting for GhI,%-l- all s tsr t  with the text strill# "(>?&I"". Since the ScrjptI:lterprei,ez 
trr?ats aS~igfincnt fine5 i a t .  in fhc paralng sequcncc, this st,ring is now aptio:-inl, tl~ough rccorr.mcndcd for any scripts that %~;.;ilj 

lje read i l l  hlA'.L'I,A.H !o woiil t:vt~l'usiug that s:~slarrl. 





P 
9 ig1.11~: 1.4.11: Callr Maclc: w h r l  lt'rjtiog a. Script 



14.4. CALL SEQL'FMCIYC FOR SCllII'?' REAPING AXP tITi1 TIXG 1-15 

.4 script writing sequence is initiated then the Modcrator calls the Build(stc1::string nameOPile) method 
on the ScriptInterrpeter. If the name0fFile paramet,er in the Build() call is not t,he empty string, then the 
ScriptInterpreter sc?ts the script. filo name on the ScriptRead\'C7rit,er to the name passed in with the call. Next. 
the script is opcned as an output streanl. The header comment is written to the st,ream, followed by any 
global model information contained in the current GbI-AT run' I .  

After all of these preliminary data have been written, the ScriptInterpreter writes the configured objects 
stored in the Configura.tionMmagor t,o the script stream. These configured object,s are accessed by type, SO 

that t.he resulting script. presents t,he objects in sections based on the object. type. The ScriptInt.erprcter calls 
the Moderator to get the list of objects by type. If the list is erllpty for a given type, the ScriptInterpreter 
skips to the next t,ype. Each block of objects is prefaced by a section delimiter comment. (as shown above). 
The scction delimiters are gt?neratc?d internally in thta ScriptInterpreter when it dettamines that t,here is an 
object of a specified type t,llat needs to be written. 

Configured object,s are written in the following order: spacecraft, hardware, formations, force models, 
propagators, Burns, variables and arrays, coordinate systems, solvers: subscribers (p1ot.s: views and reports), 
and functions. E,ach configured object supplies its own seria.lized d(:scription, encoded in an 3td::string. This 
string is accessed using the object's GetGenerat,ingString() method; the ScriptInterpreter calls GetGenerat- 
ingString, and sends the resulting string t,o the Script.ReadlVriter, which writes it t.o the script stream. 

Once d l  of the configured 0bject.s have been written t,o the output stream, t,he ScriptInterpreter sends 
the block delimiter for the mission sequence to the ScriptReadWriter. The ScriptInterpreter then accesses 
the starting command in the mission sequence by calling the GetiTextCo~nmand() method on the h4oderator. 
Since the command sequence is a linked list of Gn~atCornmand objects, the Scripth1tc:rpreter no longer needs 
to  access the Moderator for conlmand information. It sets an internal pointer to  the first conlnland in the list.. 
This pointer, the current conlmand pointer, is used to  call GetGeneratingstring0 on that command. The 
returned st.ring is passed to  the ScriptReadWriter, which writes it to  the script stream. The ScriptInterpreter 
then accesses the next command in the sequence by calling the Next() method. This process repea.ts as long 
as the pointer rcaturned from the call to Next() is not XIILL. 

BranchCommands automatically include the string data for their branches when their GetGenerat- 
ingString() method is called. The ScriptInt,erpret,er does not have any special cotlc that needs to be run 
when a BrandlComxuand appears in the command secluc:nce. 

Once all of the co~nmands in the command sequence have been written to the script stream! t,he Script- 
Interpreter sends the footer comment. to the TextReadiVrit,er, which writes out the footer con1 ment. The 
Script,Intcrpreter then tcll the Script,RoatliVritcn t,o close the script stream, conlplet,ing the script write func- 
t ion. 

I 1 r.;. r:le global infar:~iation currctltly consists of tiit. flags used by the SolarSysterri to  rontrul the update intenxls fcr planetary 
positions and tlie Earth nutal.ion nlatrix. 7'Ii.c Moderator call: (;etC$ioballte~i>'T'(t>:t()~ iistrd hcrc returns t.hc rcsuj! of calling 
(2rlGerlrralingSLring on Lhe cuireiit SolarSystein. 'I'iiis meLliol i  ileetll; to be aclded lo the L*lodel.ator. 





Chapter 15 

The Graphical User Interface 

I'm not sure yet how to str~ict.urc? this piece ... 





Chapter 16 

External Interfaces 

GM-AT can bc driven from the MATLAB enviro~mlent, using the clcsig~l presented in this chapter. More t.o 
be written later. 

16.1 The MATLAB Interface 

16.2 GMAT Ephemeris Files 





Chapter 17 

Calculated Parameters and Stopping 
Conditions 

Linda 0. Jurt 
Goddard Spczce Flight Center 

GMAT co~lt~ilis classes designed to perform numerous data calculations applicable to tlie analysis of 
spacecraft. trajectories, orientations, and mission goals. These calcula,tions are performed by t'he Paran~et.er 
class hierarchy. This chapter describes, in some detail, the design of t,liese Paraniet,er classes. 

The Parameter classes can be used in conjunct,ion with the propagators to perform precision propagation, 
enabling t.he abilit,y t.o st.op on calculated values provided by tho Paramc:t(:r objects. Section 17.2 provides 
a descriptioil of the stopping condition classes. Stopping conditiolis are used by the Propagate command, 
described in Section 22.2.2. 

17.1 Parameters 

17.2 Stopping Conditions and Interpolators 

Propagation in GMAT is described in Section 22.2.2. The propagation dgorthrne described there include 
descriptions about stopping at specific locations on a SpitceObject's trajectory, and include a discussion of 
t,hc use of interpolittors for these stlopping points. The parameters and interyola,tors nsr:d for stopping are 
e~lcapsula.ted in thc stopping condition classcs and interpolator clltsses shown in Figure 17.1. Thesc classes 
are described in the following sections. 

17.2.1 Stopping Co~iditions 

Stopping conditions are implemented in two classes, as shown in the figure. These classes are described 
below. 

Note: These sections need to be filled in.  There will be some updates as implernentotion of the Propagate 
trpdates proceed. 



cd: Stopping Condklon Classes 

The BaseStopCondition Class 

Methods 

r bool Initialize() 

e virtual bool Evaluate() = 0 

r virtual boo1 IsTimeCondition() = 0 

r virtual void AddToBuffer(boo1 isInitialPoint) = 0 

e bool Validate() 

e void Reset() 

e Real GetStopIntervalO 

r Integer GetBufferSizeO 

r Real GetStopEpoch() 

The Stopcondition Class 

Methods 

e virtual bool Evaluate() 



r virtual bool IsTimeCondition() 

r virtual void AddToBuEer(boo1 isInitialPoint) 

r Real GetStopEpoch() 

r GmatBase Clone() 

17.2.2 Interpolators 

GNAT implements interpolators using a framework implemented in the Interpolator base class. Each derived 
class uses the 1nterpola.tor data structures and niethods that. implement the tlata buffers, add points to them, 
clear the buffers, a.nd provide buffer size information. The base class prcmides the: interfact: to the call t.o 
obtain interpolated dat,a as an abstract method, Interpolate(). 

The Interpolator Class 

Interpolator is the base class for all GMAT interpolators. It implenlents the da.ta storage and access functions 
needed by interpolakion rout,ines, and provide the facilities needed to store and access the tlata in a ring 
buffer sieed to  match the int.erpolation algorithm. 

Class Attributes 

a Real* independent: The array of independent data used for interpolation. 

r Real** dependent: The dependent tlata arra.ys used for int,erpolation. 

Methods 

a bool AddPoint(Rea1 ind, Real* date): Adds independent and dependent data to t,he arrays of 
da.ta dements. The data is stsores in thesc arrays using a ring buffer allocation: so t,hat data does not 
need to be copied when the number of points in the buffer exceeds the all~cat~ed array si%t!s. Instead 
t'he new data overwrites the oldest values in the arrays. 

r void Clear(): Resets t,eh rind buffer pointers, so tha.t the buffers appear to bc t?nipty on their next. 
use. 

r Integer GetBufferSizeO: Returns the number of data points that can be stored in the ring buffer. 

e virtual boo1 Interpolate(Real ind, Real* results) = 0: The a.bstract method that. gets overriddt?n 
to  implement specific interpolation algorithms. 

The Linear, Cubic Spline, and Not-a-Knot Interpolators 

GMAT iinp1ementnt.s three interpolators: a linear interpolat.or, a standard cubic spline interpolator using the 
algorithm described in IXR,ecipes], and the not-a-knot algorithm described in [Mat.hSpec]. These classes 
i~nplemc?nt two class specific mc?t.hods: 

Methods 

r GmatBase* Clone(): Calls the class's copy constructor to make an exact copy of the illterpolat,or. 

r virtual bool Interpolate(Rea1 ind, Real* results): Implements the spc:cific interpolation dgo- 
rithln used by the interpolator. 

The Clone method behaves as i11 all other GmatBase subclasses. The Interpolate() methods implement the 
interpolator specific algorithms, as described in the ref(trences. 





Chapter 18 

Propagators = Integrators + Forces 

Darrel .J, Conway 
Thinking Systems, I n c .  

18.1 Propagator Overview 

18.1.1 The Equations of Motion 

18.1.2 Division of Labor: Integrators and Forces 

18.2 Integrators 

18.3 The GMAT Force Model 

18.3.1 The PhysicalModel Class 

18.3.2 The ForceModel Class 

Adding and Removing Forces 

18.3.3 Applying Forces to Spacecraft 

18.4 The State Vector 





Chapter 19 

Force Modeling in GMAT 

Darnel J .  Conwuy 
Thinking Systems, Inc. 

Chapter 18 describes GMAT's propagation subsystem, and introduced the force model components used 
to perform precision propagation. This chapter describes the ilnplementation of individual conlponents of 
the force model. 

19.1 Component Forces 

19.1.1 Gravity from Point Masses 

19.1.2 Aspherical Gravity 

19.1.3 Solar Radiation Pressure 

19.1.4 Atmospheric Drag 

19.1.5 Engine Thrust 





Chapter 20 

Maneuver Models 

Darrel J .  Conwuy 
Thinking Systems, Inc. 





Chapter 21 

Mission Control Sequence Commands 

Dal-re6 J. Colz,wiq ' 

Thinking Systems, Inc. 

2 1.1 Command Overview 

Users model the evolution of spacecraft over time in GMAT using a mission control sequence that consist,~ of 
a series of commands. These commands are used t,o propagate the spacecraft, o nod el impulsive maneuvers, 
turn thrusters on and off, lna,ke decisions about 110157 t,he mission should twelve, t8une paramctcns, and perform 
otller tasks required to  perform rnissioil analysis. This chapter describes the core components of the systelu 
that implement this functionality. Chapter 22 provides a more in depth examinatmion of the specific commands 
inlple~nented in (;MAT, providing dotails about the implementation of each. 

21.2 Structure of the Sequence 

The mission control sequence is designed to  present. users with a configura,ble, flexiiit>le nlechanistn for control- 
ling the GMAT model. Commands may manipu1at.e modt?letl components; control modd visualization and 
other output data, det.ermine the order of subsequent operations through looping or branching, tune paran- 
eters to mt?c$ mission criteria: or group comma.nds tog~.ther to be executed as a singlo block. E d 1  GMAT 
Sandbox is assigned its owl1 nlission control sequence1. This design feature drives the la,tc bindi~lg feat,ures 
of objects in the GhIAT Sandbox (see Section 4.2), which, in turn, places dernands for late binding support 
on the GM.47 commands. The following paragraphs provide an overview of t.hese features. Implenientat,ion 
details itre described later in the chapter. 

21.2.1 Command Categories 

GMAT commands can be broken into four dist.inct categories: "Rt:gular" colnmantls, Control Logic com- 
mands, Solver commands. and Function commands, as described here. 

Regular commands arc commands that perform a single. isolated operation and do not depend on any 
other command to  operate. Esamplos of the regular command are the Propagate command and tho ?vIaneuver 
conmland. The regular commallds can appear anywhere in the Mission Control Sequence. 

'While llie cu:.rer~l it~?ple~iiental.loit of CiR1X.I' has a sii)gle Sa,~~dlios! Ghl.4'S is tlesigr,el tcb suppor!, :~iiiltipie sari~lhoxes, 



Corltrol Logic conixnands are used t,o perform control flow operations in the Alission Control Sequence. 
Each control logic conlmand controls a list of conlmands .. called the command subsequence -.. that is execut,ed 
1)y the cont,rol logic conlmand when that cornmmd detennines t,hat. execution is needed. -411 control logic 
c o ~ ~ m a n d s  are paired with a matching Entl command. The End c:ommands identify the end of the cornmand 
subsequence controlled by the control logic conzmand. 

GMAT suppo~-t.s three cont,rol logic commmtls: If, While a.nd For, a~hich are paired with the con~nlancls 
EndH, EndWhile and EndFor. For comnlands are used to iterate over t'lle subsequence for a fixed number 
of it,erations. If commands provide a mechanism to  fork the Mission Control Sequence based on conditions 
dctcrct.ec1 during esecut.ion. While commands are used to it,erate over the command subsequence until some 
condition is met. 

Solver commands are similar to  control logic commands in that they manage a command subsequence 
and use that subsequence to explore how changes in parameters affect the results of executing the subse- 
quence. GMAT has three classes of solver commands: Targeters, Opt,imizers, ant1 Iterat,ors. Targct.ers a.d.just 
parameters in order t.o meet a specific set of goals. Optinlizers also adjust parameters, in order to find t.he 
set t,hat opt.imizes a problem objective. Iterators are used t,o observe the results of changes to parameters, 
so that t.hc statistical behavior or the solution space of t,he subsequence can be measured and recorded. 

One key difference between solver colnlnands and control logic conlmands is that for the cont,rol logic 
conunands, the changes to  the spa.cecraft and other mission components applied during a subsequence run 
;i,ffect subsequttnt runs of the subsecluoncc. Solvers reset t.he spacecraft sta.tes from one iteration to the next, 
so that the effect of changes to  the input parameters are applied to the same set of initial conditioils from 
one iteration of the subsequence to the next. 

Functiorls are used in G31-4T to  gcnc:ralize common tasks, t o  con1municat.e wit.h MATLAB, and t,o en- 
cap~ulat~e nlult.ist,ep tasks into a single call in a mission. The  filr~ction subsyste,rn design will he tlocu~nented 
at a later date. 

21.2.2 Command Sequence Structure 

The mission colltrol sequence is implemented as a linked list of co~nmand objects. The sequence is constructed 
from a script by appending linlis to  t.he list as they are constructed by the script interprtrter. Commands that 
control subsequences builtl the wbsequc?ncos managing a child linked list. The tl~ild list is constructed 
by appending links until the related subseq~uence termination co~rlnland is encountered, terminating the 
subsequence list. 

Users can also interact with the comrnand sequence from the GMAT GUI; these interactions let users 
append co~nmitnds to the sequence, insert commands at intermediate  point,^, and remove commands. Users 
view the seqwncc? as a hierarchical tree, as shown in Figure 21.1. The mission is mc)deled by executing t.hc 
conl~nands in the linked list sequentially. The mission tree shown on the GUI pro~ides a graphical view 
int,o the linked list, including the comnland subsequences for comnlands t,hat control subsequences. The top 
node in t,he tr(3(3 is t , h ~  the first link in the list.; in the fig~irc, t,llat node is a. Propa.gate command, labelcd 
Propagate1 on the mission tree. The entire linked list  consist.^ of seven nodes: Propagate - Propa~?lato - 
Target - Propagate - Pr0pagat.e - Target - Propagate. Ea.ch of t,he target nodes controls a subsequence used 
in the t.argeting process. The first, of these nodes is expanded in the figure t o  show the subsequence. For 
this example, the subsequc:nct:  consist,^ of five links: Vaxy - Maneuver - Propagatte - Achieve - EndTarget,. 

Rework this piece - it's not currently used GMAT does not restrict the dept,h of the nesting levels 
for the comnlands that cont.ro1 subsequencc>s. Tho command classes include a count,er t,hat monitors the 
current nest,ing level in the cornmanti sequence. The nosting level is set when the commc~.nd is adtlcd to the 
linked list. The main command sequence has a nesting level of 0. Subsequences off of the maill sequence 
increment the level to 1; subsequences contained in these subsequences have a nesting level of 2, and so forth. 
The subsequence t.ernlmination co~nlnantls, typically identified by an "End" prefix, have a nesting level set 



21.3. TIIE C'Oat.lAZAiVL) BASE; CL,ASSES 163 

to the same level as the rest of the subsequence, because they are t,he last cominand in the subsequence, and 
therefore exist at the subsequence level. 

21.2.3 Command-Sandbox Interactions 

When a mission control sequence is run, all of t,he configured  object.^ used in the run are copied from the 
Configuratioil Manager i1lt.o the Sandbox used for the run. These copies are place into a staadard template 
library (STL) map matching the object names to  pointers to the local copies in t.he Sandbox. These point.ers 
need to be bound to the commands prior t,o execut.ion of the ~nission control seqi.~encc. This late binding is 
performed during the iriit,idization pha,se described below-. Additional details about the la8te bindign strategy 
inlplernented in GTvIAT can be found in Section 4.2. 

During mission control sequence execution, the commands interact, with tht! object copies to model the 
interactio~is dictated for the model, as described in the execution sect,ion below. These irlteractions change the 
local copies, modeling the evolution of the system. Once the command sequence completes execution (either 
1)y finishing t,he sequence, encountering a "Stop" command, or detecting a user gent:rated stop evexit), eadl 
GMAT comnland is given the opportunity to complete any pending operations. This fiilal step, described 
in the Finalization section below, is used to close open file handles, clean up temporarily alloca.ted memory, 
and perform any other houselreeping tasks needed to maintain the 1nissio11 coritrol sequence for subsequent 
user a.ctions. 

21.3 The Command Base Classes 

Figurc 21.2 shonrs core properties of tlie base classes used in the Co~llnland sub~yst~em. The top level 
base class, GmatCommand, provides linked list iilterfaces and methods used to  parse command scripts. 
BnmchCornma.nd adds capabilities to implement and execute commands that nm subsetluences ... specifically, 
the Cont,rol Logic, Solver, and Flinction catc?gories of commands. Additional capabilities recluirt:d by the 
Control Logic conlrilands are provided by the ConditionalBranch class. Capabilities shared by all Solvers 
are implemented in the SolverBrancllComlrland class. 

21.3.1 List Interfaces 

To be filled in 



ommand Base aasses ) 



21.3.2 Object Interfaces 

To be filled in 

21.3.3 Other Interfaces 

To be filled in 

21.4 Script Interfaces 

The standard script syntax for a comnland is the command name followed by zero or more text. strings 
separated by white space. Comnia.nds t,hat are scripted using t,his syntax are handled generically in the 
Interpreter subsystem, as described in Chapter 14" Comlnands that use more complex scripting t.han a 
simple list of e1ement.s manage their on711 parsiiig in a customized implementation of the InterpretAction() 
method. This section describes the commarid base class structures and methods that are used by conimands 
that override Interprt?tAct.ion() and parse their configurations intt!rnally. Parsing for Colnmands that do not, 
override the InterpretActionO method is handled in the ScriptInterpreter. The methods described in the 
following text. are not used by those Commands. 

21.4.1 Data Elements in Commands 

Conlnlands can be scripted to  describe the act,ions taken on elemonts of t,he model (i.c. objects insta,nt.iating 
GMAT classes), or to  manipulate specific data elements of these objects based on the rules encoded into the 
conlmand. When performing the latter task, the spcxific data c?lement is accessed using an ElemcntlVrapper 
helper object t,hat can nlanipulatc? dat.a represented by the following types: numbers, object propel-tics, 
variables, array elements, and Paramet.er objects. In addition, comnlands may be corlstrusted in the future 
t,hat opera.te on Array objects and strings; the infrastructure needed for these objects is included in the 
wra.pper enumerations, but not yet implementc!d. 

The data wrappers are described in Section 21.1.3". These wrappers are designed to be used by conima:ds 
when needed t.o handle single valued Real data dements in the conimands. The Gmat. namespace includes 
an enumc?ration, 'CVrapl>erDataType, with entries for each of the supported data types. This enuincrat,ion 
is described in Section 7.3.1. The dat,a wrappc?rs are used to  standardize tho interface to numbers, 0bjec.t 
properties, variables, array elements, and other Parameter ol>jects to perform the command operations. 
Arrays and Strings are handled separately by the commands .- arrays, because they can have more than one 
value; and strings, because they do not provide Roal number data for use in the commands. 

Figure 21.3 shows an overview of the process used to  build and validate commands encountered in scripts 
and on the GUI. The portions of the digam colored orange are performed through calls launched by t.he 
Scripthterpreter. Commands createct from the GUI follow the procet-lure shown in purple. In both cases, 
once t.he command has been built and the early binding data has been set, the command is validated using 
methods provided by the Inberpreter base class. The calls made for this validation include calls that build 
t,hc Element.Wrapper members used in the conimantl. These calls arc shown in the figure in blue. 

The process shown in Figure 21.3 must be performed before the niission control sequence can be executed 
in a Sandbox. That includes ident,ifying all of t,he names of configured objects that t.he sequence will need, 
creation of any Parameters (perfomled in t,hc Ch(?ckI!ndefinedRc:fc:re~lce ~net~hod) that will be required, and 
creatio~l of t,he DatalI7rappcns t,hat will need to be populated during Ixlitialization in t.he Sandbox. 

THe following subsections describe the support methods provided by the Interpreter and GUI subsystems 
to cotifig~~rc the command objects. These paragraphs are separa,ted to  match the three sc:ctions of Figure 21.3. 

2Somc coxtimands tliat, do not follow this gc?ncric iicscription arc abo handlcd it; ihc Inter[)rc?ters at this writing. 
3; i q  , b;l':ierxteti~,Wrii~):~erd use the Aclqtrr clesigti paiterlr, described iii 8.' 



Returns 

Command Created 
from Scnpt 

false 

JlssembleCommand 

SaveData called 

. . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Command Configured 
from the GUI < ,  

I Command ready I / 

cmc->GetmnpprdObj tctFlameAmay 
For each 
Wrapper slnng 

I 

Fig1:rci 2f .3: Calls Made i!~ the  Ill,tcri)retc?rs to Rrlild atld 1:;iJitlal:c Cn:nli~ands. Specific (calls 1:o tlle co~olnantl 
are prefaced on this diagram with the C++ poiater notation, "cn~d-3,". 

Scripted Command Configuration: Interpreter Support 

Scripted commands are configured using the Interpreter::Creat.eCom~nand method called from the ScriptIn- 
terpret,er while parsing a script. The parsing process followed for commands is described at  a high level in 
Section 14.4.1. The Interpreter base class provides several methods that facilitate t,hat process, described 
here: 

r GmatCornmand* CreateCornmand(const std::string &type, const std::string &desc, bool 
&retFlag, GmatCornmand *inCmd = NULL): The method that drives the conmlai~d creation 
process for the Sc.riptInterpreter. This method takes the generating st,riag for the command as found 
in the script, and creates an iristarice of the corrtrsponding G~natCommand object. I t  t,llen calls 
InterpretAction() on the command; if that call fails, it calls the Interprc:ter7s AssembleCo~nmmtl 
method. Finallyt it builds any wrappers needed by the conmland, and validates that referenced objects 
used in the command have been created. 

e bool AssembleComrnand(Gmat Command *cmd, const std::string &dew) : Conimands that 
art.? not internally parsed asc configured in this method. 

Once this step has been completed, the conlmand ha5 been created and strings have been set decribing 
all objects and da.ta wrappers referenced by the command. The da,ta wrappers are not. yet created; thaqt 
process is dcscribed after the next subsect,ion. 



Cornniand Coxfiguration in the GUI 

The GhlAT GVI configures commands directly, based on tlie ent,ries made by a user on the GUI panel 
corresl~onding to the cornniand. Coninlarids are created when a user i1isert.s them into the mission control 
sequence: configured with default settings. IVhen a user opens the configuration panel, makes changes, and 
then applies the cl~anges using either the Apply of OIi button, the panel calls an internal method, "SaveData", 
nrhidi passes the data on the panel to the conmiand object. 

The data passed into t,he object identifies all of teh objects rc?ferenced by the comma.nd. Conmiands 
configured by the GUI typically get populated with valid descriptors; as we will see shortly, the validation is 
repeated after the data wrappers are built, as described in teh nex?, section. All data that requires wra,ppers 
is passed into the command as an std::string, using the SetStringParameter method. The command stores 
theso data for use contructing the n7rappers. 

Interpreter Support for Wrappers and Validation 

Once GMAT has colnpleted t,he steps described above, the comlnand is configured with strings describing 
wrappers and referenced objects, along with any other comma~id specific data. needed to fully configure the 
command. The find steps used configuring the conima.nd are shonm in blue on Figure 21.3. These stc:ps are 
all enca.psula.tcd in the Interpret,er method ITdidateConiniand. The methods in the Interpreter bast? class 
used for wrapper construct,ion and validation are provided here: 

0 void ValidateCornmand(GmatCommand *cmd): The niethod that esecut,es the steps silourn in 
blue on the figure. This method is called directly from tlie GUI, and t'he final piece of CreateCom- 
nlarld froin the ScriptInterpreter. 

e Elementwrapper* CreateElementWrapper(const std::string &description): This method 
takes the descripion of a wrapper object and builds the corresponding wrapper. 

e bool CheckUndefinedReference(GrnatBase *obj, bool writeLine = true): Method used t.o 
verify that, all referenced objects needed by the object (in this case, a Command) exist. The command 
is passed in as tlie first paramctc?r. The second para~neter is a flag intlica,ting if the line nurnber in t,he 
script should bc written; for conmlands, that. flag is left at  its dc?fa.ult true valuc. 

