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Dynamical Modeling and Control Simulation of a Large
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NASA Marshall Space Flight Center, Huntsville, AL 35812

This paper presents dynamical models of a large flexible launch vehicle. A complete set of
coupled dynamical models of propulsion, aerodynamics, guidance and control, structural
dynamics, fuel sloshing, and thrust vector control dynamics are described. Such dynamical
models are used to validate NASA’s SAVANT Simulink-based program which is being used
for the preliminary flight control systems analysis and design of NASA’s Ares-1 Crew
Launch Vehicle. SAVANT simulation results for validating the performance and stability of
an ascent phase autopilot system of Ares-1 are also presented.

Nomenclature
Re = Earth’s equatorial radius = 20925646.325459 ft
Rs = Earth’s polar radius = 20855486.595144 ft
J, = Earth’s second order zonal coefficient = 1.082631x107°
J; = Earth’s third order zonal coefficient= —2.55x10°°
J, = Earth’s fourth order zonal coefficient = —1.61x107°
U = Earth’s gravitational potential
U = Earth’s gravitational parameter = 1.407644176x10" ft3/s?
7/ = Earth’s geocentric latitude
(gx, 9,,9, ) = (x,y,z) components of the gravitational acceleration
r = vehicle’s position vector
r = magnitude of vehicle’s position vector
(X,¥,2) = (x,y,z) components of vehicle’s position vector in an inertial reference frame

(ax,ay,az) = (x,y,z) components of vehicle’s absolute acceleration in an inertial reference frame

vV = vehicle’s absolute velocity vector
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(u, Vv, W) = (x,y,z) components of vehicle’s absolute velocity vector in an inertial reference frame

!

relative velocity vector of the vehicle (measured in a body-fixed reference frame)

pl

angular velocity vector of the Earth

o, =z component of the Earth’s angular velocity vector = 7.2921152087 x107° rad/s
D) angular velocity vector of the vehicle

(p,q,1) = (x,y,2) components of vehicle’s angular velocity vector in a body-fixed reference frame
\7W = velocity of the wind

\7m = air-stream velocity vector

V., = magnitude of air-stream velocity

Visor Vinyos Vi) = (X,Y,2) components of air-stream velocity in an inertial reference frame
M = mach number
c = speed of sound
Q = dynamic pressure

Y2, = density of the air

[04 = angle of attack

p = angle of sideslip

Foe = baseforce
ARP = aerodynamics reference point = 275.6 ft from pin point

D = drag (axial) force

C = lateral (side) force

N = lift (normal) force

S = referencearea = 116.2 ft?

(o = reference length = 12.16 ft

Cre = reference chord = 12.16 ft

- = damping ratio of the actuator dynamics= 1

, = undamped natural frequency of the actuator dynamics= 32.6726 rad/sec
o, = pitch gimbal angle

5pc = pitch gimbal angle command

Sp = pitch gimbal angle acceleration

o, = yaw gimbal angle

é‘yc = yaw gimbal angle command

Sy = yaw gimbal angle acceleration of the actuator dynamics

T = total thrust inside the atmosphere

T, = total vacuum thrust

A = nozzleexitarea = 122.137 ft?

P, = local atmospheric pressure
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(F

aero.xb?

F

210,y Foromn) = (XY,2) components of aerodynamic force in Body Frame

(Ficxor Fraypr Fren) = (x,y,2) components of rocket engine force in Body Frame

(Fresxo Fresypr Fresn) = (X,2) components of reaction control force in Body Frame

(Fatosn.xor Ftosn.yb Fetosnzn) = (X,¥,2) components of slosh force in Body Frame
(Fiotatxo s Fiotat yor Fiotarn) = (X,Y,2) components of total force in Body Frame
(Fiotatxi» Frotat yi» Fomzi) = (X.y,2) components of total force in Inertial Frame
(Taeroxds Taeroyhr Taeron) = (X,y,2) components of aerodynamic torque in Body Frame
(Toexos Treyr Tiean) = (XY,2) components of rocket engine torque in Body Frame
(Tresxor Tresybs Tresan) = (Xy,2) components of reaction control torque in Body Frame
(Toshxos Tstosh.yb s Tstosh.p) = (X.¥,2) components of slosh torque in Body Frame