CreateElementWrapper Of these rnet,hods, the CreateElement,S;Crrapper bears additional explanation. 
The following st.eps are implemented in t.hat method: 

1. Determine if t.he string is a number. If so, create a NumberWrapper, set its value: arid return t.he 
wrapper. 

3. Check to see if there a parentheses pair in t,he string. If so, perform the following actions: 

Check to sw? if the tex t  preceding tlie opening paren is an array. If not, throlv an exception. 

0 Create an ArrajrElernentTVsa1>11~!r! and set the a.rrrniy ilanie to the text preceding the opening paren. 

Separate t.ext enclisetl in the parentheses into row aalid colurnn strings 

Cdl  CreateElcmentWrappe~.() for the row and column strings, arid sot the corresponding wrappers 
arid strings in the .ArrayEleinentTV-rapper. 

Return tlle wrapper. 

3. Check tu see if there a period in the string. If so, tho wrapper ncetls to  be oithsr im Objt?ctProperty- 
%'rapper or a ParameterTTrapper. Pesfornls these steps to create the correct type: 

Break apart the string using tlic GmatStringUti1::FarseParametc:r method. 



168 C'II4PTli:ll 21, MISSIOoV CONTROL SSQ I:EYCE CO:\LXA,YDS 

0 Find the owner object; and check to see if it has the type provided in t,he string. If so, create an 
Obje~tPropertyS4~rapper, otherwise creat,e a Paramet,er?fira,pper 

c Set the description string. 

Return the result,iag wrapper. 

4. Check t,o see if t.he string describes a \raria.ble. If so, create a Variable\T.'rappc?r, set t,hc descript,ion and 
value, and return the wrapper; othe~~vise, throw an exceptionJ. 

21.4.2 Command Support for Parsing and Wrappers 

The command bast: class, Gma.tCommant1, includes an inst.ance of the TextPxser described in Section 14.3.3, 
along with an include statenlent for the GmatStringUtil namespace definition (see Section 8.2 for details of 
the GmatStringUtil namespace). These iilclusions make all of the methods used for general purpose parsing of 
text from t,he TextParser and the low level Gmat.StringUti1 na,mespace functions available for use in conlnland 
pa.rsing. These c:lements are used by custom InterpretActmion()   net hods %.hen they are inlplelncnted for the 
commands. 

The base class also provides met,llods used during t,he  eatio ion and validatioil of the data wrappers. These 
nlet,hods are used by the Script,Interpreter, intc?racting with the Moderator in t,he Interpret,er::CreateCon1mand() 
method, to  validat.e the ol>jects required l>y the data wrappers. The met-hods supplied by the command base 
class to  support data wrappers are described in Section 21.4.4. Before describing these methods, the wrapper 
clases will be described. 

21.4.3 Data Type Wrapper Classes 

Many of the commands need to be able to treat all of the usable da.ta types t.hrough a common interface. 
Tablc 21.1 presents reprc?scntative examples t o  the allowed data types in commands. The data type interface 
used by the cornrnands is ca.pt>ured in the E1t:mentWrapper cla.ss, shown with it.s subclasses in Figure 21.4. 
Derived classes are a~~ailable for each of the supported types, using these classes: Nu~nber'lyrapper, Ob- 
jectPropertyTVrapper, VariableWrapper, ArrayElenlentT45-apper, and ParameterT.firapper. The Array class, 
when accessed a an ent#ity ra,ther t,han as a dat,a provider for a single Real number, is handled as a special 
case by any co~nrnand designed to work wit11 Array instances. ils indicated in the table, no current conlnland 
uses this capability, though it will be supported in the Nonlinearconstraint comnlarid in a future release of 
GM-4T. Similarly, strings are handled separately. 

The wrapper classes i~nplement t.hc following n~et,llods: 

e std::string GetDescription() Returns the current descript.ion string for the wrapper. 

e void SetDescription(const std::string &desc) Sets the description string. 

r const StringArray &GetRefObjectNanles(): Returns a StringArrav containing a list of all refer- 
ence objects used by the wrapper. 

boo1 SetRefObject(GmatBase *obj): Passes the a pointer to  the reference 01)ject into the wrapper 
so it can he assigned to the correct internal member. 

e void Setupwrapper(): Takes the description st,ring and breaks it int,o con1ponent.s for later use. 

In addition, each ElernentJVrapper provides two abstract intcrfitccs that can bc used during command 
execution: 

6 Real EvaluateReal() is used to calculate the current value of t,he wrapped object, returning a Real 
number when fired. 

- - - . - . . .- -. .- --. . . . .--. .-- .--. . . .-------. . ---. ------. . . . . . . . . . . .-. .-. . . . . . . . . . . . --. --. . . ---. 
4 A  ialer builcl will detect, and r r l u r r ~  YCILL, lix 21.~a.,y or S t r i ~ t g  ol~jacts! so LIlat. ihry can bt. harttlled wber: ~laedst l .  



T:+l,l(: 21 .I: Script Exali~l)l(~s of Par;rn~ctcr3 t'st'd in Comln;tncla 

bool SetReal(co11st Real value) ta.kt:s a R.eaJ. number as input, and sets the wrapped element to 
t,hat value. It returns a flag indicating success or failure of the data setting operation. 

The derived wra.pper classes implenient t,hcsc, methods (ant1 override the ot.her  neth hods as nc*dt:d) to access 
the data structures corresponding to each da.ta type. 

Notes 
Ir~t.c?g(irs allti Reds a,re tre;ttecl idertt,i(:alIy 

A.ny object parnlncit:er 

Ally Cala~lated Parkameter 
Any Variable object 
Ar~y array etlt,rq. Arra,y sow artd colurt~rt irltlicus 
can be specified using any allowed type 
An entire array. Arrays are not yet si~pportec-l 
in CAi1,Yl' conlma~ds. The KonlinearCo~straint 
conimand will be updated to use sin,gIe rolunin 
a.rrays ( a h  vectors) it] a 1at.cr 1)uild. 
A l,!ocic of text, trc3aic:d ;u i t  single entity. 

Type j Exarx~ples 
N\nnl)er 1 I,  3.1.315927, 3.98600441.5e51 

I 6.025e23 

21.4.4 Command Scripting Support Methods 

Ohjt?ct, Pa.rameter 

Pazameters 
irariables 
ArrayE1enic:rit: 

Array 

Stxir~g 

The Interpreter subsystem provides the methods needed to construct the data wrapper classes and pass the 
wra.ppers into t,ho commands. G~na.tCommand provides the following methods t.o support t,his process: 

' Sat..X, Rurn.V, 
Thr~istes.ScaIeFactor 
Sat.Longitude, Sat.Q~l. 
I, Var 
A(2,3j.l3(Tj.J), 
C(D(1, K), EfF(2, 31, L)) 
A 

"This i s  i t  stri:id7 

void ClearWrappers():  Deldes d l  current wrappers in preparat.ion for a new set of wrapper in- 
stances. 

e const Stringarray &GetWrappedObjectNameArray(): R.eturns a list of all wrapper descriptions 
so that the required wrappers can be constructed. 

bool SetElementWrapyer(E1ementWrapper *wrapper): Sends the wrapper into the conimand. 
If the wrapper is set correctly, this method returns true. If the description contained in the nTsapper 
does not match a description in the command. the wrapper is destroyed. and false is returned from 
this method. All othcr error rcmlt in a thrown exception. 

Note that commands own t,he wrappers passed in, ant1 are responsible: for managing the associated Inernory. 

2 1.5 Executing the Sequence 

The mission control sequence is run in a GA/IA4T Sandbox, following a series of steps described in Section 4.2.1. 
In this section, the conlmarid specific steps are described in a bit, more dttail. 

21.5.1 Initialization 

21.5.2 Execution 

To be elled i71 



. . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
cd: W W p m  Used by Commands 

*krr(lal@alue Rex2 bad 

Figure 21.4: P:tranicrtc.r SY~appc~rs Ubctl by Conm~xt~ds 

21.5.3 Finalization 

To be filled in 

21.5.4 Other Details 

To be filled in 



Chapter 22 

Specific Command Details 

Dnrrsl .I. Conway 
Thinking Systems, In,c. 

Chapter 21 provided an introduction and description of the GMAT command classes and their usage 
when building a Mission Control Sequence. In this chapter, the conimalld claisses are described on a class 
by class level. 

22.1 Command Classes 

Figure 22.1 shows the conimand c1assc.s incorporated into GMAT a,t this writing. The base clitss e1ement.s 
GmatComrnand, BranchCommand, Conditio~ldBrancli, a i d  Sol\7erBranchCo1nmand arc described in Chap- 
ter 21. This chapter looks at the details of the derived classes shown in the figure, providing implernelltation 
specifics for these commands. The following paragraphs review the role played by the command base classes 
and identify pertinent utilit.ies supplied by these bases that the derived classes use to inlplement their capa- 
bilities. 

22.1.1 The GmatCo~nmand Class 

Every ent.ry in the mission control sequence is implemented as a class derived from Gmat,Comn~and. This 
base class defines the int,e~fxes used for the lirlked list structures that implement t8he control sequence. The 
next and previous members implenient the links for the list structure. 

Comlizands are initialized in the Sandbox, as described in Section 4.2.1. THey colitains three data 
structures, set by the Sandbox, t,hat are used to set pointers correctly prior t o  execution. These structures, 
objectMap, solarsys ,  and publisher,  a.re the struct,ures ~nanaged by t,he Sandbox t,o run a misison control 
sequence. The objectMap and solarSys are the local copies of the co~ifigured ol~jects and space environme~lt, 
used when running the model, and need to  be accessed and used to  set the pointers required in the commands 
t,o run in the Sandbox. This setup is performed in t,he command's Initialkc() method. The publisher 
me~ilber is a pointer to the global GMAT Publisher, used 60 send data to the Subscriber subsystem. 

Eac:l1 Gnla.tCommand implemont,~ tlle Exocutc() met,hod defined in GmatCommand. This met,liod. along 
with the internal supporting data structures and support methods; distinguish one command from another. 
Execute() performs the actions built int,o the con~niand, manipulating t,he configured objects to make t.he 
model evolve in the Sandbox. 

Tlie Gma.tCommand class provides a generic implementation of the InterpretActio~~() method, used m,lien 
parsing lines of script. Derived classes that need special handling for this parsing override InterpretAct,ion() 
to  implement the parsing. The GinatConlmand base includes an instance of the TextParser so that derived 
commantls havc the facilit,ies proviclsd for parsing. 



I I 
*Wln l ra  

NentmarOaulnmt 
4<Wrn?* 

Cnauer'8t 

4 4 
<< F"tUfX *> 

tvblrd 

I I I I 
MIX 

E' ,QrnrUrobpn  

Fig~rc! 22,1: GMAT Coin~na.nd C'lasscs. 
Classes sljo\vr, j:i y e l l o ~  are 1)wc classes: gr;rc?c.:n arc? coot,rol flow ttotnma.rulst 111:i+: are Solver rela.ted c:)rr~rna~ocis, 
anil orange are the stand alone comnlands. 

22.1.2 Branch Commands 

Sesting in the mission cont,rol sequence is iruplementeti through the BranchComlnand base class. This claqs, 
derived from GniatCommand, adds one or more branches to the main misison sequence. The core feature 
os hhe Bra.nc11Cornmands is the ability t,o exrecutre these branches when conditions dietmate that t,he britnc.h 
should execute. This feature provides users with the ability t,o execute comn~ands conditionally, to loop over 
a set of commands, and to run routines that tune the mission t,o meet or optimize selected goals. 

Conditional Branch Commands 

Some branch commands need tlle ability to e~raluate condit.ions in order t o  determine if a branch sllould 
he execut.ed. THe Condit.ionalBranch class provides t.he structures needed t.o ident,iofy and evaluate these 
conditions. 

Solver Comnands 

The Solver s~bsyst~em uses sevt?ral commands designed to int,eroperat,e wit,h the Solvers. Because of t,he 
close linkage between these commands and the corrt:sponding solvers, the description for these conlmands 
is given in Section 23.7.1. The co~ninands defined i11 that section are the brancll co~ninands Iterate/EndIt- 
erate, Target./EndTarget,, and Optimize/EndOptimize, a.nd hhe GmatCommands Vary, Achieve, 3,Iiilimize, 
No11EnearConst,ra.int, Gradient, and TBD commands associat.ed with the scanners. 



The nature of the problenl encountered when running the Solvers requires that the sytates of many of the 
objects defined in t,he Sandhos be stored a t  the start of the Solver esecution, so that they can be reset as the 
Solver itt?rates over the variables used to perform its tasks. The SolverBranchCo~nmand class provides the 
da.ta structures and methods needed to  maint,ain these states while tile Solvers are performing their tasks. 

22.1.3 Functions 

To be filled in 

22.2 Command Details 

22.2.1 The Assignment Command 

Assignment commands inlplenlent the rnetllods necessary for users to pass data into and 1)etween objects, 
and to create copies of objects at  specific points in the model, for use in the mission control sequence. 
Assignment commands are used to  set one or more object propert,ies while 'secuting t.he mission control 
sequence. -4s can be see in Table 22.1, the commarid has t.he genoral form 

LHS = RHS (22.1) 

where the LHS entry is a single object or object property, and the RHS entry is a nuinl~er, object or object 
propert.y, or equation. 

Table 22.1: Assignment Command 

Script Synt,ax: GMAT Argl = Arg2; 

Command Description 
Argl Default: N/A . 0ptions:ISpacccraft Parameter, Array element., Variable, or any 

other singlo clement. user defined paranlttter]: The Argl option allows tlle user to 
set Argl to Arg2. Units: K\'l'A. 

Arg2 Default: N/A . 0ptions:ISpacecraft Parameter, Array element, Variable, any other 
single elemcnt user defined parameter, or a of the aforementioned pa- 
ramc?ters using mat,h operators]: The k g 2  option dlows t h ~  user to define Argl. 
IJnits: W/A. 

Script Examples 
% S(?tting a va,rial)le t.o a. 1luin1)er 
GMAT tes tVar  = 24; 
% Setting a. variable to the value of a math statement. 
GMAT tes tVar  = (testVar2 + 50)/2; 

22.2.2 The Propagate Command 

Propagation is controlled in the Mission Control Sequence using the Propagate command, which has syntax 
described in Table 22.2. 

Triblc 22.2: Propagate C:ornmand 



Propagate Mode BackProp PropagatorName(SatListl,~StopCondListl)) ... 
BackPropPropagatorName(SatListN,~StopCondListN~~ 

Option Option Description 
BackProp Default: None. Options: [ Backwartls or None I: The BackProp option allows the 

user to set the flag t.o enable or disable backwards propagation for all spacecraft in 
t,he thc SatListN opt,ion. The Backward Propagation GUI checli k)ox field stores 
all the da.ta in BackProp. tZ check indicates ba.cl<ward propa,gatio~i is enabled and 
no check indicates forward propagation. In the script, BackProp can be the word 
Backnrxds for backward propagation or blank for forward propagation. Units: N/B.  

Mode Default: Xone. Options: I Synchronized or None 1: The Mode option allows the 
user t,o set the pr~pagat~ion mode for the propagat.or that. will affect all of the 
spacecraft added to the SatListN opt'ion. For example, if synchronized is selected, 
d l  spacecraft are propa,ga.tod at the same step size. The Propagate Moc-te GUI field 
stores all the ctata in Mode. In t lx  script, Mode is left blank for the None option 
and t,he text of the other options available is used for their respective modes. Units: 
X/A. 

h~opagatorName Default: Defaultprop. Options: [ Default propagator or any user-defined propaga- 
tor I: The PropagatoriVame option allows the user to  select a uscr defined propagator 
to use in spact:craft, aalldjor formation propagation. The Propagator GUI field storcs 
all t.he data in Propczgator44r~~7~ae. Unit,s: N/ A. 

SatListN Dcfa.ult: D(:fa.ultSC. Options: [ Any existing spacecraft or formations, not being 
propaga.tet1 by another propagator in the sa.me Propaga.t(ts event. Multiplc spacecraft 
must be expressed in a cornlna delimited list format. 1: The SatListN option a,llows 
t.he user t,o enter all the sat.ellites and/or formations they want to  propaga,te using 
t.he PropayatorName prop:t.gator settings. The Spacecraft List GUI fiold stores all 
t,he data in SatListN. Units: N/A. 

StopCondListN Default: Defat~ltSC.El:t.pse(lSecs -. Opbions: I Any single element user ilccessi- 
/Parameter ble spacecraft parameter followed by an equal sign ]. The StopCondListN option 

allows the user t o  ent,er all the parameters used for the propagator stopping condi- 
t,ion. See the St opCondListN/Condition Option/Field for additional details to the 
StopCondListN option. tinits: 314. 

StopCondListN Default: 8640.0. Options: [ Real Kunlber, Array element, Variable, spacecraft 
/Condition parameter, or any user defined parameter 1. The StopCondListN option allows 

the user to enter the propagat.or stopping conclit.ion's value for the StopCondListN 
Parameter field. Units: Dependant on the condit,ion selected. 

Script Examples 
% Single spa.cecraft propagat.ion with one stopping contlit,ion 



% Syntax $1 
Propagate DefaultProp(DefaultSC, {DefaultSC.ElapsedSecs = 8640.0)); 

% Single spacecraft propagation with one stopping condition 
%I Syntax $2 
Propagate DefaultProp(Defau1tSC) {DefaultSC.ElapsedSecs = 8640.0); 

% Single spacecraft propagation by one int,egratio st,ep 
Propagate Def aultProp(Def aultSC) ; 

% PvIultiple spacecraft propagation by one integrat,ion st.ep 
Propagate DefaultProp(Sat1, Sat2, Sat3); 

O/o Single format,ion propagat.ion by one int.egration step 
Propagate Def aultProp(Def aultFormat ion) ; 

% Single spacecraft backwards propagation by one integra.tion step 
Propagate Backwards DefaultProp(Defau1tSC); 

?G Two spacecraft synchronized propagation with one stopping condition 
Propagate Synchronized DefaultProp(Sat1, Sat2, {DefaultSC.ElapsedSecs = 8640.0)); 

% Multiple spacecraft propa.gation with multiple stopping conditions and propagatio11 settings 
% Syntax #1 
Propagate Propl(Satl,Sat2, {Satl.ElapsedSecs = 8640.0, Sat2.MA = 90)) ... 
Propa(Sat3, iSat3.TA = 0.0)); 

O/o hlultiple spacecraft propagation with mult,iple stopping conditions arid propagation sett.ings 
?G Syntax Sf2 
Propagate Prop1 (Sat l , Sat2) {Sat 1 .ElapsedSecs = 8640.0, Sat2. MA = 903 . . . 
PropZ(Sat3) {Sat3 .TA = 0.0); 

Ea.ch Propagate comnland identifies one or more PropSetupl, coilsisting of an integrator and forcemodel 
defined to work together. Each PropSet,up ident,ifies one or more SpaceObject that it is responsible for 
advancing through t,irne. This propagation fra,nlework allows users to  model the motion of one or more 
SpaceObject,~ using difirent propagatio~l modes, and to adt.a.nce the Spaceobjects t o  specific points on the 
Spaceobject's trajectories. 

Propagation Modes 

The Propagate command provides several different modes of propagation based on the settings passed into 
the command. These modes arc described in the following list: 

a Unsynchronized Propagation Unsgncllronized propagation is perfornled by executing the PropSe- 
tups assigned to a Propagaze command independently, allowing each Propsetup to find its optimal 
step without regard for other Propsetups assigncd to t h ~  command. 

1 V.,) 
I ~c object used in this role in C:M,V17 is an iustancc of the I ' roSe tap  ~ 1 ~ s .  011 the GUI and 1 1  C;h:YL scri?tinS? 

kc?%-ord i~sed for :'ropSctup insta~~ces is "l'ropagator." i n  th is  documcrtr I'!l use tbr? elms na~nc ,  PropSctup; when rcfcrring xr? 

these ohjec 1.6, 



e Synchroxlized Propagation Synchronized propag.ation steps the first FropSet,up assigned to  the 
command using its opt,imal step, and then advances the remaining PropSetups by the same interval, 
so that t.he epodls for all of the PropSet,ups remain synchronized during intega,tion. 

e Backwards Propagation GMAT usually int.egrat.es SpacaObjects so that the epoch of t.he SpacoOh- 
ject increases. Irltegsation call also be performed so that tlie epoch decreases, modeling n~otion back- 
w a d s  in time. 

a Propagation to Specific Events Propagation can be perfornled in Gh1.4T until specific events 
occur along a SpaceObjcct's trajectory. When the one of these specified events occurs, the Propagate 
conlnlarld detects that a conditioil requiring termination of propagation has occurred, finds the time 
step required to reach the epoch for that termination, and calls the PropSetups to propagate the 
SpaceObjccts for that period. 

r Single Step Propagation When no specific events arc specified as stopping conditions, the Propagate 
coillmand takes a single propagation step and exits. 

The Propagatiorl Algorithm 

Figure 22.2: Execn:ing the Propagat,e C:olimmd 
TIle core propagation code is shown in blue. Steps talcen during startup and shutdown are colored 
grecn. Steps us(:d when stopping propagation at spc'cific cvcnts arc shown in red; additionit1 d(:taiis 
for t.hc stoppit~g condit:i!,o dg:)rit:llro are d~si:rj.l>eti i~ciiuw anti ~~~~~~11 in Figure 22.3. 

Figure 22.2 shows the basic process implemented in t,lle Propagate com~nand. Propagation usually 
consumes the bulk of the time required to run a mission in GM-STT. Because of this fea~ure, t'he Propagate 
command was written to suppor-t execut.ion across several steps in the Sandbox, so that the Sandbox can 
poll for user inttrrrupt,ion during propagation. There itre several init,ializat.ion steps sequiretl at the st,art 



of propagatmion tha.t should not be perfornied when reentering the co~n~nand frorn a polling check in the 
Sandbox. These steps are performed in the PrepitreToPropagat.e(j method identified in the figure. 

Once the Propagate com~nand is ready to perform propagation, the force models used in propagation are 
initialized t o  the start of the step about t.o be taken, and t.hen the PropSt?tups take a single integration step. 
The resulting integrated states are pa,ssed into the relevant Spa,ceObjects through calls to the l?orce&fodcl's 
UpdateSpaceObject methods. 

The next action depends on the propagation stopping mode: if the Propagate command is ~perat~ing in 
single step mode, propagation is complete and control exits the propagat,ion loop. Otherwise, the stopping 
conditions are evaluat.ed and compared to t,he desired stopping events. If 110 stopping conditions liavt? l)et?n 
passed or met, the integrated state data is paqsed t.o Ghl-AT'S Publisher for distribution. The command 
then determines if an int.errupt check is required; if so: control is returned t,o the Sandbox for t.he check, 
otherwise, the propagation loop resumes wit,h an update to the Forcehlodel. 

If a stopping co~ldition w a ~  triggered, it is first tested to  ensure that the triggered st.opping condition is 
not an artifact of a previous propagation execution. This test is only performed during the first propagation 
st,ep of a, new execution. If the stopping condition passes this validation, control leaves the main propagat.ion 
loop and enters t.he control logic implenlentcd to  terminate propagation at. aa specific stopping evtmt, as 
dt?scribed in t,he next section. 

Once the propagation has been terminated, any transient forces set during propagation are cleared from 
the force models, conlmand summary dat.a is set when running with stopping conditions, and execution is 
completed. 

The Stopping Algorithm 

Propagation performed to reach specific events is terminated at  points within a fixed tolerance of those 
events. The algorit,hm employed to take t.his final st,ep is shown in Figure 22.3. Propagation used time a5 

the independent parameter to evolve t.he states of the propagat,ed SpaceObjects, so the stopping condition 
problem can be reduced to finding tthe tirne step t.hat moves the Spaccobjects from t,ha propagatetl state 
immediately prior to  the desired event up to that event. The steps shown in the figure are used to find that 
time step, and to  advance the SpaceObject sta,tes by that amount. 

Stopping Condition Evaluation. The t,op portion of the figure shows the basic stopping condit.ion 
evaluation procedure in the command. First the force model is prepared for a propagation st,ep. If the 
stopping condition is a t,ime based condition, the t.imc? step is est.ima.tod by subtracting the desired time frorn 
the current time. Stopping conditions that are not time based are estinzated using a cubic spline algorithm, 
designed to  avoid knots at t.he second a.nd fourth points used when building t,he splines (see the description 
of the not-a-knot cubic spline in [R/IathSpec]). The stops pcaformcd when running the cu1)ic spline are shown 
in the central portion of the fig-ure m d  described below. 

After the time step needed to reach the desired event has been est.imated, the Spaceobjects are propagated 
using that. time step. The resulting values for the stopping parameters are calculated and compared to the 
desired stop values. If the result is not within the st,oppi~ig tolerance for tho propagation, a further refinement 
is made to t.he time step estimat.e using a secant. based implementation of Nem+.on's method, described below 
and illustrated in the bottom portion of the figure. 

Once the final propa.gation step har been performed to accepta,ble tolerance, the resulting propagated 
states art? applied t.o the SpaceO1)jects. The Publishtx is passed the nen7 state data and i~lstructed to empty 
its data l>uff(?rs. This conlplet,es the st,opping algorithm. 

Cubic Spline Details. The heart of the stop t.ime estimation for events that arc? not time based is the not- 
a-lmot cubic spline algorithm. Tho problt?m solved using this algorit,hm inverts t'he roles of the intlcpentlent 
variable - - -  the propagation t.ime - -  and the dependent variable -.. the parameter that is advancing to reach 
some specific event -.. so that t,he desired time step can be generated based on the desired event value. Since 
we already k~lou: the t,irne st,el) that advances t.he SpaceObject st.ates from one side of the desired event to 



Figure 22.3: Xlgorithn: Used to Stop I'ropagat,ion 
The core algorithm is sliown in ora.ngi?, in thc ccluence 8t, tthc t,op of tlie figmc:. Thc? initid 
estimate of the time step nerdetl to reach the stop epoch is performed using a cubic spliile 
algorithm; this sequence is shown in purple in the center of the diagram. If furtiler refinements 
are necdcd, they are matlc using a secant a!gorithm, shon.:i i ~ i  thc 1(->wc?rt gTCi>Il por-tion of tiic 
fi3u-e. 

t8he other, we have the time st,eps that brxliet, the stop time, and m-e need only refine this time using the 
spline intt?rpolator. 

The spline aJgoritthnl requires five pasirs of data points to esttilnate this time. These tlata points are 
generating by propagating the SpaceObjects across the time interval that brackets the stop event in four 
equally spaced st,eps: evaluating the stop parameter after eadl step. Thesc values and associat,ed times, dong 
vith the parameter valuc and tirne at the start of the procass, are used by the spline t*o estimate the time 
step needed t.o reach the target event. The implementation details, rn shown in tlle figtire, are described in 
the following paragraphs. 

Before porforming the necessary propagat,ions, the Spac.eObjt?ct states a t  the start of the procedure are 
bufft?red so t,hat. they ca,n be restored later. The SpaceObjects are then propa.gatcd for a nlinimurn of four 
steps, checking t,o ensure that t.he st,op event is actually crossed. If the desired event is not crossed, additional 
propagation stops ... up to a, maxi~num of four a.dditiona1 steps -.. arc allowed in order to continue searching 
for the cc~ndit~ion requircd for stopping. Lf the event is st,ill not encountered, and exception is thrown and 
execution tenninates. 

Once the spline buffer has been filled with values that bracket tthe stop event, the spline algorithm is 
called to get t.he time step t'hat is cstimatr?d to  produce target value. This time step is stored, the buffered 



stat,es we rc?set on the SpaceObjects, and the force mocld is reset in proparation for a final propagation st,ep. 
This completes t,he spline interpolation portion of the stopping condition evaluation. 

Additional Refinements using a Secant Solver. For most stopping reqirements encountered in GMrlT, 
the not.-a-knot cubic spline solution described abovf: is sufficiently accurate. However, there are cases in wich 
the propagation needs further refinement to meet mission requirernent,~. In those cases, tho cubic spline 
solution is refined using a secant based root finder. The resulting algorithm, shown in the bottom portion 
of Figure 22.3: is described in the following paragraphs. 

The data in the force model at this point in the process is the propa,gated state data generated using the 
time step obtained from tlle cubic spline. Befort? preceding, these data are replaced with the state data at 
the start of the final step. 

The nex% est.imate, t2, for the desired time step is made using the target parameter value, V T ,  the 
calcu1att:tl parameter value, vo at the epoch to of the initial state and the value, vl, obtained after the spline 
step, tl: was applied using the fornlula 

This formula is evaluated in t,he SecantToStop method. The resulting time step is then applied to the 
Spxt?Object.s. If t,he resulting parameter value is withing acceptable t,olerance, t.he refinement algorit.lim 
terminates. If not, t,he rt?sults from this new step are st.ored. the stat,(? data and force model are reset, and a 
new time step is calculated using t,he equation 

This process repeats until either an int,egrat.ion step is taken that rneets tlle propagator tolerance require 
ments, or an unacceptable number of attempts have been made and failed. Tile Propagate colnmand will 
make 50 such attempts before raising an exception and termminating execution. 

The Startup and Shutdown Routines 

There are several steps that need to be applied before and after propagat.ion to ensuree htat propagation 
uses and reloases data that depends on the current state of the mission control sequence. The following 
paragraphs destribe these steps. 

During startup ; the Propagate comnland updates the object pointers and data structures to match the 
current state of the objects in the ~nission. More to come here. 

Upon completion of propagation, the Propagate command resets its internal flags indicating that the 
command is rea.dy t,o be called at a new point in the mission and clears any transient forces that have 
been set for t,he current propaga.tion. If' the comma.nd is not running in single st.ep mode, the states of 
the Spaceobjects are accessed and stored in the coninland summary buffers for display on user request. 
(This operation is moderately espensive comput.ationally-; so it is not performed in single step mode.) This 
co~npletes execution of tlle Propa.gate command. 

Propagate Commarld Attributes and Methods 

The class desigi for the Propagate command is shown in Figxre 22.4. 



.................................................................................. 
cd: The Propagate Command 

Class Attributes Each Propagate command instance i~nplements the following data elements: 

a StringArray propName: List of the PropSetups used in t.11is command. 

a std::vector<StringArray*> satName: A vector of lists of SpaceObject,~. There is a 1:l corre- 
spondence between tho prop3ame nlenibers and the satXamo StringArrays. In a.(ldition, (?ad] of these 
StriagArrays must have at least one meinber, and that member must be the name of a S~a~ceObject. 

a std::string currezltPropMode: The propagation mode setting for tlie PropSetups. This string 
tracks whether the propaga.tion is synchronized or not.'. 

e Real direction: The propa,ga.tion direction: 1.0 to propa.gato forwards in time: -1.0 to propagate 
backwart-ls. 

int interruptCheckFrequency: The numl>er of steps the: Propsetup will take before: returning 
control to t,he Sandbox. This setting is used t,o allow the Sandbox t,o poll for interrupts from the 
user, as described in Section 4.2.1. 

a std::vector<PropSetxip *> prop: The PropSetups usc?d in this instance. 

v std::vector<SyaceObject *> sats: The Space0bject.s propa.ga.ted by the PropSetups. 

r std::vector<StopCox~dition *> stopwhen: The stopping conditions used to deterniinc whc~i 
propagation should terminate. If no stopping conditions are specified, t.he PropSetups fire the mmini- 
mum nunibcr of times allowed ... one time in u~isynchro~iized mode! a-nd just enough tirnes to meet the 
synclzonization constraint in syridlroriized niotle. 

'GhliZ1' currently supports tivo propagation nodes, synchronized - specified by the key~orc!  "Syrichroniaed", and unsyn- 
ckronizod. the deCauit settifig. Backwards prnpagar,io~~ is trcaicd scparairiy, rhcugh thc "F3ackT'rop" Itcpword is pa:-scd a s  a 
yro~iagsiicii! mode. 



Methods The pul>lic methods iniplemenited in t,he Propagate command are itemized below: 

bool TakeAction(const std::string &action, const std::string &actionData): Performs =tions 
specific to propagation. Tlie Propagate comniancl defines three actions: 

- Clear: Clears the arrays of reference objects used by the instance. Clearing can occur for t,wo 
distinct types of object,s: 

* Fropaga.tor: Clears t,he lists of PropSetups, propagated SpaceObject.~, and the associated 
StringArrays. 

* StopCondit.ion: Clears the lists of stopping conditions, SpaceObjects used for stoppign. and 
m y  msociateci StringArrays. 

- SetStopS'acecl-aft: Adds a named Spaceobject t,o the list of SpaceObjects used for stopping. 

- ResetLoopDatu: Resc?ts the PropSet.ups to  their sttartup \dues so that Solvers obtain consistent 
resu1t.s when iterating ti) a solution. 

e void FillFormation(SpaceObject* so, StringArray owners, StringArray elements): Fills in 
the components of a formation recursivdy. 

a GmatCominand* GetNext():  Returns the ne~?. command that should he esecuted. Propagate 
overrides the implementation provided by GmatCommand so that int,errupt polling can occur without 
abnormally terminating propa.gation. 

a bool InterpretAction(): Tlie parser for the Propagat,e command, overridden fro111 t.he default im- 
plementation to handle all of t,he variations Propa.gate  support,^. 

a void SetTransientForces(std::vector<PhysicalModel* > *tf): Tells t,he Propagate cornniand 
about the current list of transient forces, so taht the command can incorporate active transient forces 
into t,he force model in the PropSetups. 

bool Initialize(): Ferfor~ns initialization in tha Sandbox prior t.o execution of the commarlcl. 

bool Execute():  Performs the propagltt.ion. 

void Runcomplete() :  Clca~is up the commarid structures after completion of propagat.ion. 

22.2.3 The Create Command 

22.2.4 The Target Command 

22.2.5 The Optimize Command 





Chapter 23 

Solvers 

Darrel J.  Conwny 
Thinking Systems, Inc. 

23.1 Overview 

GMAT implements several algorithms used to tune mission models, so that specific mission goals can be 
defined and achieved from within the mission sequence. The subsystem used for this mission parameter 
tuning is the Solver subsystem. 

Each of the solvers in G3UT can be described as a finite state nla,(:lline taking. the input state of the 
GMAT objects in a mission and changing the states of user specified parameters to achieve desired goals. 
Each solver executes a, series of GM.kT commands as part of this solut,ion finding algorithm; the differences 
between the different solvtrrs comes from t,he approach taken to find this solution. 

23.2 Solver Class Hierarchy 

Each solver takes a section of a mission sequence, and manipulates variables in that subsequence in order 
t,o evaluate how those changes affect the modeled mission. The results of t,he changes are collected in the 
Solver, reported t,o the user if desired, and possibly used t,o tlrive subseclilent, actions in the mission sequence. 

The Solver subsystem can be decomposed into tllree broad categories of algorithms: scanners, targeters, 
and optimizers. The dist,ingxiishing characteristics of these differe~it algorithms call be summarized as follows: 

r Scanners arc used to perform studies of the behavior of the t.be syst,em :a the variables change, in 
order t o  collect stat,ist,ical da,ta. about how the system behaves in the neighborhood of the variables 
defined for the problem. A scanner does not have an inllerent set of goals; rather, the intention of a 
scanner is to e\~aluattr hc)w dlanges in t,he system vitriables a.ffect t,he behavior of t.he system over time. 

r Targeters are used to find solutions that satisfy a set of goals t,o within some user defined set of 
tolerances. In other words, a target.er is seeking an exact solution, a d  stops searching for t.hat solut,ion 
when t.ht? a.chiavc?d results of t.hc targeter all fall to within a. specified tolerance of those goals. 

Optimizers are used to find the configurat,ion of the variables that best satisfies a set of user goals, 
subject, optionally, to a set of constraint's. Optimizers function by seeking the minimum of a user 
ciefinetl function of parameters! subject to t,liese con~traint~s. 



1 Solver Classes ) 

Figure 23.1: Tile Solver Subsyst.en1 

Figure 23.1' shows the class hierarchy for the GMAT solvers, including a number of planned extensions 
that are not. yet scheduled for implementation, idc?nt,ified by the <fiiture>) label. Thc base class. Solver: con- 
tains the core elemc?nts required to implement the solver finit,e state machine. These elements are assembled 
differently to implenlent different classes of solvers, as described in the following sections. 

The Solver class hierarchy shown here identifies two scanners, two t.argeters (the DiEerentialCorrector and 
Broyderl ta,rgeters), and three optinlizers. The scanners, PasarnetericScanner and MonteCarlo, a.re plarlncd 
enhmcetne~lts to GSIAT t,hat are not currently scheduled for irnplemanta.tioa. The DifferentialCorrector is 
a t,argeter used extensively at  Goddard Space Flight Center other locales t o  find solutions t o  targeting 
goals; Broyden's method, another target,er slat.ed for implementation in GM,AT, solves similar problems. 
The Stcc.pc:stDescont and QuasiNewton optimizers are planned enhancements that will be built as native 
algorithms in the GMAT code base. The FnlinconOptitnizer is an optin1ize:r implemented in the MATLAB 
Optimization Toolbox. GhlAT uses the MATLAB interface t o  colnmunicate with this component through 
bhe ExternalOpt,imizer class. 

23.3 The Solver Base Class 

Core elenlerlts of the Solver class are shown in Figure 23.2. This class contains the infrastructure required 
to run a solver st,atu machine. The class provides defimlt implementations for rnethods run at, each state, 

'Note: 'Thc currcni. irnplc~~-icntat.llon of t he  di.%rcntial corrector docs no1 yet conform to  :.hc class structure deficecl hcrc 
1. ,+cause . . the ir~tel.r~~ei.liaie ciars, 'I'argeirr, is TJOL yet Irl;i~lerrre~t~,er$. 



23.3. THE SOLVEf? BASE CLASS 185 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Solmr Base Class Details 

E'igure 23.2: The Solver Base Class 

and al>stract interfaces for the methods used by t,he GMAT Command classes. 

23.3.1 Solver Enuxnerations 

The Solwr base class contains two public enumerations used evnluate the status of the solver objects during 
a run and to control the style of the diagnostic reports generated by thc solver. The Solverstate enumeration 
is used to represent the finite statcs in the solver's state madiinc. It can be s ~ t  t.0 any of the following values: 

INITIALIZING: The entry stat.e for t,he state machine, this state is used to set the initial data and 
object point,ers for t'hc state mac:liine. 

e NOMINAL: The nominal stat.e is used to  evaluate the behavior of t.he solver subsecluence using t,he 
current best guess a t  the ~rdues of the variables. 

P E R T U R B I N G :  Many solver algorith~ns work by applying small perturbations to  the nonlinal values 
of the variables, and collecting the resulting a.ffects on the solver subsequence. This state is used to 
per-form those perturbations. 



r ITERATING: The Scannr?rs parform a series of runs at calculateti valuos of the variables. This stat,e 
is used to iterate over those values. 

r CALCULATING: The CALCULATIIVG state is used to perform algorithm specific calculations in 
preparation for the next pass through t8hc solvcsr subsequence. 

* CHECKINGRUN:  This stat,e is used to  cvaluate the current results of the solver run, and to deter- 
mine if the solver dgorithni has a.ccomplished its goals. 

r RUNEXTERNAL:  The state used to la,undl an tsx%ernal solver which controls the solut.ion process. 

r FINISHED: This final state is used to report the resu1t.s of the solver run, and to  perform any final 
adjustments required to use t.hose results in the rest of t,he mission sequence. 

r U N D E F I N E D  STATE: A value used to indicate a fault, and as a special case for the solver test - 
file. 

The states actually used by a solver are algorithm dependent; no given algorithm is likely to use all of the 
states represented by this e~iumaration. 

Tho ReportStyle enumeration is used to scst thc level of ~eporting pcrformod while a solver is executing. 
This e~iuineration is used to  represent the fbllowiilg styles of reporting: 

r N O R M A L  - STYLE The default report style, set using the string "Normal" 

r CONCISE - STYLE A compact. report style, set. using the string '(Concise" 

r VERBOSE STYLE report style generating lots of data, useft11 for analyzing the details of a run, 
sct using t,hcTtring 'Verbose". 

r D E B U G  - STYLE A report style useful for tiebugging so1vt.r algorithms, set using t'ho string "Debug". 

Each solver has a, member parameter, t,he 'RoportStyle3, used to  set the reporting style. The RcportProgress 
method, describ(?d below, is used to generat,e the tex?, for a report. 

- *' 
23.3.2 Solver Members 

The Solvcr base class contains the following member data, elements: 

Class Attra'butes 

r Solvers ta te  cur ren t s ta te :  The current. statme of the solver, one of the mtsmbcrs of the SolmsrState 
enumeration. 

* std::string textFileMode: The string representation for the output mode, set to  one of the following: 
"Compact", "IVor~nal", "\'erbose", or "Debug". 

r boo1 showProgress: A flag used to toggle the progress report on or off. 

r Integer progressstyle: An integer representation of t,he report st,yle, ta,ken from the ReportStyle 
enumerat,ion. 

r std::string debugstr ing:  A string used in t,he progress report when in Debug mode. 

* Integer var iablecou~l t :  The nuniber of varid~les used in t.hc current problem. 

r StringArray var iab leNmes :  A st,ring array containing the narne of t!acli variable. 



std::vector<Real> variable: The array of current. values for the variables used by the solver. 

e Integer iterationsTaken: The number of iterations t,alien by the current run of t,he solver. 

e Integer maxIterations: The maximum number of iterations t,hrough the su11sequc:nco allowed for 
the solver. 

All solwrs must provide implementations of t,hese five pure virtual nlet,hods: 

Abstract Methods 

boo1 Initialize(): Used to set. object pointers and validate internal da.ta structures. GMAT initializes 
all of the commands in the solver subsequence before executing this method, so all of thc variable data, 
and result data Stru~Tures havt? been registered when this ~net,hod is called. 

r Integer  SetSolverVariables(Rea1 *data,  const std::string &name): This is the varial~l(! regis- 
t,ration method, used to pass in parameter data specific to variables used in the solver algorithm. This 
method is used by the \Jary Command during initialization to  set up the solver variables for a. run. 
The ret.urn value from the method is the index in the solver array for the variable, or -1 if the ~ar iable  
could not be registered. The parameters in the mt!tllotl are used to  set the details for t.he variables: 

data: An array containing the initial value for the variable. This array may also contain additional 
algorithm specific variable settings; for instance, the perturbation for the variable, and the nlinimun~ 
and maximum values for the vitria.ble, and the nlaxi~nunl allowed step for changes to t.ho variable. 

nanze: The string nitme associatsd with the variable. 

Rea l  GetSolverVariable(1nteger id): Used to obtain the current value of a variable from the 
solver. The Vary command uses this nlethod to  refresh the current value for a variable during a solver 
subsequence run. The parameter, id, is the index of the requested variable in the solver's variable 
array. 

e Integer SetSolverResults(Rea1 *data,  const std::string &name, const std::string &type):  
This is the met,hod usod to regist,er the values returned from the solver subsequence to the solver. It 
is used to pass in parameter data specific to the subsequence run outputs, so that the solver has t,he 
data needed t,o initialize and track the results of an iteration through the subsequence. For targeters, 
the Ac.hieve command uses this method to  set up targeter goals. Optimizers use this method to  set 
up tho connc?ction to t.he objective function and co~lstraint~s. Scanners use this metshod to  report the 
products of each scanning run. 

data: An array containing settings for the solver result, if applicable. An example of the type of 
data in this field is thc a,cceptablc t.olera.nce for a targeter goa.1. 

name: The st.ring name associated nit11 the solwr result.. 

type: The string nanle associated wit,h the type of solvcx result. This field defaults to the empty 
string, and is only used when a solver needs to distinpiish types of resultant data. 

void SetResultValue(1nteger id, Rea l  value): Used to  report data calcula.tet1 while running tht! 
subsequence to t,he Solver. Commands specific to  t*he different algorithms use this rnethod t o  pass 
data into a solver; for exa.mple, for tha differential correct,or, the Achieve command passes the aclliewtl 
data to the solver using this method. Optimizttrs use this method to send tho value of the objective 
f~inction, and constraints~ and, if calculated, the gradient of the objective function ancl ,Jacobian of the 
constraints. Scanners use this method to receive the data t.hat is being measured, so that meaningful 
st,atistics can be calcula,ted for the scanning run. 

Each solver cont,ains the following methods, which have default irnplernc:nt,ations: 



Methods 

r SolverState Getstate(): Ret,rieves the current SolverState for the solver. 

r SolverState Advancestate(): Executes current, stat(: activities and then aduanctts the stat.e ~na~chine 
t.o the next SolverState. 

e void Reportprogress(): Writes the current progress string to the GM.4T message interface, which 
writes the string to thc log file and message wi~idow. 

9 void SetResultValue(1nteger id, std::vector<Real> values): Used to report multiple data 
valucs in a vector, calcu1atc:d while running the subsaquence, t,o t,he solver. Not.e that this is an 
overloa.ded method; tJhere is also a.n abstract SetResult\'alue method which sets a single Real value. The 
default. implementation of this method is empty; solvers that need it should provide an implementation 
t.ailored to t,heir needs. 

a void SetDebugString(std::string str): Sets the string contel1t.s for thc debug string. 

r void CompleteInitialization(): Finalizes the initializa.tion of the solver. This method is executed 
when the state n~achine is in the INITIALIZIKG state. 

r void RunNominalO: Executes a nominal run of the solver subsequence. This method is esecuted 
when the state machine is in the NOMINAL state. 

e void RunPerturbation(): Execut.es a pel-turbation nin of the solver subse<luence. This method is 
executed when the state machine is in the PER.TUR.BING state. 

9 void RunIterationO: Execut,es one run of the solver subseclue~ice and incremt?nt,s the it,eration 
counter. This method is ex,xocutcd when the st,a,te machino is in thc ITERATING state. 

9 void CalculateParameters(): Performs algorithm specific calculations for the solver. This method 
is executed when t,he statc machine is in the CrlLCUL.4TING stat,e. 

e void Checkcompletion(): Checks t.o soe if t,he solver has conip1et.ed its tasks. This method is 
executed when the state machine is in the CHECI<INGRUN state. 

a void RunExternalO: Lsnndles an external process that drives t,he solver. This method is execut,ed 
when the statc nlaclline is in the R1JNEXTER.NAL state. 

a void Runcomplete(): Finalizes the data froin the solver subsequence and sets up the corresponding 
data for subsc?querlt staps in t,tle GM.4-r mission sequence. This lncthod is executed whcn t,lle state 
ma,chine is in tht: FINISHED state. 

23.4 Scanners 

TBD .-. This section will be collzpleted when the first scanner is schedulet-i for implementation. 

23.5 Targeters 

Given a mapping from a set of variables to  a set of results, 

Targeting is the process of finding the value of a set of variables z ~ ,  such that the mapping M(zc)  produces 
a dcsircd sc?t of results, G: 



The targeting problem is a search for an exact solution. Numericdly: the t,argeting prohlern is met. when a 
set of variables z, is found that satisfies the co~idit,ions 

M(z,,)-R,, suchthat IG-&,1<6 (23.3) 

where 6 is the vector of tolera~lces for the resulting qua.nt,ities. 
The t,arget,ing problom is typically formulated as a series of steps proceding from an init.ial guess t.o a 

solution, as outlined here: 

1. Generate an initial guess zi = zo 

2. Evaluate M(zi) = Ai 

3, Compare Ai with the goah, G. If IG - Ail < 6, go to  step 6 

4. Using the target.er algorithm, cltlculate ncnr values for the variables zi = T(ziPI; AiPl). 

5. Go to  step 2 

6, Report, the results and exit. 

23.5.1 Differential Correction 

Differential Conectw State Machine) 

' I ~ e w ~ a r i a b l e s  Goals I I 
1 Calculated ndmetl.  

fRunP ddwblanv Target~ngCornMe j rcwWwBW,&*Y 
For each 

I ' 1 perturbation 

Figure 23.3: 5:ate Transitians for rhe Differen:ial Corrector 

Scripting a Differential Corrector 

y--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
r- - - - - - - - - - - - - - - - - -  Create core  ob jec t s  .......................... 

a y - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
6 Create Spacecraft  s a t ;  

6 Create ForceModel Defaultprop-ForceModel; 
7 GMAT Def aultProp-ForceModel . PrimaryBodies = {Earth} ; 



Create Propagator Defaultprop; 
GMAT DefaultProp.FM = Defaultprop-ForceModel; 

Create ImpulsiveBurn TOI; 
GMAT TOI.Axes = VNB; 
Create ImpulsiveBurn GOI; 
GMAT GOI.Axes = VNB; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
% - - - - - - - - - - - - - - - -  Create and Setup the Targeter ------------------ 
%-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Create Differentialcorrector DC; 
GMAT DC.TargeterTextFile = targeter-DefaultDC.data; 
GMAT DC.Maximum1terations = 25; 
GMAT DC.UseCentra1Differences = false; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
%- - - - - - - - - - - - - - - - - - -  Create a d  Setup a plot ..................... 
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Create XYPlot watchTargeter; 
GMAT watchTargeter.1ndVar = sat.AlModJulian; 
GMAT watchTargeter.Add = {sat.RMAG); 
GMAT watchTargeter.Grid = On; 
GMAT watchTargeter.TargetStatus = On; 

% The targeting sequences below demonstrates how to use a 
% differential corrector in GMAT to construct a Hohmann transfer 
% between two circular, co-planar orbits by targeting first one 
% maneuver to raise.apogee, and then a second maneuver to 
% circularize. 

% Start by spending some time in the initial orbit 
Propagate DefaultProp(sat, {sat.ElapsedSecs = 86400)); 
Propagate DefaultProp(sat, 1sat.Periapsis)); 

% Target the apogee raising maneuver 
Target DC; 

Vary DC(TO1.V = 0.5, {Pert = 0.0001, MaxStep = 0.2, Lower = 0, Upper = 3.14159)); 
Maneuver TO1 (sat) ; 
Propagate DefaultProp(sat, {sat.Apoapsis)); 
Achieve DC(sat.Earth.RMAG = 42165, {Tolerance = 0.1)); 

EndTarget; % For targeter DC 

% Propagate for 1.5 orbits on the transfer trajectory 
Propagate DefaultProp(sat , {sat .Periapsis)) ; 
Propagate Def aultProp(sat , {sat. Apoapsis)) ; 



'/, Target t h e  c i r c u l a r i z i n g  maneuver 
Target DC; 

Vary DC(TO1.V = 0.5,  {Pert = 0.0001, MaxStep = 0.2,  Lower = 0, Upper = 3.14159)); 
Maneuver TO1 ( s a t )  ; 
Propagate Def aul tProp(sat  , {sat  .Per iapsis) )  ; 
Achieve DC ( s a t .  Earth.  SMA = 42165, {Tolerance = 0.11) ; 

EndTarget; % For t a r g e t e r  DC 

% Propagate f o r  an add i t iona l  day 
Propagate DefaultProp(sat,  {sat.ElapsedSecs = 86400)); 

23.5.2 Broyden's Method 

TBD --- This section will be completed when the Broyden's method is scheduled for iinplementat.ion. 