Trwop = pitch torque on the vehicle due to the TWD effect

Trwpy = yaw torque on the vehicle due to the TWD effect

l = nozzle inertia in plane of movement = 19102.0833 Ibf - ft - s

M, = nozzlemass = 694.41b

|Cg = distance from vehicle’s center of gravity to nozzle pivot point

|e = distance from nozzle pivot point to nozzle center of gravity = 1.2775 ft
r, = vector from vehicle’s center of mass to slosh fuel center of mass in Body Frame
Tcg = center of mass position vector of vehicle in Body Frame

Tmnk = tank location vector in Body Frame

|: = slosh moment arm

M, = slosh mass

¢ = damping ratio of the slosh fuel dynamics

, = undamped natural frequency of the slosh fuel dynamics

n = flex mode state

¢ flex = damping ratio of flex modes

Wex = undamped natural frequency of flex modes

m = vehicle mass

(¢s¢C,,C,) = (xy,2) components of center of mass

T, = sampling period = 0.02s

K, = proportional gain

K, = integral gain

Ky = derivative gain

I. Introduction

OTE to Session Organizer/Reviewers: This draft manuscript summarizes the preliminary results obtained
during an early phase of a new project for the dynamical modeling and flight control design of large flexible
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launch vehicles as applied to Ares-1 Crew Launch Vehicle. During the next several months, a more detailed,
rigorous study will be conducted in the areas of coupled dynamical modeling of propulsion, aerodynamics, guidance
and control, and vehicle structure. A companion paper on flight control systems analysis and design for large
flexible launch vehicles is also being submitted to the Space Exploration and Transportation GNC session.

II. Definition of Coordinate Frame

A. Geocentric Equatorial Inertial Frame or Inertial Frame
Geocentric equatorial inertial frame or simply inertial frame (Fig.1). Origin is at Earth Center. Axis Z;is normal

to equatorial plane, pointing to North Pole; Axes X; and Y; are in equatorial plane, axis X; is along direction of vernal
equinox, which is the direction of intersection of Earth equatorial plane and Sun ecliptic plane.

B. Geocentric Equatorial Rotating Frame or Central Earth Frame or Earth Frame
Geocentric equatorial rotating frame is fixed to the Earth, also called central Earth Frame (Fig.2). Origin is at

Earth center. Axis Z, is normal to equatorial plane, pointing to North Pole, hence coincides with z; .

Axes X, and Y, are in equatorial plane, with axis X, in Greenwich meridian. This frame has angular velocity of Earth.

Morth rotational pole Marth rotational pale
A -oyis 4 z-axis
Greetrarth
meridian
Eepuator Eguator
ar
! -axis x-axis
Figure 1. Inertial Frame Figure 2. Earth Frame
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C. Body Frame or Body-fixed Frame
Body-fixed frame, simply body frame (Fig.3), is
rigidly fixed to the vehicle body. Origin is at empty

vehicle center of mass; Axis X, is along structural
longitudinal axis, pointing forward; normal axis z, is in
plane of symmetry, perpendicular to X, and pointing

downward; axis Y, is perpendicular to plane of
symmetry and pointing rightward.

III. Aerodynamics Forces and Moments

From the state variables, we can determine the
position and velocity of the vehicle in the inertial frame.
And then, the geographical latitude, the height over the
Earth surface, angle of attack, angle of sideslip and
Mach number can be calculated. By looking up the data
table, aerodynamic coefficients and base force can be

v

=

Figure 3. Body Frame

found. The equations of aerodynamics forces and moments can be written as follows:

Vv

m

Vrel _Vw

Q:_

V_errel _Vw
Vi
C

1 an

2

Vv
a = arctan -2

m.xb
S =arctan myb _
m.xb +Vm.zb
D= CAQS Fbase
C=C,,pQs

N =(Cy,+C,,2)QS

Where, C, is axial force coefficient; C, , is side force curve slop; Cy,is normal force coefficient at zero angle

of attack; C,,, is normal force curve slop.

Faero.xb =-D
I:elero.yb = C
aero.zb — -N
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Taero.xb = Cy (CNO + CNaa)QS + CzCYﬁﬂQS + CMrﬁQSbref

T =-C, (Fbase o CAQS) + (_ARP - Cx)(CNO + CNaa)QS + (CMpO + CMpaa)QSCref

aero.yb

Taero.zb = (_ARP - Cx)CYﬁ'ﬂQS + Cy (Fbase - CaQS) + CmyﬂﬂQSbref

Where, CMrﬁ is rolling moment coefficient; CMpO is pitching moment coefficient at zero angle of attack; CMpa is
pitching moment curve slop; Cmyﬂ is yawing moment curve slop.

Inthe SAVANT, C, = CM'DO = CMrﬂ =0.