23.6 Optimizers 

Optimization is the process of ta,king a function f (z) of a set of variables z, and changing the values 
of those variables t,o move the function to a minirnum. The function f is ca.lled the objective function. 
Con,strained optimization adds a set of constraints t,llat must simultaneously be sa.tisfiod. More succinctly, 
the optimization problerll can be written 

ci (z) = 0 and 
nlin f (z) sudl that 

z€Rn ~j (x) 2 0 

The constraint funct,ions, c, specify additional conditions that need to be sattisfied in order for the problem 
t.o be solved. The constraints can be broken int,o two categories. Constraints that need to be met exactly? 
the q co~lstrairlts in e<luation 23.4, a.re rcferred t.o as equality const.raints. Con~t~raints t,hat only need t.o 
satisfy some bounding conditions; represented here by cj? are called ineq~iality constraints. 

Numerically, the optimization prohlenl is solved when either the gradient of the objective fundon falls 
t~elow a, specified value while the? constraints are met, to a given tolerance, or when t,he  constraint,^ are met8 
and the solution point z is unchanging during subsequent iteratiom. The optimization problern is can be 
formulated as a series of steps proceeding from an initial guess t o  a solution, similar to a targeting problem: 

1. Generate an initial gxiless zi = zo 

2. E~aluat~e f (xi) and constra.ints 

3. Eva1uat.e t.he gradient of the object,ive function at zi a.nd t,ha constraint Jacobians. This st,ep usually 
involves either an ana1j.t.i~ calculation or it,erating the f (z) calculation n-ith small perturbations. 

4. Check to see if zi is a local minimurn or unchanging, m d  if t,he corlstrairlts are met. If so, go t,o step 8. 

5. Use the optimizer algorithm to calculate a new search direction. 

6.  Step in the search direction t.o a minimal value in that direction. This is the new value for zi. 

7. Go to step 3 

8. Report, the  result,^ and exit. 

Figxr(? 23.4 shonrs the st*ate transitions for a typical opti~ni~ation algorithm that follows this proccdurc:. 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Optimizalian State Machine 1 

Penurbl lons u ~ c d  
to build Cmdlem I - 

Optimizing 
Complete 

u 
Perfonning line 
search for  
minim urn 

Figurc: 23.4: Statc Transitions for 0gt.irnization 

23.6.1 The Optimizer Base Class 

All opt,imizers require an objective function that changes based on t.he values of the variables in the problem. 
In addition, when analytic  gradient,^ of the objectiw function can be calculated, the opt.imization procedure 
can be streamlined to  incorporate these da.ta. Optimizers that include constraints also need dat,a struct,ures t.o 
store the constraint dat,a. Storage support for d l  of these ~ a l u e s  is built into the Opt,imizer base class, shown 
in Figure 23.5. The cornpubatio~i of these pa.rmeters is provided in the optirni~at~ion specific commands, 
described later in t.his cha.ptcr. The nlembers of this base class servo the following purposes: 

Class Attributes 

a std::string objectiveFhName: The name of the objective function data provider. This member 
defaults to the string "Objectivtb', but users can override t8hat value by sett.i~ig t.1iis data member. 

a Real cost: The latest value obtained for the objective function. 

e Real tolerance: 0pt.irnizers have converged on a solution when the magnitude of the gradient. of the 
cost function is s~naller that. a. user specified value. This paranict'er holds t'hat value. Note that GMAT 
can pass this parameter into external optinlizers as one of the parmieters in the oytio~as da.ta member. 

boo1 converged: A boolean flag used t.o detect a~lien the ~pt~iinizer has readied an a,cceptable value 
for t,he objective function and, if applicable, t,he constraints. 

a StringArray eqConstraintNames: Thc Iiamcs of the equality constraint variables. 

r std::vector<Real> eqConstraintValues: The most recent values obtained for t,he c!cluality con- 
straints. 

r StringArray ineqConstraintNames: The names of the inequality constraint variables. 

a std::vector<Real> ineqConstraintValues: The most recent values obtained for the inequality 
constraints. 



Optimizer Base Class Details 

Figurc: 23.5: The Optimizer Base Ci;?ss 

r std::vector<Real> gradient: xFuture)) The most recently ca.1culated gradient of t.he objective 
fil~ict~ion. 

R m a t r i x  eqCo~is t ra i~ i t Jacob ian :  xFut,ure~ Tlle most recently calculated Jacobian of the equality 
constraints. 

r R m a t r i x  ineqConstraintJacobian: c(F~t~ure> The most recently calculated Jacobian of the incqual- 
ity constraints. 

Methods The met,hods shown in Figure 23.5 provide implemt:nta.tions of the met,hods in the Solver 
base class. These methods are described below: 

r boo1 Initialize(): Used to set object pointers and wlidat,e intcrnd data struct,iires. GMAT initializes 
all of the colnlnands in the o p t i n ~ o r  subsequena! in the Opt.i~nize::Initialize() method, called on the 
command sequence during Sandbox initialization. After performing this initialization, tlie Optinlize 
conmiand calls this met,hod, so data struct,ures can be prepared for all of the variable data and result 
cfat,a elenlerits registered (luring command subsaquence i~iit.ializat,ion. 

e Integer SetSolverResults(Rea1 *data,  const std::string &name,  const std::string &type): 
Used to register parameter data needed by the optimizer to evaluate t,he behavior of a subsequence 
run. For optunizers, the Mininiizt? and NonLinearCloristrai~It co~nmands use this ~ncthod t,o set up the 
connection to the objective function and constra.ints. Fut,urc: relea,ses will implt?mcnt t*he Gradient., 
EqConstraintJacobian, and IneqConstraillt.Ja,coBian conmlands, wllich will also use this method. 

data: An arra.11 cont.aining settings for the output para.nleter. 

name: The st.ring name associatect with the parametcx. 



......................................................................................................................................... 
External Optimization State Diagram) I 

Figure 23.6: GMAT state tral~sitio~ls rvhen rullni~g the Fn~inconOpt,imizer Optimizer 

type: The string n a n e  associated with t,he type of resultant used in the optimizer. Valid op- 
tions are "Objtrctim?"'. "EqConstraintt', "IneqConstraint", "ObjC4radient?', "EqCon~traintJacobia~n"~ and 
"IneqConst,raint, Jacobian". 

e void SetResultValue(1nteger id, Real value): Used to  report data, calculated while running the 
subsequence, to t,he optinlizcr. The Mininlizo and KonLinearConstrai~~t commands use this method to 
set the current values of the objective function and constraints. 

e void SetResultValue(1nteger id, std::vector<Real> values): <<Future>> Used to  report multiple 
data \dues in a vector: calculated while running t,he subseque~ice, to  the opt,imizer. When implemented, 
the Gradient and lacobian co~n~llantls will report da,ta to the optimizers using this method. 

Each of these methods may be overridden based on the ntzeds of the derived optinlizers. 

23.6.2 Internal GMAT optimizers 

TBD .-. This section will be completed when t,he first intt?rnal optimizer is scheduled for i~nplamenta~tion. 

The Steepest Descent Optimizer 

TBD -. This section will be completed when the st,eepest dt?scent opt.imizer is scheduled for imple~nentation. 

The Quasi-Newton Optimizer 

TBD - - -  This sect.ion will be completed when t,he quasi-Xewton optimizer is schsdulcd for implement.ation. 

23.6.3 External Opti~nizers 

The optimizers dcscril~eti in Section 23.6.2 are coded directly int.0 t,he system. GMAT also provides access 
to  the MATLAB Optimizat,ion Toolbox~opttools~ through a set of interfaces desig~ed for this purpose. 

External Optimizer State Transitions 

GMAT has the ability to  i~lcorporat~e optimizers coded outside of t,he system, as long at those optimizers 
provide communications interfaces that c a l  be interfaced to  GMAT. These out.side processes are called 

21f mc!x than  one corn~nand a?,temp:s to rcgistc an nbjcc,titi.;c fi~nction in t,he sru-sc opt,irnizrr ioop; C;M.VI' will t f cow  an 
exceplion slat i r~g t l tx t  optir:~iza~.lort prilblett: is ill driins,i iiecai.~se titere is inore liiar: uue oli,iecliw f~triciivri. 



"cxt,t:rnal opt.imizers." A t,ypical finite state ma,chinc? used to perforni optimization using an extornal optimizer 
is shown in the state transitions diagram for the fmincon optimizer from MATLAB's Opt,imization Toolbox, 
Figure 23.6. The state machine for fniincon will be used in what follows to provide an overvie of external 
optimization; other external processes would adapt t,his madline to meet, their needs. 

The optiniiza.tion process starts in an INITIALIZING state. When the AtlvmceState() 1nc:thod is called 
in this state, the object references necessaq for the optimization nin are set,. This step includes passing the 
pointer t,o the Optimize commarid at  the start of the optimization loop to the GmatInterface t.hat. MATLAB 
uses to  communicate wit.h C4bI.4T. The Optimize command includtrs a mc?thod, ExecuteCallback(), used 
when the fnlincon optimizer needs to Iun the optimizer subsequence and gather t'lie resulting data. 

Once initialization has been performed, the st,at.e transitions t,o the R.UNEXTERNAL state. This state 
calls RIIATLAB with the appropriat,e parameters needed t'o run the opt,imizer using the FminconOptimiza- 
tioriDriver MATLAB function, a driver function tailored to fnlincon described bdow. At this point,, cont,rol 
for the optimization process has becm trarisferred to MATLAB. The fmincon optimizer makes calls back into 
GM.4T when it needs t,o collect data from t,he optimizer subsequence. These calls are passed to  t.he Exe- 
cuteCallba.ck() method registered in the initializa.tio11 process, above. ExecuteCallback() uscs tlie Optimize 
command to run the nest,ed state transitions shown in the figure. The nested states st-art by setting up and 
runnirlg the niission subsequence, performed in the NOMINAL state. Once the subsequence has been run, 
the data gat.hered during the run are collect.ed a.nd any processing needed on the GhlAT side is performed. 
This dat,a collection is performed in tho CALCULATING stat,e. This conipletes the iteration of the nested 
sta.tc machine: the nested state is set back t.o NOMINAL in preparation for the next cab1 from M'4TLAB. 
The collected data are passed to MA4TLAB, and used by fmincon to determine t.he next action to be taken. 
If fmincon has not yet found an optimal solution, it calculates new values for the variables, and passes them 
into GMAT for another pass through the nested sta.te machine. This process repeats until fnlincon has found 
a solution or reached another terminating condit,ion. 

Once finincon has conlpleted execution, it sends an integer flag to GMAT indicating how the optimization 
process  as terminated" and returns control to GhfAT. This return of control results in a transition into 
the FINISHED state. GMAT performs the tasks required a t  the end if the optimization, and then continues 
running the niission sequence. Details of all of these steps are provided in the discussion discussioll of fmincon 
optimization below. 

Class Hierarchy for the External Optimizers 

External opti~nizers are coded using the classes shown in Figure 23.7. One set of external optimizers, the 
functions in the Optimization Toolbox, is acccssed using the MATLAB interface built into GMAT. Those 
functions, in turn, use calls through the GmatServer code to  access spacecraft specific models in GMAT. 
Future ex-tensions to  GMAT may use other interfaces for external optimizers. 

The Externaloptimizer Class 

All esternal opti~nizers are derived from the ExternalOptimizer class. The design illustrated in Figure 23.7 
sho-ws t.his class, along with one subclass! the fininconOpt,i~nizer, and thc intcnfaces used to  comniunicat,e 
with LL4TLAB. When 1ieccssa.rj7, similar int.erfaces will be written for communications with other external 
programs. Ex-ternal optirnizers add the functionality needed to  open the interfaces to the external programs. 
Classes derived form this class implement the sta,te transitions funct,ions used in the external opt,imization 
nest,ed state machine. The Extc:rn:t.lOptimizcr class clernent,~ are described here: 

Class Attributes 

%ee the Optimizatiorl 'holkit doc~imcntabion for thc  meaning of this Bag's vaiucs: in general, if the Rag is grcater than zero, 
the optiri~izacion process was successl'ul. 



I Optimization ClassesEdernal Optimiars Cunent Code) 

r std::string sourceType: String indicating the type of external interface that is used. The only 
external interface supported in the current code is a MATLAB interface, so this string is dways set to 
"MATLAB" in the current GMAT code. 

e boo1 sourceReady: A flag indica,ting the state of the interface; this flag is set to true if the interface 
was opened successfully and the supporting st,ructurcs needed by the intcaface were foundq. 

e outsource: A poitltcr to the Inte~face o1,ject that is used to rnake calls to the ester~ial int.er.face. 

insource: -4 pointer to the Interface object that is used to receive calls fro111 the esternal interface5. 

All external optimizers must provide inlple~ilentations of these pure virtual methods: 

Abstract Methods 

'!A11 esa~rq!!a of t i t o  "sup],o?ting aL~~~ici!!~-es": iL' ti!e cste! t ~ a l  /!J~.(?I.[.~CO is a n  C i r ! I ~ l c o n ( j ~ , ~ i ! n i n e r ,  [hell 111~ >/l.,i'i'l.A H syst,clr! 
a1t1.i Lhe Opl irr:l%aLio:~ 'ii:iolkil rtw~t. bolb be availal.iie for use, and  tlte hl.Kl'l,.?H Liies tlia;. estsbiish Llir calls iti!.o UM.Yl' rrlust 
also be xcessibie Sron h1,YTLAB. 

'In lhc current c o d e .  two p o i n t m s  are ~lcccssary: o x  to a ~Latlablutcrfacc rtbjcct, and n second t o  tkic GrnatScrvcr used fo: 
calls Lioin h,lA'I'LAH Lu C::\.IA'I'. h ~ l u r e  buiids ;nay ~:uc.llii:~t: these ir~lei.Lacrs, 



r bool Openconnection(): Thc method used to open the interfaces between GhIAT and the external 
program. This method, called during initialization, opens the interface and verifies that the external 
program is ready to interact with GhIAT. 

r void CloseConnection(): Closes tlle co~inect.ions to  the external progranl. 

bool Optimize(): Calls the external optimizer, starting the optimization process. When the process 
terminates, this method also ter~ninat~es, ret,urning a true value if the process reported succt:ss and a 
false value if the process failed. 

Note that in both of the con~iect,ion ~onfigurat~ion met,hods, the interface interact.ion preserves t,he int,erface 
state as needed for other  object,^: for example, if the interface is already open either at  the GhIAT level 
because of user interactions or from previous init.ializat.ion, then it does not, open again; the open interface 
is used. Similarly, t.he interface is closed only if it is not in use elsewhere --. either globally by GMAT, or by 
another object that is still using the interface. 

The FminconOptimizer Class 

F'rnincon is an implementat.ion of sequential quadratic progritnimi~ig, inlplenie~ited in MATLAB. GMAT 
interfaces with fmincon using a class, t,he FniinconOptin~er class, to c0ordinat.e tho calls to MATLAB to  
access the optimizer. For the purposes of this discussion: the MATLAB opt,imizer fmincon will be referenced 
by the MATLAB function name, Yfmincon"; the GMAT class tha.t wraps that optiniizer for use by GMAT 
will be referenced by t,he class name; "FnlinconOptimieer." 

The class ~nemnl~ers for the FmincotiOptiniizer are described here. 

Class Attributes 

r GmatCommand *callbackClass: -4 c1a.s~ that i~nplemt?nt~s the ExecuteCallba.ck method used by 
the external process. 

r StringArray fn~inconOptions: The table of parameters that can be set 011 tlie finincon optimizer. 

r StringArray optionvalues: The current settings for the fniincon options. 

Each FrninconOptinlizer contains tlie following methods, which have default implementations: 

Methods 

r bool Optinlize(): The entry point for fmiricon based optimization, this method is used to  call MAT- 
LAB with the settings needed for fmincon. 

r bool Openconnection(): If necessary, launches the MATLAB c:ngi~ie and starts the GmatServer, 
a.nd then sets t,he engine pointer on tlle Fniincc)nOptiniizc?r. 

r void CloseConnection(): If appropriate, closes the MATLAB engine and/or the Gn~atServer. 

Solverstate Advancestate(): This ~netliod is used to run the out,er state machine. It mmages 3 
st.ates: the INITIALIZIEG state, the R.UNEXTERiXAL stmate, and the FINISHED state. 

r std::string AdvanceNestedState(std::vector<Real> vars): This mc:t.hod is cdlod by t.ho Opti- 
mize command to run the nest,ed st.ate machine, and managed the transitions between tlic ITOMINAL 
and CALCUL.4TING stabes. The input paranieter here is a vector of the variable values used for the 
nested state machine run. The return value for this method is t.hc resultant da.ta from t.he nested run, 
serialized for transport to  the extc:rnal process. 



o void CompleteInitialization(): The n~et.hotl, run in IXITIALIZING state; whicll set,s the callback 
class pointer for the Gmathterface and prepares the GMAT side of the system for optimization. 

o void RunExternal(): Thr: mc?thocl run in the RUNEXTERNAL st&: which builds t.he data st.ores 
needed for the optimization loop, and t.hen calls Optimize to hand program cont'rol to  MATLAB. 

0 void RunNomninal(): The ~net,hod t)hat sets up the data structures for a run of the optimizer sub- 
sequence. The Optimize command uses AdvanceState to run this method immediately before running 
the opt,imization subsecluence. 

r void CalculateParameters(): The method that gathers the result ant data froin t . 1 ~  subsequence 
run and massages it into form for transport to MATLAB. 

0 void Runcomplete(): The method that. finalizes t,he optimization, writing resultant dat.a to  the 
solver log file a~ ld  releasing any temporary data st,ructurcs that nwe used in tlle optimizat'ion process. 

Interface Classes: Details for the FminconOptiniizer 

The current implenientation of interfaces in GMAT used t,o conlmunicate with MATLAB are shown in 
Figure 23.8'. Det,ails of this implementat~ion are provided in Chapter 16. Thcse paragraphs point out the 
pertinent features used when running an ext'ernal opti~nizer. 

The Optimize comma~ld, described later. is used to control the state transitiorls used when running the 
state machine. This command is used to advance the state machine by calling the AdvanceStat,e method on 
thc optimizer. Ext.erna1 optimizers use a stmate, the R,UNEXTERNAL st.ate, to  pass control from GMAT t.o 
the external process. The Opt,imize con1111a.nd implements a nlet.hotl named E,xecut,eCallback which provides 
the entry point from the external process hack illto the GMAT system so that spacecraft. ~rllodeling colninands 

"'?liere are currently two separate MiY'LXB intcl-faces, and both are ilscd :ti?- this wgrl;. The icterfacn fron: hl.Vl'LAB to 
i;hlA'T uses cede G o ~ n  thr? wsWidgcts library. f-3ccaosc ofthis  in~plemt?n!at,ion. ~ s t c r l ~ a l  optixiaers rcnning jn MArTl:i:B cannot 
br used is i~,!~ L l ~ e  curruriand lir~e versions c i l  UAIA'I ' .  



T:ibIc 23.1: Options fix the fioioconOpt,itnizt.:r Solver 

can be executed buy the external process. The G~natInterface contains members desigied to  manage this 
callback process. Thesc members, a pointcr and several methods. are described here7: 

Opt ion a 'Type ................... .. ............ 
DifFh,IaxC'ha.nge / R e d  

............................................... ..... 
DiffIinChange 1 ............................................... ........ 
RfasF~mEx~i~l.tlu i Intcgcr 

i 

Class Attributes 

GrnatCommand *callbackClass: A class that irnplelnents the ExecuteCallback method used by 
the external process. 

Rfasitcr I Int(:gcr 

Methods 

Values ......................................................................... 
value ::, 0.0 

0.0 c.. ~a1ue .::-- 
DiEMatChaugc 
valur? :. 0 

valuc :A 0 
~illur: >a 0.0 

value > 0.0 

On? Off 
On; Off 

Iter, O f f .  Notify. 
Final 
On, Off 

........................................................................................................................................................................................................................... 
On. Off 

TolS 

TolFun 

r void RegisterCallbackServer(GmatComnia~id *cbClass): Method used to  identify the com- 
mand that, implements ExecuteCa1lbac.k. 

Description ............... : ......... .I 
Maxiinurn allosved change in t,he 
variables. 
Minimum dlowed change in the 1 
varia.hbs. 
Marinium number of filnciion j 

ewluat>ior~s befi~re terrltlna!:ing. 

1;iuiahle dlange t,der:mcc required to 
declare convergence. 
Gm,cliet~t t,olerancc? rcquirrcl t;o dec1;ae 
consrergence. 
Toggle For finincot) tl(:rivat,ivt: checking. j 
Toggle ilst:d to tilni digm)st,ics on for I 
fmincon. 
Level of output generated from flnincon. I 

Toggle to t u r ~ i  on gradients calculated in ) 
GMAT. 

+ 

yn; 

Rcal 

Real 

r void ExecuteCallback(): The method called fkom the GMAT serwr to run the callback method. 

Derivatirc~Check ! Soring 
Diagovsi.ics j St,ring 

Display I String 

i 
GradObj String 

GradConstr I St.rina 

void PutCallbackData(std::string data): RIetliod used to set the input data for the callback 
function. For optixni~ation, this method is called to pass in the variable data. 

* char* GetCallbackResults():  Method used to retrieve the results of the callback. For optimization, 
this method ret.rieves the value of the objectivt? function and constraints! and other optiona.1 data. when 
it beco~nes available. 

Tht? entry point to the opt,imization process is the Optimize command, described below. When this 
command is executed: the FrninconOptiinizer refreshes the data needed for optimization, and passes that 
data, across the interface to MATLAB. Tliese data are st,ored in the FminconOptimizer's 

There axe Inany different para~neter settings available for hlATLAB7s fnlincon optimizer. Table 23.1 shows 
the ftnincon options supported by GMAT. The option t,al)le is contained in the fniinconOptions St.ringA~~ay. 
Settings for these options are collected in the optionValues member and passed fro111 GMAT into MATLAB 
when the optimization loop starts execution. 

7Ni,le iltai. ;.Itis is r:ot lt:e (itil rleacript.io~r of %lit .  C~nat.l~~lrr.:ace class. 'I'hal clrscripliun is in (.:haptei 1.6. 



Corltrol Flow in the FminconOptimizer 

Figires 23.9a t1irough 23 .9~  sliow the sequence of method calls made on the GMAT objects t.o run the 
MATLAB based fnlincon optimizer. The Opt,imization Toolbox contains several other optimiza.tion functions 
that rnay be incorporated i~it,o future versia~is of GMAT if the need arises; they will use a similar cont.ro1 
flow when implemented. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ad: Calling Sequence br E rfernal Optmows ln~tiallzatlo 

GYAT Code UATLA8 CDdF 

1 - 1  

Figl.irc 23.9a.: Init,ializat,ion Call Scq~~cncc for ?~fiTL.4B's fnli~icon Optirnizcr 

Tho event sequc?ncc? shown in thase figures consists of two pieces. Initialization (Figure 23.9a) is used t.o 
set all of the object pointers in place t,hat are needed for the optimization, and to prepare the optilnizer's 
internal dat,a structures for the optimization process. Tliis st,ep includes t.he initializatioii and validatioi~ 
of tlie int,erfaces used to access t,he extc!rna.l optimizer. In the illust.ra.ted examplo, t,he input and output. 
interfaces GMAT uses to co~nmnunica,te with MATLAB are st,ai-ted, a.nd the MATLAB side of t,he intc:rface 
validates tlie presence of the MATLAB scripts and functions needed to I-un the optimizer. This step is 
perfomled when the GMAT Sandbox initializes the ~nission sequence prior to a run. 

Once initialization has completed, t,he Sandbox starts executing the mission sequence. The nlissiori 
sequence proceeds until the Optimize comniand is ready to be run. Figure 23% picks up at t,llat point, and 
shows t8he steps taken t,o perform the optimizat,ion with fmincon from within the control sequence. These 
steps include t,hc execution of the nested st,ate ~nachine, tiescrik)c.d shortly. Once the sequence shown in this 
figure finishes running, t.Iie opt.iinization process has completed, anti the remainder of the mission co~ltrol 
seclilelice is nin. 

The details of t,he nested state machine run, including the execution of t,he opt,imizer subsequence, are 
shown in Figure 23.9~. When ExecuteCallback() is called on the Optimize coninland, t'ho coninland queries 



. . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
rd: Calling Sequence for  Exlrrnal Opt imzers.  h e c u t i o n )  

Figure 23.9b: Execurion CAI Secjticnre for hlATLAB's frllinco~l 01)timixes 



sd: Calling Sequence for Eatmal Optlmlzcrr Nesrcd State Machbne 

Figure 23 .9~:  Fr~l inconOpti~ni~~r  Xested Stare Transition Details 



the FminconOptitimi;l,er to determine t,he current state of thc ~icsted stat.e machine. The returned stat,e should 
he either INITIALIZING or NOMINAL. 

The a,ction taken when the nested state is in the INITIALIZLVG state is not shown in the figure. When 
that state is encountered, t.he Optimize command calls AdvmceNestedSt.ate on t,eh FminconOptimizer and 
the Fnli~lconOptimiztr cxecutes its CornpleteI~iitialixat~tion() mathod. The nested statc machine then t,ra.n- 
sitions into t.he NOXIINAL st,ate. Vpon return from this process, t,he Optiniize coninland executes the 
StoreLoopDataO method, which saves the spacecraft st,ate data at  the start of the optinrization loop. It 
t.hen proceeds to  run the nest.ed stat.e machine. 

When the nested st.ate is in the YOMINAL state, the Opt,imize command calls the FminconOptimizer's 
AdvanceIVc?stc.dState() method, which executes the RunNominal() method to  prepare t,he optimizer for ex- 
ecut,ion of a noniinal nm through the subsequence. The $tat*e of the nested state maching changes from 
NOhlINAL t o  CALCULATING. Up011 the return from the AdvanceNestedState() method, the Optimize 
command sets t.he GMAT object,s up for a run of the optimization subsequence by executing the ResetLoop- 
Da.ta() method. It then begins c?xecution of the optimization subsequent(?. 