IV. TWD Model
Tail Wag Dog model

TTWDp = (Ie + Melcgle)é‘.p
TTWDy = (Ie + Melcgle)é.:y

V. Flex Model

Flex state dynamics

.. . 2 _ T
Tl + 2é,flex('oﬂexrl + mflexn - Frkt(prkt

Where, n\is the flex mode state column vector. FrL is the transpose of the rocket engine force column vector,

and @, is a 3 by 6 flex mode parameter matrix.
T
Frkt = (Frkt.xb’ I:rkt.yb' I:rkt.zb)

Sensor error

eangle_flex = \Ijnavlrl

‘IlnaVZi]
érate_flex = ‘I’navli]
‘I’nav3i]
LOX
(plox_flex = (Pslmln
(i)loxfﬂex = (pslmlf]
q’loxﬁﬂex = (pslmlﬁ
LH2
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(plhz_flex = (pslmzn
(pth_ﬂex = (pslmZn
Pz frex = Pom2M

Gimbal compliance
‘llrktfﬂex = ‘I’rktn

Where, W .0 v Wioavs  Waavs  Potm1 » Pamz» Wi @€ 3 by 6 parameter matrix respectively.

VI. Slosh Model

The sloshing will be modeled as a spring-mass-damper system in y-z plane; we do not consider the x component.
For this program, it does not include the flex model effect to the slosh model.

= = 2o = O A g - = = - 4= T g
I, =-2¢0f, —o.T, —{, +ox( =1, —1..)+20xT +ox[@x (T -1, 1,1}
Matrix Form in Body Frame:

X, 0 X a 0 - g ) Xe—C—lI

S X X tank
ys = _245 2N ys o wSZ Yo |~ ay - f 0 - P Y — Cy
7, 2, z,) \a,) \-g p O Z,—C,
0 -r q 0 0 -r q 0 -r q Xioe =Cx — Itank

=2/ r 0 -p|Y|-lr O —-pfjr 0 -p Y. —C,
-4 p OAz)\9 p ONA-q p O z,—C

I:slosh.xb ms 5(.s

I:slosh.yb = ms ys

I:slosh.zb ms Zs
Tslosh.xb 0 C, _Cy Fslosh.xb
Tslosh.yb =| —C, 0 Xioe —Cx — Itank I:slosh.yb
slosh.zb Cy _Xloc + Cx + Itank 0 slosh.zb

VII. Rocket Model
Rocket Propulsion:

T =T~ PoA

The x, y and z components of the thrust in the Body Frame:
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Fuw ) [COSS, 0 —sing, )( coss, sins, O)(T
Frkt.yb = 0 1 0 —sin 5y COoS 5}/ ol o0
Fiw ) (siNg, 0 coss, 0 0o 1){0

The x, y and z components of the torque due to the thrust in the Body Frame:

Trkt.xb 0 C, _Cy Frkt.xb
Trkt.yb =| €, 0 C, — Irkt I:rkt.yb
Trkt.zb Cy Irkt —C, 0 Frkt.zb

VIII. Gravity model
r={xX’+y’+12°

. z
sing =—
r

5J,R;
are

3
1038 (i 1) 28 i i)+ S 35 305 g+
LUX 2r 2r

0y =—%
r | 3J,R? JRE J,R? . .

sin sin 15sin? ¢ —3)+——E(35sin® ¢ —15sin

+¢[r g+ (15sin® g—3)+ =2 (35sin” g ¢)}

| S5 iy 5 s S5 s g0 13)|

9y =%

r J RS

2 4
+sm¢{3‘]rR sing+—=-£ o3 (155|n ¢— 3) JZS‘E (353in3¢—153in¢)}

2 3 4
sing —1+3‘]2#(3sin2¢—1)+4‘]35E (55in3¢—35in¢) >) RE (353|n ¢ —30sin? ¢+3)
uz 2r 2r 8r*
g, =7

2 3 4
+cos’ ¢[3‘12—2REsin ¢+J23—R3E(153in2 ¢—3)+‘]?i‘—Rf(353in3 ¢—15sin ¢)}
r r r

IX. Actuator Model
The actuator model is a second order system.

5 +2§a)5 +a)5 —a)népc
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5] (0 1 5,) (0 s
5,) \~oi -2¢wé, )\ s, {wﬁj e

. . , X
0, +28w,0,+®,6, = @,0,

n“yc

S, (0 1 (&) [0
5y | e —2§wn5y 5y J{a)ﬁ] yo

X. Force and Momentum
In Body Frame:

I:total .xb Fae ro.xb Frkt. xb Frcs. xb Fslosh.xb
Ftotal .yb = Faero. yb + I:rkt .yb + Frcs .yb + I:slosh .yb
Ftotal .zb Faerot .zb I:rkt .zb FI’CS. zb I:slosh .zb

To transfer the (x,y,z) components of total force from Body Frame to Inertial Frame ,by the
. T
quaternion(Q, 0, Gy 0,) .