The execution of the optimizer subsequence dcpcnds on the order of the commands contained in the 
subsequence. All GhlIAT coinmands include a method? Execut.e(), that fire the comniand. Like ann GMAT 
conirnand sequences and subsequences, t,he conlniands in tlle optimization subsequence are stored as a linked 
list of GmatCommand objects. The Optimize cornmand runs the subsequence by start.ing a t  the begining of 
this linked list and firing the Execute() method on each command in the list. The list is navigated using the 
GetNext() inc?thod on t.hc command. The subsequence is terminated when the GetNexi.() inethod returns a 
pointer t o  the Optimize command. 

The actions shown in Figure 23 .9~  should be treated as a guideline for how the optimizat.ion specific 
coinmands in the subsequence int,eract with the FminconOptimizer. Each time a Vary command is executed, 
it ret,rieves its variable value from the Fmi~iconOpti~nizer using the Get,Solver~?ariable() method and sots the 
value of the associated variable. The Execute() niet,hod on the XTinin~ize coln~nand evaluates t.he objective 
function, and sends the resulting value to the F'mnii~iconOptimizer using the SetResultValue() method. 
Similarly, when a NonLinea.rConstraint command is esecuted, the constraint. is evaluated and the value is 
sent t.o the Rninco~iOptimizer using SetRc?sultValue(). The order in which t,hese actions occur is the order 
in which they appear in the subsequence. 

Wllen the ~nission subsequena? haq finished execution, t8he Optimize command retriews the result,s of the 
subsequence run frorn the Fnlin~onOpt~iinizer and returns these data to the GmatInterface so that they can 
be passed hack to  MATLAB. 

'MATLAB Suppor t  Files 

The finincori code in XIATLAB is driven from a set of three high level MATLAB funct.ion files and a fourth 
lower level function. The three high level files implement t.hese functions: 

1. GmatFmincon0ptirnizationDriver.m manages the call into the optimizer from GMAT 

2. EvaluateGMAT0bjective.m gathers tla.ta and executes t,he callback function i11t.o GMAT, obtaining 
the data calculated in GMAT and returning the value of t,he objective function and optioi~ally its 
gadiont 

3. Eva1uateGMATConstraints.m accesses the values for the constrairits~ returned in the call t o  Eval- 
uateGMATObjective. 

These three MATLAB files are list,ed here. GhIAT starts a fmincon run by calling tho GmatF~ninconOp- 
timka.tionDriver function as a MATLAB fu~ict~ion. The act.ual MATLAB function syntax is encapsulated 
in the FminconOptimizer; the user does not set up t,he function objects or the CallFunction commands. 
GniatFminconOpt,irnizationDriver talies four input,s: a vector containing t,he initial values of the variables 
that a.ro being optimized, an array containing the options specified by the user for the opt,irnizer, as describcd 



in Table 23.1, and two vectors tlefining the lower anti upper bounds on tho v;zriitl)les. The fwict.ion returns 
a, vector t,o GMAT cont,ainin the optimized values of the variables. The MATLAB file8 is listed here: 

function [XI = GmatFminconOptimizationDriver (XO , Opt, Lower, upper) 

% function GmatFminconOptimizationDriver(XO, Opt, Lower, Upper) 
% 
% Description: This function is called from GMAT to drive the fmincon 
% optimizer. 
% 
% Variable I/O 

% Variable Name 1/0 Type Dimens. Description/Comments 
% 

% 
% 
% Opt 
% 
% 
% 
% 
% 
% Lower 
% 
% 
% Upper 
% 
% 
% x 
% 

I array nxl Column vector of 
initial values for 
independent 

I string 

variables 

Name of GMAT 
FminconOptimizer 
object. This is the 
the options structure used 
by frnincon. 

I array nx 1 Lower bound on the 
values of X 

I array nx 1 Upper bound on the 
values of X 

0 array nxl Column vector of 
final values for 

% independent 
% variables 

Notes: n is the number of independent variables in X 
neq is the number of nonlinear equality constraints 
nineq is the number of nonlinear inequality constraints 

......................................................................... 

External References: fmincon, EvaluateGMATObjective, 
EvaluateGMATConstraints, CallGMATfrninconSolver 

Modification History 

06/ 15/06, D . Conway, Created 

a r t . -  . r h ~ s  fiic, arld all cf 1h.e ol.hec hliYTl,:'~B file,?: arc mad in verbatin: f x r n  t h e  \rorjril;g fiics t o  c ~ l s ~ l r e  accuracy ifi tt:c 
traiiscdpliolr. i f  you are ii~iasirig aliy of l l le rerkiiired liies, tlrry car: be raprotlucerl fxorrl ;.ire 1~x1. yreser~(rci !~rre. 



% --- Declare global variables 
global NonLinearEqCon NLEqConstraintJacobian NonLinearIneqCon . . .  

NLIneqConstraintJacobian 

X = f mincon(QEva1uateGMATOb jective, XO , [I , [I , [I , [I , Lower, Upper, . . 
QEvaluateGMATConstraints , Opt) 

% Apply the converged variables 
CallGMATf minconsolver (X , 'Converged' ) 

MATLAB'S fmincon optimizer uses two user supplied MATLAB functions when optimizing a problem: one 
that evaluates the objective function and, optionally, its gradient, and a second that evaluates proble~n 
constraints and t,he rcdated Jacobians. For GMAT's purposes, those two functions are defined in the other 
two files listed a b c ~ e ;  EvaluateGMA4TOl)jective.~n and E\~aluateGM.4TCo1lutraillts.1l:. 

Evduat.eGh4.4TObjective passes the values of the variables calculated in fnlincon to GMAT using the low 
level CallGMATfininconSolver function, described below: and waits for GMAT to return the data calculated 
off of these variabltts. The variables passed to Gh4AT arc used when running the commands in the solver 
subsequence. When GMAT receives the call from M.4TLAB and sets the current variable values in the 
FminconOpt.imizer used for t,he mission. Then the mission subsequence is execut,ed one command at a time. 
Vary commands in the subsequence query the FnlinconOptunizer for the correspondi~ig variable values, 
and the No~iLi~learConst,raint antl hlinimize, and, eventuallg Gra.dient and Jacobian commands set their 
calculated values on the ??minconOptimiiser as they are executed. Once the solver subsequence finishes 
running, t,hese calculated values are returned to MATLAB in the return ve~%ors defined for the function. 
Here is the M.4TL.4B file that implements E1ralua.teC4MATObjective: 

function [F , GradF] = EvaluateGMATObj ective (X) 

% function [F, GradF] = EvaluateGMATObjective (X) 
% 
% Description: This function takes the nondimensionalized vector of 
% independent variables, X, and sends it to GMAT for evaluation of the 
% cost, constraints, and derivatives. If derivatives are not calculated 
% in GMAT, then an empty matrix is returned. 
% 
% Variable I/O 
% ......................................................................... 
% Variable Name 1/0 Type Dimens. Description/ 
% Comments 
% 
% X I array n x l  Column vector 
% of Independent 
% variables 
% 
% F 0 array 1 x 1  Cost function 
% value 
% 
% GradF 0 array n x 1 or [I Gradient of 
% the cost f'n 
% 
% NonLinearEqCon 0 global array neq x I or [I Column vector 
% containing 
% nonlinear 



equality 
constraint 

% values. 
% 

JacNonLinearEqCon 0 global array n x neq or [I Jacobian of the 
nonlinear 
equality 

% constraints 
% 
% NonLinearIneqCon 0 global array nineq xl or [I Column vector 
% containing 

nonlinear 
inequality 

% constraint 
% values. 
% 
% JacNonLinearIneqCon 0 global array n x ineq or [I Jacobian of the 
% nonlinear 
% inequality 

constraints 

% Notes: n is the number of independent variables in X 
% neq is the number of nonlinear equality constraints 
% nineq is the number of nonlinear inequality constraints 
% ......................................................................... 
% 
% External References: CallGMATfminconSolver 
% 
% Modification History 
% 
% 06/13/06, S. Hughes, Created 

% ---  Declare global variables 
global NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon, . . .  

JacNonLinearEqCon 

'/, - - -  Call GMAT and get values for cost, constraints, and derivatives 
[F, GradF, NonLinearEqCon, JacNonLinearEqCon, NonLinearIneqCon, ... 

JacNonLinear IneqCon] = CallGMATf minconsolver (XI ; 

IVhen control returns to M-4TLAB from G31..1T, all of the data fnlincon needs is available for consulnpt,ion. 
The value of the objective function, along with its gradient if calculated, are returned directly to fnlincon. 
The constraint and Jacobian data are stored in global MATLAB variables SO that they can be sent to fmincon 
when the opt,irnizer rcquest,s them. The E1rdua.tcGM~4TConstraints function providcs the interface fnlincon 
needs t.o access these data. It is shown here: 

function [NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon, . . .  
JacNonLinearEqCon] = EvaluateGMATConstraints(X) 

% function [F,GradF] = EvaluateGMATConstraints (X) 
% 



% Description: This function returns the values of the contraints and 
% Jacobians. Empty matrices are returned when either a constraint type 
% does not exist, or a Jacobian is not provided. 
% 
% Variable 1/0 

% Variable Name 
% 
% 
% x 
% 
% 
% 
% NonLinearEqCon 
% 
% 

I/O Type Dimens. Description/ 
Comments 

I array n x l  Column vector of 
Independent 
variables 

0 global array neq x 1 or [I Column vector 
containing 
nonlinear 

% equality 
% constraint 
% values. 
% 
% JacNonLinearEqCon 0 global array n x neq or [I Jacobian of the 
% nonlinear 
% equality 
% constraints 
% 
% NonLinearIneqCon 0 global array nineq xl or [I Column vector 
% containing 

nonlinear 
inequality 

% constraint 
% values. 
% 
% JacNonLinearIneqCon 0 global array n x ineq or [I Jacobian of the 
% nonlinear 
% inequality 
% constraints 
% 
% Notes: n is the number of independent variables in X 
% neq is the number of nonlinear equality constraints 
% nineq is the number of nonlinear inequality constraints 
y ......................................................................... 
% 
% External References: CallGMATfminconSolver 
% 
% Modification History 
% 
% 06/13/06, S. Hughes, Created 

global NonLinearIneqCon, JacNonLinearIneqCon, NonLinearEqCon, . . .  
JacNonLinearEqCon 



Tht? low level cdll~acl< function, CallGRf.ATfininco11Sol\~er, uses the MATLAB server interface in GX1,4T 
to  run the solver subsequence. This function is contained in the MATLAB file shonrll here: 

function [F, GradF, NonLinearEqCon, JacNonLinearEqCon, . . .  
NonLinearIneqCon, JacNonLinearIneqCon] = ... 
CallGMATf minconsolver (X , status) 

% function [F, GradF, NonLinearEqCon, JacNonLinearEqCon, . .  
% NonLinearIneqCon, JacNonLinearIneqCon] = CallGMATfminconSolver (X) 
% 
% Description: This is the callback function executed by MATLAB to drive 
% the GMAT mission sequence during fmincon optimization. 
% 
% 

Scripting the frnincon Optimizer 

A sample script for the FminconOptiniizer is shown here: 

I------------------ Create core objects .......................... 
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

I Create Spacecraft Sat; 
5 . . .  
6 Create ForceModel Defaultprop-ForceModel; 

. . . 
Create Propagator Defaultprop; 
GMAT DefaultProp.FM = Defaultprop-ForceModel; 
. . . 
Create ImpulsiveBurn dvl; 
Create ImpulsiveBurn dv2; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
y-----------------c reate and Setup the Optimizer------------------ 

Create fminconoptimizer SQPfmincon 
GMAT SQPfmincon.DiffMaxChange = 0.01; % Real number 
GMAT SQPfmincon.DiffMinChange = 0.0001; % Real number 
GMAT SQPfmincon.MaxFunEva1s = 1000; % Real number 
GMAT SqPfmincon.MaxIter = 250; % Real number 
GMAT SQPfmincon.TolX =0.01; %Realnumber 
GMAT SQPfmincon.TolFun = 0.0001; % Real number 
GMAT SQPfmincon.DerivativeCheck = Off; % {On, Off) 
GMAT SQPfmincon.Diagnostics = On; % {On, Off) 
GMAT SQPfmincon.Display = Iter % {Iter, Off, Notify, Final) 
GMAT SQPfmincon.GradObj =Off; %{On, Off) 
GMAT SQPfmincon.GradConstr =Off; %{On, Off) 



% The optimization sequence below demonstrates how to use an SQP 
% routine in GMAT to show that the Hohmann transfer is the optimal 
% transfer between two circular, co-planar orbits. 
Optimize SQPfmincon 

% Vary the initial maneuver using the optimizer, and apply the maneuver 
Vary SQPfmincon(dvl.Element1 = 0.4, {Upper = 2.0, Lower = 0.0, cm = 1, cf = 1)); 
Maneuver dvl (Sat) ; 

% Vary the tranfer time of flight using the SQP optimizer 
Vary SQPf rnincon( TOF = 3600 ) ; 
Propagate DefaultProp(Sat, {Sat.ElapsedSecs = TOF)); 

% Vary the second maneuver using the optimizer, and apply the maneuver 
Vary SQPfmincon(dv2.Elementl = 0.4 , {Upper = 2.0, Lower = 0.0)); 
Maneuver dv2 (Sat) ; 

% Apply constraints on final orbit, and define cost function 
NonLinearConstraint SQPfmincon(Sat.SMA = 8000); 
NonLinearConstraint SQPfmincon(Sat.ECC = 0); 
Minimize SQPfmincon(dvl.Element1 + dvl.Element2); 

EndOptimize 

23.7 Command Interfaces 

The GMAT solvers are driven from a number of co~n~nands tailored to  the solvcr algorithms. The solver 
specific commands are shown in Figure 23.10. Eadl category of solver is used to drive a sequence of com- 
mands that starts with the keyword associated with the solver: "Target" for the targeters, "Iterate" for t,he 
scanners, and "Optimize" for the optimizers. The solver used for t.he sequence is identified on this initial 
line. Each solver sequcmce is termina.tcd with a corresponding end command: "EndTargct" for the targettx-s, 
"EndIteratel' for the scanners, and "EndOptimize" for the optirnizers. The cornn~ands enclosed between these 
keywords define the variables used in the solver, the conditions that the solver is designed to evaluate, an- 
cillary co~idit,ions that need to be met (e.g. constraints for the opt,i~nizers), and the sequence of events that 
thc ~r~ode l  runs when solving the scri~>ted problem. This secdion describes the featurt?~ of the comnlands that 
interact directly with the Solvers t o  solve nlissiorl specific tasks. The general layout and methods used by 
d l  commands are provided in Chapter 21. 

23.7.1 Commands Used by All Solvers 

Figure 23.10 shows the classes used by the GMAT solvers. Classes shown in blue on this figure are used by 
targeters, in pink by scanners, and in vellow bv opti~nizers. Tho classes shown in green are either base classes 
or solver classes used by all solvers. The solver specific commands, sho~vn in Figllrc? 23.11, are described 
in the following paragaphs. The scripting and options for tthe co~nlnands are presented first, followed by a 
brief descript.ion of the steps take during init,ializat.ion and execution of the commands. 

Solver Loop Conlrnands 

Each solver defines a mission subsequence that starts with a conlnland, identified by t'he keyword 'Target", 
"Iterate", or "Optimize", followed by the name of an instantiated solver. These comnlarids are collectively 
called the "loop ent,ry comnlands" in the test t,hat fo1lon.s. The cornmancis that arc? evaluatctl when runnirlg 



E i p r e  23.10: C o n ~ ~ n ~ d  Classes used hy the Solvers 

the solver subsequence follow this line in the order in which they are executed. The solver subsequence is 
terminated with a corresponding loop exit command, one of "EndTarget", "EndIterate", or "EndOpt.imizeV, 
select.ed t o  match the loop c:ntq command line. The format for a solver loop can b(: written 

<LoopEntryCommand> <SolverName> 
<Solver Subsequence Commands> 

<LoopExitComrnand> 

All solver subsequences  nus st contain at  least one Vary comma,nd so that the soltrer has :I. variable to  use 
when running it,s algorithm. Targeter commands also require at least one Achieve command, speci6ing the 
goal of the tasgeting. Scailners require at least one Accumulate command, defining the clat,a that is collect.ed 
during t,he iterative scan driven by the algorithm. Optimizers are required to define one .. and only one .. 
objective funct,ion, using the Minimize command. 

When the Solver hierarchy includes the option t,o drive the solution process from an external solver, t.he 
loop entry command must also supply a method used for the external process to  call back into GMAT to 
run t,he solver subsc:que~lce. This method, ExecuteCallhack(), is c~.~rrent,ly only supported by t.he optimizc?rs. 

The solver loop colnmand members shown in the figure fill these roles: 

Data Elements 

e std::string iteratorName, targeterName, optimizerName: The name of the solver used for this 
solver loop. 

a Solver* iterator, targeter, optimizer: The Solver used for this solver loop. 



Irrt Solver @mmandr Nccdcd C A I 1  Solvers) 

Figure 23.11 : Corr~xuand Classcs Required 1)y A11 Solvers 

Methods 

bool Initialize(): Set.s member pointers, init'idizes t,he solver subsequence, and then initalizes the 
Solver. 

bool Execute(): Runs thc Solver state machine, and c:xecutes t.ho solver subsequence when t,he state 
machine requires it. 

bool Executecallback(): For external solversg, this mothod runs t.hc nested staze machine through 
one iteration. 

void StoreLoopData(): Constructs objects used to store the object data at the start of a Solver 
subsequence, so that t.he data can be reset cadi time the subsequence is run. These objects are 
initialized to the values of the objects at  the start of the execution of the Solver loop. 

r void ResetLoopData(): Reset,s the subsequence i1at.a to their initial values prior to the nm of the 
solver subseclueace. 

0 void FreeLoopData(): Releases the objects construct.ed in thc StoreL,oopDat,a() method. This 
~netllod is called after a Solver has complet,ed its work, immediately before proceeding to the next 
command in the mission sequence. 

Initialization During initialization; the loop entry commands use the Sandbox's local object map to 
find the solver used in the loop. That solver is cloned and t,he clone is stored in a local variable. The loop 
entry command t,hen walks t,hrougli the list of conl~nands i11 it,s subsequence and passes tho pointcr to the 
solver clone into (?ad1 command t,hat. neods the pointer; t,hcs(? cornma.nds arc t,hoa! shown as solver specific 
in Figure 23.10. The branch coni~nand Initialize() method is then called to  complete initialization of the 
conunands in the solver subsecluence. 



Execution The loop entry comrnands exe!cut.e by performing the following sories of events: 

1. If the "cornma.ndExecut,ing" flag is false: 

St,ore t,he current. states for all spacecraft. and fornlations 

Rdrieve and store t,he entry da.ta for the solver 

Set the "cominandExecuting" flag to true and the and "commandCoinplete" flag to  false 

R.etrieve the current. solver sta,te 

2. If the cornrnand is currently running the solver subseq~ience: take the next. st.ep in t,hat run. This 
piece is required to let the user interrupt the execut,ion of a nin; when t,he subscquenca is running, it 
periodically returns control to the Sandbox so that t,he user interface can be polled for a user interrupt. 

3. If the subsequence was not running, perform act,ions that the subsequence needs based on the current 
solver state. These actions n1a.y be restoring spacecraft data t,o the entry data for the solver loop, 
starting a run in the ~nission subsecli~ence; preparing to  exit tho solver loop, other algorithm specific 
actions, or t,a.liing no action at  all. 

4. Call AdwnceSt,ate() on the solver. 

.5. Write out solvcr report ~lat~a.. 

6. Return control to t,he Sandbox. 

The Vary corninand is used by all solvers to define the variables used by the solver, along with parameters 
appropriate to  the variable. A typical Vary cornrnand has the format. 

Vary <SolverName>(<variable> = <initialvalue>, {<parameter overrides>)) 

The <SolverName> should be t,he same solver object identified when the solver loop wa,s opened. The solver 
must be ident,ified in each Vary command, so that nest,ed solvers can assign variables to the correct solver 

The Vary command has the following parameters that uscrs can override: 

e Pert: Defines the pertnrhatiou applied to the variable during targeting or scanning. This paranleter 
has no effect when using the F!tninconOptimizcr. (TBD: the effect for other oytimkers.) 

r Lower (Default: Unl~ounded): Thc minimum allowed value for the varial>le. 

Upper (Default: Unl>ounded): The rnaxiini~m allowed value for blie varial>le. 

MaxStep (Default: Unbounded): The largest allowed singe1 step that, can be applied to  t,he variable. 

m AdditiveScaleFactor (Dt?fa.ult: 0.0): The additive factor: A, definetl in equat,ion 23.5. 

0 MultiplicativeScaleFactor (Default.: 1.0): The nlult,iplicative fact.or, M, defined in equation 23.5. 

Paranleters are set by assigning values to these keywords. For example, when setting a perturbation on a 
maneuver component Mnvr .V, using the targeter dcTaxg, the scripting is 

Vary dcTarg(Mnvr.V = 1.5, {Pert = 0.001}) ; 

' O A  sirniiar rcnsiraint is applied t o  ail solvcr colnmati.ds; itlcn4,iFying the solvcr rclxovcs ?.he possibility of misassignirig s o l ~ ; ~  
data. 



where t,he itiit.ial value for the velocity component of the nianeuver is 1.5 kni/s, and t,he targeter applies a 
perturbation of 1 m/s (0.001 lim/s) to  t,he maneuver when running the targeting algorithm. 

The scale factor parameters are used to  rescale the variables when passing them to t.he solvers. Scaling 
of the varial~les mtl other elements in a solver algorithm can ba used t.o ensure thak the st,eps taken 11y a 
targt!t,er or optimizer are equally scnsitive to variat,ions in all of t,he parameters defining the problem, and 
t!lerefore more quickly convergent. When a variable is passed to a solver, the actual value sent to the solver, 
Xi, is related to the value of the variable used in t,he solver subsequence, Xi, by the equation 

where A is the value set for thtr AdditiveScaloFactor, and hf is the value of die Multiplica.tiveScaleI?actor. 
This equuat.ion is i~lverted when the variable is set from the solver, giving 

X i = M & - A  (23.6) 

All solvers work with the scaled value of the variable data. When a variable wlue is retrieved from the Solver, 
t.he Vary command applies equation 23.6 t.o the retrieved value before using it in the mission subsequence. 

The Vary command members shown in the figure fill these roles: 

Data Elements 

r std::string solverName: The name of the solver that uses this variable. 

r Solver *solver: A pointer to  the Solver. 

r std::string variableName: The name of t,he variable fed by this command. 

a <see text> initialvalue: The initial value for the variable. This can be a number, a piece of object 
data, a Parameter, or an array element. 

b a l  currentvalue: The current or tnost recent value of t.he variable. 

Methods 

r bool InterpretActionO: Parses the command string and builds the references needed during initial- 
ization and t?xecution. 

r bool Initialize(): Sets the member pointers and registers t'he variables with the Solver. 

r bool Execute(): Queries the Solver for the current variable values, and sets these values on the 
corresponding objects. 

e bool Runcomplete(): Cleans up data structures used in the solver loop. 

Initialization A t  initialization, the Vary command registers its variable with the solver by calling the 
SetSolverVaria,ble() tnetllod. The scaled initial value of the variable (normalized using equation 23.5)' along 
with the associat,ed parameters, are all passed int,o the solver with this call. That methotl returns the solver's 
int.eger index for the variable, which is stored in a member of the 1;ary command. 

Execution When the Vary co~nlnand trxecutes, it que~ies tho solver for the current value of the variable 
using the GetSolverVariable() method. That method passes back the value of the variable that should be 
used in t.he current run of the solver subsequence. The value is uniiormalized using equat,ion 23.6 and t.hen 
used t,o set, the value of the variable for later use in the solvcr subsequence. 



23.7.2 Commands Used by Scanners 

Scanners are used to colle~% statistical data by itcrating the scanner subsequence for a user specifieci number 
of passes. The data collected is identified using the Acc~mmlatc~ cornmanti, shown in Figure 23.12 and 
described here. 

................... ., 
cd: Scanner Commands 

Figurc 23.12: Cornmanti Classes Uscti by Scltllncrs 

TBD - -  This section will be completed when the first scanner is scheduled for i~nplementat,ion. 

23.7.3 Commands Used by Targeters 

Targeters are used to change tlle variables so that the nlission reaches some user specified set of goals. These 
goals are identified using the Achieve command, shown in Figure 23.13 and described here. 

Figure 23.13: Cor:lr~lzncl Classes 'Csecl hy Targeters 



Achieve 

The Achicve colnlnand is used by t,argeters to define t,he goals of thc t.arget.ing secluence. Acliic?ve commands 
occur inside of a targeter subsequence. They set the targeter goals using scripting with the syntax 

Achieve <TargeterName>(<goalParameter> = <goalvalue>, {Tolerance = ToleranceValue)) 

The targeter named in the conmland must 1na.tch the targeter named in the Target command that. starts 
the target,er subsequenct!. The goalParamet,ers is a GhlAT Parameter that produces a Real value. The 
Goalvalue and the ToleranceValue each consist of either a number, a Parameter, or an array element, again, 
producing a R.eal number. 

The .Achieve? conlnland mc:nibers shown in the figure fill these roles: 

D a t a  Elements 

a std::string targeterName:  The name of the Targeter associated with this goal. 

a Solver *targeter: The Targeter t.hat is trying t80 meet thc goal specified by this comma.nd. 

a std::string goalName: The n m e  of the paranleter that is evaluated for this goal. 

e Paramete r  *achieveParm: The parameter that. is evaluat,ed for conlparison with t.he goal. 

r Real  goal: The goal of tho target,ing run associated with the achioveParnl. 

a Real  to lera~lce:  The measure of how close the achieved value needs to be to the goal. 

Methods  

r bool InterpretAction():  Parses the com~nand string and builds the references needed during init.id- 
ization and execution. 

a bool Initialize(): Sets the member pointers and regist,ers the goals with the Targeter. 

a bool Execute():  Evaluates the value of t,hc? achievc?Parm, and scmds this value to  the Targeter. 

I~iit ialization During Initialization, the Achieve co~nrnand sets its internal rnember pointers and reg- 
isters with the Targeter. 

Execution m711en the .Achieve conl~nand is executed, the parmeter  that, calculates the current value 
for the targeter goal is evaluated, and tha.t value is sent t o  the Targeter. 

23.7.4 Commands Used by Optimizers 

All optimizers require exactly one Mini~nize command. Optimizers may also specify other data used in 
optimization; specifically, commands exist t,o specify nonlinear constraints, g~adicnt data, and .lac:obian 
da.t a. 

Minimize 

The Minimize command has the synt.ax 

Minimize <OptimizerName>(<ObjectiveFunction>) 

4 s  in the other solver com~nands, the solvt?r identified in the conmland, <OptimizerName:>, is the same 
optimizer ns was ideritified in the loop entry commant-l, an Optimize command in t.his case. The parameter 
passetl inside the parentheses, identified as <Object.iveFunctioi~>, here, returns a scalar Real value that 
represents t,he current value of'the object,ive function. This function is contained in a GMBT a Variable. 

Thc klinixnize command members shown in the figure fill t,ht?se roles: 



Figure 23.14: Co~n~nand Classes Used by Optimizers 

Data Elements 

w std::string optimizerName: The name of the Optimizer that o~x~ns this objective. 

Q Solver *optimizer: A pointer to the Optimizer. 

Q std::string objectiveName: The na.mo of t.he variable used t o  evaluate the objective fil~ict~ion. 

Q Variable "objective: The variable used for the object.ive fiinction. 

e Real objectivevalue: The current or most recent value of t,he objective function. 

Methods 

bool InterpretActionO: Parses the comrnand string and builds the references needed during initial- 
ization and execution. 

bool Initialize() : Sets t,he menib(?r pointcrs and registers the objective function wit,h the Optitnizer. 

w bool Execute(): 'valuates the value of t,he objective filnct,ion, and sends this value to  the opti~nizer. 

Initialization The Opti~nizer used by the Minimize conmland is set by tthe Optunize loop ent,ry com- 
mand prior to initia.lization of this con11na.nd. When initialization is called for the Rliniinize command, the 
Variable providing the objective function value is found in the Sandbox's local object. map and t,he pointer 
is set accordingly. The Mininiize cotn1n:inti then registers with the Optimizer using the SetSo1verResult.s 
mt:thocl. The Optimizer sets its mc:mbcr data, struc.r,urc accordingly, atid ~~~~~~~~s an ttsception if more than 
one objective attempts t o  regist.er. 

Execution Fl'hen the Minimize conlmand is executed, the Real va,lue of the objective function is 
evaluated by calling t,hc Variable's EvaluateReal nlet,hod. The resulting value of t,he object.ive function is 
passed to the Optimizer using the SetResult\'alue metliotl. 



NonLinearConstraint 

The NonlineasConstraint comma~itl has thc s 'y ntax 

Here thc OptirnizerNanle is the name of the Optimizer itlentified in the Optimize loop entry coniniand. 
The -:Const.raintSpecification> ha.s the form 

<:ConstraintFarameter:> is a Parameter, Variable, or object property. The operator is &her an equal sign 
(L'rr;") for ecluality co~istraints: or a, "<c--." sp(?cificatio~l for inequality constraints. The constraint value is a 
R.eal number settig the target value of the constra.int. 

The NonlinearConstraint command ~nt?ml,ers shown in the figure fill these roles: 

Data Elements 

r std::string optimizerName: The name of the Optimizer that owns this constraint. 

r Solver *opti~nizer: A pointer to the Optimizer. 

r std::string constraintName: The name of t.hc object providing the constraint value. 

r Parameter *constraint: The object providing the constraint value. 

r Real constraintValue: The current or most recent value of t.he constraillt,. 

r bool isInecluality: A flag indicating is the constraint is an inequa1it.y constraint. 

e Real desiredvalue: The desired value; or right hand side, of the constraint equation. 

r Real tolerance: Current,ly unused, this is a measure of how close the calcuiat,ed value for the constraint 
needs to be to the actual value for equality const,raint,s. 

Methods 

r bool InterpretActionO: Parses t,he command st,ring and builds the references needed during initial- 
ization and execution. 

r bool Initialize(): Sets the member pointers arid registers the constraint with the Optimi~er. 

r bool Execute(): Evaluates the value of the constraint, and sends this value to the optimirer. 

Initialization The Optimizer used by the NonlinearConstraint command is set by the Optimize loop 
ent,ry command prior to initia.lizat,ion of this command. When initializat.ion is called for the XonlinearCon- 
straint command; the object that is evaluated for the constraint. is retrieved from t,hc Sandbox's local obj(:ct, 
map. The constraint specificat,ion is parsed, setting t.he constraint type and data in the NonlinearConstraillt 
command. Finally, all of the constraint information is collected and regist.ered with the Optinlizer using the 
S(?tSolverResults met,hod. 

Execution When the NonlineasCo~istraint coln~nand is executed, the R.eal value of t.he constraint is 
evaluated, and the resulting value of the constraint is passed to the Optimizer using the SetR,esultt'alue 
niet,hod. 



Gradient 

The Gra.dient cornmanti is used to scntl the gradient of the objective functioil to an optimizer. This conlmand, 
a future enhancement, will be implerllented when state transition matrix calculat,ions are incorporated i11t.o 
GMAT. 

NLIneqConstraint Jacobian 

This commaild is used to set the Jacobian of the nonlinear inequality const,raints for an optimizer. This corn- 
niand, a future enhancement, will be implemented when st,ate transition matrix cttlculat.ions are incorporated 
into C:L1.4T. 

This command is used to  set the Jacobian of the nonlinear equality const,raints for an optimizer. This com- 
mand, a fut.ura enhancement,, will be implement,ed when stitto t,ransition matrix calculations are incorporated 
into GMAT. 



Chapter 24 

Inline Mathematics in GMAT 

Darrel J .  Conway 
Thinking Systems, Inc. 

GMAT provides a flexible mechanism that lets usars place both scalar and matrix computations int,o 
thc command sequence for a mission. This mechanistn is i~nplornetited in a set of classes described in this 
chapter. 

24.1 Scripting GMAT Mat hematics 

mat he ma tic,^ in GMAT scripts follow the conventions established in MATLAB; an equation consists of a1 
object on t,lie left side of an equals sign, with an equation on t.he right. Equations be entered either in 
script files, or using a panel on the graphical user interface. Parent,lleses arc used to set the precedence of 
operations when the rlorrnal precedence rules are not valid. Table 24.1 lists the operators implemented in 
GhlAT. The table is arranged in order of operator precedence: operat,ors higher in t,he ta.ble are evaluated 
before operat,ors that appear lower in the table. Users can ove~~ ide  this order t,hrough selective use of 
parentheses. 

Mathenlatics in GMAT are scripted using the same synta,x as assiglrnents. Three sanlples of the scripting 
for the operations in Tat~le 24.1 arc provided here to and discussed in the design presentation to help c?xplai~i 
how GillAT ~nanipulat~es its internal data structurc..s to perfortn scripted mathematics. 

Example 1: Basic Arithmetic 

In this sinlplest example, a user needs t o  write script t,o perform the calculation of the longitude of periapsis, 

r I = O + w  (24.1) 

for the spacecra.ft, nanled sat. Tha scripting for this calculat.ion is st.raight forward: 

Create Spacecraft sat ;  
Create Variable arg 
GMAT arg = sat.RAAN + sat.AOP 

Example 2: More Complicated Expressions 
This snippet calculates the separation between two spacecraft, using the Pythagorean t,hcorem: 



Ta.l)!a 24.1: 0jtera.t.o~~ arrtl Operakor Pret:c?~Zenco in Gh,1AT 

This is a useful example because, as we will see, it exercises the parser to  ensure that operat'ions we performed 
in the correct order. The script for this example is, again: pretty simple: 

Operator or 
Flrnct ion 

Evaluate 
Couvcrsio~r - ?unctions 
Eva11tat.e ;?4a.::rix 
Operations 

Evaluate blath 
Funct.ions 

Esponenciation 

Mult.iplication and 
Division 
Addition and 
Subtraction 

Create Spacecraft satl, sat2; 
Create Variable sep 
GMAT sep = sqrt((sat1.X-sat2.X)-2 + (satl .Y-sat2.Y)-2 + (sat1.Z-sat2.Z)-2) 

Example 3: Matrix Computations 

Implemented 
Cases 
DcgToRad, 
R.arlToDeg 

t,r:i~isgi>se a1c1 '; 
det; ixw 2nd (-1); 
norm 
s k ,  cos: tan, asin, 
acos, atan, atan2, 
log, Ivg30, exp! 
sqrt 

" i 
-1. - 

This final example is more complex, and exercises both operator ordering and matrix computations to 
calculatt: a component of the analytic gradient of a function used in1 optimization. This script snippet assumes 
that. GMAT can1 calculate the State Transitio~i Ma,trix a,nd provide users with access to t.hc cor~esponding 
3x3 subnnatrices of it. The scripting for that calculat,ion is: 

% This script snippet uses the following definitions for pieces of the 
% State Transition Hatrix (STM): 
% Sat.Phi is a 6x6 matrix that is the spacecraft STM 
% Sat.PhiA is the upper left 3x3 portion of the STM 
% Sat.PhiB is the upper right 3x3 portion of the STM 
% Sat.PhiC is the lower left 3x3 portion of the STM 
% Sat.PhiD is the lower right 3x3 portion of the STM 

Comments 

................................................................................................................................................................................................................. 
Conmrtr-; bc:t-cc-con 
radia.ns ;uid ticglees 

................................................................................................................................................................................................................... 
Angles In the trig 
functions are in radians 

Poxwrs are any real 
nunlber 

........................................................................................................................................................................................................ 

Create Spacecraft Satl, Sat2 
Create Array Svec [3,1] Svecdot [3,1] S [I, 11 dSdotdR [I,  31 

Example 

Dr:gTeICad(s:1t.Riij2N) 

mai" :jet (1na.t:) 

sin(DegToIofiad(sa~,.TA)) 

sin(r?dTAj -0.6 

sat.RhlAG 1 sat.SX1A 

- ........- 
sat.RAXN -I- sa.t.XOF' 

For I = 1: 100 
% Step the spacecraft 
Propagate LowEarthProp(Satl, Sat2) ; 

% Calculate the relative position and velocity vectors 



Figwe 24.1: Tree View of the Longitude of Periapsis Calculation 

GMAT Svec(1,l) = Sat2.X - Sat1.X; 
GMAT Svec(2,I) = Sat2.Y - Sat1.Y; 
GMAT Svec(3,I) = Sat2.Z - Sat1.Z; 
GMAT Svecdot(1,l) = Sat2.VX - Satl.VX; 
GMAT Svecdot(2,i) = Sat2.W - Satl.VY; 
GMAT Svecdot(3,I) = Sat2.VZ - Satl.VZ; 

% Calculate range 
GMAT S = norm(Svec); 

% Calculate the change in the range rate due to a change in the 
% initial position of sat1 
GMAT dSdotdR = 1/S*( Svecdot7 - Svec'*Svecdot*Svec'/S-2 )*(- Satl.PhiA )... 

+ Svec7/S*(-Satl.PhiC); 
EndFor ; 

The last exprassion here, dsDotdR, will be used in the design discussion. 

24.2 Design Overview 

When GhlAT encounters the last line of the first script snippet: 

GMAT arg = sat .RAAN + sat. AOP 

it creat.es an assignment command that assigns tlie results of a calculation t.o t,he variable naned arg. The 
right side of t,his e>iprc:ssion - -  the equation .. is convertetl into GnlIAT objects using an int.erna1 class in 
GMAT called t,he Mathparser. The MatliPrtrser sets up custom caJculations by breaking expressions - like 
the ones scripted in the preceding section .-- into a tree structure using a recursive descent, algorithm. This 
decomposition is performed during script parsing when the user is running from a script file, and during 
application of user interface updates if thc user is constructing the 1na.thematics from the GM.4-r graphical 
user uitcrfa.ce. GM-AT st.ores the tree rt?present,ation of the mathc~natics in an internal object called the 
MathRee. During script execution, the MathTree is populated witli tlie objects used in the calculation 
during mission initialization in t,he Sandbox. The equation is evaluated when the associated .4ssignment, 
conmiand is e~ecut~ed by perfornlirig a dopth-first t,ravc?rsal of the tree t,o obtain the desired results. The 
algorithnis inlple~uented liere are edensions of the a.pproach presented in chapter 40 of [scliildtl. 

The trce based structure of thc coniput,atio~is enforces the operator prccedcncc rules tabulated al~ove. In 
this section the construction mt-l evaluation of the t,rees for the cxarnples is prcsentecl, and tlie classes used in 
this process are introduced. The sections that follow this overview present the classes in a more systematic 
manner, discuss how tlie script,ing is passed to  create the GMAT objects used in evaluation, and then tie 
thcsc? picces togethes by discussing how the constructetl objects int.eract as a. program exccutos. 



Figure: 24.2: Trcc V i m  of the Sittcllitc Separatio~i Ca1cuiatio:i 

Figure 24.1' shows the tree generated for the loiigitude of periapsis calculation scripted above. This 
simplest example illustrates t,he layout, of the tree in memory that result,s from a simple arit,hrnetic expression. 
The GNAT Mathparser class is fed tho right, side of the expression froni the script in this case, that is 
the st,ring "sat.RAAN + sa.t.AOPff. This string is passed t,o the recursive! descent, cod(?, which breaks it 
into three pieces --- two expressions t.hat can be evaluat,ed directly, and an opera,tor that combines these 
expressions. Thesc pieces a.re stored in an internal class in G31.4T called the MathTrec. The expressions 
"sai.RAANfl and "sa$.AOF" are pla.ced into the "leaves" of the tree, while the addition operator is placed in 
the top, "internal" node. The leaf nodes are all instances of a class nanied "MathElement,", and the internal 
nodes, of classes derived from a class named "Mat,hFunction". When the assignment conlinand containing 
this const.ruct is exe~ut~ed, each of the l e m s  of the tree is evaluat,ed, anti then combined using the code for 
the addition operator. 

The second exanlple, illustrated in Figure 24.2, provides a Inore illustrative example of the parsing and 
evduation algorithms implement,ed in GMAT. This tree il1ustrat.e~ the equation encoded in exanlple 2: 

GMAT sep = sqrt((sat1 .X-sat2.X)-2 + (sat1.Y-sat2.Y)-2 + (sat1  .Z-sat2.Z)-2) 

Each node in the hlathTree can be one of three types: a function node, an operator nodo (both of these 
types are embodied in the hlathFunct,ion class), or an elancrit node (in the Ma.thElement class). Tht: element 
nodes are restricted to being the leaf nodes of the tree: the internal nodes are all eit,her function nodes or 
operator nodes. 

Each Mat.hElemont node consists of t,wo sc?parat.e pieccs; a string containing the text of t,he expression 
represented by t,he node: arid either a pointer to  the object that embodies tha.t expression or, for constants, 

I l n  this iigure aud tliosc that  SOU^::^, the conpune~~ t s  that :.a11 be evaluated into Kc& uurcbzru are drawn on elocgaied 
octagons, and rhc operators arc erawtr 111 a circlc or cIlipsc. hlatrices arc <!chatcd b~ a t l ' . r~e-dim~n6iml Empty nodes 

. . 
are de~toted by bla,ck circlea. a,rlrl n u i n b r ~ ,  by uraiigi: s i juare~ wl b i !  n:u~iSiecl ccirnrcj. 



Figure 24.3: 'free View of the hfatris Calculation in Example 3 

a local member containing the value of the expression. The pointer member is initially set to KULL when 
t,he ~ a t h ~ l e m e n t  node is construct.ed during script parsing. When the script is initialized in the GhlAT 
Sandbox, these pointers are set t,o the corresponding objects in the Sandbox's configuration. Ex11 time 
thc assignment command associat.ed with the Mat,hTree esecut.es, an Evaluate() method is called on the 
Mathnee, as described below. 

The function and operator nodes consist of several pieces as well. Each of these nodes contain subnode 
pointers that identify the input. value or values needed for the node evaluation, and a met.hod that performs 
the actual mathematics involved in the evaluation. The mathematical operat.ions for ex11 of t,hese nodes is 
coded t.o work on either a scalar valuc? or a matrix; the specific rules of implt?mentation are operator specific. 

The Evaluate() metliod for t,he MathTree calls t,he Evaluate(,) method for thc topmost node of the tree. 
This method call is evaluated recursively for all of the subnodes of the tree, starting at the t'op node. The 
method checks to see if the node is a leaf node or an internal node. If it is a leaf node, it is evaluated and 
t,hc resulting value is returnecl to t.he objcct that called it. If it is an int,ernal node, it evaluates its subnodes 
by calling Evaluate() first on t,he left node, then on the right node. Once these results are obtained, they are 
combined using the mathen~at,ical algorithm coded for the node, and the result,ing value is then returned to 
the calling object. 

Finally, the gradient component scripted in the third example: 

GHAT dSdotdR = 1/S*( Svecdot' - ~vec'*Svecdot*~vec'/S-2 )*(- Satl.PhiA ). . .  
+ Svec /%(-Sat1 .PhiC) ; 



produces Figure 24.3. Evaluation for this tree proceeds as outlined above, wit11 a few variations. Instead of 
calling the Evaluate() method for the nodes in the tree, expressions that use matrices call the MatrixEvaluate 
method. Another wrinkle introduced by t,he matrix nature of this examplt.: is that the internal nodes now 
have an additional requirement; each node needs to determine that the dimensionality of the subnodes 
is consistent with the requested operations. This consistency dleck is performed during initialization in 
t,hc Swdbox, using t'ho Va.lidateInputs()  neth hod. MatrixEvahate may perform additional checks during 
execution, so t,hat singulaxities in the computation can 1)e flagged and brought to the at,tention of the user. 

24.3 Core Classes 

Figure 24.4 shows the class hierarclly inlplenlented to perform the operat,ions described a,bove, along with 
some of the core ~nenlbers of these classes. The core classes used in GMAT to perform mathematical 
operations are shown in green in this figure, while the helper classes used to setup the binary tree struct,ure 
are shown in orange. The MathTrce and its nodes are all owned by instances of the Assignmcnt command, 
shown in yellow in the figure. Core GMAT classes are shaded in blue. The main featurcs of these classes are 
shown here, and discussed in the following paragraphs. At the end of this section, the principal elements of 
t,hc base classes are collected for reference. 

Thc MathTree class is the! contai~ler for the tree describing the ecluation. It contains a pointer to the 



24.3. COLE CLASSES 225 

topmost node of the tree, along with methods used to manipulate t,he t,rw during init,ializsation and execution. 
This class is used to provide the interface between the t.ree arid t,he Assignment coninland. 

Each node in a MathTtee is derived from the MathNode class. That base class provides the structures 
and methods required by t.ha Ma.thTsec to perform its funct.ions. There are t,wo classss derived froni the 
MathNode base: MathElement and MathFunction. The MathElement class is used for leaf nodes, and cat1 
st,ore either a numerical value: a matrix: or a GM.4T object that. evaluates t o  a floating point number .-- 
for (?~ample: a Parameter, or a real tnember of a core GM.4T object.. Mat,hFunct.io instances :i.r(? used to 
implemc?nt mathernat.ical operators a.11d functions. Tha left and light subnotl(?s of these nodes contain the 
function or operat,or operands. Subnodes are evaluated before the operator is evaluated, produciilg results 
that are used when evaluating the function. 

The 3lat.hNodc ba.se class coritains t,wo menlbcrs that are used to checlr the compatibility of operands 
during initialization. The EvaluateInputs() method checks the return dinlensions of the subnodes of the node, 
and returns true if either the node is a MatllElement or if the subnodes are cotnpatible with the current node's 
Evaluate() and hlatriuEvaluate() methods. The ReportOutputs() method is called on subnodes to obtain 
t,hc dime~isions of matrices returned from calls to bIa.trixEvaluate(). That, method provides an int.erface used 
by the E\~alua.t(?Iilputs() nlethod to perforln its evaluation. 

One additional item worth lnentioning in the Mathyode base class is the implenleritation of the Matriu- 
Evaluate() method. The Evaluate() method is pure virtual, and therefore not implemented in the base class. 
MatrixE~duatc(), on the other hand, is iniplenie~lted to apply the Evaluate() method element by element8 
to  the nlatris members. In other wortls, tlie d(?ftiult Mat,riiEvaluatc() method itnplernc?nts the algorithm 

where Mij is the [i,j] elenlent of the resultant, Lij is the [ij] element of t,he left operand, and Rij is the 
[i,jl element of the right operand. Most classes derived from the Mathfinction class will override this 
implementation. 

The classes implementing mathematical operations me derived fro111 the MathFunction class. Figure 24.4 
shows some (but not all) of these derived cla.sses. Operators that h a ~ e  a one to one functiorlal correspondence 
nrith RIATLAB operat.ions are named identically to t,he MATLAB function. That means that opera.tors like 
the t,ra.nspose operator will violate the GMAII: naming conventions, at  least for the string name assigned 
to  the class, because the MATLAB operator is lowercase, "transpose1': while the GMAT naming convention 
spec,ified that class names start with an upper case letter. 

Operations that, can rely on the algorit.hm presented in cquation 24.3 (lo not need to im~~lement the 
Ma8trixEvalu;tte() mc!tllod; for the classes shown here, that maans that Add, Subtra.ct, sin, cos, and asin 
only need to implement the Evaluate() method, while Multiply, Divide, transpose, norm and Invert need t,o 
iniplement both the Evaluate() and MatrixEvaluat.e() n~et,hods. 

24.3.1 MathTree and MathNode Class Hierarchy Summary 

This section describes t.he top level classes in the MathTree subsystem, summarizi~ig key feat.ures and pro- 
viding additional information about the class membcrs. 

MathTree 

A MathTree object is a container class used t,o help initialize and tnmage the tree representing itn equation. 
It starldardizcs the interface with the Assigntnc?nt, commatltl a.nd acts as tlle entry point, for the evaluation 
of an equation. It is also instrument,al in setting the object. pointers on the tree during initiaJizat,ion in the 
Sandbox. Key nie~nbers of t.his class are described below. 

Class Attributes 

e topNode: A pointer t,o t,he topmost node in thr: hlathTrm. 



Methods 

r Evaluate(): Calls the E\raluate() method on the toprc'ode and retur~ls the value 0btaint:t-l from that 
call. 

r MatrixEvaluateO: Calls the MatriuEvaluate(,) rnet.hod on the topNode and returns the nla.trix ob- 
t,ained from that call. 

r ReportOutputs(1nteger &type, Integer &rowcount, Integer &colCount): Calls ReportOut- 
puts( ...) 011 the topXode and returns the data obtained in that call, so that the Assiglnlent comnland 
can validate that thc retusncd data is compatible with the object that receives thc calculated data (i.c. 
the objcct on the lcft side of thc ccluation). 

e Initialize(std::map<std::string,GmatBase*> *objectMap): Initializes the data members in the 
Mat,hTree by- walking through the tree and setting all of t,ho ol>ject pointers in the hlathElement nodes. 

MathNode 

blathNode is the base class for the nodes in a MathTree. Each MatthNode supports methods used to 
deterniine t.he return value from the node, either as a single R.eal number or as a nlat'rix. The MathNodes 
also provide methods used to  test the validity of the calculation contained in the node and m y  subnodes 
t,hat may exist. The core Ma.thiVode members are listed below. 

Class Attributes 

a realvalue: Used to store the   no st recent value calculated for the node. 

a matrix: Used to st,ore the most recent matrix data cd~wlated for the node, when the node is used for 
matrix calculations. 

Methods 

Evaluate(): An abst.rct  neth hod that returns t.hc value of tthe aotlc. For hlathElernents, this method 
returns the current value of the element, either by evaluating a Parameter and retuning the value, 
accessing and returning a1  object,'^ internal dat,a, or returning a constant. For Mathhnctions, t,he 
Evaluat.e() niet.hod appies the function and returns t,lle result. If the encoded filnct,ion cannot retnrn 
a b a l  numi)er, Evaluate() throws an exceptio~l. 

r MatrixEvaluate(): Fills in a matrix with the requested dat,a. For LfathFunction objects, this met.hod 
pc:rfor~ns the calculation of the operation and fills in the matrix 1vit.h the results. The default inlple 
mentatioil uses equation 24.3 to fill in the matrix element by element. Operations that do not return 
~natrix values, like norm and determinant, t.hrow exceptions when this method is called. MathE1ements 
simply return the matrix associitted u7it.h the node. 

a EvalxiateInputs(): Checks the inputs to  the node t o  be sure that they a,re con~patible with the 
ca.lcu1:ttion that is being performed. For MathElement nodes, this method always returns true if the 
node! wa.s successfully initialized. For MathFunction nodes, this method calls its subnotlcs and checks 
to  be sure that t'he subnodes return compatible data for t'he function. 

e ReportOutputs(1nteger &type, Integer &rowcount, Integer &colCount): This met8hod tells 
the calling object the t'ype and size of t,he calculation that is going to be performed by setting values 
of the paramc?ters used in t,ho call. The first parameter, 't.ypel, is set to indicate whether tho return 
value will be a matrix or a Real number. 'rowCount' and 'colCount1 are set to the dimensions of the 
inat,ris if t,he return value is a matrix. or to 0 if the return value is scalar. This method is used in the 
EvaluateInputs() method to determine the suitability of subnodes for a given calculation, and by the 
MathTree class tc) obt,ain t,he size of the answer ret,urned from a complete calcul a, t '  ion. 