2

Ftotal Xi ql q4 _q3 qZ Ftotal xb
Ftotal.yi =119, (ql 9, 0 ) + G 4, -G Ftotal.yb
I:total.zi s =0, 0 a, Ftotal.zb

In Inertial Frame:

X a'X 1 I:total.xi gx
Vi=la, |=—|F_ .. [+
¥ y m total.yi gy
L a

z I:total.zi gz
Kinematical Equation of Rotation:
é 1 singsind cosgsing
0 |=——| 0 cosgcosd® —singcosd
) cosé .
W 0 sing cos ¢ r

Angular acceleration:
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L1y 1P 0 —r gl I, I,
L, 1, 1, ]a|=—-|r 0 —py|l, I, I,
. 1, I, )Ur -q p O J)tl, 1, I, )r
Taero.xb rkt.xb Trcs.xb Tslosh.xb 0
+ Taero.yb + Trkt.yb + Trcs.yb + Tslosh.yb + TTWDp
Taerot.zb Trkt.zb Trcs.zb Tslosh.zb TTWDy
XI. Quaternion
To renormalize quaternion:
qln ql
q2n 2 2 2 2 qZ
:(1.5—0.5\/ql +0,+0; +0Q;)
q3n q3
q4n q4

Where, (ql g, g; q, )T is the quaternion column vector and (qln O,, O, q4n)T is the gquaternion

column vector after renormalization.
Quaternion derivatives:

ql 0 r _q p q1
d, =1 -r 0 P g4
;| 2/ g9 -p 0 r|aq,
d, -p -9 -r 0){q,
Quaternion conjugate:

0, ' =0,

a, _ —q,

q3 _qs

d, a,

XII. Guidance Commands

XIII. Control System
Discrete PID controller for roll, pitch and yaw channels

u(t) = K e(t) + K,Y, (t) + K,é(t)
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Discrete integration

V(0 =Y, () +2[e(0) +e(t D)

XIV. System Analysis
1. Center of Pressure

Mg =-CL+M,=-Xx,L

cp

Where, M is the pitching moment relative to the pin point of the vehicle; MCg is the pitching moment with
respect to the center of mass, X is the location of center of pressure.

According to the definition (force-and-moment system) of center of pressure, the plot of center of pressure can
be seen in the following figure.

1.015

1.01

1.005

Location, ft
Z axis, ft

0.995
-1.838

x 10

Xaxis, ft
Time, sec

Figure 4. Location of the center of pressure center of mass Figure 5. Vehicle position in Inertia Frame
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Figure 8. Mach number
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Figure 11.

Pitch gimbal angle command

Figure 10.
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Figure 13.

Angle of attack and sideslip angle

Figure 12.
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Solid rocket boost specific impulse

Figure 15.

Solid rocket booster weight flow rate

Figure. 14

Mach Number
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Figure

Euler angle

Figure 16.
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Normal force curve slop

Figure 18.

Mach Number
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Figure 21.

Pitching moment curve slop

Figure 20.
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2. Stability Analysis

XV. Sample Case

0.000000272367963 0.000000174392026 -0.000000347086527
¢, =| -0.000364943105155 0.006281028219530 0.000491932740239
0.006281175443849 0.000364891432306 -0.006260333099131

-0.000000266173427 0.000000329288262 -0.000000369058169
-0.006259406451949 -0.000542750533582 -0.007673360355205
-0.000491798506301 0.007676195145027 -0.000542218216634
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Table 1. Initial States’ Values

Parameter Initial Value (unit)

1340.649569297657 (ft/sec)

6.542058392976782 (ft/sec)

0.244274988189246 (ft/sec)

0.000034916172322 (rad/sec)

1.01643953670516€e-20 (rad/sec)

87898.84842619013 (f1)

U
\Y
w
P
Q 0.000064018398388 (rad/sec)
R
X
Y
4

18384832.09303243 (ft)

9960462.310921878 (ft)
ql 0.359443352340896
g2 0.608859075914155
g3 0.362476166996897
g4 0.60720847366793

XVI. Conclusion

Appendix
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