Mat hElements 

Tlir! leaf nodes of a. MatliTree are all instances of t~lie MathElement class. The Ma.thElenient class acts as a 
wrapper for GMAT objects, using the methods defined in t,he GrnatBase base class to  set these referenced 
objects up for the MathElement's use. The GmatBase metliods SetRefObject(), SetRefOl)ject,Kame(), G e  
tR,efObject,(), and Gr!tRefObject,K;311ir1() are overridden to set the internal data structures in the node. The 
other relevant members of this class are listed below. 

Class Attributes 

a refObjectName: Holds the name of'the C4M,AT,object that is accessed by this node. 

rembject: A pointer t,o t.he referenced object. This pointer is set when the MathTree is initialized in 
t,he Sandbox. 

Methods 

SetRealValue(Rea1 value): Sets the value of the node when it contains a constant. 

MathFunctions 

The internal nodes of a hlathTree are all instances of classes derived from TvlathR~nction. This class contains 
pointers to subnodes in the tree which are used to walk through the tree structure during initialization and 
evduation. The relevant members ate described below. 

Class Attributes 

r left: A pointer t,o t,he left subnode used in the calculation. MitthFunctions that only require a. right' 
subnode 1eti.ve this pointer in its default, NULL setting. 

a right: A pointer to the right subnode uscd in the calculittion. MathRmctions that only recluire a. left 
subnodt: leave this pointer in its default,, NULL setting. 

Methods 

a SetChildren(MathN0de *leftchild, MathNode *rightchild): Sets the pointers for the left and 
right child nodes. If a node is not going to be set, the corresponding parameter in the call is set to 
NULL. 

a GetLeft(): Returns the pointer to the left node. 

r Getfight(): Ret,urns the pointor 60 t.he right, node. 

a Evaluate(): In derived classes, this method is overridden to peifosnl the inathematical operation 
represented by this node. 

0 MatrixEvaluateO: In derived classes that (lo not use the default matrix calculations (equation 24.3), 
this method is overridden to perform the mathelnatical operation represented by this node. 

24.3.2 Helper Classes 

There are t,wo classes that, help config~ire a Ma.thTsee: MatliParst?r and Mat.hI;'act.ory. In addition, the 
Assignment com~nand acts as the interface between a MathTree and other objects in GMAT, and the 
Moderator provides the object, interfaces used to  confiwre the tree. This section sketches the actions taken 
by these components. 



The Int,erpreter subsystcrn (see Sect.ion 6.5) in GMAT includes an interface that can be used to obtain a 
hlatllPa,rser object. This object takes the right side of an equat.ion, obtained fro111 either t.ha GMAT GUI 
or the ScriptInterpreter, and breaks it into a tree t,hat, when evaluated depth first, irnple~nerlts the equation 
reprtrsented by the equation. The 21a.thPaser i.ws t.htr methods descrilwd below to perfor~n this task. 

Methods 

Parse(const std::string &theEquation): Breaks apart the text representation of an equation and 
uses the component pieces to construct the MathTree. 

e CreateNode(const std::string &genString): Uses the generating string "genString?', to  create a 
node for insertion into the MathTree. 

Decompose(const std::string &composite): This method is the entry point to  the recursive de- 
scent algorithm. It uses internal methods to  t& a string representing tlic right sidc of the equation 
and break it into thc constituent nodes in the MathTree. Thc method returns the topmost node of the 
MathTrec, configured with all of the derived subnodcs. 

MathFactory 

The MathFactory is a Gbl.4T factory (see Chapt,er 5 that. is used to construct. hfat,hNodes. It has one method 
of interest here: 

Methods 

CreateNode(const std::string &offype): Creates a MathNode that implements the operation 
contained in thc st,ring. If no sudl operator exists, t,htr MatliFactory creates a MathElemont. node and 
sets the reference object name on that node to the test of the 'oflypc?' string. 

The Assignment Conmand and the Moderator 

The Assiglment command is the cont.ainer for the Mat,hTree described in this cha.pter. All GhlAT equat.ions 
are formatted with a receiving object on the left side of an equals sigq then the equals sign, and then 
the equation on the right. When tlle interpreter system is configuring an Assignment co~nniand, it detects 
when the right side is an equation. and passes the string desc~ibing the equation into a Mat,hParser That 
MathParser procoeds to pa.rse the equation3 ~naking calls into the &loderator when a. near Ma.thl\Fodt! is re- 
quired. The Moderator accesses the MathFactories through the FactoryManager, and obtains MathNodes as 
required. These nodes are not added to t.he Configurat,ion Manager, but they me returned to  t'he hlat.hParser 
for insertion into the current MathTree. Once the tree is fully populat,ecl? it is ret~irned to t,he Assignment 
command, completing the pasing of the expression. 

When the Moderator is instructed t.o run a mission, it passes the configured objects i~lt,o t,he Sandbox, 
and then initializes t,he Sandbox. Thr: last. step in Sa,ndbox initialization is to initia.lize all of the commands 
in t,he ~liissio~i sequence. When one of these commands is an Assignment command that includes a Mat,hTree, 
that comma~~d initializes the MathTree after initializing all of its ot,her elements, and then validates that t.he 
MatliTree is compatible wit,ll the object on t,he left side of t'he equation. If an error is encount.ered at. t.his 
phase, the Assign~nerit co~nma.nd throws an exception tha8t describes the error and includes the t,mt of the 
conlrnand that failed initialization. If initialization succeeds, the Moderator then tells the Sandbox to run 
t,he mission. The Sandbox start,s at the first command in the mission sequence, and executes the command 
strea~n as described in Chapter 6. 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Parsing an equation 

C n a e  MarhTrec x f a l l  NathPh?sief wt e q ~ a t i o w  TopNode ~04th ret wned no  

i Stan 

End I 
F i ~ i r c  24.5: C'o~trvl Mow for Parsing a n  E q u a t i o ~ ~  

24.4 Building the MathTree 

Scripted mathematics are constructed using the hlat,hfarser class, wliidl builds the binary t,rw representing 
the equation that is evaluated by constructing nodes for the tree and placing these nodes into the tree one 
a t  a timc. Figure 24.5 shows the high level cc)nt.rol flow used to  create the RiIathTree. An empty MathTtee 
is created, and then t,hat t,ret! is passed into the Mathparser along tvith the string representation of tile 
equation. The Mathparser takes the IlIathBee and populates it with MathNodes based on the equation 
string. The top node of this completed tree is then returned from the parser, and set on the assignment 
conunand for use during execution of the mission. 

The middle step in t.he process outlined in Figure 24.5 encal~snlates t,he recursive desccnt decornl>osition 
of the equation. Figure 24.6 provides a more tlt?tailed viexv of t,his algorithm. The InterpretAction method of 
the Assignment colnmmd determines tliat the right side of t,he assignment is an equation, and tiler1 creates 
a MathTree and a MathParser to break t.his equation into the components needed for evaluation during 
execution. The Mat,hTree and t.he equation string are pa.sscd into t.he MathPa.rser. 

Thc MathParser takes t,lle input string, arid attempts tto break it into three pieces: an operator, a left 
element, and a right element. Any of these three pieces can be the empty string; if the operator string is 
empty, only the left string contains data, denoting that the string is used to build a MathElement node, on 
one of t.he leaves of the XfathTree. 

If the oporat,or st,ring is not empty, the operator string is used to build a 3fat.hFunction nodo. Matli- 
F'unction nodes are used to pe~fornl all niatmheniatical opera.tions: basic math like aadtlition, sul~traction~ 
niultiplication, division, and exponelit.iation, along with unary negation and mathematical functions. The 
arguments of the Mathfinction are contained in the left and right strings. These strings are passed into the 
MathPa.rser's Parse method for further dccornposit,ion, and the process repeats until all of the strings have 
been deeonlposed into ol>era.tors a.nd t,he 3lathElemc:nt leaf nodes. If either string is empty, the corrcaponding 
child node on the Mathfinetion is set t.o XULL. 

Once a. leaf node has been constructed, t,hat node is set as the left or right node on the operator above 
it. Once the left and right nodas are set on a, Mat,liFu~lct~ion, that node is returned as a coniplet,ed notltr to 
the calling method, terminating that branch of the recursion. When the topmost node has it.s child nodes 
filled in, the MathParser returns from the recursion wit,h the completed MathTree. 

24.5 Program Flow and Class Interactions 

The preceding section describes the construction of the MathTree that represents an equation. The parsing 
described a.bove places ths instances of the Mat,hFunct,ion nodes into the MathTree: along with t.he string 
names of the MathElement. nodes. The objects evaluated in the MatllElenient nodes are not pla.ced int,o the 
MathTree, because t,hose ele~nents depend on local objects in the GMAT Sandbox when a script is executed. 
This sec%ion explains how those objects are placed into t.he MathTree in the Sandbox, and t~hen e~raluated 
t,o complete a calculat.ion for an Assignmc3nt command. 



Recumiwe Equation parsing) 

.create node , fop ==,',: crcac a dath~cmcnt  usng lclt, 

F i ~ r e  24.6: Parser Recursio!l Seq~ience 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Initializaqion in the Sandbox) 

I Initialize Command 
Sequence 

I s  RHS a 
MathTree? 

Ctt top ncC . 
/VYCS of MathTnt 

NO 
NO 

JCI f1d hale 
a$ect 

Infltallzatlon Complete 

I I (80th ade flnlshed I 

Figure 24.7: MathTree Initialization in the Sandbox 

24.5.1 Initialization 

Figure 24.7 shows the process of initialization of the Command Sequence in the Sandbos, with a focus on the 
MathTree init.ialieation. Section 4.2.1 describes the general initialization process in t,he Sandbox. Sandbox 
initialization proceeds as described there, initializing the objects and then t,he comnland sequence. When 
the command in the sequence is an .Assignment command containing in-line mathematics, the .\ssignment 
conunand performs the details shown here to initialize the MathTrec. Tho command first accesses t.he 
top node of the klathTree. If tha.t node has su\>nocles, those subnodes are initializt?d it.erativc.1~ until a 
MathElement node is encount,ered. 

Wllen a Ma.thElement node is encount.ered, that noda is queried for its referenced object's nanle. If the 
node returns a. name, that, object's pointer is accessed in the local object mag owned by t,he Sandbox and set 
on the node using the SetRefObject() method. If the reference object name is empty, the node is a numerical 
constant, and no further initialization is required. 

When all of the subnotles of a Mat,hFunction nodt: hasre been initialized, that notle validat~es t.hat the 
dimensionality of the operands are compatible with the nlat,hematical operatioil represented by the node. 
This validation is done by calling the ReportOutputs() n~et,hod on t,he child nodes and ensuring that the 
result,$ art: consistent with the reqi~irtrnients of the operation. If t.ha resu1t.s are consist,ent, local variables are 



...................................................................................................... 
Execution of Mat hTree Assignment Commands 

Execute Asstgnment Command 

T 

Execution Complete 

Yatf ixbWte w Euatume Leaf 
WGlrate enrsred Node Object 

used t,o save dam so that parent nodes t,o t,he current node can obt,ain consistency data without recursing 
through the MabhTree. When the results are inconsistent with the operation, a warning message (which 
indicat.es the inconsistency of the calculation and the t,ex% of the line that generate the MathTree) is posted 
to the user, and an internal flag is sat to false, indicating t,hat the calcuiat,ion cannot bc performed. That. 
fla.g is returned wlien the ExaluatoInputs() method is calletl on the node. This coml>lotc?s the i~iitialization 
of the MathFunction node, and control is returned t,o the node above the current node. 

When the topmost node in the MathTree finishes init.ialization, the MathTree calls t.he Ex~aluateInputs() 
niet,liod for t,he t,op node. If that call ret.urns a false value, an trxct!ption is throu7n arid init.ializat.ion terniinates 
for the Assignment command. When the call t.o Evstluatt:Inputs() succeeds; the h/Ia.thTrec: reports successful 
initialization t o  the Assignment comruand, which validates that t,lie result of t,he calculation is consistent 
with t,he object that will he receiving the result, and, if so, rdurns a flag indicating that the calcula.tion 
initialized successfully. If thtr rtrsultant of the Rlat.hTree calculation is det.ermined to be inconsistent urit.11 
the rcceiving object,, a11 c?xcept,ion is thrown that contains the t,ext of t,he line that generated the Assignmelit. 
command, along with information about t.he error encountered. 

No 

&4lwte 

24.5.2 Execution 

The task of evaluating a calculation is shown in Figire 24.8. The Assignment command determines if a. 
Mat,hTree calculation is being performed by determining if the right side of the assign~nent (denoted RHS 
in the figure) is a MathTree. If it is, the Xssiginlent command checks to sce if the result of the calculation 

Calilng node 
IS TopNode? 

Yes 
~ e t u h R S ~ t  irrtt 

NO 

\I 
ws 1 

A A 

I 

Yes Left 
node? 

N 0 NO 

v v 



should be a scalar value or a ma.trix by calling l3,t!port0ut8puts() on the k1athTrce. If the result of this call 
indicat,es t,hat the output is one row by one column, the output horn the calc~lat~ion is scalar; otherwise, it 
is a matrix. The corresponding Evaluat.e() method is called on the MathTree. 

The MathTrec Eva.luat.e() methods behave identically in cont,rol flow; t,he diff(aencc between Evaluate() 
and MatrixEvaluate() is in the return value of the call. Similarly, tile AIathKode Evaluate() and MatrixE- 
valuat,e(j methods follonr identical control flow, difiering only in return types. When the correct Evaluate() 
met,liod is called on the klathTrc?cr, the MabthTrc?a calls t,htr corresponding Evaluate() method on the topmost 
MathNode in the tree. E~alu~tio11 is t,hen performed rc:cursively on the nodes of the tree; as described here. 

TVhen an Evaluate() nlethod is called on a node, the evaluation process proceeds based on the type of 
node that owns the method. If' the node is a hlathl?unc.tion node, t'hen it calls the corresponding Evaluate() 
mothotl on each of its child nodcs, evaluating t,he left node first, then the right node. If one of those nodes 
is NULL that phase of the evaluation is skipped. This can occur when the mathematical operation only 
requires one operand - -  for example: for most of the t,rigonometric functions, or for unitary matrix operations 
like the transpose opera.tion. When t.he child node evaluation is complete, the returned data from that 
evaluation are used as the operands for the mathematical opt?rat,ion. The operation is performed, and the 
result.ing data a e  passed to the calling method. 

1LlathElement nodes me evaluated directly when encountered: and can return either a real number or a. 
mat,rix of real numbers based on which method is called -- either Ex.aluatc() for a, Real, or RiIatrixEvaluate() 
for a matrix. The result of this evaluation is passed to the calling method. Since all of t.he leaf nodes on a 
hlat.hTree are MathElement nodes, these nodes terminate the iteration t.hrough the tree. 

When the calculation iteration reaches t,he topmost node in the MathTree: the operation for that node 
is performed anti t,he resulting data a.rc returned to the Assign~nent co~nma.nd. The Assignment command 
then sets the data 011 the GMAT object designated on the left side of the statement, designated the LHS in 
the figure. This completes the evaluation of' the Assignment command. 





Chapter 25 

GMAT and MATLAB Functions 

Dawel J .  Conwuy 
Thinking Systems, I nc .  

GhlAT has the a,bility to  cail ft~nct,ions both internally defined or in MATLAB. 

25.1 GMAT Functions 

25.1.1 Scripting Conventions 

Coxlstruction 

A GMAT function is crea,tcd using thc script line 

Create GmatFunction whatFun; 

By default, a GM.4T function is in a file which was named t o  match the name of the function, tvit8h t.he file 
extension "gnlf." For inst,a,nct?, a GnlatFunction nanled "mnyhn" will be found in the file "myFun.gmff' in 
the current directory, unless a user overrides this setting. The file name and path can he overridden with 
these 2 lines: 

GMAT whatFun.Path = /home/gmatUser/functions 
GMAT whatFun.Filename = whatFunIsHere.gmf; 

Calling Conventions 

A GM.4T function is calletl using t,he same syntax as is used for M-4TLAB functions: 

GMAT answer = whatFun(pm1, pxm2) ; 

The input paramctcrs (pa r~n l  and pitm12) can btr GMAT objects: parameters, arrays, or variables. Objects 
passed into GMAT functio~~s are trea.ted as read-only - the funct>ion cannot. change the internal dat,a for 
these objects. Thus a user can write a GMAT functioil that takes: for instance, tw70 spacecraft as input. 
paranlet,ers, arid sets the internal data of one of the spacecraft based on the dat,a in the ot,her, but this 
change will only take effect inside of blie funct.ion. Upon return from t,he funchion, the input parameters 
revel-t t o  their values when the function wa.s called. 

The returned parameter ("answer" in the example) needs t o  be a previously defined GM-AT entity. Valid 
constructs include parameters on predefined GM.47 objects (e.g. Spacecraft or hrcehlodel parameters), 
variables, arrays, or entire GMAT objects. Thus, a user could set the individual paramettas for a Spacecraft 



from a GMAT function, or set a Spacecraft to  match a complet,c Spacecraft objcct ret-urneti from tlie function. 
Using this feature: a Spacecraft can be updated using the Spacecraft object as both an input and output 
pa.raniet.er, like this: 

Create Spacecraft s c  ; 
Create GmatFunction Stateupdate;  
* .  . 
GMAT s c  = ~ t a t e U p d a t e ( s c ) ;  

25.1.2 The GmatFunction File 
Function Definition 

Ea,ch GMAT function file cont.ains exactly one G34ilT function. The first executable (i.e. not commented) 
line in a function file must declare the function by identifying the calling and return parameters for the 
function, using this syntax: 

[ r e t l ,  re t21 = GmatFunction whatFun(parm1, parm2) ; 

If the funct.ion returns a singlo value, thc square bracliets arou~id the returned values are optional. If the 
function has no ret.urn values. tlie left. side should be oniit,t.ed. The followi~ig are d l  valid GLfATFunction 
declarations: 

'/, Set Solarsystem parameters: 
GmatFunction SetupSSO 

% Use a spacecraf t ' s  epoch t o  s e t  F10.7 values 
GmatFunction ~ e t ~ 1 0 7 ( s a t ' ,  fo rces )  

% Pass i n  2 spacecraf t  and f i n d  t h e i r  separat ion 
dis tance = GmatFunct ion Range ( s a t  1, sa t2 )  

% Pass i n  2 spacecraf t  and f i n d  t h e  vector  between them 
rVector = GmatFunction Range ( s a t  1, sa t2 )  

% Same a s  above, but with t h e  opt ional  brackets  shown 
CrVectorI = GmatFunction GetSep(sat1, sa t2 )  

'/, Get both pos i t ion  and ve loc i ty  as separate  vectors  
[ rvector ,  vVector] = GmatFunction DelState ( s a t 1  , sa t2 )  

Function Implementation 

G h U T  functioils look very similar to  GhlAT scripts. The input parameters all need t80 be instantiated 
Ghl-AT objects; t,hc GM.4T parser does not accept constants as input pitra~neters a t  this t.i~ne. Internal 
data members itre crcat,ed as usual in GMAT scripts, using the Create command. The input ob j~c t s  a.re n ~ t  
declared in the funct,ion. The objects returned from the function are also created in the body of tlie function. 

A sample GLl-AT fu~ict,ion is provided here: 

% Function used t o  f i n d  separat ion between s a t e l l i t e s  
d i s t ance  = GMATFunction Range(sat 1 ,  sa t2 )  

Create Variable dis tance;  % Return va r iab le  



Create Array delX(3,l) ; % Internal variable 

GMAT delX(1) = sat1.X - sat2.X; 
GMAT delX(2) = sat1.Y - sat2.Y; 
GMAT delX(3) = sat1.Z - sat2.Z; 

distance = sqrt (delX(1) * delX(1) + . . . 
delX(2) * delX(2) + . . . 
delX(3) * delX(3)) ; 

Several t.hings are worth noting: 

1. The input, paramet,ers are not valida,ted inside the funct,ion body for type. Users are expectod to k n o ~  
enough about the functions called that they can pass in valid para,met.ers.l 

2. Inline mathematics are defined in the scripting. The collectmion of mat,henlatical operators defined will 
start out as basic operat,ors (+, -; *? /, sqrt) and grow based on user input. 

3. The ret.urned parameter is defined in the f~~nction. Users are responsible for ensuring that this param- 
eter is compatible with the expect,ed rctilrn value. 

A sample script t,hat calls this function looks like this: 

% Example of a GMAT function 
Create Spacecraft MMSl MMS2 MMS3 MMS4; 
% Set spacecraft to have different states 
... 
% Setup propagator prop, formation MMS, etc 
... 
Create GmatFunction Range; 

Create Variable sepl2 sepl3 sepl4 sep23 sep24 sep34; 

Create XYPlot seps; 

GMAT seps.IndVar = MMS1.ElapsedDays; 

GMAT seps.Add = ~sep12,sep13,sepl4,sep23,sep24,sep34) 

For I = 1 : 5760 
Propagate prop(MMS, CMMS1.ElapsedSecs = 60)); 
GMAT sepl2 = Range(MMS1, MMS2); 
GMAT sepl3 = Range(MMS1, MMS3); 
GMAT sepl4 = Range (MMSI , MMS4) ; 
GMAT sep23 = Range(MMS2, MMS3); 
GMAT sep24 = Range(MMS2, MMS4); 
GMAT sep34 = Range (MMS3, MMS4) ; 

EndFor 

llf this !eat:ture proves problerr~atic, we may add a Corninand nsod to validate t h e  type of each iinput yaratneter. An exarnpie 
of the proposed syntax h r  this validation is \!alidats(sat: Spacccrafi); where the first argunlect in Chc ilan?e of the object being 
vzlitJatet1, a ~ l d  the secund is the string describing t l ~ e  type of' ub jec l  expected. 



238 

25.2 MATLAB Functions 



Chapter 26 

Adding New Objects to GMAT 

Darrel .I, Conwuy 
Thinking Systems, Inc. 

Chapter 5 provided an introduct,ion to t.he GMAT Factory subsystem. This feat.ure of the GhlAT design 
provides an interface that users can use t o  extend GMA4T without impacting the'core, configurat,ion managed, 
code base. Any of the scriptable object t,ypes in t,he syst,ern can be extended using this feature; this set of 
objects includes hardware elements, spacecraft, commands. calculated paritnletters, and any other nmlecl 
GhlAT  object,^. This chapter provides an introduction to that interface into the system. 

26.1 Shared Libraries 

26.2 Adding Classes to GMAT 

26.2.1 Designing Your Class 

This is a list of steps taken to construct the steepest descent solver. 

r Crc~at.e t.ho class (.cpp and lieacler, colnment prologs, et,c.). 

r Add shells for the abstract methods. 

r Fill in code for the shells. 

e Add the object file to the list of objects in the (base) makefile. 

r Unit test, if possible. 

r Build the code and debug what can be accessed at. this point.. 

26.2.2 Creating the Factory 

This is a list of steps taken to incorporate the steepest descent. solver. 

r Creatc the fa.ctory (in t,his case I etlitetl S~lverFact~ory). 

e Add constructor call to  the appropriate "Create ..." method. 

Add the ncw object type name to the "creatables" lists in the factory constructors. 

Build and fix any compile issues. 

0 Test to  see if t,lle object, car1 I>e creatc.d from a script. 



26.2.3 Bundling the Code 

26.2.4 Registering with GMAT 

26.3 An Extensive Example 



Part IV 

Appendices 





Appendix A 

Unified Modeling Language (UML) 
Diagram Notation 

Dnrrsl .J. Conulay 
Thinkzng Systems, Inc. 

This appendix presents an overview of the linificd Modeling Language diagrams used throughout the 
text; including mention of non-stantlard notations in the presentation. A more thorough presentation is 
given in [fowler]. 

The presentation made here uses UML to sketch out how GMAT impleme~lts specific compor~e~~ts of the 
architect,ure. What that means is that, t.he UML diagrams in the text do not necessarily present the full 
implementat.ion details for a given system component. 

All of the UML diagrams in this document were drawn using Poseidon for UML, Professional edition 
[poseidon]. The compressed ITML files for these diagrams are co~ifigx~ration managed in a repository at 
Thinking Systems' home ofice. 

A.l  Package Diagrams 

Package diagrams are used to  present ttn o~rerview of a collection of objects, ranging from the top level part,s 
of a.n entire system to subelements of subsystems. Figure 8.1 shows an cxaniple of a pitcka.ge diagram. In 
this figxire, four primary GMAT system subsystems a.re shown: the E~ecut~ive subsystem, the Interfaces, the 
Facto~y subsystem, and the model elenieilts. 

Each box on t.he diagram represents a. group of one or more classes that perform a task being discussed. 
Package diagralns may include both package boxes and class boxes. The packages are represented by a box 
with a tab on the upper left corner; classes are represented by boxes which may be subdivided into three 
regions, as described in the Cla,ss Diagram section. Pat:kages can be further divided into constituent elements, 
either subpackages nrithin a git-en package, or classes in the package. For example, in the figure, the interface 
package consists of an E.xterna1 Interface package and a User Interface package. The User Interface package 
is further broken into three classes: the I~lterpret(?r base class and t,he ScriptInterpretc?r and GuiInte~-preter 
derived classes. 

Sonletilnes important interactions are included in t.he Package diagram. When this happens, the interac- 
tion is drawn ns a dashed arrow connecting two elements on the diagarn, and t,he nature of the interaction 
is labeled. In the example, t,he relationship bet,ween t.he Factory package and the Model Elenlent package is 
included: Fa.ctories arc used to construct model elenlerlts. 

In this document, paclcage diag~arns are used to comnlunicate design structure. The packages shown 
in the figures do not esplicitly specify namespaces used in the GMAT cotltr, even though UML does allow 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * 
Sample P adcage Diagram 

Figure A.1: GhIAT Packaging. Showing Sorne Subpaclagirig 

tha.t use for package tiiagrazns. When a pacliage documentetl hcre has implications for a namespace used i11 
GMAT, that implication will be explicitly present.ed in tthe ac:cornpanying tes%. 

A.2 Class Diagrams 

Figure A.2 shows a typical class d i a g a ~ n  for this document. This figure is a1 early version of the class 
diagram for the solver subsyst,em. Tho classes directly used in tthat subsystem are colored differently from 
the related base classes .-- in tllis figure, the Solver classes have a yellow background, ~vliile the base classes 
are blue. Each box on t,he diagram denotes a separate class; in t.his example, the classes are GmatBwe, 
Solver, Opt,imizer, Stet:pastDescont,, SequaltialQuatiratic, Differcnt,ialCorrector, Fact,ory, and Solvc.rFaCt,c)ry. 
Abstract (:lasses are denoted by italicizing the class name; llerc the classes Gn~at~Base, Solver, Optimizer, 
and Factory are all abstract because they contain pure virtual methods. 

The box reprc:sc?nting the class is broken int,o three pieces. The top scction indicates t.hc: nmle of t.he 
class. The center section list,s the attributes (i.c!, data nicmbers) of the class, and the bott)om section stores 
the operations (aka methods) available for the class. Attributes and operations are prefaced by a. symbol 
indicating the accessibility of the class member; a 't' prefix indicates that the member is publicly accessible, 
il;-' indicates protcctc?tl access. and '-' indic:ttes privat,e access. Staiic menlbers of the classes are underlined, 



Figure A.2: Sol\rttr Classes 

and singleton classes rcxeive a <<Singleton>> designation a b o ~ e  t,he class name. 

Tlle class diagams included in this docu~nent suppress the argument list for tllc methods. This is done 
for brevity's sake; tile model files include the argurileilt lists, as does the code itself, of course. When a 
method requires arguments: that requirement is indicated by ellipses on the diagram. 

Classes are conne~%ed to  one another using lines with arrows. If the arrowhead for t.he line is a threesided 
triangle, the line indicates inheritance, with thc line pointing from the derived class to its base. For example, 
in the figure, SolverFact,ory is derived from the Factory base class. Sol~~erFactory is not abstract, and can 
be instantiated, but Factory is an abstract. class as represented in this figure (the class name is italicized), 
e x n  t.hough the figure does not explicitly provide a reason for the class to be &stract. 

Lines tcrminat,ed by an open a,rrowheatl, like the line connecting SolvcrFac.tory to the Solver b a e  class, 
indicates an ~~soc ia t~ ion .  The arrow points in t.he direction that the association is a.pplied - in this case, the 
So1verFacto1-y creates instances of Solvers. The decorations at  the ends of these lines irldicates multiplicit,y. 
An ast.erisk indicates O or more, so for this example, a SolverFactory can crea.t,e O or more Solvers, depending 
on the needs of t,ho program during execut,ion. 



2)  Rmrrns 'Create Spsoecrat sd" 

figure A.3: A Sequence Diagram 

A.3 Sequence Diagrams 

Sequ(:ncc? Diagrams are used t,o indicate the sequ(?nce of events followc?tl when perforn~i~ig a t,ask. The task 
shown in Figure A.3 is the creation of an instance of the Spacecraft class from the ScriptInterpreter. Sequence 
diagrams are used in t'liis document t~o  illustratc a t i ~ n e  ordered sequence of i~iteractions taken in t,he GMAT 
code. In this example, the int,eractions between the ScriptIl:t,erpreter and t,he other ele~rients of GMAT are 
shown when a "Create Spacecraft ...It line of script is parsed to create a Spacecraft object. 

Eat11 of the players in the illustrat.ed action receive ti sc?puat,e timeline on the figure, referred to as a 
"lifeliize". Time flows from top to  bottom. The player is described in the label at  the top of the lifeline. In 
the e s m p l e  shown here, each player is a met.hod call on a core GMAT object .-- for example, the line labeled 
Crea.teSpacecraft:Moderator represents thc hloderator::CreateSpacocraft( ...) method. Sequence diagra~ns in 
this docunlent ca.n also use lifelines t.o for larger entities - for instance, the sequence diagrani that illustrates 
the interactiol: between tlie ConfigManager, Moderator, and Sandbox when a lnissio~i is run, Figure 4.1. 
The vertical blocks on ea,ch lifeline indicat.e t,he periods in which the lifeline is act.ive? eit.her because it is 
being executed, or bf:cause it. is waiting for a called ~netllotl to  ret.urn. 

Blocks are nested to  indicate when a fui:ct,ion is called inside of another. In the example, the Confighlan- 
ager::AtldObject,( ...) call is nested inside of the Plfoderator::CreateSpac(~craft( ...) call t>ecause t,llat inncr call 
is performed bcforc? control returns from the Moderator fimction. Arrows from one lifeline to anot,lier are 
used to indicate the action that is being pe~fornied in tlie exaniple: line 4 shows when the newly created 
Spacecraft is handed t,o the Config manager. (Yote that. this is a bit more wrbose than in the UML standud; 
the st.antfard is t,o just list the metfhod that is called, while I prefer to give a bit Inorc doscription of the 
invoked oporat.ion.) 

Itcration can be indicated 011 those diagrarns by t?nclosing t,ho it,eratetl piece in a. commcnt fra~ne. Similarly, 
recursion is indicated by a, control line t11a.t loops back to the cadling timeline. When t,his t,ypt: of action occurs, 
a 1:ot.e is also included on the figure to indicate how the recursion or self reference gets resolved; an example 
can be seen in Figure 24.6. (These notes are called "Interaction Fran~es" in the UML document,ation.) 

A.4 Activity Diagrams 

Act.ivity Diagrams are used to illustrate the work flow for a given t,ask, particularly when the steps t,akel: in 
t8he taslc can occur in parallel. and when the order of tliese steps is not necessarily bed. An example of this 
t,ype of diagram is shown in Figure A.4. This diagram, which is a subset of the a.ct,ivit.y diagram shown in 



Start MathTree 
E valu atim 

I Has child 
nodes? 

Ewlu Hie Leaf 

N 0 

1 node? Right Node? 

Calling node \L 1 
is TopNode? 

AWsB Omlator; 
r&wn wsultant 

Finished 

Figure -4.4: 81: Actitriry Diagram 

Figire224.8, shows the actions that occur when an equat,ion is evaluated in a MathTree object. 
Action starts at the black circle, in this case in the upper left of t.he figure, and follows the arrows t,hrough 

the blocks on the figure, terminating when it roadies the other c,ircula.r marker, a. filled circle with a concentric 
circle around it. Each rounded block in t,he diagram rc>present#s a step in the task, referred to as an activity 
in the UML documentatioa. These blocks include text indicating bhe activit,y to be accomplished. 

Diainond shaped markers are used to  indicate splits in t'he control flow through the diagram. There 
are two t,ypes markers used for t,his purpose: branches, which have a single input wit.h multiple esit,s, 
and merges, which bring together ~nuit,iplc paths t,o a. single output. Text labels are placeti on t.he branch 
markers indicating t,he test that is performed for the branching. Labels on each branch indicate which path is 
followed based on the test. For exanlple? in the figure, the branch point labeled "Hiis child nodes?" proceeds 
downwards if the current. node has child nodes: and to the right. if the current node does not. have child 
nodes. 

Activity diagrams also have fork nodes, which are displayed as heavy? bla.cl< horizontal line segments. 
Fork nodes are used to split the work flow into parallel pa,ths that are all executed. The example in the 
figure shows the evaluation of the subnodes nodes of a. Mat.hNode object. Each Mathn'ode operator can have 
a left subnodo and a right subnode. Thest.: subnodt.:s 11mst be csvaluat,ed before the operator car1 execute, but 



it does not rnat,ter subnode is evaluat.ed first, as long as the results of both are available when the 
operator is applied. The diagram indicates this behavior by forking the process into parallel paths, and then 
showing the proct3ss logic for each of these paths. When both lines of cxecl.~tio~i cornpl(:tc?., the work flow 
comes back together i1lt.o a single execution pat.h. This nlerging of the control paths is shown by a second 
hea1.y black line segment, called a Join Node in the UML specifications. 

A.5 State Diagrams 

Dlfferentlal Conector State Machine 

Newvariables ' 1  Calculated not met I 
{RunP eauraatlony TargetlngComplete : 

For each ' 1  ' 1 perturbation 

Digure A.5: X State Diagr3.m 

State diagrams are similar in format to  activity diagrams. The start and end nodes are niarked the same 
way as in an activit,y diagram, and t,he program flow is shown using similar transition arrows. The differences 
lie in t,he objects rcpresentod by the diagram, and int.etpretation of the figure. -Activity diagrams are used to 
illustrate the interactions amongst various objects that. collectively perform a task. State diagrams are used 
to model how a specific component evolves over time. 

In this model of the component being described, that component is always modeled as being in a specific 
system state, and t~ra.nsitioning from that state to another sta,te based 011 changes in the syst.e~n. The Solvers 
in GhlAT are iinplemented explicitly as finite state machines, so they provide a prime example for t,his type 
of diagram; the finite st.ate machinc for a differe~ltial correct.or object is shown in Figure A.5. 

Each block in a stake diagram represents one of the states available for the object. These blocks arc divided 
into two sections. The upper portion of the block provides a label for the state. The lower portion of the block 
provides information about the process executed within t.hat block .. in this case, the method called on the 
object -.. and 1na.y also provide inforrnat,ion about the outcome of that process. For the differential corrector 
shown here, the stat,es are Initializing, Nominal, CheckingRun, Perturl)ing, Calculating, and Finished. Ea.ch 
of these states includes the descriptor for tile function called when the state niacllirle is executed. 

The arrows connecting the blocks in this figure show the allowed state transitions. Each arrow is labeled 
with tllc check t,hat is made to ensure that it is t,imo to make the correspondi~ig transition. 



Appendix B 

Design Patterms Used in GMAT 

DUI-re1 J. Co~l,way 
Thinking Systems, Inc. 

The Gh,I,ST design was influenced 11s many different sources: prior experience wit,h Swingby, Naviga.tor, 
FreeFlyer, and Astrogator, exposure to analysis and operational systems for Indostfar, Clementine, WIND, 
ACE, and SOHO, and design experiences on other software projects. Part of the theoretical background for 
the G31.4T design comcs from exposure to the object oriented design conimunity, captured in t,he writings 
of Scott Meyers, Herb Sutter, Bruce Eckel: Martin Fowler, and the Gang of FourlGoF]. 

This latter reference provides a framework for describing recurrent pa.tterns in software sy~t~e~ns.  Patt,erns 
that are used by reference in this document are summarized here for complet,eness; a ~ i d  readers will also 
want to read the Gang of Four t,est or a. similar l~ook derived from it. 

B.l  The Singleton Pattern 

B.1.1 Motivation 

Some of the components of GMAT require inlplementation such that one and only one instance of the 
componc3nt exist,. Examples of these components a.re the Moderator, the ScriptInt.erprcter, the Publisher, 
the ConfiguratioriMmagcr, and t,he FactoryManager. These object.3 arc irnplementetl using the Singleton 
design pattern. 

1 ............................................................................................................ : 

Figure B.1: Structure of a Singleton 



Fiprc: B.l shows the key cle~nents of a si~iglet~o~i. The class is defined so that t,h(ae is only one possible 
insta~ice during t,he program's execution. This instance is enil~odied in a private statsic pointer to  a class 
instance; in the figure, this pointer is t,ho 'Lt1ieSinglt?tonn mt?mbt?r. This pointer is init,iitlizetl to NULL, anti 
set the first. time the si~igleton is accessed. 

The class constructor, copy constructor, assignment operator, and destructor are all private in scope. 
The copy constructor and a5signtnent operator are often declared but not implemented, since they cannot 
be used in practice for singleton ot>ject8s. 411 access to the Singleton is made tlirougli the Inst,ance() method. 

The first t.ime Instance() is called, the pointer to  the singleton is construct,ed. Subsecluent calls t.o 
Instance() simply return the &tic pointer that was set on the first call. -4 sainple iniplernentation of the 
Instance() method is shown here: 

Singleton* Instance0 
C 

if (thesingleton == NULL) 
thesingleton = new Singletono ; 

return thesingleton; 
1 

B.1.3 Notes 

In GM-T,  the Singletons are all ternlinal nodes in the class hierarchy. Some designs allow subclassing of 
Singletons so that the final singleton typc can be selected at run time. GniIAT does not subclass its singletons 
at this time. 

B.2 The Factory Pattern 

B.3 The Observer Pattern 

B.4 The Adapter Pattern 
GRlAT uses adapters to simplify invocat.ion of calculations on different. t,ypes of objects, maling t.he interface 
identical even though tmhe underlying classes a,re quite different. One example of the use of adapters in GhlAT 
is tht: Elemelit.LVrapper classes used by the command silbsy~t~em. h.Imy of the coln~nands in GMAT ncwi a 
source of Real data in order to funct,ion correctly. This data ca,n be supplied as a number, an object property, 
a GMAT Parameter, an Array element: or any other source of Real data in the system. ElementWrappers 
encapsulate the disparat.e int.erfaces to t,hese ol>je<:t,s so that the co~ilrnands can use a siligle call to obtai~i 
the Real data, regardless of the underlying object. 

B.5 The Model-View-Controller (MVC) Pattern 



Appendix C 

Command Implement at ion: Sample 
Code 

Durrel J .  Cow(q  
Thinking Systems; IIK. 

The wrapper classes described in Chapter 21 encapsulate tthe data used by commands that need informa- 
tion at the single data elenlent level, giving several disparate t,ypes a conlmon interface used during operation 
in the GMAT Sandbox. This a.ppendix provides sample code for the usage of these wrappers, starting wit.h 
sample setup code, and proceeding through init.ialization, ex~cut~ion, and finalization. The Vasy command, 
used by the Solvers, is used to  demonstrate these steps. 

C.l  Sample Usage: The Maneuver Command 

hlaneuver comnlands ara used to apply impulsive velocity chmges t o  a spacecraft. They take the forrn 

Maneuver burnl (sat 1) 

where bur111 is an InlpulsiveBurn object specifying t.he components of the velocity change and satl  is the 
spacecraft that, receives the ve1ocit.y change. The Maneuver command overrides InterpretAction using the 
following code: 

//------------------------------------------------------------------------------ 
//  boo1 InterpretActionO 
//------------------------------------------------------------------------------ 
/** 
* Parses the command string and builds the corresponding command structures. 
* 
* The Maneuver command has the following syntax: 
* 
* Maneuver burnl (sat 1) ; 
* 
* where burnl is an ImpulsiveBurn used to perform the maneuver, and satl is the 
* name of the spacecraft that is maneuvered. This method breaks the script 
* line into the corresponding pieces, and stores the name of the ImpulsiveBurn 
* and the Spacecraft so they can be set to point to the correct objects during 
* initialization. 



* / 
//------------------------------------------------------------------------------ 
boo1 Maneuver::InterpretActionO 
C 

StringArray chunks = InterpretPrefaceO; 

// Find and set the burn object name . . . 
StringArray currentchunks = parser .Decompose (chunks [l] , " () I f ,  false) ; 
setstringparameter (burnNameID , currentchunks [o] ) ; 

// . . .  and the spacecraft that is maneuvered 
currentchunks = parser .SeparateBrackets (currentchunks [l] , " () " , I' , ") ; 
SetStringParameter(satNameID, currentChunks[O]); 

return true; 
1 

The maneuver command works with GMAT objects .-. specifically ImpulsiveBwi~ objects and Spacecraft - -  but 
does not require the usage of the dat,a wrapper classes. The next example! the Vary corntnmd! demonstrates 
usagt? of the data, wrapper classes to set. numeric values. 

C.2 Sample Usage: The Vary Command 

The JTary command has a much more conlplicatcd syntax than does the n'lmeuver command. Vary commands 
take t h~ fortn 

Vary myDC(Burn1.V = 0.5, {Pert = 0.0001, MaxStep = 0.05, Lower = 0.0, . . .  
Upper = 3.14159, AdditiveScaleFactor = 1.5, MultiplicativeScaleFactor = 0.5); 

The resulting InterpretAct,ion tnotllod is a bit more comp1icatt:d: 

//------------------------------------------------------------------------------ 
/ /  void Vary::InterpretActionO 

/** 
* Parses the command string and builds the corresponding command structures 
* 
* The Vary command has the following syntax: 
* 
* Vary myDC(Burn1.V = 0.5, {Pert = 0.0001, MaxStep = 0.05, . . .  
* Lower = 0.0, Upper = 3.14159); 
* 
* where 
* 
* 1. myDC is a Solver used to Vary a set of variables to achieve the 
* corresponding goals, 
* 2. Burn1.V is the parameter that is varied, and 
* 3. The settings in the braces specify features about how the variable can 
* be changed. 
* 
* This method breaks the script line into the corresponding pieces, and stores 
* the name of the Solver so it can be set to point to the correct object 



C.2. SS41111'Lfi; USAGE: 'THE T/:41ZEs C:OJ1JfiiiVII 253 

* during initialization. 
* / 

//------------------------------------------------------------------------------ 
boo1 Vary: : InterpretActionO 
{ 

// Clean out any old data 
wrapperObjectNames. clear 0 ; 
Clearwrappers () ; 

StringArray chunks = Interpretpreface(); 

// Find and set solver object name --the only setting in Vary not in a wrapper 
StringArray currentchunks = parser. Decompose (chunks [ll , I' (1 " , false) ; 
~et~tringParameter(S0LVER-NAME, currentChunks[O]); 

// The remaining text in the instruction is the variable definition and 
// parameters, all contained in currentChunks[l]. Deal with those next. 
currentchunks = parser. SeparateBrackets (currentchunks [I], 0 'I, " , ") ; 

// First chunk is the variable and initial value 
std::string lhs, rhs; 
if ( ! SeparateEquals (currentchunks [O] , lhs , rhs) ) 

// Variable takes default initial value 
rhs = llO.O1l; 

variableName = lhs; 
variableId = -1; 

variablevaluestring = rhs; 
initialValueName = rhs; 

// Now deal with the settable parameters 
currentchunks = parser. SeparateBrackets (currentchunks [I] , "{1", " , ") ; 

for (StringArray: : iterator i = currentchunks . begin0 ; 
i ! = currentchunks . end() ; ++i) 

< 
SeparateEquals(*i, lhs, rhs); 
if (IsSettable(1hs) ) 

SetStringParameter(lhs, rhs); 
else 

throw CommandException("Setting \"" + lhs + 
It\lI is missing a value required for a " + typeName + 
command.\nSee the line \"" + generatingstring +"\"\nW); 

1 

MessageInterf ace : : ShowMessage ("InterpretActio succeeded! \nn) ; 
return true; 

1 





Appendix D 

GMAT Software Development Tools 

Dnrlsl .I. Conway 
Thinking Systems, Inrc. 

GMAT is a cross-plat,for~n mission analysis tool under development at  Goddard Space Flight Center and 
Thinking Systems, Inc. The tool is being developed using open source principles, with initial implementations 
providt.:d t,hat run on 32-bit Windows XP, Linux, and the kIacint.osh (OS X). This appendix describes the 
build environment, used by the development team on each of these pla.tforms. 

The GbIAT code is written using ANSI-standard C + i ,  with a user iiltel-face developed using the wxTVin- 
donls toolkit available from http://wnrw.wxwidgets.org. Any compiler supporting these standards should 
-work with the GMAT code bast?. The purpose of this document is t,o describe the tools that were actually 
used in the development process. 

Source code control is maintained using t,he Concurrent Versions System (CVS 1.11) running on a server 
at  Goddud. Issues, bugs, and enhancenlents are tracked using Bugzilla 2.20 running on a server at Goddard. 

D .1 Windows Build Environment 

r Compiler: gcc version 3.4.2 (mingw specid) 

r IDE Tool: Eclipse 3.1.1, with CDT 3.0.1 plug-in 

On \Vindows, GhlAT has also been built using the Dev-C++ environment. 

D.2 Macintosh Build Environment 

b Compiler: gcc 1.0.1, SCode v. 2.2 

IDE Tool: Eclipse 3.1.2, wit,h CDT 3.0.1 plug-in 

D .3 Linux Build Environment 

GMAT is regularly built on two different Linux machines a t  Thinking Systems, one running hiandriva Linux, 
ant1 the second running Ubuntu Linux. Both build environments arc? listed here. 



2.56 A131'EXDIA 1). C'-\fAT SOFT CT:4IIL' 1)El~ELOI'lfEA-T TOOLS 

On Mandriva 2006 

e Compiler: gcc version 4.0.1 (4.0.1-5mdk for Mandriva Linux release 2006.0) 

r IDE Tool: Eclipse 3.1.1, with CDT 3.0.1 plug-in 

e wx\Vindo~vs Version: wxC4TK 2.6.2 

On Ubu~itu 5.10, Breezy Badger 

e Compiler: gcc version 4.0.2 20050303 (prerelease) (Uhuntu 4.0.1-4ubuntu9) 

IDE Tool: E,clipse 3.1.2, with CDT 3.0.2 plug-in 

e wxWidows Version: wxC4TK 2.6.2 



Appendix E 

Definitions and Acronyms 

E. 1 Definitions 

Application The GM-T  c.xecutable proga.m 

C o n m ~ a n d  One step in the Mission Control Sequence 

Engine The "guts" of GM-AT, consisting of all of the classes, control structures,  object.^, and other elements 
necessary to run a. 

Factory o r  Factories Components used to create pieces that, users use when nlodeling a tnission 

Graphical User Interface, or  GUI The graphical front end for GMAT, built using the wxWidget.s toollGt. 
GhHAT can also be built as a console applicat,ion, but most users work from the GUI 

Interface The connection between GM.4T and external systems, like MATLAB 

Interpreter The connection point bet,ween users and the Applicat,ion. GM,4T usc?s a ScriptInterpretr when 
constructing a mission from a script file, and a GuiInterpret,er when configuring from the GUI 

Mission 411 of the elements config~ired by the user to solve a specific probleln. Every element of a GMAT 
Mission is contained in the Alfodel, but the Model may include components that are not part of a 
specific Mission 

Mission Coutrol Sequence The time ordered steps taken in the lnodel of the rrlission 

Model A11 of thc elernetts configurctl by a user in the -4pplicatioll 

Moderator The central control point in t,he Engine 

Parameter  -4 value or other property calculat.ed outside of a GMAT object. Pararnet.ers as used in this 
contex* are all ele~nent~s derived from ths Paramotcr base class: as tlcscribed in Chapter 17 

Proper ty  4 da.ta mc:nlbcr of a Rssource or 'Command. Propcnties are the internal data associated with the 
objects used in a GMAT lnodel 

Reso~lrce An clernc?nt of thtt GMAT model t.hat, represents an object used when running t,he Mission Cont.rol 
Sequence 

Sandbox The portion of GklAT used to run a lnissioil 

Script -4 text file that contains all of the instructions rocpired t o  configure a mission in GM.4T 



E.2 Acronyms 

GMAY General Mission Andysis Tool 

GSFC Goddard Space Flight Center 



.. .. ... :: ..: .> .. . :. .: .. 
2 : ;  
. i:. . . .2. .L. 

Bibliography 

fconwa;l Dxrel .J.Conway. '"The GMAT Design Philoso~>hy". Internal Communications between Thinking 
Systems and Goddard, May 9, 2004. 

[doxygen] Dimitri van Heesch, Doxygen, available from nrww.doxygen.org. 

[i i~wlerj  hfartin Fowler, UML Distilled, 3rd Edition, Addison-Wesley, 2004. 

[CoF] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Pat terns:  Elements 
of Reusable Object-Oriented Software: ilddison-Wesley, 1995. 

[Mathspec] Steven P. Hughes, "General Mission Analysis Tool (GMAT) Mathematical Specifications." 

[L?scrsG:~idc] Steven P. Hughes. "C+c:ncral hlission Analysis Tool (GLUT) User's Guide." 

[matlab] The MathlVorks, Inc, "M,4TLABn, available from http://www.mathworks.con~. 

lopt,tooisl The Mathlfbrks, Inc, "Opt,imization Toolbox", available from http://wn~w.ma.thworks.com. 

[poseidon] Gentleware AG, 'Toseidon for UML, Professional Edition", http:/jgentle~~are.com/, 2005. 

[NRecipcsj Ili'illiam H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical 
Recipes i n  C ,  2nd E.ditio11, Cambridge Universit,y Press, 1992. 

[schiidtj Herbert Schildt, C++: T h e  Complete  Reference, 4th Edition, McGraw-Hill/Osborne, 2003. 

Ishoa,nl Wendy C. Shoan and Linda 0. Jun, 'Gh4.AT C-- St,yle Guide." 

[smart] Julian Smart, Kevin Hock and Stefan Csonlor, Cross-Platform GUI Programming with  
wxwidge ts ,  Prentice Hall, 2006. 

[~rdlado] D. \'allatlo, Fundamentals of Astrodynamics a n d  Applications, 2nd Ed., Microcosnl Press, 
2001. 

Iwx] m-Widgets Cross Platform GUI Library, a.vailable from http://wxWidgets.org'. 




